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Abstract

We determine the adaptive dynamics of a general Lotka–Volterra system containing an intraspecific
parameter dependency – in the form of an explicit functional trade-off between evolving parameters –
and interspecific parameter dependencies – arising from modelling species interactions. We develop expres-
sions for the fitness of a mutant strategy in a multi-species resident environment, the position of the singular
strategy in such systems and the non-mixed second-order partial derivatives of the mutant fitness. These
expressions can be used to determine the evolutionary behaviour of the system. The type of behaviour
expected depends on the curvature of the trade-off function and can be interpreted in a biologically intuitive
manner using the rate of acceleration/deceleration of the costs implicit in the trade-off function. We show
that for evolutionary branching to occur we require that one (or both) of the traded-off parameters includes
an interspecific parameter dependency and that the trade-off function has weakly accelerating costs. This
could have important implications for understanding the type of mechanisms that cause speciation.

The general theory is motivated by using adaptive dynamics to examine evolution in a predator–prey
system. The applicability of the general theory as a tool for examining specific systems is highlighted by
calculating the evolutionary behaviour in a three species (prey–predator–predator) system.
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1. Introduction

In this paper we investigate the adaptive dynamics of Lotka–Volterra systems when there is an
explicit functional trade-off between two evolving parameters and when the system contains other,
natural, dependencies between parameters. Parameter trade-offs occur intra-specifically for ener-
getic reasons – a gain in one area of a species� life history must be balanced by a loss in another.
Parameters dependencies occur inter-specifically in a similar way – they express dependence be-
tween aspects of the gains or losses experienced by two species due to the biology of their inter-
action. A good example of a parameter dependency is provided when one considers how an
increase in prey susceptibility to predation leads to an increase in the benefit from predation
for the predator in predator–prey systems (see (1) and (2)). The consideration of dependent
parameters represents the next step of complexity to that considered in [1] in classifying the adap-
tive dynamics of ecological systems with trade-offs. Including this extra complexity allows for
more complicated evolutionary dynamics including the possibility of evolutionary branching, a
proposed mechanism for sympatric speciation.

The theory of adaptive dynamics [2–4] assesses the fitness of new types of individuals that arise
at low density from small mutations around an established resident strategy. A successful mutant
must initially prosper in the environment determined by the resident and if this is the case the
mutant�s density will increase and begin to shape the environment. In the long-term the mutant
may coexist with the original or oust it to become the new resident itself. The key expression in
the analysis of adaptive dynamics is the fitness function of the mutant strategy which is calcu-
lated as the per capita growth rate of a mutant strategy, y, in an environment determined by
the resident population, x, and denoted sx(y). If sx(y) is negative the mutant dies out; if sx(y)
is positive it will spread. Given that mutations are small, the population will evolve in the direc-
tion of the local fitness gradient, [osx(y)/ox]y=x, until it reaches the neighbourhood of a �singular
strategy�, x*, for which the fitness gradient is zero. The behaviour at the singular strategy is deter-
mined from combinations of the associated second-order partial derivatives of the fitness func-
tion with respect to the mutant and resident strategies and can be characterised by two
properties (Table 1). For instance if x* is not Convergence Stable (CS) and not an Evolutionary
Unbeatable Strategy (EUS) it is an evolutionary repellor [2] whereas if it is not CS but is EUS it
exhibits what is known as a Garden of Eden evolutionary behaviour [5]. If x* is CS and EUS
then it is an evolutionary attractor [2,4]. The phenomenon of branching occurs when x* is CS
but not EUS. Here we evolve towards x* but when close by undergo disruptive selection and
two distinct strategies coexist either side of x*. (See [2–4] for more details on the theory of adap-
tive dynamics.)
Table 1
Properties of the singular strategy, x* (see [4])

Property Characteristic

Evolutionarily unbeatable strategy (EUS) B < 0
Convergence stable (CS) A � B > 0

A ¼ o2sxðyÞ
ox2

���
y¼x¼x�

B ¼ o2sxðyÞ
oy2

���
y¼x¼x�



A. White, R.G. Bowers / Mathematical Biosciences 193 (2005) 101–117 103
In this study we will consider the evolution of model parameters in Lotka–Volterra systems.
Previous studies have examined parameter evolution in specific systems [6–8] but have not fo-
cussed on the explicit relationship between parameters and instead link parameters through a
relationship with trait values. Explicit functions are required which link each evolving parameter
to the traits and the association between parameters is not transparent. Functional trade-offs
make clear the connection between parameters and are a subset of the parameterised relation-
ships. The straightforward nature of the connection when using functional trade-offs allows the
adaptive behaviour to be classified more generally. As well as providing an advantage mathemat-
ically functional trade-offs are also biologically realistic. They arise due to energetic constraints
that require that a gain in one area of a species� life history must be balanced by a loss in another
and are fundamental in real systems [9,10]. They are represented mathematically by linking
parameter pairs using a functional relationship. The study by Bowers and White [1] considered
a sub-class of Lotka–Volterra systems in which all the parameters – except those linked by the
trade-off – are independent. They showed that these systems could only exhibit evolutionary
attractor or repellor dynamics regardless of the number of species which make up the resident
environment of the evolving species or the trade-off parameter pair. Branching points (and there-
fore speciation) were not possible. Studies using more complex specific models that include
parameter trade-offs have investigated the evolution of resistance to parasites [11], the evolution
of polymorphism in Levene-type models [12] and the role of explicit versus emergent carrying
capacities in predator–prey models [13] and have shown that evolutionary branching can occur.
The most notably difference between the underlying Lotka–Volterra structure is that the systems
in [1] omit interspecific parameter dependencies whereas those of [11–13] include them. The direct
biological relevance of trade-offs, the fact that they can be used as a foundation from which to
understand the more detailed trait related systems and evidence that different Lotka–Volterra
set-ups with trade-offs can exhibit different evolutionary behaviour means that it is important
to examine the evolutionary consequences of trade-offs in systems with interspecific parameter
dependencies in more detail.

