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Abstract

In response to parasitic infection, hosts may evolve defences that reduce the deleterious effects on survivorship. This may be

interpreted as a form of resistance, as long as infected hosts are able to either recover or reproduce. Here we distinguish two

important routes to this form of resistance. An infected host may either: (1) tolerate pathogen damage, or (2) control the pathogen by

inhibiting its growth. A model is constructed to examine the evolutionary dynamics of tolerance and control to a free-living

microparasite, where both forms of resistance are costly in terms of other life-history traits. We do not observe polymorphism of

tolerant genotypes. In contrast, the evolution of control may lead to disruptive selection, and ultimately dimorphism of extreme

strains. The optimal host genotype also varies with the type of resistance—individuals invest more in tolerance and pay a greater

cost. The free-living framework used makes the distinction between tolerance and control explicit but the distinction applies equally

to directly transmitted parasites. Due to the evolutionary differences exhibited, it is important to design experiments that distinguish

between the two forms of resistance.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Faced with a wide variety of infectious agents,
organisms have developed a diverse array of defence
mechanisms (Roy and Kirchner, 2000). It is useful to
clarify these different mechanisms in terms of their
epidemiological role. Resistance can be achieved by
avoiding infection in the first place, recovering faster
once infected, or remaining immune for longer. In
addition, mechanisms allowing infected individuals to
survive for longer also lead to resistance, provided these
infected hosts may still reproduce or are able to recover
(Boots and Bowers, 1999; Roy and Kirchner, 2000).
e front matter r 2005 Elsevier Ltd. All rights reserved.
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This ability to reduce the negative effects of infection on
survivorship is often known as tolerance. However, we
show that a reduction in pathogenicity (disease-induced
mortality) through ‘true’ tolerance has very different
evolutionary outcomes to when reduced pathogenicity is
due to control of the parasite’s growth rate.

There have been several theoretical studies investigat-
ing the evolution of resistance to pathogens (Antonovics
and Thrall, 1994; Boots and Bowers, 1999, 2004; Boots
and Haraguchi, 1999; Bowers, 1999, 2001; Bowers et al.,
1994; Restif and Koella, 2003, 2004; Roy and Kirchner,
2000). Epidemiological models typically assume a
haploid host, where increased resistance correlates with
lower investment in some other advantageous trait.
Resistance therefore incurs a cost that manifests as
reduced fitness in the absence of disease. The existence
of costs is supported by both theoretical arguments
(Stearns, 1992) and empirical evidence (Boots and
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Begon, 1993; Kraaijeveld and Godfray, 1997). A
common assumption is that costs arise due to antag-
onistic pleiotropy, where the allele encoding for
resistance has other detrimental effects on fitness in
the absence of disease (Simms, 1992). Bowers et al.
(1994) and Antonovics and Thrall (1994) examined very
similar models of the evolution of resistance to a directly
transmitted pathogen where resistant hosts had a
reduced probability of becoming infected, but experi-
enced a lower birth rate or greater vulnerability to
crowding. Polymorphism was shown to be unlikely
between similar strains, and highly virulent parasites
selected against resistance. Indeed, when the degree of
difference between susceptible and resistant strains is
large enough, polymorphism may be feasible even with
very low costs of resistance. Boots and Bowers (1999)
subsequently investigated the evolution of costly resis-
tance through three different mechanisms. Resistance
manifested as avoidance (a reduction in the probability
of being infected), recovery (faster rate of clearance) or
tolerance (a reduction in pathogen-induced mortality).
In all three cases, resistance was most likely to evolve in
hosts with a high intrinsic growth rate and low
susceptibility to crowding. With resistance through
avoidance or recovery, polymorphism was predicted
between very dissimilar strains, over a wide range of
costs, but polymorphism was found to be highly
unlikely through a tolerance mechanism. Roy and
Kirchner (2000) also argued that tolerant genotypes
will increase disease incidence and hence the selection
for tolerance; polymorphism is therefore only possible
when there are other factors influencing selection.

