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Abstract

The zero-dimensional daisyworld model of Watson and Lovelock (1983) demonstrates that life can unconsciously regulate a

global environment. Here that model is extended to one dimension, incorporating a distribution of incoming solar radiation and

diffusion of heat consistent with a spherical planet. Global regulatory properties of the original model are retained. The daisy

populations are initially restricted to hospitable regions of the surface but exert both global and local feedback to increase this

habitable area, eventually colonizing the whole surface. The introduction of heat diffusion destabilizes the coexistence equilibrium of

the two daisy types. In response, a striped pattern consisting of blocks of all black or all white daisies emerges. There are two

mechanisms behind this pattern formation. Both are connected to the stability of the system and an overview of the mathematics

involved is presented. Numerical experiments show that this pattern is globally determined. Perturbations in one region have an

impact over the whole surface but the regulatory properties of the system are not compromised by transient perturbations. The

relevance of these results to the Earth and the wider climate modelling field is discussed.

r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The global climate and terrestrial biosphere form a
complex coupled system of which there is an increas-
ingly urgent need to deepen our understanding. Sophis-
ticated simulation models (for instance Gordon et al.,
2000) are a powerful tool for predicting the behaviour of
this system. However, that same sophistication can
obscure the mechanisms responsible for the predicted
behaviour. In contrast, simple, transparent ‘tutorial’
models can be used to analyse potential mechanisms and
help to identify them in more sophisticated models or
the real world.

Daisyworld (Watson and Lovelock, 1983) is such a
tutorial model. It was conceived to demonstrate the
feasibility of the Gaia hypothesis which states that,
without foresight or planning, life can regulate the global
environment (see for instance Lovelock, 1988). Daisy-
world consists simply of an Earth-like planet populated

by just two types of plant, black daisies and white
daisies, and an environment described by a single
variable, namely global temperature. The planet is
warmed by radiation from its sun. There is no atmo-
spheric greenhouse and the global temperature is
determined solely by the incoming radiation and the
surface albedo. The growth rates of the daisies are
temperature dependent and the two types are differ-
entiated only by the contrasting absorption of solar
energy by black and white surfaces. As the radiation
from the sun increases, the relative area of black and
white daisies adjusts, changing the surface albedo and
hence the temperature. The global temperature is
maintained close to the optimum for daisy survival for
a significantly greater luminosity range than when no
daisies are present.

The original daisyworld is a zero dimensional, or
point, model (Watson and Lovelock, 1983) with no
explicit representation of space. Solar radiation is
assumed to be distributed evenly over the planet. The
two daisy populations receive the same solar radiation
but, because of their contrasting albedos, they generate
local microclimates with different temperatures. There
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have been many subsequent studies and extensions of
the daisyworld model (for instance De Gregorio et al.,
1992; Saunders, 1994; Harding and Lovelock, 1996;
Nevison et al., 1999; Lenton and Lovelock, 2000;
Weber, 2001; Lenton and Lovelock 2001), but few have
considered spatial effects. Those that do extend daisy-
world as a two-dimensional stochastic cellular auto-
maton model with an infinite number of possible daisy
albedos. Von Bloh et al. (1997, 1999) use a planar
formulation to study the impact of different patterns of
habitat fragmentation and diversity. Ackland et al.
(2003) use a similar model but include some curvature
(equivalent to the surface of a torus) to investigate the
role of feedback in desert formation.

In this paper we present a partial differential equation
based formulation of a one-dimensional daisyworld
projected from the surface of a sphere. This is the zero-
dimensional daisyworld simply extended to include the
basic properties of a spherical planet. It allows a
latitudinal gradient of solar radiation and heat transfer,
as well as some spatial variation in the daisy popula-
tions. We find that the albedo feedback mechanism
continues to regulate global temperature over a wide
range of solar forcing, but the latitudinal variation in
solar forcing has a marked local effect. As soon as life
becomes possible at one point on the surface there is an
explosion of the daisy population and within one
timestep it expands to cover a wide equatorial band,
only the poles remaining cold and lifeless. As the solar
forcing increases, daisies expand toward the poles until
the whole surface is covered. Eventually, the daisy
population crashes as rapidly as it established and the
daisies disappear leaving only small clusters at the poles.