The aim of this paper is to further develop the general theory of adaptive dynamics with
trade-offs by extending the class of Lotka–Volterra systems classified by Bowers and White
[1] to include models with interspecific parameter dependencies. Any change in the evolution-
ary behaviour, compared to that possible in [1], can be attributed directly to the added com-
plexity in the model set-up and therefore the increased biological realism. To motivate the
general theory we will investigate the adaptive dynamics of a predator–prey system (see Exam-
ple 1, Eqs. (1) and (2)). We will then apply the methodology used in the predator–prey exam-
ple to examine the adaptive dynamics of a general Lotka–Volterra system which can contain
parameter dependencies. This will provide expressions for the fitness of the evolving species,
the position of the singular strategy x* and the singular values of the non-mixed second-order
partial derivatives of fitness with respect to the mutant and resident strategies. This informa-
tion can be used to provide a classification of the possible evolutionary behaviour in general
Lotka–Volterra systems with trade-offs. The expressions can also be used directly to calculate
the evolutionary dynamics of specific systems. We illustrate this in Example 2 (Eqs. (36)–(38))
where we determine the evolutionary behaviour of a 3-species (prey–predator–predator)
system.
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2. Results

2.1. Example 1: predator–prey

Eqs. (1) and (2) represent a multi-strain predator–prey system in which N 1
i represents the den-

sity of the prey strain i when i 2 J1 (the set of all possible prey strains) and N 2
i the density of pred-

ator strain i when i 2 J2 (the set of all possible predator strains). The dynamics satisfy
dN 1
i

dt
¼ N 1

i ai �
X
j2J1

bijN 1
j �

X
j2J2

cijN 2
j

 !
for i 2 J1; ð1Þ

dN 2
i

dt
¼ N 2

i di �
X
j2J2

eijN 2
j þ

X
j2J1

cjigijN
1
j

 !
; for i 2 J2: ð2Þ
Here ai is the intrinsic growth rate of prey strain i, bij is the rate of competition of prey strain j on
prey strain i, cij is the rate of susceptibility of prey strain i to predation from predator strain j, di is
the intrinsic growth rate of predator strain i, eij is the rate of competition of predator strain j on
predator strain i (for resources other than prey strains i 2 A1) and cjigij is the rate of benefit to
predator strain i of predation on prey strain j. Note here the prey�s susceptibility to predation
cij is the composite of the prey�s ability to �avoid� the predator (which varies with prey strain since
strains adopt different strategies) and the predator�s ability to �catch� a particular prey strain
(which can be fixed as in (6) below where only consider one predator strain).

For this system we can consider the following cases of species evolution:

(i) prey evolution with a trade-off between a and c (a trade-off including the intraspecific compe-
tition term b is not considered for technical reasons explained in [1]);

(ii) predator evolution with a trade-off between d and g or between d and c (as above we do not
consider trade-offs including the intraspecific competition term e).

In each case we consider the invasion of a mutant strain into an established resident community
X which is monomorphic in each species and consists of a prey strain x1 and a predator strain
x2 (i.e. X = {x1, x2}). We denote mutant prey strains by y1 and mutant predator strains by y2
Since the resident community is in equilibrium we know that the fitness of the resident prey
and predator strain denoted sX(x1) and sX(x2) respectively are zero. Thus the following expres-
sions hold:
sX ðx1Þ ¼ ax1 � bx1x1N
1 � cx1x2N