Here we recognize that the evolution of resistance
conferred through reduced pathogenicity may arise
through different biological mechanisms. We distinguish
between two forms which we term ‘tolerance’ and
‘control’. Tolerance is defined as a reduction in
pathogenicity that has no effect on the growth of the
pathogen. Control is defined as a reduction in patho-
genicity obtained by reducing within-host growth
(effectively, the replication rate of the pathogen within
infected hosts). We consider a free-living microparasite,
such that transmission of the disease occurs through
long-lived infective particles external to the host. This
formulation makes the distinction between the two
forms of pathogenicity-reducing resistance explicit. In
addition, we can examine the implications of free-living
stages, per se, to the evolution of resistance. In both
cases we assume a pleiotropic cost of resistance in terms
of a reduced intrinsic growth rate.
2. Model

We consider the dynamics of two host genotypes
(susceptible and resistant) and a free-living pathogen.
Our algorithm uses a structure adapted from model G of
Anderson and May (1981) and a methodology derived
from host-host-pathogen models for directly transmitted
infection (Boots and Bowers, 1999). The variables are
defined as follows:

X S density of uninfected individuals of the suscep-
tible strain

Y S density of infected individuals of the susceptible
strain

Z density of infective particles
X R density of uninfected individuals of the resistant

strain
Y R density of infected individuals of the resistant

strain.

We assume that host strains share the same environ-
ment and become infected through contact with a
common pool of infective particles. The dynamics are
described by the following differential equations:

dX S

dt
¼ rSðX S þ Y SÞ � qHðX S þ Y SÞ

� bX SZ þ ðgþ bÞY S, ð1Þ

dY S

dt
¼ bX SZ � ðaS þ gþ bÞY S, (2)

dZ

dt
¼ lSY S þ lRY R � mZ, (3)

dX R

dt
¼ rRðX R þ Y RÞ � qHðX R þ Y RÞ

� bX RZ þ ðgþ bÞY R, ð4Þ

dY R

dt
¼ bX RZ � ðaR þ gþ bÞY R, (5)

ðH ¼ X S þ Y S þ X R þ Y R ¼ Total host densityÞ:

The subscripts S and R denote the susceptible and
resistant strains respectively (resistance manifests as
either control or tolerance). Here ri gives the intrinsic
growth rate of host genotype i; equal to the birth rate ai;
minus the common death rate b: The quantity q

measures susceptibility to crowding and represents
density-dependence acting on the birth rate of the host.
It is related to the carrying capacity Ki ¼ ri=q: The
transmission rate of infection, the recovery rate, and the
rate of pathogenicity (disease-induced mortality) are
denoted b; g and ai; respectively. Once infected, hosts
produce free-living particles at a rate li; until they either
die or recover. These infective particles persist in the
external environment with a background mortality rate
m: We follow the approach of Dwyer (1994) and assume
that infective particles are lost only through this natural
decay rate; the reduction in pathogen density due to host
consumption is assumed to be negligible.
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We assume a uniform pathogen with a fixed level of
‘potential’ virulence that is only fully expressed as
pathogenicity in susceptible hosts. The actual patho-
genicity experienced is the potential virulence of the
pathogen that is not compensated for by a resistance
mechanism. In tolerant hosts, resistance reduces patho-
genicity but this does not affect the growth of the
pathogen. Control limits viral replication in infected
hosts, reducing both pathogenicity and the production
rate of free-living particles. The assumptions are there-
fore:

Tolarance : aRoaS rRorS; lR ¼ lS ¼ o, (6)

Control : aRoaS; rRorS; faR ¼ lRolS ¼ faS.

(7)

The parameter o represents the rate of production of
particles from infected hosts in the tolerance scenario,
while f determines the production rate (for a given level
of pathogenicity) in the control scenario. All parameters
are assumed to be positive.
3. Analysis

There are six equilibrium solutions of Eqs. (1)–(5).
Taking the variables in the order ðX S; Y S; Z; X R; Y RÞ

the equilibria are:

ð0; 0; 0; 0; 0Þ, (8)

ðKS; 0; 0; 0; 0Þ, (9)

ð0; 0; 0; KR; 0Þ, (10)

ðX �
S; Y �

S; Z�
S; 0; 0Þ, (11)

ð0; 0; Z�
R; X �

R; Y �
RÞ, (12)

ðXþ
S ; Yþ

S ; Zþ; Xþ
R ; Yþ

RÞ. (13)

