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Abstract Plant defences can reduce herbivore fitness
and may promote cycles in some herbivore populations.
In this study, we model the interaction between plant
defences and herbivores and include seasonal forcing, a
ubiquitous environmental influence in natural systems.
We compare the impacts of two different seasonal
mechanisms on the dynamics of the herbivore–plant
defence system. The first mechanism involves a fixed
breeding season length and a variable birth rate within
the breeding season; the second involves a variable
breeding season length and a fixed birth rate within
the breeding season. When parameterised for a specific
cyclic system, namely field voles and silica, our model
predicts that a variable season length gives multi-year
cycles for a larger region in parameter space than a
variable birth rate. Our results highlight the complexity
of the dynamical effects of seasonal forcing and that
these effects are strongly dependent on the type of
seasonal mechanism.
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Introduction

Cyclic patterns in animal populations have long been
a focus of scientific interest (Elton 1924; Turchin
2003). Despite extensive research, the mechanisms un-
derpinning multi-year population cycles are a subject
of much debate (Krebs 1996; Turchin 2003). Elton
(1924) described the widespread existence of periodic
fluctuations in animal abundance and attributed this to
climatic variations. Since then, many hypotheses con-
cerning the factors determining population cycles have
been developed. However, firm evidence for causality
is rare and the elucidation of the processes driving
population cycles is a key topic of interest in population
ecology. Also, it is becoming increasingly recognised
that different and/or multiple mechanisms may operate
in different systems (Turchin 2003).

One hypothesis is that interactions with food re-
sources can cause population cycles (Lack 1954). This
includes classical studies that focus on predator–prey
interactions (Lotka 1925; Volterra 1926; May 1972) but
also includes plant–herbivore interactions. There are
two main distinct ways in which herbivore populations
can be affected by interactions with the food plants.
Firstly, the consumption of plant tissue may limit the
quantity of food available to later-feeding herbivores;
secondly, herbivore damage may elicit inducible re-
sistance in the plant, thereby reducing the nutritional
quality of the plant tissue (Karban and Baldwin 1997).
Both of these pathways could play important roles
in the long-term population dynamics of herbivores
(Abbott et al. 2008). Changes in the abundance of
food is thought unlikely to cause cycling, because a
sufficient depletion of plant biomass is rarely observed,
with many plant species recovering rapidly after grazing
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(e.g. Krebs et al. 1986; Desy and Batzli 1989; Boonstra
et al. 1998). However, there is significant evidence that
in some systems, population cycles are related to the
deterioration in the quality of food due to induced
defences of the plant in response to intense grazing at
the population peak.

In many plants, damage by herbivory induces
changes in the composition of the foliage (Fowler and
Lawton 1985). Many plant characteristics, ranging from
secondary chemistry to physical features such as thorn
density, can change in response to herbivore damage
(Karban and Baldwin 1997). These inducible defences
have been shown to adversely affect herbivore growth
and/or reproduction (e.g. Bryant 1981; Schultz and
Baldwin 1982; Karban and Carey 1984; Massey et al.
2006; Massey and Hartley 2006). As a result, inducible
defences are predicted to significantly influence the
dynamics of herbivore populations. Indeed, it has been
argued that inducible defences contribute to driving
cyclic fluctuations in a number of herbivore popula-
tions (Benz 1974; Haukioja 1980; Fox and Bryant 1984;
Haukioja 1991). For example, Fox and Bryant (1984)
demonstrate that the responses of Alaskan woody
plants could account for the oscillatory nature of the
snowshoe hare population. Benz (1974) shows that the
larch tree responds to high levels of feeding by the
larch budmoth by growing short needles of reduced
nutritional quality, which causes a decrease in budmoth
population density. This interaction is claimed to con-
tribute to the population cycles of the larch budmoth.
It should be noted that there is also evidence contrary
to the hypothesis that inducible defences cause cycles;
for example, the findings of Sinclair et al. (1988) suggest
that inducible changes in the levels of plant secondary
compounds do not cause the cyclic population dynam-
ics of the snowshoe hare.

There is also a growing body of theoretical evi-
dence that grazing-induced plant defences contribute
to cyclicity (Lundberg et al. 1994; Underwood 1999).
Underwood (1999) developed a model framework that
focuses on the impact of induced resistance due to
herbivorous insect populations. Lundberg et al. (1994)
model herbivore population density and the plant
population, stratified into discrete classes to repre-
sent the different plant defence levels that result from
the grazing intensity the plant has been subject to.
The model is applied to understand the changes in
abundance observed in lemmings. These studies pro-
vide theoretical support for the idea that inducible
defences in plants can cause fluctuations. In contrast,
Edelstein-Keshet and Rausher (1989) develop a gen-
eral mathematical framework and find that inducible
defences cause persistent fluctuations only under un-

usual conditions. Lundberg et al. (1994) conclude that
inducible defence may be an important factor for
explaining the cyclic dynamics of herbivore popula-
tions, but their model does not generate stable limit
cycles. They believe that seasonal perturbations may
maintain the cycles, although no evidence for this
is given. The aim of this paper is to investigate in
detail the way in which seasonal forcing affects the
dynamics of a herbivore population regulated by in-
ducible plant defences. We develop a simple model to
represent the herbivore–plant interaction and exam-
ine the effects on the population dynamics of adding
seasonality.