2 ¼ 0; ð3Þ

sX ðx2Þ ¼ dx2 � ex2x2N
2 þ cx1x2gx2x1N

1 ¼ 0: ð4Þ
Here,
N 1 ¼ ax1ex2x2 � cx1x2dx2

bx1x1ex2x2 þ gx2x1ðcx1x2Þ
2

and N 2 ¼
bx1x1dx2 þ cx1x2gx2x1ax1
bx1x1ex2x2 þ gx2x1ðcx1x2Þ

2
ð5Þ
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are the equilibrium densities of the resident strains determined by solving (3) and (4) simulta-
neously. (Note the subscripts have been dropped from N1 and N2 as the superscript is sufficient
to distinguish the strain in a resident community monomorphic in each species.) Direct calculation
shows that if a coexistence steady state exists (i.e. N1 > 0 and N2 > 0) then it is stable. We consider
the cases (i) and (ii) introduced above separately and, in each case, regard all the resident param-
eters except those linked by the trade-off as fixed or non-evolving. If we first consider the evolution
of the prey species with a trade-off ai ¼ f ðcix2Þ for i 2 J1 and bij = bii = bji for i, j 2 J1. This trade-
off reflects the fact that energetic or other constraints will mean that an increase in growth, a, will
be bought at the cost of an increased prey susceptibility to predation, c (as here the predator does
not evolve, the evolution of c is dependent on the prey only). The fitness function for the mutant
prey strain, y1 is
sX ðy1Þ ¼ ðf ðcy1x2Þ � f ðcx1x2ÞÞ � ðcy1x2 � cx1x2ÞN 2; ð6Þ
where we have used (3) and the definition of the trade-off to eliminate the terms in b. For f to be a
trade-off function in (6) we recognise that f 0 > 0 (i.e. an increase in growth, a, implies an increase
in susceptibility to predation, c). Since we have freedom to choose a 1–1 relationship between prey
strains and parameter values we can identify cx1x2 with x = x1 and cy1x2 with y = y1. (We can do
this because the predator strain x2 is fixed – it refers to a different non-evolving species.) We
can then write (6) as
sX ðyÞ ¼ ðf ðyÞ � f ðxÞÞ � ðy � xÞN 2: ð7Þ
where we recall that the equilibrium density N2 depends on x but not y. The population will evolve
in the direction of its local fitness gradient [2–4] defined as osX(y)/oyjy=x, which from (7) can be
expressed as
osX ðyÞ
oy

����
y¼x

¼ f 0ðxÞ � N 2: ð8Þ
Hence, from (8), if f is a not a trade-off, the fitness gradient has negative sign and evolution con-
tinues until the minimum value of the evolving parameter is reached. In the other case – on which
we shall concentrate – the fitness gradient may change sign and here evolution may continue until
the minimum or maximum value of the evolving parameter is obtained or until it reaches a neigh-
bourhood of a strategy for which the fitness gradient is zero. Such a strategy is known as evolu-
tionarily singular, denoted x*, and occurs when
f 0ðx�Þ ¼ N 2
��
�: ð9Þ
(We use asterisks generally to denote evaluation at the singular parameter values.) To determine
the properties of the singular strategy requires knowledge of the second-order partial derivatives
of sX(y) with respect to mutant and resident strategies at the singular strategy [2–4]. We use (5), (7)
and (9) (recalling that x and cx1x2 have been identified) to show that
o2sX ðyÞ
ox2

����
�
¼ �f 00ðx�Þ þ 2

oN 2

ox

����
�
¼ �f 00ðx�Þ þ 2

bg

beþ gðx�Þ2
N 1j�; ð10Þ
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o2sX ðyÞ
oy2

����
�
¼ f 00ðx�Þ: ð11Þ
(We drop subscripts from the non-evolving parameters.) We can classify the behaviour at the sin-
gular strategy by considering the curvature of the trade-off function and by using the definitions in
Table 1. When f00(x*) < 0 the singular strategy x* is an EUS, is necessarily CS and is therefore an
evolutionary attractor (Fig. 1(a) and (b)). When f00(x*) > 0 then the singular strategy is not EUS. It
is CS if
(a)

(c)
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. Simulations of Eqs. (1) and (2) for the evolution of the prey showing how the rate of predation, c, evolves over
nd the corresponding pairwise invasability plots (PIPS) near the singular point showing whether the mutant
, sX(y), is positive (shaded) or negative (unshaded). In the PIPS the diagonal is the line where resident and mutant
of c are equal (i.e. y = x). Parameters are b = 1, d = 1, e = 1 and g = 1 and the trade-off a = f(c) =

2c + 3a + 1 which fixes a singularity c* = 1. In (a) and (b) a = �0.5 and therefore f00(c*) < 0 and c* is an
tionary attractor, in (c) and (d) a = 0.75 and therefore f00(c*) > 0 but Eq. (12) is not satisfied and c* is an
tionary repellor and in (e) and (f) a = 0.25 and Eq. (12) is satisfied and c* is an evolutionary branching point. In
mulations the population dynamics were numerically solved for a fixed time (t) according to Eqs. (1) and (2)
g with a monomorphic population. Mutant strategies were generated by small deviations around the current
gies and introduced at low density. Then the population dynamics were solved for a further time t with strategies
population density fell below a low threshold considered extinct and removed before considering new mutations.

s way the parameter c could evolve. Note the simulations are not mutation-limited (i.e. new mutants could evolve
previous mutants had reached equilibrium or gone extinct) which accounts for thickness of the lines in figures
) and (e). This however did not confound the model predictions.



Table 2
Properties of the singular strategy for predator evolution in the predator–prey system (1), (2)

Trade-off Equivalence Singular strategy, x* occurs when o2sX ðyÞ
ox2

���
�

o2sX ðyÞ
oy2

���
�

1 di = f (gix) x ¼ gx2x1 y ¼ gy2x1 f 0(x*) = �cN1j* �f 00(x*) f 00(x*)
2 di = f (cxi) x ¼ cx1x2 y ¼ cx1y2 f 0(x*) = �gN1j* �f 00ðx�Þ þ 2 ge

beþgðx�Þ2 N
2
��
� f 00(x*)

Here recall that the asterisk relates to evaluation at the singular strategy. Subscripts are omitted from non-evolving
parameters.
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f 00ðx�Þ < oN 2

ox

����
�

or equivalently f 00ðx�Þ < bg

beþ gðx�Þ2
N 1j�: ð12Þ
Therefore if (12) holds it is a branching point. Here, disruptive selection will lead to dimorphism
in the prey species with distinct prey strains (on either side of x*) coexisting (Fig. 1(e) and (f)). If
the inequality (12) is reversed then the singular strategy is not CS and is therefore an evolutionary
repellor (Fig. 1(c) and (d)). The results for predator evolution in the model (1), (2) can be deter-
mined in a similar manner and are summarised in Table 2.

