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Abstract Many studies of the evolution of life-history traits assume that the underly-
ing population dynamical attractor is stable point equilibrium. However, evolutionary
outcomes can change significantly in different circumstances. We present an analy-
sis based on adaptive dynamics of a discrete-time demographic model involving a
trade-off whose shape is also an important determinant of evolutionary behaviour.
We derive an explicit expression for the fitness in the cyclic region and consequently
present an adaptive dynamic analysis which is algebraic. We do this fully in the region
of 2-cycles and (using a symbolic package) almost fully for 4-cycles. Simulations il-
lustrate and verify our results. With equilibrium population dynamics, trade-offs with
accelerating costs produce a continuously stable strategy (CSS) whereas trade-offs
with decelerating costs produce a non-ES repellor. The transition to 2-cycles pro-
duces a discontinuous change: the appearance of an intermediate region in which
branching points occur. The size of this region decreases as we move through the
region of 2-cycles. There is a further discontinuous fall in the size of the branch-
ing region during the transition to 4-cycles. We extend our results numerically and
with simulations to higher-period cycles and chaos. Simulations show that chaotic
population dynamics can evolve from equilibrium and vice-versa.
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1 Introduction

Adaptive dynamics (Metz et al. 1996; Geritz et al. 1998) allows the study of trait
substitution sequences resulting from the challenge of a resident strain by a closely
similar variant. Commonly, in applications, the following two features are found.

First, the underlying population dynamical state is restricted to equilibrium—
despite the fact that ecological systems exhibit a range of complex population dy-
namics, such as periodic and quasi-periodic cycles and chaos (Katok and Hassel-
blatt 1995), that simple models can capture this behaviour (Gurney and Nisbet 1998;
Cushing et al. 2003) and adaptive dynamics is suitable to analyse evolution under
non-equilibrium dynamics. Exceptions, which do consider non-equilibrium behav-
iour, include recent work by White et al. (2006) and Geritz et al. (2007) and a body
of work focussed on the question of whether evolution leads to equilibrium or non-
equilibrium dynamics (Gatto 1993; Ferriere and Gatto 1993; Doebeli and Koella
1995; Ebenman et al. 1996; Greenman et al. 2005).

The second feature frequently present is that the role of trade-offs between evolv-
ing parameters is not discussed—despite the fact that these are central to evolutionary
theory, arising as they do, when the evolution of particular fitness traits is constrained
deterministically by other traits such that a benefit in one results in a cost in an-
other (Stearns 1992; Roff 2002). Exceptions, which do consider trade-offs explic-
itly, include classical life-history theory (Levins 1962; Schaffer 1974; Stearns 1992;
Roff 2002) and more recent adaptive dynamics studies that consider arbitrarily
shaped trade-offs (Boots and Haraguchi 1999; Kisdi 2001; Bowers et al. 2003;
De Mazancourt and Dieckmann 2004; White and Bowers 2005; Geritz et al. 2007;
Svennungsen and Kisdi 2009; Boldin et al. 2009). It is noteworthy that new geomet-
ric methods for analysing adaptive dynamics (De Mazancourt and Dieckmann 2004;
Rueffler et al. 2004; Bowers et al. 2005) stress the importance of trade-offs.

In this article, we provide an adaptive dynamics analysis which is free from the
above ‘restrictions’—the analysis includes non-equilibrium (cyclic) population dy-
namics and investigates the role of trade-offs explicitly. A novelty is that, for our
given model, we derive an explicit algebraic expression for the fitness in the cyclic
region and consequently present an adaptive dynamic analysis (fitness derivatives and
their consequences for singular behaviour) which itself is algebraic. This contrasts
with the previous work of White et al. (2006) which used numerical and simulation
based techniques. (Of course, we use simulation to illuminate the present work.)

The algebraic results available here allow a detailed investigation of the applica-
bility of the results relating underlying population dynamics and trade-off type to
evolutionary behaviour. They allow us to determine whether changes in the underly-
ing dynamics alter the evolutionary outcome and to define precisely the regions (in
terms of trade-off shape) in which different evolutionary behaviour is exhibited. Our
findings can also be compared with those of White et al. (2006) which indicated that
low amplitude, non-equilibrium dynamics would not alter the evolutionary results
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applicable to equilibrium but that, beyond a threshold-amplitude, new behaviour (for
example, branching points) appears.