Understanding seasonality in ecological systems is
of great importance since natural populations are em-
bedded in periodically varying environments. Imposing
periodic forcing on a biological system can lead to
major changes in system behaviour: it has long been
established that unforced systems with simple dynamic
behaviour can become very complex when periodically
forced (Guckenheimer and Holmes 1986). Identifying
the role played by seasonal forcing in driving dynamical
behaviours is therefore a key issue.

Despite the ubiquitous nature of seasonality, explor-
ing its consequences for population dynamics poses
a challenge. Seasonal mechanisms can be difficult to
pinpoint empirically and can give rise to complex popu-
lation fluctuations (Altizer et al. 2006). One area where
the effects of seasonality on population dynamics has
been relatively well explored is in infectious diseases.
Seasonality has been incorporated into epidemiological
models in the areas of childhood diseases (Dietz 1982;
Schwartz and Smith 1983; Keeling et al. 2001) and
wildlife diseases (Roberts and Kao 1998; Ireland et al.
2004; Smith et al. 2008). If the underlying non-seasonal
model has periodic solutions, then the dynamics once
seasonal forcing is imposed can become more complex;
the seasonality can interact with underlying oscillations,
resonate, and result in a range of complex behaviours
including chaos (Ireland et al. 2007). If the non-seasonal
model does not have periodic solutions, the application
of seasonality can, in some cases, cause oscillations
with period an integer multiple of the forcing period
(Schwartz and Smith 1983; Greenman et al. 2004).
In addition, there have been a number of studies on
seasonality in predator–prey systems (Kuznetsov et al.
1992; Rinaldi et al. 1993; Gakkhar et al. 2009). These
models show a rich variety of behaviour, including sta-
ble and unstable periodic solutions of various periods,
quasiperiodicity and chaos. Moreover, the behaviours
can be transitory. These examples illustrate the com-
plexity of the role of seasonality in shaping population
dynamics. Adding seasonality can lead to interesting
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and biologically important dynamics and can help to
explain complex empirical data.

In strategic theoretical studies, seasonal forcing is
typically incorporated by setting a specific model life
history parameter to periodically vary in time, for in-
stance, by simple sinusoidal variation of the parame-
ter (e.g. Rinaldi et al. 1993; Greenman et al. 2004;
Greenman and Norman 2007; Ireland et al. 2007).
Alternatively, seasonal variation is incorporated in a
manner motivated by the biological reality of the
specific system being studied: for example, models of
childhood diseases incorporate seasonal variation in
contact rates by imposing an increased rate during
school terms compared to school holidays (Keeling
et al. 2001). Many natural systems have defined breed-
ing seasons and therefore seasonality can be applied to
the birth rate by defining a distinct reproductive and
non-reproductive season (Smith et al. 2008).

In this paper, we apply seasonal forcing to the her-
bivore birth rate in a simple plant defence–herbivore
model. We examine the effects of two different sea-
sonal mechanisms to explore the role of seasonality
in driving population fluctuations. The first seasonal
mechanism involves a birth rate dependent on the level
of plant defence, with a fixed breeding season length.
The second involves a breeding season length depen-
dent on the plant defence, with a constant birth rate
in the breeding season. We undertake a comparison
of these two types of seasonal forcing and their effects
on the herbivore population dynamics. In order for a
full investigation to be carried out, we choose a specific
system as a case study, namely the interaction between
voles and the silica content of the grass they consume.

Model

We use a general model framework to represent the
interaction between herbivores and an inducible plant
defence:
dH
dt

= a(S(t), t)H(t) − b H(t) (1)

dS
dt

= K(H(t − τ))n

Hn
0 + (H(t − τ))n

+ cS0 − cS(t) (2)

where H(t) is the herbivore density and S(t) the level
of plant defence at time t. Inducible plant defences
have been shown to affect growth or reproduction
in individual herbivores adversely (e.g. Bryant 1981;
Schultz and Baldwin 1982; Karban and Carey 1984;
Massey et al. 2006; Massey and Hartley 2006); in line
with this evidence, we take the herbivore birth rate a
to be a function of the level of the inducible factor.

Parameter b is the herbivore death rate. We denote by
cS0 the background level of plant defence production;
here, S0 is the background level of the inducible factor,
i.e., its level in the absence of herbivory. The induction
rate depends on the herbivore density. By definition,
the induction level drops to zero in the absence of
herbivores, and physiological constraints mean that its
production must saturate at high levels of herbivory.
H0 is the herbivore density at which induction is half
of the maximum possible, and K + cS0 is the maximum
possible rate of production of the inducible factor. The
time delay τ represents the time taken for the inducible
factor to be produced after herbivory occurs. Parameter
c is the decay rate of the inducible factor. The plant
defences decay when herbivory diminishes; Rhoades
(1983) argues that this is because inducible defences
are costly to a plant and are therefore not likely to be
maintained unless a need for them exists.

We denote by amax and amin the maximum and mini-
mum birth rates, respectively. We make the assumption
that for S < S0, there is no effect of the plant defence
on the herbivore, so the birth rate is at its maximum.
Above inducible factor levels of S0, the birth rate de-
creases linearly with concentration.