In the zero-dimensional model the stable solution for a
wide range of luminosities involves the coexistence of the
two daisy types. Interestingly, the inclusion of a spatial
dimension destabilizes this solution. At temperatures for
which coexistence is expected from the zero-dimensional
model only one type of daisy can exist at any point in
space, to the exclusion of the other type. Consequently, a
striped pattern of black and white daisy colonies emerges.
Mathematical analysis reveals that there are two separate
mechanisms behind this. A Turing-like mechanism (see
Murray, 1993) is responsible for the initial emergence of
the pattern. Then, as the solar forcing increases, the
pattern adjusts to ensure a stable steady state under the
new conditions. Furthermore, numerical experiments
indicate that the patterning is a global phenomenon,
with localized disturbances having an impact on the
whole population. Like the original daisyworld model,
this extension is intended as a parable. However, it
suggests an intriguing potential link between Gaian
feedback processes and spatial patterning.

The paper is arranged as follows: Section 2 contains a
description of the one-dimensional model and its
relationship to the Watson and Lovelock (1983) model.

In Section 3 numerical solutions of the model are
presented, covering both the global and local dynamics.
Section 4 has a more detailed account of the striped
patterning and an intuitive explanation of the mathe-
matics behind it using a slightly simpler set of equations.
In Section 5 the effects of local perturbations on the
patterning are considered. Finally, Section 6 contains a
discussion of the results and their relevance to climate
science.

2. The model

By allowing variation with latitude ðyÞ; but not
longitude, Watson and Lovelock’s (1983) daisyworld
can be extended to a one-dimensional projection of the
surface of a sphere. For simplicity, daisyworld is
assumed to rotate on an axis perpendicular to the plane
of its solar orbit, thus obviating seasonal differences of
the northern and southern hemispheres. Incoming solar
radiation is thus symmetrically distributed, with a
maximum at the equator and minima at the poles.
Considering the relative change of surface area and
cross-sectional area with latitude, the distribution of
solar radiation is given by RðyÞ ¼ 4S cosðyÞ=p; where
S ¼ 917L is the solar radiation and L the solar
luminosity in the Watson and Lovelock (1983) model.
Latitudinal heat transport is represented by the familiar
Laplacian operator expressed in spherical coordinates:
ðD=cosðyÞÞ ð@=@yÞ½cosðyÞ@TðyÞ

@y � with a diffusion rate D.
Thus the temperature at time t and latitude y; Tðy; tÞ is
the solution of

@Tðy; tÞ
@t

¼ ð1 � Aðy; tÞÞRðyÞ � sT4ðy; tÞ

þ
D

cosðyÞ
@

@y
cosðyÞ

@Tðy; tÞ
@y

� �
: ð1Þ

Here s is the Stefan–Boltzmann constant, Aðy; tÞ is the
albedo at latitude y and time t; given by Aðy; tÞ ¼
Agð1 � awðy; tÞ � abðy; tÞÞ þ Awawðy; tÞ þ Ababðy; tÞ where
Ag; Aw and Ab are the albedos of bare ground, white
daisies and black daisies respectively and awðy; tÞ; abðy; tÞ
are the proportional areas of white and black daisies at
y and t: At equilibrium, Eq. (1) reduces to Arrhenius’s
equation equating absorbed and emitted radiation of a
black body.

Given the temperature and solar radiation at y; the
local temperatures, growth rates and hence areas of each
daisy type at that point are determined by applying
Watson and Lovelock’s (1983) original equations at
each point in space. The local temperatures of white and
black daisies are given by

Twðy; tÞ ¼ qðAðy; tÞ � AwÞ þ Tðy; tÞ; ð2Þ

Tbðy; tÞ ¼ qðAðy; tÞ � AbÞ þ Tðy; tÞ; ð3Þ
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where q is a measure of implicit heat diffusion (in the
longitudinal direction) between the three surface types
(bare ground, white daisies and black daisies). This is
assumed to occur on a very localized level and is
therefore considered independent of the regional-scale
diffusion operating on the main grid. The daisies have
parabolic temperature-dependent growth rates given by

bwðy; tÞ ¼ 1 � dðC � Twðy; tÞÞ
2; ð4Þ

bbðy; tÞ ¼ 1 � dðC � Tbðy; tÞÞ
2; ð5Þ

where d and C are constants. Then the changes in daisy
area are expressed by an area competition model (Carter
and Prince, 1981):