In the following sections, we introduce our population dynamical model and dis-
cuss its biological context; we present an adaptive dynamical analysis in the point
equilibrium region, we present a similar algebraic analysis—fitness, fitness deriva-
tives, location and nature of evolutionary singularities—in the cyclic region (for pe-
riod two cycles); we investigate when new evolutionary behaviour (branching points)
occurs and associated limit behaviour in the parameter space of our model; we extend
this algebraic analysis almost fully to the region of 4-cycles (using a symbolic pack-
age); we illustrate and verify our results with simulations; for higher-period cycles
and chaos we rely on numerical studies and simulations; we finish with a discussion.

2 The Model

The biological context we discuss here is the reproduction and survival of individuals
of a single species with density xt at time t . The discrete time population dynamics
is given as

xt+1 = rxt (1 − qxt ) + sxt , (1)

where r is the low density reproduction ratio whilst (non-zero values of) the parame-
ter q yield density-dependence in reproduction; s is the survival probability. (Density
dependence acting on survival could be included with little change.) We consider
an explicit trade-off between reproduction and survival of the form s = f (r). This
model is similar to the ‘exponential’ model of White et al. (2006) but its logistic form
allows an algebraic analysis missing in this previous paper.

3 Adaptive Dynamics

3.1 Fitness—Stable Point Equilibrium

For a general dynamics of the form

xt+1 = M(r, xt )xt , (2)

a point equilibrium satisfies xt+1 = xt = xp . The fitness of a mutant with trait r̃

attempting to invade a demographically stable resident equilibrium population xp(r)

with trait r is given by Metz et al. (1992)

w(r̃, r) = ln
[
M

(
r̃ , xp(r)

)]
. (3)

(The function M is positive in our context.)
For our model

xP = xp(r) = r + f (r) − 1

qr
, (4)

which incorporates the trade-off s = f (r). The parameter region of interest is 1 <

r + f (r) < 3 where this is stable (and the extinction equilibrium is not) (May 1975).
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This gives

w(r̃, r) = ln
[
r̃(1 − qxP ) + f (r̃)

]

= ln

[
(1 − f (r̃))(1 − f (r))

r

(
r̃

1 − f (r̃)
− r

1 − f (r)

)
+ 1

]
. (5)

The solutions r∗ of ∂w/(∂r̃)|r̃=r = 0 are evolutionary singularities; here this condi-
tion yields

f ′(r∗) = f (r∗) − 1

r∗ . (6)

The second derivatives of the fitness evaluated at the singularity reveal the nature of
the singularity (Metz et al. 1996; Geritz et al. 1998); here this leads to conditions: r∗
is evolutionary stable (ES) if f ′′(r∗) < 0 and is convergent stable (CS) if f ′′(r∗) < 0.
Hence we have an evolutionary attractor, or continuously stable strategy (CSS), (both
ES and CS) for trade-offs with accelerating costs, f ′′(r∗) < 0, and a repellor (neither
ES nor CS) for trade-offs with decelerating costs, f ′′(r∗) > 0. This is consistent with
(5) which shows that evolution optimises r/(1 − f (r)) (the reproduction ratio at low
densities divided by the death ratio).

3.2 Fitness—Stable Cycles

After τ steps of the above generalised discrete dynamics, we have

xt+τ = M(r, xt+τ−1) × · · · × M(r, xt+2)M(r, xt+1)M(r, xt )xt . (7)

Suppose there is a stable τ -cycle

x0(r), x1(r), . . . , xτ−1(r); (8)

the appropriate definition of fitness (Eckmann and Ruelle 1985; Metz et al. 1992;
Ferriere and Gatto 1993) is

w(r̃, r) = 1

τ
ln

[
M

(
r̃ , xτ−1(r)

) × · · · × M
(
r̃ , x2(r)

)
M

(
r̃ , x1(r)

)
M

(
r̃ , x0(r)

)]
. (9)

3.3 Our Model—Stable 2-Cycles

We now proceed with a fully algebraic calculation of the fitness and its derivatives
for resident (and mutant) 2-cycles in our model. This allows us to determine the
location and nature of the evolutionary singularities in this demographic regime and
to compare these with those in the point stable region. In particular, since 2-cycles
are stable for (3 < r +f (r) < 1 +√

6) (May 1975), we can investigate the behaviour
near the change at r + f (r) = 3.

