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ABSTRACT

Question: Do non-equilibrium (cycles or chaos) population dynamics change evolutionary
behaviour when compared with equilibrium dynamics?

Mathematical methods: The theory of adaptive dynamics is applied to a discrete ecological
model with an explicit trade-off between reproduction and survival. Simulation techniques are
compared with the theoretical findings.

Key assumptions: Mutations in life-history parameters are assumed to be small. A separation
of the ecological and evolutionary time scales is assumed. There is a feedback loop between the
environment and its inhabitants.

Conclusions: With equilibrium population dynamics the shape of the trade-off can be used to
characterize the evolutionary behaviour. Trade-offs with accelerating costs produce a contin-
uously stable strategy (CSS). Trade-offs with decelerating costs produce a non-evolutionarily
stable strategy (non-ESS) repellor. The characterization holds for non-equilibrium dynamics
with low amplitude population oscillations. When the magnitude of the population oscillation
exceeds a threshold, the characterization fails. Trade-offs with decelerating costs can produce
a CSS, multiple CSSs or evolutionary branching points. The evolution of reproduction and
survival parameters may be contingent on initial conditions and sensitive to small changes in
other life-history parameters. Evolutionary branching allows types with distinct reproduction
and survival parameters to evolve and co-exist.

Keywords: adaptive dynamics, evolutionary branching in fecundity, population oscillations,
trade-offs.

INTRODUCTION

The evolution of life-history traits, such as reproduction and survival, is fundamental to
individual fitness and therefore for explaining the diversity and complexity of natural
systems (Stearns, 1992). Central to life-history evolutionary theory is the role of trade-offs
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between life-history traits. These arise when the evolution of particular fitness traits are
constrained by negative correlations with other life-history traits such that a benefit in one
character results in a cost in another (Stearns, 1992; Roff, 2002). It is widely recognized that
the shape of the trade-off between life-history parameters is important in determining the
evolutionary behaviour of a system. This is true in the context of classical life-history
theory (Levins, 1962; Schaffer, 1974; Stearns, 1992; Roff, 2002) and in more recent studies that use adaptive
dynamics to assess the evolutionary behaviour of ecological systems (Boots and Haraguchi, 1999;
Kisdi, 2001; Bowers et al., 2003; de Mazancourt and Dieckmann, 2004; White and Bowers, 2005). Furthermore, the
importance of the trade-off shape in characterizing evolutionary behaviour has recently
been recognized with the development of general geometric methods for analysing the
adaptive dynamics of ecological systems (de Mazancourt and Dieckmann, 2004; Rueffler et al., 2004; Bowers
et al., 2005).

Most theoretical studies of the evolution of life-history traits have assumed equilibrium
underlying population dynamics. It is known that ecological systems can exhibit a range of
complicated population dynamics, such as periodic and quasi-periodic cycles and chaos
(see Katok and Hasselblatt, 1998), and that simple models can capture this complicated behaviour
(Gurney and Nisbet, 1998; Cushing er al, 2003). It is therefore important to assess how the underlying
population dynamics affect evolutionary behaviour. A large body of work on the evolution
of life-history parameters has tried to determine whether evolution leads to equilibrium or
non-equilibrium dynamics (Gatto, 1993; Ferriere and Gatto, 1993; Doebeli and Koella, 1995; Ebenman et al., 1996;
Greenman et al, 2005). In addition, the evolution of dispersal rates has been considered for
non-equilibrium dynamics (Doebeli and Ruxton, 1997; Parvinen, 1999). Clearly, these studies have
investigated evolution in non-equilibrium environments. However, they have not considered
how the trade-off shape between life-history parameters interacts with the underlying
population dynamics to affect the evolutionary behaviour. We wish to examine whether
changes in the population dynamics can change the evolutionary behaviour expected for
fixed shapes of trade-offs. To achieve this we will analyse a simple, discrete model that can
exhibit equilibrium and non-equilibrium population dynamics. We will explicitly define a
trade-off between reproduction and survival and investigate how the underlying population
dynamics affect the outcome of evolution.

METHODS

We develop a discrete time model with an explicit trade-off between reproduction and
survival. Such a model is chosen not only for its biological simplicity and therefore reason-
able generality, but also because it can exhibit a range of complex behaviours.

