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How do variations in seasonality affect
population cycles?

Rachel A. Taylor, Andrew White and Jonathan A. Sherratt

Department of Mathematics, Heriot-Watt University, Edinburgh, UK

Seasonality is an important component in many population systems, and fac-

tors such as latitude, altitude and proximity to the coastline affect the extent

of the seasonal fluctuations. In this paper, we ask how changes in seasonal fluc-

tuations impact on the population cycles. We use the Fennoscandian vole

system as a case study, focusing on variations in the length of the breeding

season. We use a predator–prey model that includes generalist and specialist

predation alongside seasonal forcing. Using a combination of bifurcation analy-

sis and direct simulations, we consider the effects of varying both the level

of generalist predation and the length of the breeding season; these are the

main changes that occur over a latitudinal gradient in Fennoscandia. We predict

that varying the breeding season length leads to changes in the period of the

multi-year cycles, with a higher period for shorter breeding season lengths.

This concurs with the gradient of periodicity found in Fennoscandia. The

Fennoscandian vole system is only one of many populations that are affected

by geographical and temporal changes in seasonality; thus our results highlight

the importance of considering these changes in other population systems.

1. Introduction
Seasonal forcing represents a pervasive source of environmental variability

in natural systems, with many species exhibiting seasonal changes in their

life-history parameters [1]. This can affect both epidemiological and interacting

population dynamics and has been proposed as a cause of multi-year cycles in

these systems [2,3]. Considerable focus has been placed on the impact of seasonality

in predator–prey systems, and theory has been developed both for general model

frameworks [4,5] and for specific wildlife populations [6–8]. This has shown that

seasonal forcing, alongside the nonlinear dynamics, can lead to complicated popu-

lation dynamics including multi-year cycles, quasi-periodic solutions and chaos.

Many populations span large geographical areas over which the character-

istic features of the seasonal fluctuations can vary considerably [9–12]. This

variation is, for instance, dependent on latitude, altitude, proximity to the coast-

line and prevailing weather patterns. There is also evidence that climate change

has led to changes in seasonal patterns such as the earlier onset of breeding and

increased variability in climatic conditions [13]. It is, therefore, important to

extend the analysis of the effects of seasonality to assess the impact of changes

in the amplitude and functional form of seasonal forcing on the underlying

population dynamics. In particular, to what extent do modifications in seasonal

patterns lead to shifts in population dynamics?

While numerous examples of widespread populations exist in which

seasonal forcing and predator–prey dynamics combine to produce cyclic

population dynamics, in order to examine the impact of changes in seasonality,

we will focus on a well-known case study—namely the Fennoscandian vole

system [14–18]. This system spans a large geographical area and undergoes

high-amplitude seasonal forcing that varies with location (typically, the

length of the breeding season decreases with latitude). The important featu-

res of this vole system are the large amplitude, multi-annual cycles north of

608 N, synchronous over large spatial scales with a period of 3–5 years,

with the 5 year cycles occurring furthest north. In comparison, the southern

Fennoscandian region has low-amplitude ‘non-cyclic’ seasonal fluctuations,

effectively an annual cycle. Therefore, period and amplitude decrease as one

moves along a north–south gradient in Fennoscandia [9,14,15,19].

http://crossmark.crossref.org/dialog/?doi=10.1098/rspb.2012.2714&domain=pdf&date_stamp=2013-01-16
mailto:rat3@hw.ac.uk
http://dx.doi.org/10.1098/rspb.2012.2714
http://dx.doi.org/10.1098/rspb.2012.2714
http://rspb.royalsocietypublishing.org
http://rspb.royalsocietypublishing.org


rspb.royalsocietypublishing.org
ProcR

SocB
280:20122714

2
It has been suggested that changes in generalist predation

with latitude explain this gradient within Fennoscandia

[17,20,21] and this is supported by theory [6,7]. However,

the seasonal forcing term remains fixed in these models.