The first equilibrium is always unstable for positive
parameters. The second corresponds to an uninfected
susceptible strain at its carrying capacity, KS ¼ rS=q:
This equilibrium is stable only when the threshold
density required to support the pathogen exceeds the
carrying capacity ðHT ;S4KSÞ: This threshold density is
given as HT ;S ¼ mðaS þ gþ bÞ=lb: The third equilibrium
similarly corresponds to an uninfected resistant strain at
its carrying capacity KR ¼ rR=q: Under our trade-off
assumptions (6)–(7) this equilibrium is never stable,
since in the absence of infection the susceptible strain
has a higher growth rate. The fourth and fifth equilibria
correspond to a single infected strain (susceptible or
resistant) supporting the pathogen. The final solution
corresponds to a dimorphic equilibrium where a
susceptible and a resistant strain jointly support the
pathogen.
Throughout our analysis we assume the susceptible
carrying capacity always exceeds the threshold
density ðKS4HT ;SÞ: Equilibria (8)–(10) are therefore
always unstable and we need only consider the stability
criteria with respect to the infected states (11)–(13).
We apply an invadability analysis that determines
the specific conditions for a rare mutant strain to invade
a resident equilibrium. These conditions are derived
in Appendix A using a traditional Jacobian analysis,
but we present here a more biologically motivated
derivation.

Consider an initially rare mutant of the resistant
strain, attempting to invade the susceptible equilibrium
(11). To successfully invade, the resistant mutant must
have a positive growth rate. This means that the net
contribution of a single resistant individual must be
greater than zero. On average, a single resistant mutant
will remain uninfected for a period TX ; during which
time it makes a contribution rX to the total population,
and will be infected for an average time TY ; making a
contribution rY : Letting IR denote the overall contribu-
tion, this gives

IR ¼ rX TX þ rY TY . (14)

This term must be greater than zero for the genotype
to invade. From Eqs. (1)–(5) the uninfected contribution
is

rX ¼ rR � qðX �
S þ Y �

SÞ. (15)

Similarly, the contribution while infected is

rY ¼ rR � qðX �
S þ Y �

SÞ � aR. (16)

The average period an individual stays uninfected is
determined by the natural mortality rate and the
probability of becoming infected through contact with
an infective particle. Since there are Z�

S such particles,
the probability of an infection is bZ�

S and we have

TX ¼ 1=ðb þ bZSÞ. (17)

The probability of dying while uninfected is b TX : The
only other possibility is to become infected and then
either die or recover, with probability ðaR þ gþ bÞTY :
Logically, this gives:

b TX þ ðaR þ gþ bÞTY ¼ 1. (18)

Note that successive periods of infection and recovery
are possible, but this only serves to scale the results by a
positive common factor. Also, infected individuals
cannot prosper unless uninfected individuals do. It is
therefore sufficient to consider only a single cycle, where
an initially uninfected individual either remains so, or
becomes infected and then dies or recovers (Boots and
Bowers, 1999).

Combining Eqs. (17) and (18):

TY ¼
bZ�

S

ðb þ bZ�
SÞðaR þ gþ bÞ

. (19)
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Fig. 1. Outcomes in trade-off space when a resistant mutant

characterized by ðaR; rRÞ attempts to invade a resident susceptible

strain. The susceptible strain has intrinsic growth rate rS ¼ 1 and

pathogenicity aS ¼ 3: Resistance evolves as either: (a) tolerance, or (b)

control. The ‘resistant’ region corresponds to IR40; ISo0; the

‘susceptible’ region to IRo0; IS40; ‘contingent competition’ corre-

sponds to IRo0; ISo0; and polymorphism to IR40; IS40: Other

parameters are: q ¼ 0:1; b ¼ 0:25; g ¼ 1:5; b ¼ 0:5; m ¼ 1; o ¼ 10

(tolerance) and f ¼ 10=3 (control).
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Substituting the terms into (14) we obtain an
expression for the growth rate IR of the resistant strain:

IR ¼ frR � qðX �
S þ Y �

SÞg 	
1

ðb þ bZ�
SÞ

þ frR � qðX �
S þ Y �

SÞ � aRg

	
bZ�

S

ðb þ bZ�
SÞðaR þ gþ bÞ

. ð20Þ

To invade the susceptible equilibrium, IR must be
greater than zero. Eliminating a positive common
factor, the condition for the resistant strain to invade is