The fitness is

w(r̃, r) = 1

2
ln

[
M

(
r̃ , x1(r)

)
M

(
r̃ , x0(r)

)]
, (10)
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where, for i = 0,1,

M
(
r̃ , xi(r)

) = Mi = r̃
(
1 − qxi(r)

) + f (r̃). (11)

To apply this we need information on xi(r). With a little algebraic manipulation, the
fitness expression can be written in terms of the sum and product of the densities xi(r)

which can be determined explicitly (see Appendix A). This allows the derivative of
the fitness function to be determined, and by setting ∂w(r̃, r)/∂r̃ = 0 with r̃ = r = r∗
this gives the locations of the evolutionary singularities as the solutions of

f ′(r∗) = f (r∗)
r∗ − 2

r∗(r∗ + f (r∗) − 1)
. (12)

(As expected, as r + f (r) → 3, this condition for the evolutionary singularities tends
to f ′(r∗) = (f (r∗) − 1)/r∗, which is the condition in the point equilibrium regime
found above.)

The second derivative of the fitness with respect to the mutant parameter r̃ and the
mixed derivative, both evaluated at the singularity, can also be determined explicitly
(see Appendix A) and it transpires that the conditions for the singularity to be ES and
CS are as follows (Metz et al. 1996; Geritz et al. 1998):

ES: f ′′(r∗) <
2

r∗2(r∗ + f (r∗) − 1)
− 8

r∗2(r∗ + f (r∗) − 1)3
(13)

CS: f ′′(r∗) <
2

r∗2(r∗ + f (r∗) − 1)
− 8

r∗2(r∗ + f (r∗) − 1)3

+ 2(r∗ + f (r∗) + 1)

r∗2(r∗ + f (r∗) − 1)3
. (14)

(Stability of the cycles certainly ensures that r∗ + f (r∗) − 1 > 0.) Again the system
can evolve towards an evolutionary attractor (ES and CS inequalities satisfied), or
away from the singularity (neither ES nor CS inequalities satisfied). However, now
there is a possibility of a third evolutionary outcome, that of evolutionary branching.
This behaviour occurs when the curvature of the trade-off is such that the singularity
is CS but not ES (recall again that r∗ + f (r∗) − 1 > 0).

3.4 Size of the Branching Region

We have shown that, when the demographic attractor is a 2-cycle, evolutionary
branching is possible, whereas for stable point equilibria only evolutionary attrac-
tors and repellors are possible. For 2-cycles, branching is possible when the second
derivative of the trade-off function evaluated at the singularity, f ′′(r∗), exceeds the
right-hand side of (13) but is less than the right-hand side of (14). We measure this
range of values using

B = 2(r∗ + f (r∗) + 1)

r∗2(r∗ + f (r∗) − 1)3
. (15)
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Fig. 1 Contour map of the
range of magnitudes of f ′′(r∗)

for which branching occurs
against the singular values of r∗
and s∗ = f (r∗), for the region
where 2-cycles occur
(3 < r∗ + s∗ < 1 + √

6)

To study how the possibility of branching changes with r∗ and s∗ = f (r∗) we plot
a contour map, of B for the region of 2-cycles (Fig. 1). From this we see that as
r∗ + f (r∗) increases, the range of values of f ′′(r∗) for which branching occurs de-
creases. Using the result from (A.9) of Appendix A this shows that as the normalised
amplitude of the evolutionarily singular population cycle increases, the range of val-
ues f ′′(r∗) for which branching occurs diminishes.

3.5 Behaviour Near the Transition to Cycles

It follows from the above that branching is more likely just after the transition to
2-cycles than at higher values of r∗ + f (r∗) in the 2-cycle region. Since branching
is not possible in the point stable region below the transition, anomalous limiting
behaviour is suggested. We investigate this next.

In the limit r∗ +f (r∗) → 3, the condition for the ‘cyclic’ singularity to be ES (13)
approaches f ′′(r∗) < 0, which matches the condition that the stable point equilibrium
obtains. However, the condition for the cyclic singularity to be CS (14) approaches
f ′′(r∗) < 1/r∗2 in this limit, which differs from the condition f ′′(r∗) < 0 for stable
point equilibrium. This is the origin of the discontinuity in the evolutionary outcomes.

We illustrate in Fig. 2(a) how the magnitudes of the f ′′(r∗) satisfying the ES
and/or CS conditions change as we increase r∗. The figure applies for any trade-
off function with the given values of s∗ = f (r∗) (here 0.6) and f ′(r∗) (from (12)).
We plot the right hand side of the inequalities (13) and (14) for the evolutionary
properties; the conditions are satisfied below the respective lines. The discontinuity
in the CS condition is clear; although the curve representing the ES condition is
continuous, it is not smooth due to the discontinuity in the gradient.