This contrasts with the pronounced differences in the pattern

of seasonality between the southern and northern parts of

Fennoscandia, and the effect of this on the predation hypo-

thesis has received almost no attention (a notable exception

being Dalkvist et al. [22] who consider three different breed-

ing season lengths). In southern Fennoscandia, the breeding

season can be over seven months long, whereas in northern

areas it is usually three to four months [16,22,23]. Further-

more, there is evidence to suggest that the vole cycles have

been reducing in period length because of climate change

[24,25]. The vole system can be used to see whether geo-

graphical variations in seasonal forcing can help explain the

gradient in cyclicity which is currently found in Fennoscan-

dia, as well as how changes in the pattern of seasonality

will alter the population dynamics. To capture the changing

seasonality, we will vary breeding season length. Using the

vole system as a case study, we will highlight the wide

range of complex population dynamics that can arise owing

to seasonal forcing, and indicate how variation in seasonality

can generate shifts in population dynamics.
2. Model
A wide range of intrinsic and extrinsic factors have been pro-

posed to explain the geographical gradient in cyclicity found

in Fennoscandian voles, but the most widely supported is the

predation hypothesis, first formulated by Hanski et al. [20]

and further discussed in the earlier studies [7,17,19]. This

states that the northern cycles are caused by specialist preda-

tion, usually by the least weasel. As the weasels have little

alternative prey, they have delayed reactions in their repro-

duction in response to changes in vole numbers, generating

the cycles (although food limitation may play a role in deter-

mining the size of the prey peak [26]). Both the protective

layer of snow cover, which hinders predators unable to

tunnel under the snow, and the low diversity of prey in

these northerly locations mean that there are few generalist

predators. In the south there are numerous generalist preda-

tors, such as birds, badgers and foxes. In fact, 80 per cent of

rodent mortality by predation in the south is by generalists

[15]. Because generalist predators exhibit rapid prey switch-

ing when vole numbers drop, this type of predation has a

stabilizing effect on the vole population. The predation

hypothesis effectively states that specialist predators induce

cycles, while the generalist predators in the south act to

dampen these fluctuations. This is backed up by predator

exclusion experiments [27,28] as well as through analysis

of many of the proposed reasons for the cycles (such as the

predation hypothesis, landscape fragmentation, maternal

effects) using statistical methods to assess the extent of their

agreement with the vole data collected [9,21,29].

(a) Model details
Our work is based on the model of Turchin & Hanski [7],

which incorporates both specialist and generalist predation.

Importantly, we introduce seasonal forcing to the growth

rates and implicitly also the carrying capacities of both prey

and predator through a seasonal term S(t), which includes
breeding season length (see below for details). When suitably

non-dimensionalized (see the electronic supplementary

material for details) the model is

dx
dt
¼ rSðtÞx� rx2 � gx2

x2 þ h2
� axy

xþ d

and

dy
dt
¼ sSðtÞy� s

y2

x
:

9>>>>>>>=
>>>>>>>;

ð2:1Þ

Here, x(t) and y(t) are the densities of prey and specialist

predator at time t, respectively. The prey undergo logistic

growth. They are affected by two predation terms, the first

owing to generalist and the second specialist predation.

Generalist predation is a Holling type III functional form,

because generalists will switch to other prey items when

vole numbers are low. The specialist predation is the Holling

type II functional form which incorporates handling time of

prey. The predators have a logistic growth with growth rate

s and a carrying capacity which is determined by the density

of prey. We use the parameter values of Turchin & Hanski [7]

namely r ¼ 6, s ¼ 1.25, d ¼ 0.04, a ¼ 15 and h ¼ 0.1. These

values were chosen based on a combination of field data,

previous literature and time-series analysis. The parameter

g represents the level of generalist predation, which changes

along a north–south gradient. We vary g between 0 and 1,

because Turchin & Hanski [7] estimate the value of g to

be in the range 0.933–0.066 at four vole localities, rang-

ing from Revinge, Sweden at 568 N to Kilpisjärvi, Finland at

698 N. Note that small g indicates less generalist predation,

corresponding to a more northerly location.

The main aim of this paper is to consider how geographi-

cal changes in seasonal forcing affect the population

dynamics and we do this by varying the breeding season

length. We introduce a parameter l as part of the seasonal

term S(t) which is given by the following equation (see the

electronic supplementary material for more details):

SðtÞ ¼ 2
1

2
ð1þ e sinð2ptÞÞ

� �l

: ð2:2Þ

The parameter l determines the length of the breeding season,

defined as when the forced growth term is above its unforced

value: for the prey this is when rS(t) . 6. Figure 1 shows

how our forcing term changes depending on the value of l.
As l increases, then the breeding season length decreases.