Considering the trade-off between d and g (row 1, Table 2) in terms of the results outlined in
Table 1 we can see that A = �B. Hence when f00(x*) < 0, the singularity is an EUS, is necessarily
CS and therefore an evolutionary attractor. When f00(x*) > 0 the singularity is not EUS and not
CS and is therefore an evolutionary repellor (see [1]).

If we consider the trade-off between d and c (row 2, Table 2) then the results are analogous to
those for prey evolution in that if f00(x*) < 0 we expect an evolutionary attractor, whereas if
f00(x*) > 0 then the singularity is a branching point if
f 00ðx�Þ < eg

beþ gðx�Þ2
N 2j�; ð13Þ
and an evolutionary repellor if inequality (13) is reversed.
From this example we observe that if the evolving parameters coupled by the trade-off include

the dependent parameter (c in the example) then there is a possibility of branching. When the
traded-off parameters do not include the dependent parameter (Table 1, row 1) then there is no
possibility of branching – a result in accord with our previous work [1]. We now turn our attention
to general theory in order to investigate whether these observations are true of all Lotka–Volterra
systems like (1), (2).

2.2. General results for Lotka–Volterra systems with trade-offs and parameter dependencies

To understand the evolutionary behaviour of Lotka–Volterra systems more comprehensively
we need to adopt a generalised approach. We consider multi-species, multi-strain Lotka–Volterra
systems in which the dynamics of strain i, of species a (where i 2 Ja the set of all possible strains of
species a), can be represented as
dN a
i

dt
¼ N a

i

X
b2Sa

X
j2Jb

gabpab
ij N

b
j

 !
: ð14Þ
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Here, N a
i is the density of strain i of species a (where a = 1, 2, . . . , n), pab

ij > 0 are parameters asso-
ciated with interactions between distinct strains of either the same or different species (e.g. within
and between species competition and predation) and gab = ±1 accounts for whether the interac-
tion between species a and b has a positive or negative effect on the density of species a. (Here,
when the parameter, pab

ij , represents a between species interaction it can vary as a result of the dif-
fering strategies adopted by both species a and b in a similar way to that in which the suscepti-
bility to predation could vary with both predator and prey strains in Example 1.) Furthermore,
Sa is the set of all species that interact with species a and Jb is the set of all strains of species
b. To allow for the representation of intrinsic parameters (e.g. intrinsic birth and death) it is con-
venient to include a fictitious species �0� with a single strain �x0� such that
ga0 ¼ 
1; pa0
ix0

¼ pa
i > 0 and N 0

x0
¼ 1: ð15Þ
We also define p00x0x0 ¼ 1 and p0ax0i ¼ 0 otherwise (which is consistent with (25)). This notation is sim-
ilar to that outlined in [1] (and [2,14]) but has been modified slightly with a view to making it more
tractable. The framework of [1] still holds and the set-up is briefly repeated below in the new nota-
tion for clarity and to form the basis from which to understand the behaviour under the more
complex representation which allows parameter dependencies. The general analysis below paral-
lels the particular analysis in Example 1.

We let X be a resident community containing a single strain of each species (i.e.
X = (x1, x2, . . . , xa, . . . , xn). Now since we assume the resident community is in equilibrium the
fitness function for each resident strain is equal to zero. Therefore, the following holds (with
the subscripts on the densities dropped since in a monomorphic community the species type
(superscript) can be used to identify the strain)
sX ðxaÞ ¼
X
b2Sa

gabpab
xaxb

Nb ¼ 0 for a ¼ 1; 2; . . . ; n: ð16Þ
The n equations in (16) can be solved to find the equilibrium density for each species. We are inter-
ested in the evolution of one species against the resident background population. Let us assume
that species a evolves, and that the mutant strain in species a is ya By defining the fitness for the
mutant species and using the result in (16) we can write
sX ðyaÞ ¼
X
b2Sa

pab
yaxb

� pab
xaxb

� �
gabNb

xb
: ð17Þ
We now introduce a trade-off between two parameters by assuming they are related by a condition
of the form
pac
yaxc

¼ f pab
yaxb

� �
: ð18Þ
We assume that all other parameters (i.e. those not involved in the parameter trade-off) are the
same for both the mutant and resident, so pa/

yax/
¼ pa/

xax/
8/ 2 Sa 6¼ fb; cg. Using (18) we can then

write (17) as
sX ðyaÞ ¼ f pab
yaxb

� �
� f pab

xaxb

� �� �
gacN c þ pab

yaxb
� pab

xaxb

� �
gabNb: ð19Þ
For f to be a trade-off the two terms above must be of opposite signs so (gac/gab)fmust be decreas-
ing which implies that (gac/gab)f 0 < 0. Using (19) and by identifying the resident parameter pab

xaxb
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with x and the mutant parameter pab
yaxb

with y we can simplify notation and produce the equivalent
result to that in [1], namely,
sX ðyÞ ¼ ðf ðyÞ � f ðxÞÞgacN c þ ðy � xÞgabNb: ð20Þ
The singular strategy, x*, occurs when the fitness gradient is zero, and for this generalised system
this occurs when
osX ðyÞ
oy