@awðy; tÞ
@t

¼ awðy; tÞðð1 � awðy; tÞ � abðy; tÞÞbwðy; tÞ � gÞ; ð6Þ

@abðy; tÞ
@t

¼ abðy; tÞðð1 � awðy; tÞ � abðy; tÞÞbbðy; tÞ � gÞ; ð7Þ

where g is a constant death rate.
For mathematical convenience these equations can

be combined and written as three partial differential
equations:

@T

@t
¼ ð1 � Ag þ ðAw þ AgÞaw þ ðAb þ AgÞabÞRðyÞ

� sT4 þ
D

cosðyÞ
@

@y
cosðyÞ

@T

@y

� �
; ð8Þ

@aw

@t
¼ awðð1 � aw � abÞð1 � dðC � qðAg � Aw

þ ðAw � AgÞaw þ ðAb � AgÞabÞ � TÞ2Þ � gÞ; ð9Þ

@ab

@t
¼ abðð1 � aw � abÞð1 � dðC � qðAg � Ab

þ ðAw � AgÞaw þ ðAb � AgÞabÞ � TÞ2Þ � gÞ ð10Þ

for �90oyo90 with no flux boundary conditions. As
before T ; aw and ab are functions of y and t:

This system of equations is numerically solved to
equilibrium for a given luminosity L: The luminosity is
then increased by an increment DL to represent the
warming of the sun, and the previous solution taken as
the initial condition for the following iteration. Unless
stated otherwise in the text, parameter values used
throughout this paper are as given in Table 1.

3. General dynamics

3.1. Global dynamics

The global temperature is found by calculating an
area weighted average over the whole surface. For the
system discretised with n grid points (as is necessary for
the numerical solution) this is given by

TG ¼
1

2

Xn

i¼1

TðyiÞ sin �
p
n
þ

ip
n

� �����
�sin �

p
n
þ

ði � 1Þp
n

� �����; ð11Þ

where yi ¼ �p=2 þ ði � 1
2
Þp=n for i ¼ 1;y; n:

The global dynamics of the system under three
different rates of heat diffusion can be seen in Fig. 1.
Global temperature is regulated in all of these cases.
When the diffusion rate is high ðD ¼ 10Þ; the one-
dimensional model is close to the zero-dimensional
model as heat transport is so rapid that the temperature
is almost evenly distributed over the surface. As the
diffusion rate is reduced the two models diverge. When
D ¼ 1; there is still significant temperature regulation by
the daisies. This begins at a lower luminosity than in the
zero-dimensional model but also ceases at a lower
luminosity. Overall the period of regulation is reduced
and there is a constant upward trend in the temperature
(compared with a small downward trend in the zero-
dimensional model). When D ¼ 0:1 both of these factors
are more pronounced. The increased temperature
gradient over the surface is behind these differences.
Although the average temperature in the latitudinal
model agrees with the zero-dimensional model, the
equatorial region is hotter and the poles cooler than the
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Fig. 1. Global temperature of one-dimensional daisyworld under

different rates of heat diffusion: ��; D ¼ 0:1; —, D ¼ 1; y; D ¼ 10;
� � �; zero-dimensional model; þþþ; zero-dimensional model with

no daisies.

Table 1

Parameter values used in numerical simulations (unless stated

otherwise in the text)

q Ag Aw Ab C d g s DL

20 0.5 0.75 0.25 295.5 0.003265 0.3 5:67 	 10�8 0.005
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average. Thus the equatorial region becomes habitable,
and regulation begins, at a lower luminosity. Similarly
the same region becomes inhospitable, and regulation
ceases, at a lower luminosity. Furthermore, the total
habitable area at any time is limited. With fewer daisies
present, the capacity for temperature regulation is
compromised. This is described more clearly in the
following section.