Although we vary l from 0 to 5, the most biologically rele-

vant part of the range is 0.5–3.9, which gives a breeding

season between three and eight months long; the data dis-

cussed above shows that this is the appropriate variation

across Fennoscandia.

In addition, figure 1 shows that as l increases, the mean

value of the growth rate decreases. This reflects the fact that

if the breeding season is longer, voles will produce more lit-

ters and female young from the first one or two litters have

time to mature and also are able to breed [30]. Turchin &

Ostfeld [31] suggest 14 as a maximum value for the growth

rate and our values are below this limit. However, this does

mean our results are based on both breeding season length

and mean value of the growth rate varying as we vary l,
and we do not determine how each component affects the

results separately.
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Figure 1. The forcing function for different values of l, producing different
lengths of breeding season. The values of l are (a) 0.52, (b) 1, (c) 3.87 and
e ¼ 0.95. The breeding season is designated as when the growth rate (black
curve) is above the unforced growth rate (dotted line). This leads to breeding
season lengths of 2/3, 1/2, 1/3 year, respectively.
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Figure 2. Solution plots when the breeding season is six months long (l ¼
1), for different levels of generalist predation g: (a) g ¼ 0.25, (b) g ¼ 0.4,
(c) g ¼ 0.5 and (d ) g ¼ 0.6. The two columns show results for two different
initial conditions namely (x(0), y(0)) ¼ (0.642, 0.720) and (0.686, 0.708). For
each value of g, we plot both the prey and predator solution for the two sets
of initial conditions. For (a), (b) and (d ) the two sets of initial conditions
produce the same results, quasi-periodicity and then annual cycles. Although
the quasi-periodic solutions plotted in (a) are different, fast Fourier
transforms give 3.75 as the dominant period in both cases. However, in (c)
one set of initial conditions produced an annual cycle, whereas the other set
of initial conditions produced a 3 year cycle. The solutions are solved for 2000
years and the results are shown after the initial transient dynamics have
dissipated. Other parameter values are r ¼ 6, s ¼ 1.25, d ¼ 0.04, a ¼ 15,
h ¼ 0.1 and e ¼ 0.95.
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(b) Model analysis
We studied the model using two different methods—a bifur-

cation and a simulation approach, following the procedure

in Taylor et al. [32]. The bifurcation results were calculated

using essentially standard numerical continuation techni-

ques implemented via the software AUTO [33]. This method

determines parameter ranges in which different multi-year

cycles exist, and when they are stable. The simulation results

were produced by solving the model equations (2.1) using

MATLAB (ode15s) for 2000 years and the solutions were

tested to determine whether there existed a periodic solu-

tion of 1–9 years; if not, the solution was labelled as

quasi-periodic, meaning that the solution was approximately

periodic, but does not have a finite period. We also used

fast Fourier transforms to determine the period most

closely reflected in the solution (‘dominant period’); this was

especially helpful when the cycle was quasi-periodic. We per-

formed our simulations over a grid of points in parameter

space, with 50 simulations at each point to illustrate the relative

sizes of the basins of attraction of the different solutions.

See electronic supplementary material for further details.
3. Results
Hanski et al. [6] and Turchin & Hanski [7] focused on the case

where breeding season is exactly six months long (l ¼ 1), and

considered the effects of varying the extent of generalist

predation (g). This revealed a change from annual to multi-

annual cycles (period 3–4 years), as the level of generalist

predation is reduced. We illustrate this in figure 2 which

shows simulations for l ¼ 1 and various values of g, for two

sets of initial conditions. Note that for g ¼ 0.5 3 year cycles

occur for one set of initial conditions and annual cycles

for the other. These results highlight the existence of mul-

tiple solutions, with strong sensitivity to initial conditions.

Clearly bifurcation analysis and/or extensive simulation are

necessary to reveal the full range of model predictions.