The model considers the reproduction and survival of a single species with density X, and
includes density-dependent regulation that acts through reproduction. The model is
described as follows:

Xio1=9X,exp(-X) + 0X, (D

Here, ¢ is the per capita number of births per generation and ¢ (€[0,1)) is the proportional
survival per generation. This system has a trivial equilibrium at the origin and equilibrium
at X where
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The equilibrium is stable whenever it is positive provided that

(1- a)ln(1 ¢
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When inequality (3) is not satisfied, the equilibrium becomes unstable and the system
exhibits periodic cycles or chaos depending on the precise values of the parameters.

A general trade-off formulation is used to examine the relationship between the shape of
the trade-off and the evolutionary behaviour predicted by the theory and simulations.
Throughout the analysis in this study, we will assume that there is a trade-off between
fecundity and survival such that ¢ = f(¢) [where f'(¢) < 0 so that an increase in ¢ is bought
at a cost of a decrease in ¢]. The formulation is defined as:

(Cmax — omm)(l . M)
0=f($) = Omin + (1 - &>¢mln) "
(Pmax = Prnin)

The curvature of the trade-off can then be altered by varying « (Fig. 1). If =1 <a <0, then
17(¢) <0 and the trade-off has accelerating costs. If @ > 0, then f”(¢) > 0 and the trade-off
has decelerating costs.

The theoretical analysis uses the theory of adaptive dynamics (Metz er al., 1996; Geritz ez al., 1998).
We will apply the theory to this study by assuming that a resident type, with parameter ¢
(and therefore also o = f(¢)) has dynamics represented by equation (1) and has reached its
attractor (which could be an equilibrium point or a more complicated attractor). The theory
of adaptive dynamics assesses whether a mutant type represented by the same dynamics
but with a different parameter ¢ (and & =f(4)) could invade, co-exist with or oust the

min

Fig. 1. The generalized trade-off as described by equation (4). The trade-off has accelerating costs
if -1 < a < 0 and decelerating costs if @ > 0.
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established resident type. It is assumed that there is a small but distinct difference between
mutant and resident parameters and that the mutant is initially at low density. The key term
to determine the fate of the mutant is the fitness of the mutant type [calculated as
the per capita growth rate of the mutant — which equates to the largest Lyapunov exponent
(Metz er al, 1992)] in the environment set by the resident, which is denoted s(¢, ¢). If this
is negative the mutant cannot invade and dies out. If it is positive the mutant can
invade, increase its density and could co-exist with or oust the resident to become the
resident itself, thereby reshaping the resident environment. Given that mutations are
small, the population will evolve in the direction of the local fitness gradient, defined as
[5(, ¢)/07(/;]¢=45 until it reaches a singular strategy, ¢*, for which the fitness gradient
is zero. The behaviour at the singular strategy is determined by the topology of the fitness
surface at the singular point and is characterized by combinations of the associated
second-order partial derivatives of the fitness function with respect to the mutant
and resident strategies (Table 1). For instance, if ¢* is not convergence stable and not
an evolutionarily stable strategy (ESS), it is a non-ESS repellor (Metz er al, 1996), Whereas
if it is not convergence stable but is an ESS, it exhibits ‘Garden of Eden’ evolutionary
behaviour (Nowak, 1990). If ¢* is convergence stable and an ESS, it is a continuously
stable strategy (CSS) (Metz er al, 1996; Geritz et al, 1998). The phenomenon of branching occurs
when ¢* is convergence stable but not an ESS. Here we evolve towards ¢* but when
close by undergo disruptive selection, which results in the co-existence of two distinct
strategies. [See Metz et al. (1996) and Geritz et al. (1998) for more details on the theory
of adaptive dynamics.]

Simulation analysis is used to verify the theoretical results about the position and nature
of the singular strategy. In the simulations, the population dynamics were numerically
solved for a fixed time (z,) according to equation (1) initially with a monomorphic
population. Mutant strategies were generated by small deviations around the current
strategies (the choice of current strategy from which to mutate depends on its relative
density) and introduced at low density. The population dynamics were then solved for
a further time 7, with strategies whose population density fell below a (low) threshold
considered extinct and removed before considering new mutations. In this way, the
parameter ¢ (and therefore ¢ via the trade-off) could evolve. One difference between the
theory and simulations is that the simulations are not mutation-limited (i.e. new mutants
could evolve before previous mutants had reached equilibrium or gone extinct). However,
this set-up has been shown to correctly approximate the evolutionary behaviour predicted
by adaptive dynamics in studies where the dynamical attractor is an equilibrium point (see, for
example, Kisdi, 1999; White and Bowers, 2005).