3.2. Local dynamics

Without daisies the temperature profile has a dis-
tribution corresponding to the cosine variation in solar
radiation, modified by heat transport. When the heat
diffusion rate D ¼ 1; there is a population explosion
when L ¼ 0:7 and black daisies establish over a wide
equatorial region. The rapidity of this extensive coloni-
zation is the result of local positive feedback. Black
daisies initially appear at the equator, increasing the
albedo, and hence surface temperature, in that region.
This heat quickly diffuses and warms neighbouring
regions, enabling more black daisies to establish,
increasing the surface temperature and continuing the
feedback process. The final extent of the initial
colonization is determined by the rate of heat diffusion.
For D ¼ 1 this is insufficient to make the polar regions
habitable and they remain devoid of life (Fig. 2). As
solar luminosity increases, the black daisy population
migrates towards the poles and a white colony takes

their place around the equator and begins to spread
outwards, moderating the rate of increase of both local
and global temperatures. The whole surface is populated
when L ¼ 1 and remains so until L ¼ 1:4: At this point
there is a sudden collapse of the population as the loss of
a small section of the equatorial white daisy population
triggers positive feedback. If white daisies are replaced
by bare ground the decrease in albedo leads to rapid
warming in that area. As this heat diffuses, adjacent
areas become inhospitable, the daisies die and the
situation is exacerbated. Within a single luminosity
increment the daisy population crashes and only small
pockets of life remain, restricted to the polar regions.

The general trends of the population dynamics on the
surface as described above are largely as expected.
However, there is a more remarkable phenomenon
operating at the local level. Reviewing Fig. 2, it can be
seen that both the black and white daisy populations are
almost always either close to carrying capacity (approxi-
mately 0.7) or 0. There is never any coexistence of the
two types. Note that the one-dimensional model can be
thought of as a family of zero-dimensional Watson and
Lovelock (1983) models distributed over latitudinal
space and linked by heat diffusion. Therefore, by
‘coexistence’ we mean that both populations are non-
zero at the same latitude, even though the implicit
assumption that the two populations grow in patches in
longitudinal space is retained in order to preserve
the generation of local microclimates. In the
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B. Adams et al. / Journal of Theoretical Biology 223 (2003) 505–513508



one-dimensional model we find that in regions where
the temperature is such that coexistence might be
expected to occur (for instance in the interval
�54oyo54 when L ¼ 1Þ; a striped pattern of distinct
black and white colonies emerges instead. This is not a
numerical artefact but a product of the delicate
equilibria of daisyworld and is discussed in detail in
the next section.

4. Stripes

Numerical results show that, in the one-dimensional
daisyworld presented here, black and white daisies never
coexist at the same latitude. One type always excludes
the other, producing a spatially striped pattern of single-
species colonies close to carrying capacity. According
to Saunders (1994), in the absence of diffusion, stable
coexistence should occur when the received solar
radiation R is in the range 688oRo1265: In the one-
dimensional model, when L ¼ 1; RðyÞ is in this range for
�54oyo54: Fig. 3 shows the actual equilibrium
solution for L ¼ 1: Clearly there is no coexistence at
any point in space and, in the range �54oyo54 the
solution consists of well defined blocks, or stripes, of
each daisy type. An intuitive account of the mathematics
is presented here. For a more detailed exposition, see
Adams and Carr (2003).

In order to understand the mechanisms behind this
patterning, it is helpful to study a slightly simpler form
of Eqs. (8)–(10):

@T

@t
¼

ð2 � aw þ abÞR
4

� sT4 þ D
@2T

@y2
; ð12Þ

@aw

@t
¼ aw 1 � d C �

q

4
ðaw � ab � 1Þ � T

� �2
� ��

	 ð1 � aw � abÞ � g
�
; ð13Þ

@ab

@t
¼ ab 1 � d C �

q

4
ðaw � ab þ 1Þ � T

� �2
� ��

	 ð1 � aw � abÞ � g
�

ð14Þ

where T ; aw and ab are functions of y and t:
Eqs. (12)–(14) represent a one-dimensional daisy-

world projected from a plane, rather than the surface
of a sphere, with the given parameter values for Ag; Aw;
and Ab substituted directly and uniform R ¼ 4SL=p:
Again no flux boundary conditions are applied.

For fixed y (i.e. no space) there are four equilibrium
solutions to Eqs. (12)–(14). These correspond to no
daisies, only black daisies, only white daisies, and
coexistence. For the parameter values given in Table 1,
D ¼ 1 and luminosity in the range 0:72oLo1:22; there
is a unique stable equilibrium determined by the

temperature component TE : The no daisy solution is
always unstable. The black only solution is stable for
TEo298:87 and unstable for TEX298:87; the white only
solution is stable for TE > 292:13 and unstable for
TEp292:13 and the coexistence solution is stable for
292:13oTEo298:87 and unstable otherwise.