IR ¼ rR � qðX �
S þ Y �

SÞ �
bZ�

S

ðaR þ gþ bÞ

	faR � ðrR � qðX �
S þ Y �

SÞÞg40. ð21Þ

If this condition is not satisfied then the susceptible
equilibrium (11) resists invasion and a resistant mutant
will be eliminated. By symmetry, the condition for a
susceptible strain to invade the resistant equilibrium (12)
is

IS ¼ rS � qðX �
R þ Y �

RÞ �
bZ�

R

ðaS þ gþ bÞ

	faS � ðrS � qðX �
R þ Y �

RÞÞg40. ð22Þ

We can now classify the equilibria according to these
two invasion criteria. When only condition (21) holds,
the resistant strain can invade the susceptible equili-
brium but the resistant equilibrium resists invasion by
the susceptible strain. In this case the susceptible strain
is eliminated and equilibrium (12) is stable. Conversely,
when only condition (22) holds, the susceptible equili-
brium (11) is stable and the resistant strain is eliminated.
If both (21) and (22) hold, then neither strain is favoured
and the only stable equilibrium is the dimorphic state
(13). The remaining situation occurs when neither
condition holds, in which case both single equilibria
((11) and (12)) are locally stable, and the outcome is
contingent on the initial conditions. Within our evolu-
tionary context, this scenario favours the susceptible
strain that is initially confronted with the parasite.

The dynamics are illustrated using Reciprocal Inva-
sion Plots (Boots and Bowers, 1999; Bowers et al., 1994).
We assume a resident susceptible strain characterized by
ðaS; rSÞ and a range of possible resistant mutants
ðaR; rRÞ: The susceptible strain is paired with each
resistant genotype and the invasion criteria (21) and
(22) evaluated in each case. This allows us to determine
the relative costs and benefits that favour resistance (for
a given level of susceptibility). Resistance takes the form
of either tolerance (6) or control (7).

First, we allow resistance to evolve as tolerance.
Fig. 1(a) partitions the parameter space into regions
where IS and IR are positive and negative. The solid
lines therefore correspond to equality in (21) and (22).
We do not observe polymorphism: either the susceptible
or the tolerant strain is eliminated. There does exist a
limited region where the outcome is contingent on initial
conditions, but this also results in monomorphism. This
appears to be the general case: we did not find
polymorphism for any parameter combinations. The
addition of free-living stages therefore does not alter the
prediction for a directly transmitted microparasite,
namely, that polymorphism is unlikely to evolve
through tolerance (Boots and Bowers, 1999; Roy and
Kirchner, 2000).

When resistance evolves as control, polymorphism
occurs over a significant region (Fig. 1(b)). It is most
likely to occur between dissimilar strains, such that the



ARTICLE IN PRESS
M.R. Miller et al. / Journal of Theoretical Biology 236 (2005) 198–207202
resistant strain possesses a much smaller pathogenicity.
The region of polymorphism becomes increasingly
narrow as the degree of similarity between the resistant
and susceptible strain increases. Note the only difference
between the two diagrams lies in the position of the
IS ¼ 0 line. In Fig. 1(a) this lies below the IR ¼ 0 line,
whereas in Fig. 1(b) it lies above it. Examining the
resistant equilibrium (12) we find that a lower value of
lR (due to control) increases the total host density X �

R þ

Y �
R; and reduces the density of infective particles Z�

R: A
putative susceptible invader therefore faces an increased
level of resource competition, but a reduction in the
force of infection. The overall effect on IS may
theoretically be either positive or negative. However,
our results indicate that IS will increase under control
(as compared to tolerance with the same parameters).
Faced with a controlling rather than a tolerant
competitor, the susceptible strain experiences a reduced
force of infection that outweighs the increase in resource
competition. Graphically, this shifts the IS ¼ 0 line
upwards, reducing the region of parameter space where
the susceptible strain is eliminated and precluding
contingent competition as an outcome. Interpreted
biologically, the presence of a control strain reduces
the density of infective particles, the opportunities for
new infections, and hence the selective pressure for
resistance.
4. Adaptive dynamics

In the preceding analysis, the susceptible strain was
assumed to be resident and putative invaders had higher
resistance and a lower growth rate. If a resistant strain
was able to invade, it was shown to either eliminate the
susceptible strain or coexist with it in a dimorphism.
However, after an initial invasion has taken place,
further mutations may occur to challenge the new
equilibrium. There may indeed be many evolutionary
steps before the final equilibrium is reached. We
therefore embed our single-step algorithm within an
adaptive dynamical framework. This assumes that
mutations are small and rare and that the system
reaches its attractor before a new mutation occurs. This
approach allows us to determine whether the evolu-
tionary behaviour outlined for the ‘susceptible-resistant’
analysis can occur as a result of many evolutionary
steps. In particular, it enables us to examine whether
polymorphism can evolve from an initially mono-
morphic resident. We assume explicit trade-offs for
tolerance and control, such that a given level of
resistance is associated with a particular reduction in
growth rate.