In reality, many animal species have seasonal birth
rates, so we impose a seasonally forced herbivore birth
rate by introducing a breeding season and non-breeding
season each year. This is typical of the life-history of
many herbivore species in temperate climates. We let
the length of the breeding season be denoted by l. In
the non-breeding season, the herbivore birth rate a is
taken to be zero.

We consider two different seasonal mechanisms,
both affecting the herbivore birth rate. Firstly, the birth
rate a in the breeding season is dependent on the con-
centration of inducible factor, and secondly, the breed-
ing season length l is dependent on the concentration
of inducible factor. We denote by lmax the maximum
breeding season length and by lmin the minimum breed-
ing season length. The addition of seasonal forcing
typically complicates and potentially destabilises the
population dynamics of a system. By examining two
different mechanisms, we intend to test whether the
way seasonality is manifested influences its effects on
the population dynamics.

Case study

In order to analyse this model, we focus on a specific
case study. Our aim is to compare two different sea-
sonal mechanisms operating on the herbivore birth
rate. We therefore focus on a particular ecological
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system where both mechanisms can potentially operate,
namely the interaction between voles and the silica
content of the grass they consume. The choice of voles
as the herbivore species is a natural one due to the
abundance of literature on the potential causes of vole
population cycles.

Silica (silicon dioxide, SiO2) in the tissues of grasses
acts as an antiherbivore defence strategy to reduce
levels of grazing by both vertebrate (McNaughton and
Tarrants 1983; Gali-Muhtasib et al. 1992; Massey and
Hartley 2006) and invertebrate herbivores (O’Reagain
and Mentis 1989; Vicari and Bazely 1993; Massey et al.
2006). Silica has been proposed as the primary defence
in many grasses (Massey et al. 2007a), and there is
evidence that it has a range of detrimental effects on
herbivores that ingest it (Jones and Handreck 1967).
Silica reduces foliage digestibility, leading to reduc-
tions in herbivore growth rates (Massey et al. 2006,
2008; Massey and Hartley 2006). In addition, silica
increases the abrasiveness of grass, deterring feeding by
herbivores (Massey et al. 2006, 2007a; Massey and
Hartley 2006). Therefore, silica acts to reduce the qual-
ity of the plant as food for herbivores. Food quality
is especially important for voles due to their relatively
high metabolic rates and because they have a limited
capacity to increase food consumption to compensate
for poor-quality diets (Zynel and Wunder 2002). In
addition, their growth rates early in development are
highly dependent upon nutrient intake. Therefore, vole
food quality has the potential to dictate the time taken
to reach sexual maturity and the onset of breeding each
year (Krebs and Myers 1974; Ergon et al. 2001).

Silica defences in grasses are induced by herbivore
grazing (McNaughton and Tarrants 1983; Massey et al.
2007b). The induction of defences in response to herbi-
vore damage is widely recognised as an effective plant
defence strategy, particularly in cases where defences
are costly or the threat of herbivore attack is intermit-
tent (Karban and Baldwin 1997). It has been shown that
silica can be induced by vole grazing to levels sufficient
to deter further feeding and also affect herbivore per-
formance (Massey and Hartley 2006).

To parameterise this model, we use the particular
case of field voles (Microtus agrestis) in Kielder Forest,
Northern UK. This vole population fluctuates cyclically
over a range of about 20–700 voles/hectare in optimal
habitats with a characteristic period of 3–5 years (see
Lambin et al. 2000 for details). There are long-term
data sets on vole populations, and intensive studies on
the field vole, its predators and its food plants have
been conducted. The roles of predation by the com-
mon weasel, a vole specialist, and intrinsic mechanisms
(e.g. maternal effects) have been tested and rejected

as causal mechanisms for vole population cycles in this
area (Ergon et al. 2001; Graham and Lambin 2002).
In contrast, grazing-induced changes in plant quality,
affecting vole nutrition and their ability to reach re-
productive status in the spring, could offer a plausible
explanation.

In Kielder Forest, the grass species Deschampsia
caespitosa is the dominant food plant for voles, and in
winter and early spring, when energetic demands for
voles are at their highest, there is no significant alterna-
tive food source. There is growing evidence that, in this
area, silica levels in the grass may be a determinant of
cyclic population patterns. A correlation between vole
population density, and therefore grazing intensity, and
grass silica content has been noted in the field (Massey
et al. 2008): in sites where vole population density
was high, silica levels in grass leaves collected sev-
eral months later were also high, and vole populations
subsequently declined; in sites where vole population
density was low, silica levels were low and population
density subsequently increased. These findings high-
light the potential importance of interactions between
silica defences and vole abundance, and suggest that,
for this specific population, silica-based defences in
grasses may play an important role in driving vole
population cycles.