In the zero-dimensional system for 0:72oLo1:22;
TEX298:87 if only black daisies are present and
292:13pTE if only white daisies are present. But there is
also a coexistence solution such that 292:10oTE

o298:87 and this is the unique stable equilibrium.
However, it can be shown that this coexistence
equilibrium has a very small negative eigenvalue and is
thus very delicately balanced. The reintroduction of
space into the equations can cause this eigenvalue to
become positive, and the coexistence equilibrium un-
stable, if the system is perturbed. There is some interplay
between the value of D and the mode of the perturbation
required to destabilize the system. For very small D the
system is only unstable for very high mode perturbations.
For D ¼ 1; perturbations of mode 6 or greater will
destabilize it. Note that if D ¼ 0 there is no spatial
coupling at all and coexistence always remains stable.

If the coexistence equilibrium is destabilized, the
solution has no spatially homogeneous stable solution
since all four equilibria are unstable. Therefore a
Turing-like mechanism (see Murray, 1993) comes into
operation. The coexistence equilibrium is always un-
stable, but the white only equilibrium will be stable at
the point y if TEðyÞ > 292:13: Similarly, the black only
equilibrium will be stable at y if TEðyÞo298:87: Note
that the equilibrium temperatures are now locally
defined. The juxtaposition of blocks of black or white
daisies, and the resultant heat exchange between them,
can have the effect that locally the temperature is within
the stability limits for the all black or all white
equilibrium. Thus a pattern of black and white stripes
over the whole interval can result in a temperature
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Fig. 3. Snapshot of the equilibrium solutions when L ¼ 1: Here D ¼ 1:
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profile TðyÞ such that TðyÞ > 292:13 for all y such that
awðyÞ > 0 and TðyÞo298:87 for all y such that abðyÞ > 0:
This solution is then stable. There are an infinite number
of such stable equilibrium solutions.

Numerical experiments indicate that the particular
equilibrium pattern that the solution converges to
depends primarily on the value of D; the initial
perturbation and, critically, the solar radiation. In
general, lower solar radiation levels lead to black stripes
being broader than white, higher values of D result in a
coarser pattern and increasing the number of oscilla-
tions in the initial perturbation leads to a finer pattern.

Fig. 4 shows the development of the white solution
towards such an equilibrium and indicates the time
scales involved in the pattern formation. A small
temperature perturbation was applied to an initial
condition of the (unstable) constant black only equili-
brium ðaw ¼ 0:0001; ab ¼ 0:377; T ¼ 304:98Þ: By t ¼ 50
the solution is at the coexistence equilibrium and
appears to be stable. However, by t ¼ 200 the effects
of the perturbation are apparent. Even so, by t ¼ 300;
the right-hand side of the interval is still unaffected and
it is not until t ¼ 800 that the solution settles to its final
equilibrium state. In the zero-dimensional model the
final stable equilibrium is always achieved by t ¼ 50:

Initially, a pattern forms in order to attain a stable
solution after the coexistence equilibrium has been
destabilized by a perturbation. Once it is in place a
second mechanism operates to alter it. Again this is a
response to the temperature passing the critical stability

thresholds of 292:13 and 298:87: Even in the planar
model described by Eqs. (12)–(14) the striped pattern
generally causes an undulating temperature distribution
with peaks and troughs corresponding to black and
white regions respectively. As outlined above, in a stable
pattern the maximum temperature must be less than
298:87 in all regions where black daisies are present and
the minimum temperature greater than 292:13 in all
regions where white daisies are present. The longer a
stripe is the higher (if black) or lower (if white) the
temperature extremum is. Now, suppose that the
luminosity is increased. In regions where the black
equilibrium holds this may cause part of the temperature
profile to exceed 298:87; resulting in an instability. In
response the solution at those points immediately tends
towards the white equilibrium solution, which is still
stable. As the local albedo changes the temperature may
subsequently fall below 298:87 again but by this time the
solution has escaped the basin of attraction of the black
only solution and does not return. Thus a small white
region subdivides the black and a new pattern is created.
In a similar way, if the minimum temperature in a white
region falls below 292:13 then a black stripe will be
formed to stabilize the solution. This process continues
until a stable equilibrium is achieved at all points.