Table 1. Properties of the singular strategy, ¢* (see Geritz er al., 1998)

Property Characteristic
Evolutionarily stable strategy (ESS) B<0
Convergence stable A-B>0
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RESULTS

Equilibrium underlying population dynamics

When the resident population exhibits stable equilibrium dynamics, the fitness of the
mutant strategy is described as follows:

s@.p=9 e’ =11/ )
Here, X denotes the equilibrium density of the resident (defined by (2)) and therefore
contains resident parameters.
We apply the theory of adaptive dynamics to equation (5). The singular strategy, ¢*,
occurs when [ds(&, ¢)/&¢7]¢:¢~ is zero, which occurs when
e L1
S (4% = (6)
The behaviour at the singular strategy is determined from combinations of the associated
second-order partial derivatives of the fitness function with respect to the mutant and
resident strategies and can be characterized by two properties (Table 1). For the dynamics
represented by system (1), at the singular point ¢ = ¢ = ¢*, we find
FsG S PG 1)
A 1-f(¢%) a 1=/
Thus in terms of the results outlined in Table 1, we can see that A =—-B. Hence when
f7(¢*) <0 (a trade-off with —1 <a<0; Fig. 1), the singularity is an ESS, is necessarily
convergence stable and therefore a CSS. When f”(¢*) > 0 (a trade-off with a > 0; Fig. 1), the
singularity is not an ESS and not convergence stable and is therefore a non-ESS repellor (see
White and Bowers, 2005). Figure 2a shows the position of the singular strategy as determined by
(6) and the final evolved values of ¢ from simulations for different values of the curvature of
the trade-off. When —1 < a <0, the singular strategy is a CSS and the theoretical and simu-
lation results are in agreement. When a > 0, the singular strategy is a non-ESS repellor and ¢
evolves to the maximum value in simulations (it is repelled away from the singular point as
expected). Thus with equilibrium underlying dynamics, the evolutionary behaviour of the
model (equation 1) can be partitioned depending on whether the trade-off has accelerating
or decelerating costs. We note here that the model supports an optimization principle (Mylius
and Diekmann, 1995). The equilibrium density of the resident type could be included explicitly in
equation (5) and therefore the optimal strategy will be the type that maximizes ¢/[1 — f ()]
This rules out the possibility of co-existence and evolutionary branching.

()

Non-equilibrium underlying population dynamics

It is rarely possible to determine the largest Lyapunov exponent (fitness) algebraically when
the underlying dynamics are non-equilibrium. It is possible, however, to compute the largest
Lyapunov exponent numerically (Eckmann and Ruelle, 1985; Metz ef al., 1992; Ferriere and Gatto, 1993). For
the model system (1), the largest Lyapunov exponent — and therefore the fitness of the
mutant strategy — is defined as

s(¢, ¢) =lim % In(M, M, ,-...-M,-M,) 8)

t— oo
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Fig. 2. The theoretical value of the singular strategy ¢* and simulation predictions for the final
evolving values of ¢ (open circles) for different trade-off shapes. For the theoretical results, a CSS
is denoted by a solid black line, a non-ESS repellor by a dotted line and an evolutionary branching
point by a dashed line. The dash-dot line indicates where the population dynamics are equilibrium
(below) and non-equilibrium (above). The trade-off parameters are ¢, =1, 0pmin =0, T =0.9.
In (a) @pax =7, which produces equilibrium population dynamics for all possible parameter values.
In (b) @pax =15 and (¢) ¢ =70 and here the population dynamics change from equilibrium to
non-equilibrium (periodic cycles and chaos) as ¢ increases on the trade-off. For all simulations, the
initial conditions assumed that ¢ = (§px — dmin)/2 Was the only population type with positive density.

where M, ;=d¢e ™'+, and X, , are the successive population values of X for the
resident strategy on its attractor (for further details, see Eckmann and Ruelle, 1985; Metz et al., 1992; Ferriere and
Gatto, 1993). The values of s(¢, ¢) for different resident-mutant combinations can be used to
determine the sign structure of the fitness expression and to construct pair-wise invadability
plots (Metz er al., 1992; Geritz et al., 1998; and see Figs. 4 and 5), Which can be used to infer the positions
of the singular strategies and their evolutionary behaviour (and are referred to as the
theoretical results below).