����
y¼x

¼ f 0ðyÞgacN c þ gabNb ¼ 0 ) f 0ðx�Þ ¼
�gabNb

��
�

gacN cj�
: ð21Þ
The behaviour at the singular strategy can be determined from combinations of the second-order
partial derivative of sX(y) with respect to the resident and mutant parameters evaluated at the sin-
gularity. We find
o2sX ðyÞ
ox2

����
�
¼ �f 00ðx�ÞgacN cj� � 2f 0ðx�ÞgacoN

c

ox

����
�
� 2gaboN

b

ox

����
�
; ð22Þ

o2sX ðyÞ
oy2

����
�
¼ f 00ðx�ÞgacN cj�: ð23Þ
In Bowers and White [1] it is proved that the derivatives of densities appearing in (22) are always
zero if the model parameters are independent. In terms of Table 1, we have that A = �B and it
then follows that an evolutionary attractor or an evolutionary repellor are the only possibilities.
We will show below that when the parameters are not independent, the density derivatives in (22)
are not necessarily zero and the range of possible evolutionary behaviour is increased. This has
important biological consequences.

2.3. The effect of generalised parameter dependencies

An illustration of a parameter dependency was given in the predator–prey example (1), (2)
where the benefit of predation for the predator depended on the susceptibility to predation of
the prey (through a linear relation on the parameter c). Our aim here is to give a general account
of this phenomenon. As in the example, parameter dependency corresponds to two terms (one for
each species) which model the effects of a particular interaction between two species. Therefore if a
dependency occurs it will do so between parameters plm

xlxm
and pml

xmxl
. The expression for the fitness of

the resident strains (16) for species l can be written
sX ðxlÞ ¼
X
m2Sl

glmplm
xlxm

N m
xm
¼ 0; ð24Þ
and we can use (24) and (18) to determine some general properties of the derivatives of densities in
(22). From (15) we know that
N 0 ¼ 1 ) oN 0

opab
xaxb

¼ 0: ð25Þ
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Assuming the trade-off in (18), which links the evolving species a with species b and c, we differ-
entiate (24) with respect to pab

xaxb
thereby generating the following results:
for l 6¼ a;b; c
X
m2Sl

glmplm
xlxm

oN m

opab
xaxb

¼ 0; ð26Þ

for l ¼ a
X
m2Sl

gampam
xaxm

oN m

opab
xaxb

þ gacf 0 pab
xaxb

� �
N c þ gabNb

n o
¼ 0; ð27Þ

for l ¼ b
X
m2Sl

gbmpbm
xbxm

oN m

opab
xaxb

þ gba
opba

xbxa

opab
xaxb

N a ¼ 0; ð28Þ

for l ¼ c
X
m2Sl

gcmpcm
xcxm

oN m

opab
xaxb

þ gca
pca
xcxa

opab
xaxb

N a ¼ 0: ð29Þ
We can use these equations to determine generalised expressions for the derivatives of densities in
Eq. (22). Since we are interested in values at the singular point, the expression in braces in (27)
vanishes by (21). We then define M as the (n + 1 by n + 1) matrix in which the first row is a 1
followed by n 0�s (from 25) and which contains the parameters with their signs ðgabpab

xaxb
Þ in sub-

sequent rows. We also let N = (N0, N1, . . . , Nn)T the column vector of species densities. (See
Example 2 for a specific description of M and N.) We find from (25)–(29) that
M
oN

opab
xaxb

¼ �gba
opba

xbxa

opab
xaxb

N aeb � gca
opca

xcxa

opab
xaxb

N aec; ð30Þ
where eb and ec are base vectors (i.e. eb has value 1 in the b row position and 0�s in all other posi-
tions). This implies that
oN

opab
xaxb

¼ �gba
opba

xbxa

opab
xaxb

N aM�1eb � gca
opca

xcxa

opab
xaxb

N aM�1ec: ð31Þ
Using (31) we see that the required derivatives in (22) can be written as
oNb

opab
xaxb

¼ �gba
opba

xbxa

opab
xaxb

N a M�1
	 


bb
� gca

opca
xcxa

opab
xaxb

N aðM�1Þbc

¼ �gba
opba

xbxa

opab
xaxb

N a cofactorbbðMÞ
detM

� gca
opca

xcxa

opab
xaxb

N a cofactorcbðMÞ
detM

; ð32Þ

oN c

opab
xaxb

¼ �gba
opba

xbxa

opab
xaxb

N a M�1
	 


cb
� gca

opca
xcxa

opab
xaxb

N a M�1
	 


cc

¼ �gba
opba

xbxa

opab
xaxb

N a cofactorbcðMÞ
detM

� gca
opca

xcxa

opab
xaxb

N a cofactorccðMÞ
detM

: ð33Þ
We can then use (32) and (33) in conjunction with (22) and (23) to determine the general behav-
iour at the singular strategy. We consider some particular cases below.
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The analysis of this section can be undertaken in a more general setting where the parameters
pab
ij in (14) are replaced by parameters qab

ij which can be composites of the (underlying) pab
ij . While

this can be useful computationally it is more complicated notationally and so the results are rel-
egated to Appendix A.