The above discontinuities reflect the following behaviour of the densities as
the transition is approached from the cyclic region: although xa + xb → 2xp and
xaxb → x2

p (which apply in particular for evolutionary singularities), we find that



1160 A. Hoyle et al.

Fig. 2 Plot of r∗ against the required magnitude of f ′′(r∗) needed to a satisfy the evolutionary properties
ES (thick grey line) and CS (solid black line) for any trade-off function with s∗ = f (r∗) = 0.6 and (a)
f ′(r∗) determined using (12) in the 2 cycle region and as described in Appendix A in the 4 cycle region;
(b) the boundaries are determined using a numerical procedure as outlined in Appendix B. For f ′′(r∗)

below the ES line the singularity is an evolutionary attractor, above the CS line it is an evolutionary
repellor and between the ES and CS line (if possible) it is a branching point

∂(xa + xb)/∂r|∗ → −2/qr∗2 and ∂(xaxb)/∂r|∗ → −6/qr∗2 whilst ∂(xp)/∂r|∗ → 0.
Results depending on these derivatives show discontinuity; we observe from the
above that the CS boundary does depend on these derivatives—and hence is dis-
continuous; the ES boundary does not depend on these derivatives (it involves partial
derivatives with respect to the mutant trait only)—and hence is continuous; however,
its derivative, with respect to r∗, does depend on the above derivatives—and hence is
discontinuous.

3.6 Our Model—Stable 4-Cycles

In the 4-cycle region, the fitness (10) is replaced by

w(r̃, r) = 1

4
ln

[
M

(
r̃ , x3(r)

)
M

(
r̃ , x2(r)

)
M

(
r̃ , x1(r)

)
M

(
r̃ , x0(r)

)]
. (16)

The rest of the analysis can be completed largely algebraically using an appropri-
ate symbolic package (Maple v.13); it is only necessary to ascribe values to r∗ and
s∗ = f (r∗). The 4-step recurrence relation replacing (A.3) is of degree 16 and can-
not be handled algebraically; however, numerical values of the appropriate roots can
be found at the singularity (we take q = 1). The 4 roots corresponding to the point
equilibria and 2-cycle can then be removed leaving in the 4-cycle region of the period-
doubling cascade exactly 4 other real roots corresponding to the new cycle; these can
be used wherever necessary in the following. Apart from this we can proceed al-
gebraically. The first derivative ∂w(r̃, r)/∂r̃ of the fitness can be found from (16).
Evaluating this at the singular point gives an expression with only f ′(r∗) unknown.
Since this expression must be zero, we can solve for f ′(r∗). The mixed and sec-
ond derivatives equivalent to (A.12) and (A.14) can now be found algebraically and
inequalities for f ′′(r∗) parallelling (13) and (14) established. These inequalities re-
quire the known values of f (r∗) and f ′(r∗). They also require (compare (A.14))
values of density derivatives at the singularity. As claimed above, these do not have
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to be found by numerical differentiation; the equilibrium equation for the 4-step re-
currence relation can be (implicitly) differentiated algebraically and solved for the
density derivative, yielding an expression involving the density itself.

Proceeding in the above way, we obtain the results shown in Fig. 2(a) for 4-cycles.
Similar discontinuities in the boundaries arise at the transition to 4-cycles as were
found at the previous transition. Branching behaviour is less likely for any r∗ in the
4-cycle region than it is anywhere in the 2-cycle region and, in parallel with previous
findings, the size of the branching region in terms of f ′′(r∗) falls (slightly) as r∗
(and consequently the amplitude of the oscillations) increases through the region of
4-cycles.

3.7 Beyond the 4-Cycle Region

It is not possible to compute the ES and CS boundaries algebraically beyond the
4-cycle region, but it is possible to use numerical procedures to approximate these
boundaries for higher period cycles (see Appendix B). The numerically computed
ES and CS boundaries are shown for the 4, 8 and 16-cycle region in Fig. 2(b).
There is a very close comparison between the algebraic and numerical boundaries
in the 4-cycle region, and familiar discontinuities in the CS boundary are exhib-
ited at the transition between cycle regions. Note the CS boundary can increase
at the discontinuity as shown by the transition between 4 to 8-cycles. Note also
the likelihood of cycles consistently decreases across each cycle region. Extend-
ing the numerical methods beyond the 16 cycle region into the chaotic region is
not possible as the method requires a consistent population dynamic attractor in the
neighbourhood of the singular point and this does not occur when the dynamics are
chaotic.