Figures 2b and 2c show results when the parameters that specify the trade-off are chosen
such that the underlying dynamics change from equilibrium to non-equilibrium as ¢
increases along the trade-off. In Fig. 2b, the qualitative results are similar to those for
equilibrium dynamics (Fig. 2a). Here the shape of the trade-off curve can still be used to
partition the evolutionary behaviour. In Fig. 2c, this partitioning no longer applies. A CSS
is still predicted for a trade-off with accelerating costs, but the evolutionary behaviour is
more complicated for a trade-off with decelerating costs. (Note, it is possible to specify a
trade-off that exhibits non-equilibrium dynamics for all parameter combinations. The
results are qualitatively similar to those in Figs. 2b and 2c.) For a trade-off with decelerating
costs, the non-ESS repellor remains for values of ¢ near ¢,,;, but other singular points are
also predicted such that for some values of @ we observe a CSS, multiple CSSs or evolution-
ary branching points. To understand how this evolutionary behaviour occurs, we fix a = 20
and increase ¢@,,,, (Fig. 3). As ¢..x increases beyond ¢,,.. = 20, a CSS occurs just below ¢,



Evolution with non-equilibrium population dynamics 393

100
90t
80}
70t
60t
50}
40t
30t
20t

10p
o

0_/_‘._-....’_-‘3‘-_‘-_-.:!_-._": A A L L L o 4

0 20 40 60 80 100
¢

max

Fig. 3. The theoretical value of the singular strategy ¢* and simulation predictions for the final
evolved value of ¢ (open circles) for different values of ¢,,,,. For the theoretical results, a CSS is
denoted by a solid black line, a non-ESS repellor by a dotted line and an evolutionary branching point
by a dashed line. The trade-off parameters are ¢, =1, Tpin =0, Tmax = 0.9 and @ =20. The dash-dot
lines indicate the value of ¢, and ¢,,.. For all simulations, the initial conditions assumed that
& = (Pmax — Pmin)/2 Was the only population type with positive density.

(note that the non-ESS repellor is still present at ¢ near ¢,,, throughout). This can be
visualized clearly in a pair-wise invadability plot, which shows how the fitness landscape
bends upwards and a CSS emerges from ¢,,,, (Figs. 4a and 4c). The population dynamics
at the final evolved value of ¢ shows how the amplitude of oscillations increases as ¢,,,,
increases (Figs. 4b and 4d). In the Discussion, we explain how this increase in the amplitude
of oscillations could be responsible for the change in evolutionary behaviour that allows a
CSS to form. As ¢, is increased further, two CSSs are observed, separated by a non-ESS
repellor; these then become a single CSS once more, then a branching point and finally
a CSS (Fig. 3). An understanding of this behaviour can be gained by examining pair-wise
invadability plots as these transformations occur (Fig. 5). At ¢,.., = 30 (Fig. 5a), a ‘fold’ in
the line on which s(#, ¢) =0 creates two CSSs separated by a non-ESS repellor. As ¢,,.,
increases, this fold increases in size (Fig. 5b) but by ¢,.., =45 one branch of the fold lies
below the line ¢ = ¢, leaving only one CSS (Fig. 5¢). At ¢, = 50, the fitness landscape
reconfigures transforming the CSS into a branching point (Fig. 5d). Further increases in
@max transform the branching point into a CSS (at approximately ¢,,,, = 85; see Figs. Se and
5f). These results highlight how non-equilibrium population dynamics can dramatically
change the fitness landscape.