The invasion exponent IR gives the fitness of a
resistant mutant in the environment determined by the
susceptible strain. In the general case, the resident strain
is not necessarily susceptible, but may have any level of
resistance with associated growth rate (assuming a
particular trade-off). Nearby mutants may be either
more or less resistant and are also subject to the trade-
off constraint. The invasion exponent for a given mutant
ðaM ; rMÞ attempting to invade a resident strain ðaE ; rEÞ at
equilibrium is:

IM ¼ rM � qðX �
E þ Y �

EÞ �
bZ�

E

ðaM þ gþ bÞ

	faM � ðrM � qðX �
E þ Y �

EÞÞg40. ð23Þ

This is identical to the invasion exponent (22), except
that the subscripts M and E are now used to identify the
mutant and the resident strain, respectively.

The theory of adaptive dynamics (Geritz et al., 1998;
Metz et al., 1996) uses fitness expressions to determine
the position and nature of singular (fixed) points of
evolution. Typically, singular points are determined
from Pairwise Invadability Plots (PIPs), which display
graphically the sign of the fitness function of a mutant
strain. The way in which the parameter space is
partitioned into fitness regions can be used to assess
whether a singular point exhibits a number of evolu-
tionary properties. At present, we restrict ourselves to
two particular properties. Firstly, if nearby resident
strategies not at the singular point may be invaded by
those closer to it, we say it is convergence stable (CS), as
local mutation proceeds towards it. Second, a singular
point is an evolutionarily stable strategy (ESS) if, once
resident, it resists invasion by all local mutants (a global
ESS resists invasion by all possible mutants). For a
fuller explanation of adaptive dynamics and the
technique of pairwise invadability plots, see Geritz et
al. (1998).

We assume explicit trade-offs between pathogenicity
(a) and intrinsic growth rate (r). When resistance evolves
as control, this implies an additional relationship between
host growth and the pathogen’s production rate (l). In
this study we restrict our consideration to nonlinear
trade-off curves (Fig. 2). For example, with a decelerating
trade-off, the cost (the reduction in growth rate) of a
given increment of resistance becomes less as the
investment in resistance increases (i.e. there are increasing
benefits of resistance). Given a particular cost structure,
we generate the corresponding pairwise invadability plot
and determine the outcome of evolution.

We assume a weakly decelerating trade-off (Fig. 2(b))
and compare the pairwise plots when resistance evolves
as control (Fig. 3(a)) and tolerance (Fig. 3(b)). The
pathogenicity of the resident strategy is given on the
horizontal axis and the mutant’s pathogenicity on the
vertical axis. Where the region contains a plus (+) sign
this indicates the mutant strain has a positive fitness and
may invade the resident equilibrium. A minus (�) sign
indicates the fitness is negative such that the mutant will
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be eliminated. In (a) resistance evolves as control; the
intersection at a� ¼ 0:39 indicates a singular strategy at
which the local fitness gradient is zero. At resident
values of a below this singular point, mutants with
bigger a have positive fitness (indicated by the positive
(+) region to the left of a� and directly above the main
diagonal). Similarly, given a resident above the singular
point, mutants with smaller a have negative fitness (the
(�) region to the right of a� and below the main
diagonal). Directional selection therefore moves to-
wards the singular strategy at a� ¼ 0:39 and the fixed
point is convergence stable. However, the singular
strategy does not itself resist invasion by mutants with
larger or smaller pathogenicity (the vertical through a�

lies entirely in a positive (+) region). Once the fixed
point is reached (or very near to it) we observe
disruptive selection. Here the resident can be invaded
by strains on either side of the singular point, and a
process of evolutionary branching occurs. This leads
ultimately to a dimorphic equilibrium composed of two
subpopulations, one highly resistant ða� ¼ 0Þ and the
other highly susceptible ða� ¼ 3Þ: This is seen in
evolutionary time by simulating the mutation-selection
process and tracking the resident strategy (Fig. 3(c)). In
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0 1 2 3
0