We used the bifurcation method to investigate potential

dynamics as both season length l and generalist predation

level g are varied (figure 3a). This divides the l–g parameter
plane into different regions denoting the different possible

dynamics. This shows that for moderate or high l and g
values only annual cycles are possible, with multi-year and

quasi-periodic solutions for lower l and g. Figure 3a therefore

shows that when the breeding season is longer there is a

larger range of generalist predation levels giving multi-year

cycles. However, this figure does not show the period of

the cycles as a function of parameters.

To examine the solutions in more detail, we show parameter

regions giving both existence and stability for 2, 3, 4 and 5 year

cycles (figure 4). For cycles with higher period (6–9 years) the

results are similar to figure 4d, although the regions tend to

get smaller with increasing period. The cycles exist inside

the boundary curves, with stability/instability shown by the

thick black/thin grey lines, respectively. The coloured curves

represent different types of bifurcation: period-doubling

bifurcation (blue), saddle–node (aka fold or tangent; red)

and Neimark–Sacker (green); a Neimark–Sacker bifurcation

is a discrete version of a Hopf bifurcation. (More detail and
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(b) A simulation diagram with a grid of pie charts showing what proportion
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and predator) and the period was tested after 2000 years. (c) The same
simulations tested using fast Fourier transforms to determine the dominant
period of the solutions. The remaining purple solutions indicate the
dominant period was larger than nine. Other parameter values are r ¼ 6,
s ¼ 1.25, d ¼ 0.04, a ¼ 15, h ¼ 0.1 and e ¼ 0.95.
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a full bifurcation diagram are provided in the electronic

supplementary material.)

Each of the regions in figure 4 has a complicated form; in

particular for the 3 and 4 year cycles, there are two separate

regions of stability. From these diagrams we can see that

cycles of longer period occur only for lower values of g.

There are many areas where the cycles are unstable and

here we expect either quasi-periodic or annual solutions to

be stable. The cyclic regions also intersect (see the electronic

supplementary material, figure S3.2) and so there are par-

ameter regions that give rise to coexisting stable multi-year

cycles. Therefore, it is important to consider which cycles

actually occur for different values of l and g.
Simulation results displaying the population dynamical

outcome in parameter space (figure 3b) provide a clearer

view of how the multi-year solutions overlap and indicate

the relative sizes of the basins of attraction when multiple sol-

utions coexist. The results compare favourably with the

bifurcation picture in figure 3a, with a relatively clear split

between the yearly and quasi-periodic solutions interspersed

with multi-year solutions. Owing to the large regions of

instability within the multi-year cycle regions shown in

figure 4, there were not many regions in figure 3b where

two multi-year cycles coexisted and were both stable. Thus

there were hardly any pie charts which showed multiple

multi-year stable solutions, although in one case both 4 and
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9 year cycles occur (where l ¼ 1.5, g ¼ 0.2). However, for a

number of parameter pairs multi-year solutions coexist with

annual or quasi-periodic solutions.

Figure 3a shows that when the breeding season is longer,

there is a larger range of generalist predation levels giving

multi-year cycles. But the multi-year cyclic dynamics in Fen-

noscandia occur in the areas where the breeding season is

shorter. To produce further detail on the nature of the popu-

lation dynamics in regions where quasi-periodicity is

predicted, we use fast Fourier transforms to analyse each

simulation, revealing the dominant cycle period (figure 3c).

As l is increased for low g, i.e. as the breeding season

length is reduced, the periodicity of the solutions increases.

This concurs with the gradient of periodicity that has been

found in Fennoscandia where in mid-Fennoscandia, there

are 3 year cycles and further north (with shorter season

lengths) there are 5 year cycles [15,25].
122714
4. Discussion
The basic conclusion from previous modelling of the predation

hypothesis for Fennoscandian vole cycles is that cycle period

increases as the generalist predation level decreases. Our

work shows that this is an over-simplification. Even with

fixed breeding season length, the existence of multiple stable

solutions implies that switches between, say, annual and

3 year cycles are possible. When variations in both season

length and generalist predation level are considered, there is

a rich variety of potential dynamics, with coexisting multi-

year solutions and numerous possible cycle periods. This

includes parameter values showing both 4 and 9 year cycles,

an interesting phenomenon considering that short-term and

long-term cycles are often seen as either–or dynamics, rather

than both being possible for the same system [19].