In Fig. 3, we illustrate the behaviour in Fig. 2 by giving the results of related multi-
strain simulations (see Appendix C) using a representative trade-off. In Fig. 3(a)–(c)
and 3(d)–(f) we illustrate simulations that lead to evolutionary attractors. In both
cases, the simulation indicates that the evolving parameter r will be attracted to-
wards and become fixed at the singular value r∗. Notice, however, that trade-offs
can be chosen such that underlying population dynamics at r∗ can exhibit a range
of behaviour. In Fig. 3(a)–(c), as the system evolves the population dynamics evolve
from chaotic to become fixed at equilibrium behaviour. In Fig. 3(d)–(f), the reverse
occurs as the system evolves the dynamics progress from equilibrium through the
period doubling cascade to chaos. Trade-offs can be chosen such that any of the
possible underlying dynamics are exhibited at r∗ when it is an evolutionary attrac-
tor. In Fig. 3(g)–(i), we illustrate a simulation of the behaviour when the singular
point is an evolutionary repellor. Here starting near the singular point the system
evolves away to either the maximum or minimum value permitted by the trade-off
(depending on whether the initial strain was above or below the singular point, re-
spectively). The underlying population dynamics change according to the evolving
value of the parameters and become fixed on the dynamics associated with either
the maximum or minimum value on the trade-off (the minimum value is attained in
Fig. 3(g)–(i)).
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Fig. 3 The trade-off in (a) leads to an evolutionary attractor shown in the simulation (b). The under-
lying population dynamics as the value of r (and s = f (r)) evolves in (b) are shown in (c) with dy-
namics changing from chaotic to periodic cycles to equilibrium at the attractor. Here the trade-off is
s = −0.025r2 − 0.0589r + 0.8678 which produces a singular point at r = 2.3 with f ′′(r) = −0.05. The
trade-off in (d) leads to an evolutionary attractor shown in the simulation (e) and the underlying popula-
tion dynamics as the value of r evolves in (e) are shown in (f) with dynamics changing from equilibrium
through the period doubling cascade to chaos. Here the trade-off is s = −0.025r2 + 0.1243r + 0.4583
which produces a singular point at r = 3.15 with f ′′(r) = −0.05. The trade-off in (g) leads to an evo-
lutionary repellor shown in the simulation (h) and the underlying population dynamics as the value of r

evolves in (h) are shown in (i) with dynamics changing from 4-cycles to 2-cycles to equilibrium. Here the
trade-off is s = 0.08r2 − 0.533r + 1.4728 which produces a singular point at r = 2.9 with f ′′(r) = 0.16

In Fig. 4, we illustrate the behaviour when the singular point leads to evolutionary
branching. In Fig. 4(a)–(d) branching occurs when the underlying population dynam-
ics exhibit a 2-cycle. The population dynamics in each of the subsequent branches
also exhibit 2-cycles (Fig. 4(c)–(d)). A similar result occurs when branching occurs
with chaotic underlying dynamics with the separate branches also continuing to ex-
hibit chaos (Fig. 4(e)–(h)). Note that the population dynamics in the branches would
be very different if they existed in isolation. For both of the examples shown in Fig. 4,
the left branch would exhibit equilibrium dynamics and the right branch chaos. It is
interesting to observe that at evolutionary branching points the population dynamics
in the branched populations exhibit the same behaviour as that displayed immediately
prior to branching. We observed this behaviour in all cyclic and chaotic regions but it
requires further investigation (beyond the scope of this study) to determine whether
this is a general property.
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Fig. 4 The trade-off described in (a) leads to evolutionary branching as shown in the simulation (b) and
branching occurs when the underlying population dynamics exhibit a 2-cycle. Figures (c) and (d) are
identical below the dotted line and display the population dynamics as r (and s = f (r)) evolves in (b).
Above the dotted line in (b) evolutionary branching has occurred and (c) follows the population dynamics
exhibited by left branch and (d) follows the population dynamics exhibited by the right branch. Here the
trade-off is s = 0.04r2 − 0.3158r + 1.1612 which produces a singular point at r = 2.7 with f ′′(r) = 0.08.
The panels (e)–(h) are analogous but the trade-off has been chosen such that branching occurs when the
underlying population dynamics are chaotic. Here the trade-off is s = 0.03r2 − 0.2364r + 1.0392 which
produces a singular point at r = 3.15 with f ′′(r) = 0.06