1

2

3

Resident strain (α)

+

-

(b)

(d)

trol, and (b) tolerance. In both cases, there is a decelerating trade-off,

; b ¼ 0:5; m ¼ 1; o ¼ 10 and f ¼ 10=3: The corresponding plots of how

rance.
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Fig. 3(b) resistance evolves as tolerance under the same
trade-off. There is no internal strategy at which the
fitness gradient is zero and the optimal fitness occurs at
the minimum value. The evolutionary process converges
at a ¼ 0 (Fig. 3(d)).

Applying a different trade-off, we investigated how
the optimal investment in resistance differs with control
and tolerance. We defined the optimal investment in
resistance to be the difference in pathogenicity between
optimally resistant (ESS) and susceptible hosts. We
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Fig. 4. Optimal investments in resistance, defined as the reduction in

pathogenicity achieved by an optimally resistant host, from that

experienced by the initial susceptible strain. The optimal investment in

resistance is therefore ðaS � a�Þ where aS is the pathogenicity of the

susceptible strain and a� is the optimal pathogenicity. The solid line

corresponds to the optimal strategy when resistance evolves as

tolerance, and the dotted line to the optimal investment in control.

In both cases there are accelerating costs of resistance such that r ¼

72=62 � 1=½2ðaþ 0:1Þ� and the optimal strategy is convergence and

evolutionarily stable (both CS and ESS). The susceptible host is

defined by aS ¼ 3: In (a) there is a constant natural mortality rate

b ¼ 0:5; in (b) there is a constant transmission rate b ¼ 0:25: Other

parameters are: q ¼ 0:1; g ¼ 1:5; f ¼ 10=3; o ¼ 10 and m ¼ 1: Note

that f aS ¼ o to allow comparison between tolerance and control

(susceptible strains are defined by lS ¼ 10 in each case).
assumed an accelerating trade-off (Fig. 2(a)), applicable
to both types of resistance. Using the method of
pairwise invadability plots we checked that the singular
strategies were both convergence and evolutionarily
stable (CS and ESS). The optimal strategies are plotted
as a function of the transmission rate (Fig. 4(a)). As
transmission increases, the investment in both types of
resistance increases. Hosts therefore invest more in
defence when faced with highly infectious pathogens.
We also investigated the effect of the natural mortality
rate (Fig. 4(b)). As lifespan increases, resistance becomes
increasingly beneficial and the optimal investments are
higher: longer-lived hosts invest more in defence.

Looking at Figs. 4(a) and (b), the optimal investment
in tolerance is always greater than the investment in
control. This is because control also reduces the
prevalence of infective particles, the force of infection,
and the selective pressure for further resistance. However,
as transmission rate increases, the difference between the
investments becomes smaller (Fig. 4(a)). There is stronger
pressure on the host to reduce the force of infection, and
resistance mechanisms conferring reduced transmission
increase their benefits at a faster rate. Despite the cost of
resistance, it is still worth allocating more resources to
controlling the pathogen. By contrast, in response to
greater host longevity, the two defences increase their
benefits equally. As the average lifespan increases, the
difference between the optimal allocations remains
roughly constant (Fig. 4(b)).
5. Discussion

We have shown that different host defences lead to
different evolutionary outcomes. As a general rule,
tolerance will result in monomorphism. In contrast, the
evolution of control may lead to dimorphism of extreme
strains. Dimorphism is achieved when two distinct
strategies are able to invade each other, and this is only
likely when resistance evolves as control. Tolerance does
not restrict the growth of the pathogen: on average, the
longer-lived infected hosts produce more free-living
infective particles, increasing the force of infection
b Z�

R and hence the selective pressure for further
tolerance. This acts as a form of ‘positive feedback’
such that resistant hosts are better able to resist invasion
by susceptible genotypes. The evolutionary dynamics of
tolerance to a free-living pathogen are therefore
analogous to those observed for a directly transmitted
microparasite (Boots and Bowers, 1999).