We take the inducible factor S in Eqs. 1 and 2 to
be silica (in percentage of dry mass), and the herbivore
density H to be the density of field voles (per hectare).
Using a least squares method, we have previously de-
rived parameter estimates for K, H0, n, S0, c and τ us-
ing greenhouse data on silica induction and relaxation
(Reynolds et al. 2012). Field data (Graham and Lambin
2002; Burthe 2005) give monthly survival probabilities,
which lead to an estimate for the vole death rate of
b = 0.22 per month (corresponding to a monthly sur-
vival of about 80 %) (Smith et al. 2006). These pa-
rameter values are shown in Table 1. (Note that the

Table 1 Parameter estimates for the case study

Parameter Value

K 5.42 per month
H0 79.77 per hectare
S0 2.54 % dry mass
c 0.25 per month
b 0.22 per month
τ 1.7 months
n 2 (unitless)

For details on the derivation of these estimates, see Reynolds
et al. (2012). Note that n = 2 means that the induction term in
Eq. 2 is a sigmoidal function. We explore the effects of changing
the value of the delay τ from this estimate in the “Results” section
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Fig. 1 a Vole birth rate a and b vole breeding season length l as functions of silica S. For a, the birth rate is dependent on silica at the
present time, whereas for b, the breeding season length is dependent on silica at the “census date”

estimates of parameters K and H0 are chosen in order
to set an absolute scale for the population densities.)

We assume that the birth rate is at its minimum value
(i.e. silica has its maximum effect) for silica levels of
6.6 and above. This value is taken from experimental
data of Massey et al. (2008): a vole growth rate of
0 corresponds to a silica content of 6.6 % dry mass.
Between silica levels of 2.54 (the background level of
silica, S0) and 6.6, we assume the birth rate decreases
linearly with silica. Figure 1a illustrates the vole birth
rate function used in our model.

There is a significant variation in the available esti-
mates for the maximum birth rate of voles, amax. Time
series data from Kielder Forest imply a value of at least
0.3 per month (Smith et al. 2006), whereas trapping
data imply a figure of 0.9 (Smith et al. 2008). Studies of
similar rodent taxa have suggested values of 1.2 and 1.3
(Turchin and Ostfeld 1997). We therefore regard this
parameter as variable and investigate the effects on the
model solutions of changing amax.

Seasonal models

We consider two different seasonal models.

Seasonal model 1 The breeding season length is fixed;
we denote it by lmax. During this part of the year, the
birth rate is given by the function a(S(t)) (illustrated in
Fig. 1a), and in the remainder of the year the birth rate
is set to zero.

An increase in the grass silica level reduces the
quality of the grass as food for voles; this has the
potential to increase the time taken to reach sexual
maturity and thus delay the onset of breeding each year
(Krebs and Myers 1974; Ergon et al. 2001). The timing

of spring reproduction shows substantial variation in
Kielder Forest (Ergon et al. 2011); the onset of the
breeding season varies from mid-March to early June
in different years. It has been shown that these changes
in the timing of reproduction covary strongly with past
vole density (Ergon et al. 2011). A correlation between
vole population density and grass silica content has
been noted in the field (Massey et al. 2008). On the
basis of this evidence, it is hypothesised that the onset
of reproduction is delayed as a result of a high silica
diet; this affects the total births in a season by reducing
the breeding season length (Smith et al. 2006). We
therefore consider a second seasonal model. In this
model, silica affects vole breeding through the regula-
tion of the season length:

Seasonal model 2 The breeding season length l de-
pends on silica as depicted in Fig. 1b. We assign a
“census date” at the earliest possible time in the year
at which the breeding season can start, and it is the
silica level at this date that determines the breeding
season length for that year. Specifically, the onset of
the breeding season changes with the census date silica
level, giving the change in breeding season length. The
birth rate in the breeding season is always fixed at its
maximum value amax. The birth rate is zero in the non-
breeding season.

The underlying silica-dependent functional form is
the same for both models (Fig. 1); the season length
in model 2 depends on silica in the same way as the
birth rate depends on silica in the first seasonal model.
For low silica levels (i.e. less than or equal to 2.54 %
dry mass), the two models become equivalent: there is
a birth rate of amax for lmax months. We impose these
conditions to allow us to compare the two models in an
effective way.
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Results

Our aim is to compare the effects of the two different
seasonal mechanisms on the population dynamics.
There are two steady states: the trivial (H, S) = (0, S0)

and another with non-zero H. We can determine for
which parameter values the trivial steady state is stable
using Floquet theory (see Appendix A). When the
trivial steady state is unstable, the non-trivial steady
state is relevant. The seasonal forcing means that any
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Fig. 2 Cycles generated for seasonal model 1 and seasonal model
2 for three different values of amax, the maximum birth rate.
amax = 0.3 (per month) for a and d; amax = 0.6 for b and e;
amax = 1.2 for c and f. Here, amin = lmin = 0, and lmax = 10 as
explained in the main text. These simulations are produced by
MATLAB using the delay differential equation solver dde23.

Initial conditions are S = 5 % dry mass and H = 25 per hectare
for t ≤ 0. Solutions are shown after 450 years. Note that in order
for the cycles to be seen clearly, the scales on the y-axes are not
all the same. Seasonal model 2 has a greater tendency to produce
multi-year cycles
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solution will be cyclic, displaying either annual or multi-
year cycles. The annual cyclic behaviour is due simply
to the dynamics being entrained to the annual seasonal
forcing. Our focus is an investigation of the causes of
multi-year cycles, which here refer to repeated oscil-
lations in abundance with a cycle period longer than
1 year.