1. The trade-off does not involve a dependent parameter.

If the trade-off does not involve a dependent parameter then both the parameter derivatives
(opba

xbxa
=opab

xaxb
and opca

xcxa
=opab

xaxb
) in (32) and (33) are zero. Thus using (22) and (23) we see that in

terms of Table 1 A = �B. This parallels the result for the trade-off between di = f(gix) in example
1 in which evolutionary attractor or repellor dynamics are the only possibilities. It also extends the
results in [1], since here we show that branching is not possible if the traded-off parameters are
independent of the other parameters, whereas [1] assumed all the parameters in the system were
independent.

2. Trade-off between intrinsic and interaction parameters, pa0
yax0

¼ f ðpab
yaxb

Þ, where pab
xaxb

and pba
xbxa

are
dependent parameters.

With this trade-off we identify the species c = 0 and can see directly from (25) that
oN c=opab

xaxb
¼ oN 0=opab

xaxb
¼ 0. Also, opca

xcxa
=opab

xaxb
¼ op0ax0xa

=opab
xaxb

¼ 0, since by definition p0ax0xa
¼ 0

(representing the fact that an intrinsic parameter cannot be a dependent parameter). Thus, (22)
becomes
Table
Possib

Condi

f00(x*)g
T < f00

max(T
0 < f00
o2sX ðyÞ
ox2

¼ �f 00ðx�ÞgacN cj� þ 2gabgba
opba

xbxa

opab
xaxb

N aj�
cofactorbbðMÞ

detM

¼ �f 00ðx�ÞgacN cj� þ 2TN cj�; ð34Þ
which defines the quantity T. We can use (23) and (34) to characterise the possible evolutionary
behaviour in terms of gac and the sign and magnitude of f00(x*), 0 and T (Table 3).

3. Trade-off is between two interaction terms pac
yaxc

¼ f ðpab
yaxb

Þ where pab
xaxb

and pba
xbxa

are dependent
parameters and pac

xaxc
and pca

xcxa
are not dependent.

Here we know that opca
xcxa

=opab
xaxb

¼ 0 and this removes one of the terms from Eqs. (32) and (33).
Thus using (21), Eq. (22) can be written as
3
le evolutionary behaviour in terms of f00(x*), gac, 0 and T

tion on f00(x*), gac and T Characteristic of x* Evolutionary behaviour at x*

ac < min(T, 0) EUS, CS Attractor
(x*)gac < 0 EUS, not CS Garden of Eden

, 0) < f00(x*)gac not EUS, not CS Repellor
(x*)gac < T not EUS, CS Branching point
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o2sX ðyÞ
ox2

¼ �f 00ðx�ÞgacN cj� þ 2gabgba
opba

xbxa

opab
xaxb

N aj�
detM

cofactorbbðMÞ �
Nb
��
�

N cj�
cofactorbcðMÞ

 !

¼ �f 00ðx�ÞgacN cj� þ 2TN cj�: ð35Þ
Eq. (35) defines T and then as above the behaviour is classified by Table 3.

4. Trade-off is between two interaction terms pac
yaxc

¼ f ðpab
yaxb

Þ where both trade-off parameters are
dependent.

When both trade-off parameter have dependencies it is not possible to simplify the expressions
in (32) and (33). The definition of T therefore contains four terms. The behaviour is nevertheless
classified by Table 3.

2.4. Example 2: a three species system

The general theory described above can be illustrated and made more tangible by way of an
example. We choose a three species system in which there is one prey supporting two predators
and in which the predators are in direct competition for other resources. This example is chosen
as it is possible to generate all the possible evolutionary outcomes described above through dif-
ferent choices of the trade-off parameters.

The model represents a multi-strain three species system in which N 1
i represents the density of

the prey strain i when i 2 J1 (the set of all possible prey strains), N 2
i represents the density of pred-

ator 1 strain i when i 2 J2 and N 3
i represents the density of predator 2 strain i when i 2 J3. We

choose to use the same notation as in the general theory but with the terms of the general theory
explicitly defined. The dynamics are represented by
dN 1
i

dt
¼ N 1

i p10ix0 �
X
j2J1

p11ij N
1
j �

X
j2J2

p12ij N
2
j �

X
j2J3

p13ij N
3
j

 !
for i 2 J1; ð36Þ

dN 2
i

dt
¼ N 2

i p20ix0 �
X
j2J2

p22ij N
2
j þ

X
j2J1

p21ij N
1
j �

X
j2J3

p23ij N
3
j

 !
for i 2 J2; ð37Þ

dN 3
i

dt
¼ N 3

i p30ix0 �
X
j2J3

p33ij N
3
j þ

X
j2J1

p31ij N
1
j �

X
j2J2

p32ij N
2
j

 !
for i 2 J3: ð38Þ
Thus p10ix0 , p
20
ix0

and p30ix0 are the intrinsic growth rates of strain i and p11ij , p
22
ij and p33ij represent the

intraspecific competition of strain j on strain i for the prey, predator 1 and predator 2 species
respectively. The parameter p12ij is the susceptibility to predation of prey strain i from predator
1 strain j with this predation converted into births of predator 1 strain i at rate p21ij . Parameter
p13ij is the susceptibility to predation of prey strain i from predator 2 strain j with this predation
converted into births of predator 2 strain i at rate p31ij . Finally parameter p23ij is the rate of inter-
specific competition of predator 2 strain j on predator 1 strain i with p32ij the corresponding inter-
specific competition term of predator 1 on predator 2.
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We assume a resident population at equilibrium containing one strain of each species,
X = {x1, x2, x3}. We examine the evolution of predator 1 against this background community
and for different trade-off combinations, so as to give corresponding explicit results to those out-
lined generally above. If we assume that there is a mutant strain, y2 of predator 1 then we can
show that the mutant fitness is
sX ðy2Þ ¼ p2y2 � p2x2