DISCUSSION

This study has examined how evolutionary behaviour may be affected when the underlying
population dynamics change from stable equilibrium to non-equilibrium (cycles or chaos).
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Fig. 4. (a, c) Pair-wise invadability plots with regions of positive fitness in grey and negative fitness in
white. (b, d) The underlying population dynamics for the evolved value of ¢ from the simulations. The
trade-off parameters are ¢pn =1, Opin =0, Tpax = 0.9, a=20. In (a) and (b), @« = 20 and the evolved
value of ¢ = 20. In (c) and (d), ¢ = 25 and the evolved value of ¢ = 23.
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Fig. 5. Pair-wise invadability plots with regions of positive fitness in grey and negative fitness in
white. The trade-off parameters are ¢, = 1, Gpin =0, pax = 0.9, @ =20. In () @pay = 30, (b) Py = 40,

(©) Prmax = 45, (d) Prnax = 50, (€) Prnax = 70 and () P = 100.

The evolutionary behaviour for the model (equation 1), with underlying equilibrium
dynamics, could be characterized by the trade-off cost structure. In this case, a trade-off
with accelerating costs would produce a CSS and one with decelerating costs a non-ESS
repellor. This is equivalent to the findings of previous studies using adaptive dynamics to
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examine ecological models that exhibit an optimization principle (Bowers er al, 2003; White and
Bowers, 2005). For models that do not exhibit an optimization principle, a broader range of
evolutionary behaviour is possible. For example, a trade-off with weakly decelerating costs
may exhibit evolutionary branching (Boots and Haraguchi, 1999; Kisdi, 2001; Bowers e al., 2003; White and
Bowers, 2005), Whereas one with weakly accelerating costs may exhibit a Garden of Eden
strategy (White and Bowers, 2005). These studies emphasize the need for a more detailed
understanding of how ecological interactions combine with trade-off shape to produce
different types of ecological behaviour. This analysis will be assisted by the recent develop-
ment of geometric methods for analysing the adaptive dynamics of ecological systems with
trade-offs (de Mazancourt and Dieckmann, 2004; Rueffler er al, 2004; Bowers et al., 2005). The present study,
however, focuses on how changes in the underlying population dynamics could affect the
evolutionary behaviour.

When the population dynamics were non-equilibrium with small population oscillations,
the evolutionary behaviour could be characterized by trade-off shape in a corresponding
manner to equilibrium dynamics (Figs. 2a and 2b). However, when the parameter choice
resulted in non-equilibrium population dynamics with large oscillations, new evolutionary
singular points emerged and a range of evolutionary behaviour could be observed
(in addition to the non-ESS repellor behaviour). When the amplitude of the population
oscillations exceeded a threshold, a new singular strategy emerged (Fig. 4). The population
oscillations result from overcompensating density dependence and we believe it is this
that causes the difference in evolutionary behaviour when compared with the behaviour
for equilibrium or low oscillation underlying dynamics. Intuitively, the effect of over-
compensating density dependence can be understood as follows. When population numbers
are low, a high birth rate is advantageous (since density-dependent effects are small), but
as adult numbers increase (which occurs when population oscillations exceed a threshold),
the benefit from a high birth rate is diminished since the density-dependent effects are
overcompensating (high population numbers produce a low number of births). However, a
higher birth rate equates to a lower survival rate through the trade-off. The survival rate is
not affected by density dependence. Thus the full benefit of a high birth rate is not realized
but the full cost in terms of reduced survival is. Thus evolution to maximum values of ¢ is
no longer favoured. If this intuitive argument is to be believed, it must apply in other
systems with overcompensating density dependence and a trade-off between birth and
survival. The same phenomenon has been shown to occur if the model (equation 1)
is extended to include age structure, and in different model systems such as the larvae—
pupae—adult model (Cushing ez ol 2003) and the Neubert-Caswell reproduction model (Neubert and
Caswell, 2000. The requirement is that the underlying dynamics are non-equilibrium with
population oscillations exceeding a threshold. It is also expected that this phenomenon
would hold in continuous systems in which overcompensating density dependence could
produce large oscillations (for example, in systems that include an explicit time delay) and
may also arise in systems where stochastic variation produces sufficiently large population
fluctuations.