To compare the two seasonal models, we initially
set amin = lmin = 0. The maximum reproductive season
length for field voles in Kielder Forest is 10 months
(Ergon et al. 2001), so we set lmax = 10 here. Figure 2
shows the cycles generated for both models for three
different values of the maximum herbivore birth rate,
amax. This figure shows that as amax increases, cycles
change from annual to multi-year. We find that sea-
sonal model 2 gives multi-year cycles for lower values
of the maximum herbivore birth rate than seasonal
model 1. Specifically, model 1 generates multi-year
cycles for amax values of 0.73 per month and above;
model 2 generates multi-year cycles for values of 0.44
per month and above. So model 2 has the largest region
in parameter space where there are multi-year cycles.

We can compare the results of these seasonal mod-
els with the results of the model without seasonality.
By definition, the non-seasonal model does not have
distinct non-breeding and breeding seasons; rather,
breeding occurs throughout the year, with the birth
rate depending on silica as shown in Fig. 1a. Due to
the absence of seasonality, there is no underlying an-
nual cycling for this non-seasonal framework. The non-
seasonal model predicts cycles for amax values of 0.70
per month and above. Below this value, the solutions
are non-cyclic. Therefore, the seasonality mechanism in
model 1 actually slightly reduces the region in parame-
ter space where there are multi-year cycles. In contrast,
this parameter region is significantly larger for seasonal
model 2. Note that in order to make a comparison
between the seasonal and non-seasonal models, we
scale the birth rate for the non-seasonal model, so that
over one year the birth rate is equivalent to that of the
seasonal models.

A delay term is known to be a potentially destabil-
ising factor (Haberman 1977). The data used to para-
meterise the model for the vole–silica system clearly
indicate a short delay (of 1.7 months) between her-
bivore damage and plant response (Reynolds et al.
2012). Moreover, other theoretical studies modelling
herbivore–plant defence interactions also include a de-
lay term (Underwood 1999). However, from the view-
point of generality to other systems, it is important
to explore the effects of changing the delay length τ ,
including the particular case of no delay. Figure 3 shows
the lowest maximum birth rates for which multi-year

cycles are generated (as opposed to annual cycles) for
both seasonal models, for a range of τ values, including
τ = 0. Seasonal model 2 consistently predicts multi-
year cycling for a larger region in parameter space.
Therefore our main conclusion remains the same re-
gardless of the value of the delay term: seasonal model
2 generates multi-year cycles for lower values of amax

than seasonal model 1. For τ = 0, values above 0.47
per month give multi-year cycles for model 2; the cor-
responding threshold value is 3.76 per month for model
1. It can be seen from these results that the delay plays
an important role in the generation of multi-year cycles
for seasonal model 1; the value of the maximum birth
rate has to be increased significantly to give multi-year
cycles in the case with no delay. However, for seasonal
model 2, the delay has relatively little effect on the
population dynamics.

Figure 3 also shows the lowest maximum birth rate
values for which the corresponding non-seasonal model
generates cycles. For this model, the solutions are non-
cyclic below the line. This line is above that for seasonal
model 2 for all values of the delay considered, but its
relation to the line for seasonal model 1 is dependent
on the delay value. The non-seasonal model does not
produce cycles without the delay.
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Fig. 3 The lowest maximum birth rates for which there are
multi-year cycles, for varying values of the delay τ . Results
are shown for both seasonal models and also for the non-
seasonal framework as explained in the main text. For the
seasonal models, there are annual cycles below the lines. For
the non-seasonal model, the solutions are non-cyclic below
the line
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We can conclude that the seasonal mechanism of
model 2 drives multi-year cycles more strongly than
that of model 1. That is, a variable season length pro-
duces multi-year cycles for a larger range of parameters
than a variable birth rate. This result holds irrespective
of the value of the delay. Therefore, within the context
of our model framework, a variable season length is
more powerfully destabilising than a variable birth rate.
One mechanism causes a significantly greater tendency
to cycle than the other, indicating that the way sea-
sonality is incorporated into a model is highly impor-
tant. This emphasises that the way seasonality operates
can have important implications for the population
dynamics.

Combining seasonal mechanisms

Above, we study the two seasonal mechanisms in iso-
lation. We now consider a model where a combination
of both seasonal mechanisms is possible. We introduce
two new parameters in order to characterise the com-
bination of the seasonal mechanisms: pbirth and plength,
defined such that

amin = amax(1 − pbirth) and

lmin = lmax(1 − plength).

Parameter pbirth denotes the strength of the silica effect
on birth rate. Similarly, plength denotes the strength of
the silica effect on the season length. Both parameters
take values in the range of [0, 1]. For low silica levels,
the breeding season length and birth rate are both
at their maximum values, independent of pbirth and
plength. (Seasonal model 1 of the above analysis is recov-
ered when pbirth = 1 and plength = 0. Similarly, seasonal
model 2 is recovered when pbirth = 0 and plength = 1.)