Empirical support for the dependence of vole cycle period

on breeding season length is provided by the work by Strann

et al. [34] on voles in Kirkesdalen, Norway. Here, the popu-

lation undergoes cycles with a period of 3 years, which

contrasts with the 5 year cycles at other sites with a similar

latitude. Strann et al. [34] attributed this difference to climatic

differences, owing to Kirkesdalen’s proximity to the coast.

Our results suggest that a key implication of this climatic

difference might be a longer breeding season; our model

predicts that this would indeed cause lower period cycles.

The variation in vole breeding season length in Fenno-

scandia is considerable: from as little as three months in the

most northern locations to eight months in the south [16,23].

This wide range is important for our conclusions. In particular,

if one restricts attention to breeding season lengths of six to

eight months, the results in figure 3 predict little variation in

the dynamics. This is consistent with the results of Dalkvist

et al. [22]. They studied data on Fennoscandian voles with

breeding season lengths of six to eight months, and found

that the difference between these season lengths was not a

statistically significant factor in differences in cyclicity.

To explore our results further, we have plotted parameter

planes in which the generalist predation level varies on one

axis, with the breeding season length on the other. The

north–south gradient in Fennoscandia corresponds to a curve

in this parameter plane. There is currently insufficient data to

enable a detailed formulation of this curve, but it is likely to

be nonlinear, especially when factors such as landscape
fragmentation [22,35,36] are taken into account. Our results

suggest that more information on the form of this nonlinear

curve would be a key step in understanding the complexities

in vole dynamics, such as the sudden change from annual to

multi-year cycles that occurs in mid-Fennoscandia [7].

In the model, we forced both the prey and predator

growth rates with the same forcing term. Although weasels

are able to breed throughout the whole year, this happens

only in peak years of vole populations [37]. Therefore, includ-

ing a weasel breeding season is valid, but it is unclear

whether this should follow the same pattern as the vole

breeding season, on which the forcing term was based. In

order to understand the effects of different forcing in the

predator growth rate, we considered the scenario of no for-

cing for the weasels (see the electronic supplementary

material). This yielded similar results, showing the complex-

ity of moving on a north–south gradient, the change to

annual cycles as generalist levels increase and the possibility

of switching between different multi-year cycles. However,

the pattern of decreasing breeding season length leading to

increased period was less clearly defined.

Significant changes in vole population dynamics have

been observed in recent years in Fennoscandia, with the

boundary between annual and multi-year cycles moving

further north, and very few locations still showing 5 year

cycles [24]. These changes are widely attributed to climate

change. This is affecting the Fennoscandia system in many

different ways and the implications for vole dynamics are

consequently complex. However, two effects of climate

change are increases in both breeding season length and gen-

eralist predation level [38,39]. Our results (figure 3) predict

that these two effects could together cause decreases in

cycle length and a northerly movement of the location of

the switch between annual and multi-year cycles. Because

annual cycles typically have a much lower amplitude than

multi-year solutions (figure 2), and because voles are a key-

stone species in Fennoscandia [39], a switch to annual

cycles is highly significant for the whole ecosystem.

Fennoscandia is not the only region in which there are

established geographical variations in vole cyclicity. For

example, vole cycles occur over large regions in central

Europe [40] and in Hokkaido, Japan [10]. Notably, Stenseth

et al. [10] showed the importance of season length in driving

the gradient of cyclicity in Hokkaido. In central Europe, both

the period and amplitude of vole cycles increase from north

to south [40]; this is in the opposite direction to the trend in

Fennoscandia. Data on breeding season length and level of

generalist predation are currently very limited for this

region, and our work argues for the importance of such

data in understanding this trend.

Large-scale geographical variations in population dyna-

mics also occur in other populations: Canadian muskrats are

another classic example [11]. Our results argue for a detailed

appraisal of the role of breeding season variability on the popu-

lation dynamics in such cases. Although we expect similar

trends to those found in the present study, they may be

quenched by the effects of seasonality in parameters other

than simply the birth rate; specific case studies are essential.

Seasonality varies geographically owing to a multitude of

factors including latitude, altitude, proximity to a coastline

and general weather patterns. Our work argues that this

cannot be ignored as variations in seasonality can be an

important driver of the observed population dynamics.
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