The trade-off between fecundity and survival considered in this study is a life-history
trade-off reflected by internal competition for resources within individuals. Density
dependence can act as a form of ‘external trade-off’, driven by competition for resources
between individuals — the greater an individual’s fecundity, the more competition it (or its
offspring) will face in the future, thereby reducing survival. As argued above, this can act as
a break on the evolution of fecundity. It is therefore important to determine how the cost
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structure of density dependence affects the outcome of evolution. In the present study, the
density dependence term [exp(— X)] has decelerating costs as population numbers increase.
By replacing this density dependence term by the theta logistic term [1 — (Z/K)"], we can
assess how density dependence with accelerating costs (6 > 1) and decelerating costs (6 < 1)
affects evolutionary behaviour. This is important, as there is evidence to suggest that many
invertebrates tend to show density dependence with decelerating costs, while vertebrates
characteristically show density dependence with accelerating costs (Sibly and Hone, 2002). We
repeated the analysis in this study for different shapes of the density dependence trade-offs
(results not shown here) and found qualitatively similar results regardless of the shape of
the density dependence in the trade-off. In particular, when the amplitude of the population
oscillations passes a threshold, an additional evolutionary singular strategy emerges (as in
Fig. 4). This adds further strength to the argument that it is the large oscillations that
produce the change in evolutionary behaviour.

In addition to the emergence of a new evolutionarily singular strategy, a wide range of
evolutionary behaviour is possible as the amplitude of population oscillations increases.
Folds in the fitness landscape can result in two CSSs separated by a non-ESS repellor
(Figs. 2c, 3, 5a and 5b). Here the end-point of evolution is contingent on initial conditions
(i.e. on which side of the fold the initial type lies). Also, small changes in the value of ¢,,,, or
a can mean part of the fold no longer intersects with the line ¢ = ¢ (compare Figs. 5b and
5c). Therefore, small changes in life-history parameters can make a CSS ‘disappear’. This
could result in large shifts in the value of the evolving parameters. A further novel result is
that of evolutionary branching in fecundity (Figs. 2c, 3, 5d and 5e). This occurs for a wide
range of parameters, provided that the threshold in the amplitude of population oscillations
has been surpassed and results in the co-existence of two types, typically one with high and
one with low fecundity.

The results of the present study can be used to examine an important question in
life-history theory on the evolution of reproductive effort. This question was first posed by
Cole (1954), who examined whether populations evolve semelparous (reproduce only once) or
iteroparous (reproduce more than once) reproductive strategies. In the context of our study,
semelparity implies maximum reproductive effort (and therefore minimum survival). Many
models have been developed to examine this (for an overview, see Stearns, 1992; Roff, 2002) and indicate
that for equilibrium underlying dynamics, a trade-off with accelerating costs would
promote intermediate reproductive effort (iteroparity), whereas a trade-off with deceler-
ating costs would promote maximal reproductive effort. The results of our study con-
firm these findings when the underlying dynamics are equilibrium or have low amplitude
oscillations. Studies have also examined the evolution of reproductive effort in non-
equilibrium environments that result from the inclusion of environmental variation (Bulmer,
1985; Orzack and Tuljapurkar, 1989; Benton and Grant, 1999; Ranta et al, 2002), variation in population
dynamics (Ranta er al., 2000a) and spatial structure (Ranta e af, 2000b). These studies have shown that
environmental variation selects for increased reproductive life span and iteroparity
can replace or co-exist with semelparity (see Stearns, 1992). This is because the semelparous
individuals invest all their reproductive effort in one generation, even if the environment is
‘poor’. By spreading reproduction over several time-steps, the iteroparous strategy can
mitigate the effects of ‘poor’ environments and ensure it has surviving offspring when the
environment becomes more favourable. Our study has confirmed these findings and
emphasizes that population fluctuations may need to be large for an iteroparous type to
invade (Orzack and Tuljapurkar, 1989). Our study also shows that population fluctuations can lead



Evolution with non-equilibrium population dynamics 397

to the co-existence of types with distinct reproductive strategies through a process of
evolutionary branching in fecundity. Evolutionary branching has been proposed as a
possible mechanism for sympatric speciation and in this study requires a trade-off between
reproduction and survival with decelerating costs and population fluctuations.

In summary, we have shown how the underlying population dynamics can have a marked
effect on the evolutionary behaviour exhibited for different trade-off cost structures. In
particular, a range of evolutionary behaviour can be exhibited for non-equilibrium popula-
tion dynamics. This has important consequences, since many natural systems exhibit non-
equilibrium dynamics.
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