A control strategy reduces pathogenicity, not through
‘tolerating’ the deleterious effects of disease, but rather
by limiting pathogen reproduction. Biologically, the
pathogen’s growth rate inside the host is likely to
correlate with tissue damage; in ‘controlling’ the
virus, the host necessarily reduces this growth rate.
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This corresponds to lower viral productivity, reducing
the force of infection and hence the selective pressure
for more resistance. This ‘negative feedback’ may
allow a susceptible host to invade a more resistant
one, promoting dimorphism of extreme strains.
The free-living model employed here makes the mechan-
ism of control explicit, by reducing the production
rate of infective stages. The analysis, however, is
not strictly limited to indirectly transmitted pathogens.
There is often assumed to be a positive relationship
between transmission rate and virulence (Anderson
and May, 1982; Bremermann and Pickering, 1983;
Lenski and May, 1994; Restif and Koella, 2003, 2004;
van Baalen and Sabelis, 1995). Alternatively, virulence
may be negatively correlated with the recovery rate
(Anderson and May, 1982). In both these cases,
resistance mechanisms that reduce pathogenicity may
also inhibit pathogen transmission. The evolution of
control may therefore be a likely host response to
parasitism.

There is evidence that tolerance and avoidance
may not be mutually exclusive adaptive traits. Roy
and Kirchner (2000) showed that a single gene
providing both types of resistance can be maintained
or become fixed in a population. Restif and Koella
(2004) modelled the simultaneous evolution of
tolerance and recovery (faster clearance of the patho-
gen) as distinct traits. When investment in either trait
incurred accelerating costs, in some cases the host split
its defences between the two investments in order to
reduce the total cost. This provides a parallel to our
study, given that control may be viewed as a composite
form of resistance combining the components of
avoidance (lower density of infective particles) and
tolerance (reduced effect of virulence). Where the
previous study assumed accelerating costs of both
avoidance and tolerance, we investigated accelerating
and decelerating costs of control, where investment in
one component of defence necessitated a given invest-
ment in the other (since there is a fixed relationship
between pathogenicity and the production rate of
infective particles).

In natural systems, it is clearly important to distin-
guish whether resistance is conferred by one or more
defence mechanisms. Where resistant hosts exhibit both
tolerance and avoidance components, this may be due to
a single control trait. This may make it easier to predict
the evolutionary outcome, particularly if we can
determine the particular trade-off involved. It would
also be interesting to investigate the consequences of
decelerating trade-offs in Restif and Koella’s model,
since decelerating costs of avoidance are known to allow
branching (Boots and Haraguchi, 1999). What balance
of costs and benefits to avoidance and tolerance would
select for polymorphism in the host? Extrapolating from
previous results, polymorphism should be less likely
when the overall bias is towards higher investment in
tolerance (Roy and Kirchner, 2000).

When reduced pathogenicity exhibits equal (acceler-
ating) costs for control and tolerance, hosts will invest
relatively less in control (Fig. 4). This is because control
lowers the force of transmission and therefore the
selective pressure for resistance (Boots and Bowers,
1999). Where separate genes confer tolerance and
avoidance, the overall cost of resistance may be either
higher or lower, depending on how the individual costs
combine (Restif and Koella, 2004).

We have shown that a weakly decelerating trade-off
may lead to maximal investment in tolerance (Fig. 3(d)).
However, different trade-offs (accelerating or strongly
decelerating) were found to select for intermediate or
even zero investment in tolerance. Tolerance is most
likely to evolve in response to high transmission rates
and low virulence (Boots and Bowers, 1999; Restif and
Koella, 2003). In this context, virulence refers to the
base pathogenicity experienced by susceptible, intoler-
ant hosts. Also, the model of Restif and Koella (2003)
predicted only locally stable investments in tolerance: a
highly ‘intolerant’ host with high fecundity may be
capable of invading the local ESS and driving the
pathogen to extinction. Our model only considered host
strains capable of supporting the pathogen—even
susceptible (i.e. intolerant) hosts would exhibit a certain
degree of innate resistance. Thus we fixed an upper limit
on the level of pathogenicity experienced, which also
implied a maximum growth rate (due to the trade-off).
Pathogen extinction through invasion by a highly
fecund and intolerant mutant was therefore assumed
to be impossible. Nevertheless, we note that convergence
towards the branching point (Fig. 3(c)) may be
dependent on initial conditions: when the initial
pathogenicity experienced by a susceptible host is high
enough, evolution proceeds towards a monomorphic
strategy with high fecundity and high pathogenicity.
Whether dimorphism is actually attained as the result of
selection may therefore be contingent on the level of
susceptibility exhibited by the resident genotype,
although in real systems there are likely to be constraints
on the level of intolerance.