4 Discussion

We have discussed the adaptive dynamics associated with a discrete time demo-
graphic model in a context where there is a trade-off between parameters mod-
elling reproduction and survival of individuals. Unusually, the model admits algebraic
analysis (fitness and its appropriate derivatives) not only when the underlying dynam-
ics is equilibrium but also when it is cyclic of period two. For (stable) equilibrium
population dynamics the shape of the trade-off characterises evolutionary behaviour
in a simple fashion: trade-offs with accelerating costs correspond to attractors, or
continuously stable strategies (CSS), (ES and CS); trade-offs with decelerating costs
correspond to repellors (not ES and not CS). For cyclic population dynamics of pe-
riod 2 an extension of this is found: trade-offs with accelerating or weak decelerating
costs correspond to attractors; trade-offs with strong decelerating costs correspond
to repellors and now trade-offs which are intermediate between these are associated
with branching points (not ES but CS). Underlying branching behaviour is cyclic
dynamics. The range of values of the second derivative of the trade-off in the inter-
mediate region associated with branching points is largest close (in parameter space)
to the transition from equilibrium to cyclic demography and decreases as we move
further into the cyclic region. Additionally, the (normalised) amplitude of the oscil-
lations increases as we move through the 2 cycle region—thus branching points are
more likely with low amplitude oscillations.
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In the case where the underlying population dynamical state is a 4-cycle, the above
procedure for two cycles can still be completed almost entirely algebraically using a
suitable computer package. Only, one step has to be numerical—this is the identi-
fication of the 4-cycle densities corresponding to the given singular values r∗ and
s∗ = f (r∗). The results in the 4-cycle region mirror those in the 2-cycle region re-
garding the relationship between evolutionary behaviour and the value of the second
derivative f ′′(r∗). Moreover, branching behaviour is less likely for any r∗ in the 4-
cycle region than it is anywhere in the 2-cycle region.

To study more of the period doubling cascade in this manner is not feasible, but a
numerical scheme can be implemented to compute the boundaries for higher period
cycles (Fig. 2(b)). The ES boundary increases continuously (but not smoothly) as r∗
increases and the CS boundary displays discontinuous jumps at each period doubling
of the underlying population cycles. At the boundary between 4-cycles and 8-cycles,
there is a discontinuity in the CS boundary but branching becomes more likely. The
discontinuous jump in the CS boundary between 8-cycles to 16 cycles implies that
branching becomes less likely. However, in all cases the CS boundary decreases as
we move through each individual cyclic region. The above findings run counter to
those reported in White et al. (2006) on the basis of simulation studies of a different
but related model. These authors find that for non-equilibrium dynamics with low
amplitude population oscillations the evolutionary behaviour is as for equilibrium
dynamics (which is the same as the evolutionary behaviour reported for equilibrium
populations dynamics here). White et al. (2006) report that it is when the magnitude
of the population oscillations exceeds a threshold that branching is observed. The
Ricker type density-dependence effect (a negative exponential function) means that
it is not possible to produce analytical results for the model defined in White et al.
(2006). However, future research should be aimed at reconciling the present findings
and those of White et al. (2006), understanding how the nature of self-regulation
impacts on evolutionary behaviour and therefore providing a broader perspective of
how population dynamics affect the evolutionary outcomes in ecological models.

The current study can also be used to further inform the debate on whether evo-
lution leads to selection for equilibrium or more complicated (oscillatory, chaotic)
population dynamics. Laboratory experiments on Drosophila melanogaster have in-
dicated that stable population dynamics may result from individual selection acting
on demographic parameters (Prasad and Joshi 2003) and conversely have reported
that there is either no evolution of population stability, or very slow change (Mueller
et al. 2000). There is also a lack of consensus in theoretical studies (based on sim-
ilar discrete time population models to the logistic model presented here) used to
address this debate; some studies indicate that equilibrium underlying population
dynamics are most likely to result from selection of life-history traits (Gatto 1993;
Doebeli and Koella 1995; Ebenman et al. 1996) and others suggest that oscillatory
or chaotic dynamics are most likely or that the outcome depends on the shape of
the set of feasibility for specific parameters (Gatto 1993; Ferriere and Gatto 1993).
Such feasibility sets are related to life-history trade-offs and our study highlights how
the outcome can be determined by the shape of the trade-off (Fig. 3). An evolution-
ary attracting singular point can occur for parameters that lead to either equilibrium,
oscillatory or chaotic dynamics and it is noteworthy that such trade-offs have (visu-
ally) similar cost structures, yet selection leads to very different population dynamics.
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When the singular point is a repellor, evolution tends to select for either the minimum
or maximum trait value (depending on the position of the initial trait in relation to the
singular point) and again any type of population dynamics could occur at these val-
ues. When evolutionary branching occurs, the situation is more complicated.