� �
� p22y2x2 � p22x2x2

� �
N 2 þ p21y2x1 � p21x2x1

� �
N 1 � p23y2x3 � p23x2x3

� �
N 3: ð39Þ
We then consider the trade-offs outlined below, remembering that mutant and resident parameters
which are not linked by the trade-off are considered equal for each particular calculation. Thematrix
of parameters,M and the associated column vector N (as defined for (31)) are defined below. Note
subscripts are omitted here (and below) when parameters and densities refer to the resident strains.
M ¼

1 0 0 0
p10 �p11 �p12 �p13

p20 p21 �p22 �p23

p30 p31 �p32 �p33

0
BB@

1
CCA N ¼

N 0

N 1

N 2

N 3

0
BB@

1
CCA: ð40Þ
For different sets of trade-offs we identify the terms in the general formulae with the specific terms
in this example.

1. Trade-off: p20y2x0 ¼ f ðp23y2x3Þ

Here the intrinsic parameter cannot be repeated and if we assume there is no dependency be-
tween the competition parameter p23 and p32 then the trade-off does not contain any parameter
dependencies. The general theory therefore tells us that evolutionary repellor or attractor behav-
iour is the only possibility.

2. Trade-off: p20y2x0 ¼ f ðp21y2x1Þ

This trade-off links the intrinsic growth rate of predator 1 with the benefit of predation for predator
1 on the prey. The benefit of predation is often related to the susceptibility of the prey to predation
and so a dependency is expected between p21 and p12 (as in Example 1). To produce explicit results we
assume p12 = kp21 then from (21) and using (32) we know the singular strategy occurs when�
f 0ðx�Þ ¼
�g21N 1�

�
g20N 0

��
�

¼ �N 1
��
�: ð41Þ
Using the general theory (see (34)) the second derivatives at x* are as follows:
o2sX ðyÞ
ox2

¼ �f 00ðx�Þg20N 0
��
� þ 2g21g12 op

12

op21
N 2
��
�
cofactor11ðMÞ

detM
;

¼ �f 00ðx�Þ � 2kN 2
��
�
p22p33 � p23p32

detM
¼ �f 00ðx�Þ þ 2TN 0

��
�; ð42Þ

o2sX ðyÞ
oy2

¼ f 00ðx�Þ; ð43Þ
where T > 0 (since p22p33 � p23p32 > 0 and detM < 0 when the 3-species coexistence equilibrium is
feasible and stable). From Table 3 (since gac = g20 = 1) we can see that the singular strategy can be
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an attractor if f00(x*) < 0, a repellor if f00(x*) > T and also an evolutionary branching point if
0 < f00(x*) < T.

3. Trade-off: p23y2x3 ¼ f ðp21y2x1Þ

This trade-off links the competition rate between predator 1 and predator 2 with the benefit of
predation for predator 1 on the prey. As detailed above we do not invoke a dependency between
p23 and p32 but do invoke one between p21 and p12 and as above assume p12 = kp21. The singular
strategy occurs when
f 0ðx�Þ ¼
�g21N 1

��
�

g23N 1
��
�

¼
N 1
��
�

N 3
��
�
: ð44Þ
Using the general theory (see (35)) the second derivatives at x* are given by
o2sX ðyÞ
ox2

¼ �f 00ðx�Þg23N 3
��
� þ 2g21g12 op

12

op21
N 2
��
�

detM
cofactor11ðMÞ �

N 1
��
�

N 3
��
�
cofactor13ðMÞ

 !

¼ f 00ðx�ÞN 3
��
� � 2k

N 2
��
�

detM
ðp22p33 � p23pÞ32 �

N 1
��
�

N 3
��
�
ðp22p31 � p32p21Þ

 !

¼ f 00ðx�ÞN 3
��
� þ 2TN 3

��
�; ð45Þ

o2sX ðyÞ
oy2

¼ �f 00ðx�ÞN 3
��
�: ð46Þ
The evolutionary behaviour is described in Table 3. As above we know that p22p33 � p23p32 > 0
and detM < 0 but the stability criteria for 3-species coexistence does not place any restriction
on the sign or magnitude of p22p31 � p32p21 and this can therefore be used to control the sign
and magnitude of T. Thus, for different parameter combinations it is possible to generate all
the evolutionary behaviour outlined in Table 3.
3. Discussion

In this study we have determined the adaptive dynamics of a general Lotka–Volterra system
endowed not only with intraspecific parameter dependencies – modelling trade-offs – but also
interspecific parameter dependencies – arising from the modelling of species interaction. We have
developed general expressions for the fitness of a mutant strategy in a multi-species resident envi-
ronment, the position of the singular strategy in such systems and the non-mixed second-order
partial derivatives of the mutant fitness. Further analysis has shown how these derivatives can
be written as an expression containing the derivatives of possibly interspecifically dependent
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parameters with respect to the trade-off parameter (see (32,33) and Appendix A). We have proved
in general that if the parameters related by the trade-off do not include such a dependent para-
meter then the possible evolutionary behaviour of the system is limited and the singular strategy
can only be an evolutionary attractor or an evolutionary repellor. When the trade-off parameters
do include a parameter that is interspecifically dependent it is possible to generate additional evo-
lutionary behaviour and in particular evolutionary branching is possible. The type of behaviour
expected depends on the curvature of the trade-off function.