In our model framework, we assume that any regula-
tion of the birth rate and breeding season is due entirely
to silica. This is because we want to examine the silica
effect alone. We assume that any regulation is by silica
on the birth rate (controlled by parameter pbirth) or
by silica on the breeding season length (controlled by
plength); this allows an assessment of the relative impact
of these factors. A consequence of this is that for low
values of plength and pbirth (i.e. weak silica effects), there
is insufficient control on the population, leading to an
unbounded increase in vole density. (This is an obvi-
ously unrealistic outcome; see Appendix B for more
details.) In practice, population pressure is manifested
in many different ways, and other forms of regulation
will limit growth at high densities. The vole carrying
capacity is notoriously difficult to estimate empirically
(O’Mahony et al. 1999).

Our aim is to assess the role of different types of
seasonal forcing in driving multi-year cycles. We there-
fore look at the division in parameter space between
annual and non-annual cycles and also the behaviour
of the non-annual cycles. Figure 4 shows the dominant
periods of the cycles generated for a range of amax

and lmax values. It can be concluded that an increase
in the maximum birth rate or the maximum breeding
season length induces multi-year cycles in general: as
amax or lmax is increased, there are fewer annual cycles
(dark blue/dark grey dots) and more multi-year cycles,
and greater cycle periods are attained. In addition, the
cycles with the longest periods are for high plength and
low pbirth, i.e. when the silica has a strong effect on the
season length and a weak effect on the birth rate. Para-
meter plength is more likely to promote multi-year cycles
than pbirth. Combining the two seasonal mechanisms
has confirmed that variability in the season length is a
more powerful driver of cycles than variability in the
birth rate.

In order to establish the dominant period of the
multi-year time series predicted by the model, we use
fast Fourier transform (this procedure is described in
the legend to Fig. 4). Some examples of the cycles
generated by the model are shown in Fig. 5. Each
corresponds to a specific point from the grids of Fig. 4.
Figure 5a shows typical annual cycles (period = 1), and
the other plots show multi-year cycles of various peri-
ods. The fast Fourier transform procedure gives non-
integer periods for certain points, because it assigns
an “average” period. An example of this is shown in
Fig. 5d. In this case, there is a repeating pattern of
a cycle of period 2 followed by a cycle of period 3.
The repeating pattern is not exact, and so the cycles
are not of period 5. The average period of 2.5 repre-
sents/quantifies the cyclic behaviour generated in this
instance.

Extensions to the model

From the results described above, we can conclude that
variability in the breeding season length (controlled by
parameter plength) is a more significant driver of cycles
than variability in the herbivore birth rate (controlled
by parameter pbirth). The season length is dependent on
S at a given census date, and the birth rate is dependent
on S at the present time. In an attempt to elucidate the
reasons behind our results, we consider an alternative
seasonal model, where we set the birth rate to depend
on the inducible defence level S at the census date.
Note that this modification is not motivated by biologi-
cal realism but is done to further our understanding of
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Fig. 4 Dominant periods of the population cycles, for different
parameter combinations. The uncoloured dots denote when the
vole density increases without bound (due to lack of regulation
by silica; see Appendix B). After 490 years, the densities are
assessed at yearly intervals over 10 years. The difference between
the maximum and minimum densities is compared to 5 % (chosen
arbitrarily) of the mean density. If the difference is smaller,
then the cycles are deemed annual (dark blue/dark grey dots);
if larger, they are non-annual. For the non-annual cycles, fast
Fourier transform is used to generate power spectra, from which

the dominant period is established. The periods considered are
restricted to those that are factors of the length of the time series
data set processed. Therefore, in order to accurately capture the
cyclic nature of the time series, we consider a range of different
lengths of data. We record the period with the largest associated
power value for each data length. These power values are scaled
so that they can be compared, and the period corresponding to
the largest power value (after scaling) across all the range is said
to be the dominant period. Initial conditions are as for Fig. 2
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(a) Annual cycles. Parameters: p birth = 0. 6, plength =

0 .7, amax = 0 . 5 and lmax = 10.
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(b) Average period: 3. Parameters: pbirth = 0.1,

p length = 0. 9, amax = 0. 5 and l max = 10.

0

10

20

30

40

50

V
ol

e 
de

ns
ity

 
(v

ol
es

 p
er

 h
ec

ta
re

)

0 5 10 15 20 25

3

4

5

6

S
ili

ca
 c

on
te

nt
 (

%
 d

ry
 m

as
s)

Time (years)

(c)Average period: 2. Parameters: p birth = 0.8,
plength = 0 . 7, amax = 0 . 8 and lmax = 6.
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(d) Average period: 2.5. Parameters: pbirth = 0 . 8,
plength = 0 . 7, amax = 0 . 8 and l max = 10.
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(e)Average period: 5. Parameters: pbirth = 0.1,
plength = 0 . 9, amax = 1. 1 and l max = 10.

Fig. 5 Examples of cyclic behaviour predicted by the model for
different values of the parameters pbirth and plength (characteris-
ing the strength of the silica effect), amax (the maximum herbivore
birth rate) and lmax (the maximum breeding season length). Each

example corresponds to a particular point on the grids of Fig. 4.
Initial conditions are as for Fig. 2 and solutions are shown after
450 years
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the model. Parameters pbirth and plength are defined in
the same manner as for the original seasonal model.