It is always crucial to remember that evolutionary behaviour of a system can
change dramatically when the underlying population dynamics change from being
at equilibrium to an unstable state, for example, to a stable 2-cycle. More importantly
is the way this change occurs. It should not be assumed there is a gradual change
during the transition as it has been shown that this assumption can be spectacularly
incorrect and that the possibility of branching points (size of the branching region
with respect to the shape of the trade-off), and speciation, occurring is greatest at the
transition from the population being stable to that of 2-cycles, and that this is where
the population cycles are the smallest!
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Appendix A

The fitness is

w(r̃, r) = 1

2
ln

[
M

(
r̃ , x1(r)

)
M

(
r̃ , x0(r)

)]
, (A.1)

where, for i = 0,1,

M
(
r̃ , xi(r)

) = Mi = r̃
(
1 − qxi(r)

) + f (r̃). (A.2)

To apply this we need information on the xi(r).
We have

xt+2 = r
(
rxt (1 − qxt ) + f (r)xt

)(
1 − q(rxt (1 − qxt ) + f (r)xt )

)

+ f (r)
(
rxt (1 − qxt ) + f (r)xt

)
. (A.3)

Using the property xt+2 = xt = xi of a 2-cycle, this gives

xi(xi − xP )
(
x2
i − bxi + c

) = 0. (A.4)

Here xP is given by the formula for point equilibrium (4), and the solution of the
quadratic gives two values corresponding to the 2-cycle, which we denote xa and xb.
Explicitly, the quadratic is

x2
i − r + f (r) + 1

rq
xi + r + f (r) + 1

r2q2
= 0. (A.5)

Since the fitness

w(r̃, r) = 1

2
ln

[(
r̃ + f (r̃)

)2 − qr̃
(
r̃ + f (r̃)

)
(xa + xb) + q2r̃2xaxb

]
, (A.6)
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only depends on the sum and product of xa and xb , we shall not need explicit forms
for the roots; the results

xa + xb = r + f (r) + 1

qr
(A.7)

and

xaxb = r + f (r) + 1

q2r2
(A.8)

suffice. Note that the normalised square of the amplitude of the oscillations

(xa − xb)
2

( 1
2 (xa + xb))2

= (xa + xb)
2 − 4xaxb

( 1
2 (xa + xb))2

= 4(r + f (r) − 3)

(r + f (r) + 1)
(A.9)

increases with r +f (r). Furthermore, at the cross-over of stability (point equilibrium
to 2-cycle), i.e. as r + f (r) → 3, the difference between xa and xb approaches zero
and xa + xb → 2xp . Correspondingly, xa &xb → xp .

The first derivative of the fitness with respect to the mutant can be expressed as

∂w(r̃, r)

∂r̃
= 2(r̃ + f (r̃))(1 + f ′(r̃)) − q(2r̃ + f (r̃) + r̃f ′(r̃))(xa + xb) + 2q2r̃xaxb

2MaMb

,

(A.10)
where MaMb = (r̃ + f (r̃))2 − qr̃(r̃ + f (r̃))(xa + xb) + q2r̃2xaxb as above is the
positive denominator. Setting this derivative equal to zero, with r̃ = r = r∗, and using
results above for xa +xb and xaxb gives the locations of the evolutionary singularities
as the solutions of

f ′(r∗) = f (r∗)
r∗ − 2

r∗(r∗ + f (r∗) − 1)
(A.11)

which is the condition stated in (12).
The second derivative of the fitness with respect to the mutant parameter r̃ evalu-

ated at the singularity is

∂2w

∂r̃2

∣∣∣∣
r∗

= 1

2MaMb

{
f ′′(r∗)

[
2f (r∗) + r∗(2 − q(xa + xb)

)]

+ 2
[
1 − q

(
1 + f ′(r∗)

)
(xa + xb)

+ f ′(r∗)2 + q2xaxb + 2f ′(r∗)
]}

. (A.12)

(Take MaMb to be evaluated at the singularity wherever necessary.) This can be sim-
plified to

∂2w

∂r̃2

∣∣∣∣
r∗

= 1

2MaMb

[
f ′′(r∗)

(
r + f (r) − 1

) − 2

r2
+ 8

r2(r + f (r) − 1)2

]
. (A.13)
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To find the condition for convergence stability (CS), we need the mixed derivative of
the fitness; we find

∂2w

∂r∂r̃

∣∣∣∣
r∗

= 1

2MaMb

[
−q

(
2r∗ + f (r∗)

+ r∗f ′(r∗)
) ∂

∂r
(xa + xb)

∣∣∣∣
r∗

+2q2r∗ ∂

∂r
(xaxb)

∣∣∣∣
r∗

]
. (A.14)

To simplify this requires the derivatives

∂(xa + xb)