The diffusion rate plays a crucial role in this. A very
high value of D smooths the temperature distribution,
reducing the magnitude of both peaks and troughs. This
results in wider stripes and a coarser pattern. A very low
value of D tends to emphasize the peaks and troughs
and results in a much finer pattern. Numerical results
indicate that the value of q has little affect on the
patterning. The exception is when q ¼ 0: In this case the
daisy populations no longer generate their own micro-
climates and so there is no difference between them. This
results in apparent coexistence, although this is a
misnomer as there is effectively only one type of daisy
present.

Numerical results from a two-dimensional analogue
to Eqs. (12)–(14) also produce patterning when the
solution is perturbed. The nature of these patterns
depends on the perturbation. Perturbing individual
points results in rings emanating from those points
while perturbing a particular y-coordinate uniformly
over the whole domain results in stripes parallel to the
x-axis.

We conjecture that the same two mechanisms operate
in the system defined by Eqs. (8)–(10). The curved
distribution of the solar radiation acts as an inherent
perturbation which permanently destabilizes the coex-
istence equilibrium. This causes large blocks of daisies to
appear and more refined patterns occur through the
splitting mechanism described above. It is important
to note that the observed patterns can be taken only
as qualitative results. Each time the solar radiation
is increased, sections of the temperature profile may
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exceed the critical threshold and new stripes will be
formed. Once a stripe has been created it stabilizes
directly adjacent areas. In response to further luminosity
increases this stripe will not increase in width but new
stripes will be created elsewhere. Therefore the number
of luminosity steps (or the size of DLÞ determines the
number of stripes in the pattern. Fewer steps will lead to
fewer stripes. Although two simulations with different
luminosity increments will not produce precisely the
same patterning, this does not have a significant impact
on the feedback mechanisms of the model or the global
and generalized local dynamics described in Sections 3.1
and 3.2.

5. Connectivity and perturbations

The observed striped patterns are a global phenom-
enon. Since heat is constantly diffusing the temperature
of a particular region depends on the size of the
adjoining regions and the regions adjoining them and
so on. Thus, a black region surrounded by two small
white regions may be unstable since the white regions do

not have a sufficient cooling effect on the neighbour-
hood to prevent the maximum temperature exceeding
298:87: However, the same black region surrounded by
two larger white regions may be stable under their
increased cooling potential (see Figs. 5a and b). The
same reasoning applies to more complex patterns over
the whole interval. In particular, an asymmetric stripe
formation will lead to the extrema occurring away from
the centre of the stripe as more heat is lost or gained on
one side than the other (Fig. 5c). This is further
complicated by the non-uniform solar radiation dis-
tribution and diffusion rates in Eqs. (8)–(10).

To investigate the extent of the connectivity over a
pattern we conducted some numerical experiments. In
the first, Eqs. (8)–(10) were solved as in previous
simulations until L ¼ 1: Then a perturbation was
introduced by instantaneously removing all of the
daisies from a section of the surface before continuing
the simulation. Fig. 6 shows the equilibrium solutions at
three subsequent luminosity values for an unperturbed
simulation and a simulation in which all of the daisies
were removed in the region 25:0oyo35:8 when L ¼ 1
and subsequently allowed to regrow. As expected, the
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regions are insufficient to keep the temperature below 292:13; (b) larger white regions have a greater cooling effect, (c) an asymmetric pattern causes

the temperature extrema to occur away from the centre of the stripes.
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Fig. 6. Equilibrium solutions for white daisy populations in Eqs. (8)–(10): (a) no perturbation, (b) all daisies in the region 25:0oyo35:8 removed

when L ¼ 1 and allowed to regrow.
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pattern in the vicinity of the perturbation is significantly
altered as white daisies fill the perturbed area. However,
the pattern is also different over the whole of the region
�50oyo0: This can still be seen when L ¼ 1:25: To
demonstrate the contrast between the two patterns more
clearly Fig. 7a shows the number of white stripes occurring
at each luminosity value in the region �90oyo0 after
different perturbations in the region 0oyo90 (the
opposite hemisphere). It is clear that the number of stripes
changes in all cases, including the removal of a single point
at y ¼ 30:4: It is also noteworthy that, although the
number of stripes in the pattern changes in response to a
perturbation, the total area of white daisies in the region
�90oyo0 (Fig. 7b) is unaffected.