With this new framework, parameter pbirth has a
similar effect to that of parameter plength. Figure 6
displays the dynamical predictions of this amended
model in plength − pbirth parameter space. Comparing
this figure to the corresponding (bottom middle) panel
of Fig. 4, one can see that the pattern is more symmet-
ric for the new model: there is a similar variation in
both directions. To compare the effects of the seasonal
mechanisms in isolation, we compare the results of
the model with pbirth = 0 and plength = 1 to those with
plength = 0 and pbirth = 1. Both cases give multi-year
cycles for similar values of the maximum birth rate,
amax. This confirms that in this new model set-up, a
variable season length and a variable birth rate have
a similar impact on the cyclic behaviour of the system;
parameter plength is no longer the dominant driver of
multi-year cycles.
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Fig. 6 Dominant periods of the cycles produced in plength −
pbirth parameter space, with the vole birth rate dependent on
the level of silica S at the census date (as well as the breeding
season length). In this figure, the maximum birth rate amax = 1.1,
and the maximum season length lmax = 8. The uncoloured dots
denote when the vole density increases unbounded (due to lack
of regulation by silica; see Appendix B). The numerical method
used to determine the periods is the same as is used in Fig. 4,
and the same initial conditions are used. This figure should be
compared to the bottom middle plot of Fig. 4, which shows the
corresponding results for the original model set-up. In this figure,
there is a more symmetrical pattern; parameters plength and pbirth
have more similar effects

These findings suggest that the mechanism by which
the season length is determined is the important desta-
bilising factor. The season length is dependent on the
inducible factor at a specific date and is fixed for that
year. When the birth rate is defined in the same way,
then it becomes a similarly powerful driver of multi-
year cycles.

The significance of the underlying mechanism has
motivated a further extension to our model. In order
to make the model more realistic, we additionally ex-
periment with setting the vole birth rate and breeding
season length to depend on the silica S averaged over
the previous month, as opposed to the silica level at
one time point only. The resulting patterns are similar
to those in Fig. 4, but periods are generally lower. The
overall conclusions are unaffected by this modification.

Discussion

In this study, we explore and compare the effects of
plant defence strategies in combination with seasonality
on the population dynamics of a herbivore. We exam-
ine two different mechanisms: firstly, with the herbi-
vore birth rate dependent on the level of plant defence;
secondly, with the length of the breeding season depen-
dent on the level of plant defence. Our results indicate
that the means by which seasonality is implemented is
crucial. When the plant defence affects the breeding
season length, there is a significantly higher likelihood
of multi-year cycles compared to when it affects the
birth rate.

We have parameterised our model for a specific
system, namely field voles (M. agrestis) in Kielder For-
est, Northern UK, and the silica content in the grass
(D. caespitosa) they feed on. The implication of our
findings is that a regulatory factor, silica in this instance,
is important for the occurrence of multi-year cycles if it
affects the season length but less significant if it affects
the birth rate.

Our model includes a delay term representing the
time taken for the inducible plant defence to be pro-
duced after herbivory has occurred, in concurrence with
both experimental (Reynolds et al. 2012) and theoret-
ical (Underwood 1999) studies. A delay is known to
be a potentially destabilising factor (Haberman 1977;
Underwood 1999), and as a result, we additionally
considered the effects of changing the delay length and
also the effect of removing this delay. We demonstrated
that our main conclusion, that a variable breeding
season length is a more powerful driver of multi-year
cycles than a variable birth rate, holds irrespective
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of the delay in the production of the inducible plant
defence.

Seasonal variations are ubiquitous in natural systems
and can exert strong pressures on population dynamics.
Our findings highlight the complexity of the interaction
between seasonal forcing and the unforced dynamics.
This has also been shown in models of disease sys-
tems (Schwartz and Smith 1983) and in predator–prey
models (e.g. Kuznetsov et al. 1992; Rinaldi et al. 1993).
Here, we demonstrate that the way in which seasonality
is incorporated makes a significant difference to its
effect on the dynamics and that it is therefore crucial
in seasonal models to incorporate patterns of forcing
that most closely correspond to biologically realistic
assumptions.

Changes in the length and intensity of the breed-
ing season have been claimed by some authors to be
an epiphenomenon of rodent cycles, with little demo-
graphic importance (Norrdahl and Korpimäki 2002). In
contrast, Smith et al. (2006) found that variation in the
breeding season length, with the length a function of
past population densities, can give rise to realistic pop-
ulation cycles, demonstrating that a variable breeding
season length may have important implications for the
population dynamics of a system. Our model, with the
additional effect of a plant defence mechanism, also
predicts such population cycles and suggests that the
breeding season length can have a significant effect on
population behaviour. In addition, seasonality is shown
to be important in shaping the population dynamics
of the grey-sided vole (Clethrionomys rufocanus) in
Hokkaido, Japan (Stenseth et al. 2003). In that study,
using both data and models, it is demonstrated that
the length of winter plays a key role in driving popu-
lation cycles. Our findings, concerning a different vole
species in a different location, are in agreement with
this.