∂r
= rf ′(r) − f (r) − 1

qr2
, (A.15)

∂(xaxb)

∂r
= (rf ′(r) − f (r) − 1) − (r + f (r) + 1)

q2r3
. (A.16)

Using these, evaluated at the evolutionary singularity, the mixed derivative can be
simplified to

∂2w

∂r̃∂r

∣∣∣∣
r∗

= 1

2MaMb

[
− 2(r∗ + f (r∗) + 1)

r∗2(r∗ + f (r∗) − 1)2

]
. (A.17)

Hence, as stated in (13)–(14), the conditions for each of the properties of the singu-
larity are as follows

ES:
∂2w

∂r̃2

∣∣
∣∣
r∗

< 0 ⇔ f ′′(r∗) <
2

r∗2(r∗ + f (r∗) − 1)
− 8

r∗2(r∗ + f (r∗) − 1)3
,

(A.18)

CS:
∂2w

∂r̃2
+ ∂2w

∂r∂r̃

∣∣∣
∣
r∗

< 0 ⇔

f ′′(r∗) <
2

r∗2(r∗ + f (r∗) − 1)
− 8

r∗2(r∗ + f (r∗) − 1)3

+ 2(r∗ + f (r∗) + 1)

r∗2(r∗ + f (r∗) − 1)3
. (A.19)

Appendix B

The ES and CS boundary can be computed analytically in the region of 2-cycles and
4-cycles (see main text) but not for periodic regions beyond 4-cycles. To determine
the boundaries in other periodic regions we use the method of trade-off invasion plots
(TIPs, Bowers et al. 2005) and a numerical scheme to determine the invasion bound-
aries on the TIP. The method of TIPs allows the values of the singular point to be
specified and then determines the invasion boundaries relative to the singular point.
For Fig. 2, we choose s = 0.6 and vary r and solve for the invasion boundaries at
each value of r . A numerical procedure is used to determine the values of r̃ for which



1168 A. Hoyle et al.

the fitness function w(r̃, r) = 0 (see (10)) for two values of s̃ close to the singu-
lar point. We then fit a quadratic curve, s̃ = A1r̃

2 + B1r̃ + C1 to pass through the
singular point (r∗, s∗) and the two nearby points where the fitness function is zero.
This approximates the w(r̃, r) = 0 invasion curve close to the singular point. In a
similar manner we can find points close to the singular point where w(r̃, r) = 0 and
approximate this invasion curve as s̃ = A2r̃

2 + B2r̃ + C2 in the neighbourhood of
the singular point. The method of TIPS shows that the ES boundary is equivalent to
the w(r̃, r) = 0 curve and hence f ′′(r) = 2A1 defines the corresponding boundary in
Fig. 2(b); similarly the CS boundary is equivalent to the vertical average of the two
invasion curves and hence f ′′(r) = A1 + A2 defines the appropriate boundary here
in Fig. 2(b). A comparison of this numerical method and the analytical method in the
2-cycle and 4-cycle region gives an excellent fit and the numerical method is used
to determine the ES and CS boundaries for periodic regions beyond 4-cycles. This
method could be used in other models where analytical results cannot be determined
for non-equilibrium dynamics. A cautionary note is that the points close to the singu-
lar point must be chosen carefully such that all points lie on the ‘same’ attractor (an
attractor with the same period) as, if the points lie on different attractors, this method
fails. The method cannot be used in the chaotic parameter region as it is not possible
to select a consistent attractor near to the singular point.

Appendix C

Simulation analysis is used to verify the theoretical results about the position and
nature of the singular point. In the simulations, the population dynamics were nu-
merically solved for a fixed time (ta) according to (1) initially with a monomorphic
population. Mutant strains, those we defined by trait values r̃ (and s̃ = f (r̃)), were
generated by small deviations around the current trait r (and s = f (r)) (the choice
of current strain from which to mutate depends on its relative density) and intro-
duced at low density. The population dynamics were then solved for a further time ta
with strains whose population density fell below a (low) threshold considered extinct
and removed before considering new mutations and repeating the procedure. In this
way, the parameter r (and therefore s via the trade-off) could evolve. One difference
between the theory and simulations is that the simulations are not mutation-limited
(i.e. new mutants could evolve before previous mutants had reached equilibrium or
gone extinct). Although this could be overcome by increasing ta , this set-up has been
shown to correctly approximate the evolutionary behaviour predicted by adaptive dy-
namics in studies where the dynamical attractor is an equilibrium point (see, for ex-
ample, White and Bowers 2005; White et al. 2006).
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