The dynamics in a free-living host-microparasite
system can exhibit population cycles where those for a
comparable directly transmitted system cannot (Boots
and Bowers, 1999). The invasion analysis in this study
assumed stable equilibrium behaviour. However, when
the underlying dynamics are non-equilibrium our
invasion exponents, (21) and (22), are not valid and
need to be replaced by the largest Lyapunov exponent
(Metz et al., 1992). However, it has been shown that the
evolutionary behaviour predicted for equilibrium dy-
namics is robust to oscillatory dynamics provided the
oscillations do not become extreme (White et al.,
submitted). Understanding how the introduction of



ARTICLE IN PRESS
M.R. Miller et al. / Journal of Theoretical Biology 236 (2005) 198–207206
population cycles would affect the results of this study
may form the basis of future work.

The chief aim of this study was to investigate the
evolutionary dynamics of tolerance and control as
distinct defence strategies in response to pathogenic
infection. The two forms of resistance have been shown
to attain different evolutionary optima. Control has
been shown to promote a wider range of evolutionary
outcomes, in particular dimorphism of extreme strains.
This may go some way to explaining the high level of
polymorphisms observed in nature.
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Appendix A

Here, we determine the invasion criterion (21) using a
Jacobian analysis. Taking the variables in the order
ðX S;Y S;Z;X R;Y RÞ the associated Jacobian matrix
evaluated at the susceptible equilibrium (11) has the
form:

J ¼
A B

O C

� �
. (A.1)

Here A; B; C are sub-matrices of size 3 	 3; 3 	 2 and
2 	 2 respectively, and O is the 2 	 3 zero matrix. Due to
the linear independence of A and C, we can determine
the stability conditions from two separate problems: a
cubic equation corresponding to stability with respect to
the pathogen (derived from A) and a quadratic
corresponding to stability with respect to invasion by
the resistant strain (derived from C). From our
assumption that the susceptible strain is capable of
supporting the pathogen, the stability conditions per-
taining to A are known to be satisfied. It remains to
consider the stability of C.

C ¼
rR � qðX �

S þ Y �
SÞ � bZ�

S rR � qðX �
S þ Y �

SÞ þ ðgþ bÞ

bZ�
S �ðaR þ gþ bÞ

 !
.

(A.2)

The matrix C has trace, t; and determinant, D; given
by

tðCÞ ¼ rR � qðX �
S þ Y �

SÞ � bZ�
S � ðaR þ gþ bÞ, (A.3)

DðCÞ ¼ frR � qðX �
S þ Y �

SÞ � bZ�
Sgf�ðaR þ gþ bÞg

� fbZ�
SgfrR � qðX �

S þ Y �
SÞ þ ðgþ bÞg. ðA:4Þ
The determinant (A.4) will certainly be negative
unless the first term frR � qðX �

S þ Y �
SÞ � bZ�

Sg is less
than zero (if this term is greater than zero then the final
term frR � qðX �

S þ Y �
SÞ þ ðgþ bÞg is necessarily greater

than zero and the determinant must be negative). If this
first term is less than zero, we can see from (A.3) that the
trace must also be negative. The equilibrium (11) is
therefore stable, if and only if the determinant is greater
than zero. If the determinant is negative, then the
equilibrium is unstable and a resistant mutant char-
acterized by ðaR; rRÞ can invade. The condition for a
stable equilibrium is therefore:

frR � qðX �
S þ Y �

SÞ � bZ�
Sgf�ðaR þ gþ bÞg

� fbZ�
SgfrR � qðX �

S þ Y �
SÞ þ ðgþ bÞg40. ðA:5Þ

Reversing the sign of this inequality gives the
condition for a resistant mutant strain to invade. Some
algebraic manipulation allows this condition to be
expressed as

IR ¼ rR � qðX �
S þ Y �

SÞ �
bZ�

S

ðaR þ gþ bÞ

	faR � ðrR � qðX �
S þ Y �

SÞÞg40. ðA:6Þ
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