We have parameterised our model using empirical
data on a specific herbivore–plant defence system and
found that multi-year cycles can be generated for re-
alistic parameters. In particular, we have shown that
seasonality can give rise to cycles of similar periodicity
to those seen in the field (Lambin et al. 2000). This
result lends support to the hypothesis that inducible
plant defences may contribute to cyclic fluctuations and
is consistent with previous theoretical studies on other
systems (Lundberg et al. 1994; Underwood 1999). The
model of Lundberg et al. (1994) typically generates
damped oscillations, and they speculate that seasonal
perturbations may play a significant role in the mainte-
nance of population cycles. Our work confirms the im-
portance of seasonality in achieving population cycles
resembling those seen in nature.

It should be noted that we have used data from
greenhouse experiments to parameterise some com-
ponents of this model. An important next step is to
use field data to obtain parameter values, once this
becomes available. In addition, a possible extension is
to take the same model framework and reparameterize
for a different herbivore–plant defence system.

Our work highlights the complexity of the role sea-
sonal forcing plays in shaping population dynamics. We
have found that seasonality can have dramatic dynam-
ical effects and that this is strongly dependent on the
type of seasonal mechanism. For a given ecological
system, the elucidation of the seasonal mechanism in-
volved is critical in order for the seasonal effects to be
determined. The prospect that global climate change
will rapidly modify current seasonal patterns provides
further motivation for research into seasonality and its
effects.
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Appendix A

In this appendix, we determine the parameter values
for which the trivial steady state (H, S) = (0, S0) is
stable, using Floquet theory. At the trivial steady state,
the herbivore birth rate will be at its maximum amax

in the breeding season. Let a(t) represent the seasonal
birth rate in this case. Then

a(t) =
{

amax in the breeding season
0 in the non-breeding season.

(3)

Thus, a(t) is periodic with period 12 months.
Firstly, linearising the system Eqs. 1 and 2 with Eq. 3

about the trivial steady state gives

dH
dt

= (a(t) − b)H(t) (4)

dS∗

dt
= −cS∗(t) (5)

where S∗(t) = S(t) − S0. Note that these equations are
independent of the delay τ . The solution of Eq. 4
depends on the season:

H(t) =
{

m1e(amax−b)t in the breeding season
m2e−bt in the non-breeding season
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where m1 and m2 are constants. The solution of Eq. 5 is

S∗(t) = m3e−ct

in both seasons, where m3 is a constant.
We now seek a fundamental matrix for this system.

To be specific, consider the solution over 12 months
starting at the beginning of the non-breeding season.
Initial conditions (H(0), S∗(0)) = (0, 1) give m3 = 1 and
S∗(12) = e−12c. Also, m2 = 0 so H = 0 at the end of the
non-breeding season, which is the start of the breeding
season also. Therefore, m1 = 0 and H(12) = 0.

Starting at (1, 0) gives m3 = 0 and S∗(12) = 0. Also,
m2 = 1 so H(t) = e−bt in the non-breeding season. At
the end of the non-breeding season, and at the start
of the breeding season, t = 12−l. At the trivial equilib-
rium, the season length l will be at its maximum, lmax.
So

H(12 − l) = e−b(12−lmax) = m1e(amax−b)(12−lmax)

⇒ m1 = e−b(12−lmax)

e(amax−b)(12−lmax)
= e−amax(12−lmax)

and

H(12) = e−amax(12−lmax)e12(amax−b) = eamaxlmax−12b .

A fundamental matrix, denoted here by M, is
therefore

M=
[

0 1
1 0

]−1 [
0 eamaxlmax−12b

e−12c 0

]
=

[
e−12c 0

0 eamaxlmax−12b

]

with eigenvalues

μ1 = e−12c and μ2 = eamaxlmax−12b .

Floquet theory implies that the condition for the trivial
steady state to be stable is that both | μ1 |< 1 and
| μ2 |< 1. Since μ1 < 1 always holds, the condition for
stability is

μ2 < 1, i.e. amaxlmax − 12b < 0, i.e. amaxlmax < 12b .

This is the required condition.

Appendix B

In this appendix, we determine the parameter values
for which the vole density H → ∞. For large H, the
equations become, to leading order,

dH
dt

= (a(t) − b)H(t) (6)

dS
dt

= K + cS0 − cS(t). (7)

The silica level will be at its maximum to leading order
for large H, so the breeding season length and birth rate
will be at their minimum values. Therefore,

a(t) =
{

amax(1 − pbirth) in the breeding season
0 in the non-breeding season

and the breeding season length is lmax(1 − plength). The
solution of Eq. 6 is then

H(t) =
{

m4e(amax(1−pbirth)−b)t in the breeding season
m5e−bt in the non-breeding season

where m4 and m5 are constants. Therefore, the solu-
tions of Eq. 6 will tend to infinity if and only if

(amax(1 − pbirth) − b)
lmax(1 − plength)

12

− b
(12 − lmax(1 − plength))

12
≥ 0

⇔ lmax(1 − plength)amax(1 − pbirth) ≥ 12b .

When this inequality holds, the silica effects are too
weak to self-regulate; there is not enough control on
the herbivore population by silica. In real systems,
other factors will regulate the herbivore population,
for example, the spread of disease may increase and
resources may become limited at very high population
densities.
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