The general relationship between the evolutionary behaviour and the curvature of the trade-
off function can be interpreted in a more biologically intuitive manner using the rate of accel-
eration/deceleration of the costs implicit in the trade-off function. In Table 3 we outline the
possible evolutionary behaviour depending on the relationship between gac f00(x*), 0 and T.
The general results in this form show that branching requires the curvature of the trade-off
to be above or below a threshold (set by T) depending on the sign of gac. It is also possible
to express the behaviour, universally, in terms of the cost acceleration/deceleration implicit
in the trade-off function. In particular the evolutionary behaviour can be characterised by
whether the trade-off involves a �weakly� accelerating or decelerating cost. To do this recall that
for f to be a trade-off we require that (gac/gab)f 0 < 0. Since pab

xaxb
helps the growth rate when gab

is positive, we define a benefit B ¼ gabpab
xaxb

¼ gabx. Since pac
xaxc

helps the growth rate when gac is
positive, we define a cost C ¼ �gacpac

xaxc
¼ �gacf ðxÞ. Then dC/dB = �(gac/gab)f 0(x) so the trade-

off condition is equivalent to a positive marginal cost. Furthermore, the cost acceleration d2C/
dB2 = �gacf00(x), which allows us to express all the results in Table 3 in terms of this quantity.
For the singular point to be a branching point (which requires 0 > d2C/dB2 > �T), we need a
trade-off that is weakly decelerating in cost. If the trade-off is decelerating costly but not weakly
so (�max(T, 0) > d2C/dB2), the singular point is an evolutionary repellor. For Garden of Eden
behaviour we require 0 < d2C/dB2 < �T, that is a weakly accelerating cost. Finally, when the cost
is accelerating but not weakly (�min(T, 0) < d2C/dB2), we have an attractor. An immediate con-
sequence of this is that branching points are not possible when T < 0 and Garden of Eden points
are not possible when T > 0.

Thus the evolutionary behaviour can be classified universally in terms of the rate of accelera-
tion/deceleration of the costs implied by the trade-off. This admits immediate biological interpre-
tation. Of particular note is the result that evolutionary branching can only occur for a trade-off
function corresponding (at the singular strategy) to weakly decelerating costs. We have therefore
confirmed in general the findings from specific studies [11–13]. The importance of trade-offs in bio-
logical systems [9,10,15] make this a significant and testable finding.

The comparison of the systems with and without parameter dependencies also provides
possible clues about the type of species interactions that are required for evolutionary
branching. The fact that, for branching, the trade-off must �contain� a dependent parameter
indicates that speciation may require the evolving species to have a parameter coupling to an-
other species. This type of coupling is typical of food chain systems (such as the predator–prey
relationships in Examples 1 and 2) but may not be found in competitive interactions. This
could have important implications for understanding the type of mechanisms that cause
speciation.
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Appendix A

If the parameters pab
ij in (14) are replaced by parameters qab

ij which can be composites of the
(underlying) pab

ij then with the trade-off remaining as at (18) and x ¼ pab
xaxb

; y ¼ pab
yaxb

still, the main
results (21)–(23) then become, respectively
f 0ðx�Þ ¼
�gab oqab

xaxb
=opab

xaxb

� �
Nb�

gac oqac
xaxc=op

ac
xaxc

	 

N c� ðA:1Þ
and, provided that the composition is no more than linear in each variable,
o2sX ðyÞ=ox2
��
� ¼ �gac oqac

xaxc
=opac

xaxc

� �
f 00ðx�ÞN c

���
�
� 2gac oqac

xaxc
=opac

xaxc

� �
f 0ðx�ÞoN c=ox

���
�

� 2gab oqab
xaxb

=opab
xaxb

� �
oNb=ox

���
�
; ðA:2Þ

o2sX ðyÞ=oy2
��
� ¼ �gac oqac

xaxc
=opac

xaxc

� �
f 00ðx�ÞN c

���
�
: ðA:3Þ
We also find that (32) becomes
oNb

opab
xaxbCb

¼ �gba
X
C

oqba
xbxa

opba
xbxaC

opbaC
xbxa

opab
xaxb

s

 !
N a cofactorbbðMÞ

detM

� gca
X
C

oqca
xcxa

opca
xcxaC

opca
xcxaC

opac
xaxc

f 0ðxÞ
 !

N a cofactorcbðMÞ
detM

; ðA:4Þ
where the summations are over all underlying parameters appearing in the respective composites.
There is a similar result for (33):
oN c

opab
xaxbCb

¼ �gba
X
C

oqba
xbxa

opba
xbxaC

opba
xbxaC

opab
xaxb

 !
cofactorbcðMÞ

detM

� gca
X
C

oqca
xcxaCca

opca
xcxaC

opca
xcxaC

opac
xaxc

f 0ðxÞ
 !

N a cofactorccðMÞ
detM

: ðA:5Þ
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