In the second experiment the same perturbation was
applied but regrowth was not permitted in the perturbed
area. Initially, the impact on the wider patterning is
similar (Fig. 7b) but the entire population subsequently
crashes when L ¼ 1:29; compared with L ¼ 1:34 when
regrowth is permitted. This is because the area of bare
ground becomes very hot compared to an area of white
daisies and the runaway positive feedback previously
arising from the loss of white daisies in the equatorial
region is triggered prematurely. This is related to the
results of Von Bloh et al. (1999) which indicate that, in
two dimensions, there is a critical area, and pattern, of
bare ground that the system can support before runaway
positive feedback is initiated.

6. Discussion

Extending daisyworld to one dimension of the surface
of a sphere does not compromise biotic environmental

regulation. Furthermore, the one-dimensional model
shows how regulation can operate spatially. Initially,
black daisies in the equatorial region warm the mid-
latitude areas and allow life to establish there. At higher
luminosities white daisies in the equatorial region help
to cool the mid-latitude areas. The sudden collapse of
the daisy population at high luminosity is the result
of runaway positive feedback initiated by a localized
decline in the equatorial daisy population. This indicates
that the daisy population as a whole is self-sustaining
and underlines the importance of the equatorial regions
in moderating the global environment. When the biota is
restricted to small polar refugia it cannot achieve global
regulation.

For a range of solar forcing, our one-dimensional
daisyworld displays multiple stable states as a conse-
quence of strong feedback between vegetation and
climate. Qualitatively, the same phenomenon is thought
to occur in regions of the real world. Models suggest
that under the present solar forcing the South-west
Sahara could be vegetated rather than desert (Brovkin
et al., 1998) and that the boreal forest has a regional
warming effect which allows it to persist in large areas
that would otherwise support only tundra vegetation
(Bonan et al., 1992). Studies also indicate that the Great
Plains of North America can support either grassland or
woodland under essentially the same global forcing
(Woodcock, 1992) and the Amazon rainforest increases
water cycling such that without it arid pasture would
persist (Shukla et al., 1990). A coupled climate model
study (Betts, 1999) predicts that desert, boreal forest and
tropical forest are all self-sustaining systems and it seems
that in many cases the initial conditions determine the
observed vegetation.
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Fig. 7. (a) Total number of white stripes and (b) total length of white regions occurring in the region �90oyo0 after different perturbations to the

region 0oyo90: —, no perturbation; � � �; y ¼ 30:4 removed, regrowth allowed; ��; 25:0oyo35:8 removed, regrowth allowed; y; 25:0oyo35:8
removed, no regrowth.

B. Adams et al. / Journal of Theoretical Biology 223 (2003) 505–513512



While the stripes in our one-dimensional daisyworld
are a mathematical phenomenon, resulting from the
delicately balanced equilibria of the model, it is possible
that one factor influencing the distribution of vegetation
over the Earth’s surface is the requirement for a pattern
capable of climate regulation. The interactions and
relationships are significantly more complex, but there
may be a number of different possible vegetation
patterns on the Earth that are capable of producing
such an effect. These will be the only stable states. It
should be noted that, although there are an infinite
number of stable patterns in this one-dimensional
daisyworld, not all patterns are stable and unstable
patterns introduced into the system are modified.
Determining the temperature profile corresponding to
a given pattern is a global problem and assessing the
stability beforehand, or off-line, is not always straight-
forward.

The results of the perturbation experiments indicate
that, even in a model as simple as daisyworld, a local
disturbance can have a global effect as the system
adjusts to a new stable state. More realistic models show
similar spatial responses to climate change. It has been
predicted that removing the boreal forest north of 45
N
would result in air temperatures at 10
N being 1
 cooler
(Bonan et al., 1992) and that the decline in the Amazon
rainforest over the coming century will be accompanied
by an increase in the boreal forest (R.A. Betts, P.M.
Cox, pers.comm.).

To conclude, our study shows that the regulatory
mechanism of daisyworld, though not itself a spatial
process, is a controller of spatial phenomena.
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