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a b s t r a c t

Natural parasitoid systems exhibit considerable variation in their life history properties yet little is

known about the effects of development time on parasitoid fitness or of the conditions that might select

for rapid development at the expense of reduced parasitoid growth. In this study the techniques of

adaptive dynamics are applied to a discrete time host–parasitoid model to examine the evolution of

parasitoid life history strategies. In particular, we explore the conditions that select for variation in

parasitoid traits, such as, the timing of parasitoid attack and emergence from the host. The process of

evolutionary branching, leading to dimorphism, can occur when the benefits to reproduction of early

parasitoid attack are bought at a cost in terms of mortality of late parasitoid emergence from the host.

We also find that trends in parasitoid life history traits depend critically on the nature of the underlying

population dynamics. Increases in the strength of host density-dependence acts to select for shorter

parasitoid development time and lower searching efficiency when the underlying population dynamics

are at equilibrium. This trend is reversed when the underlying population dynamics exhibit fluctua-

tions. Here, fluctuations in host density driven by parasitism become more extreme as the strength of

host density-dependence decreases and so the parasitoid selects early emergence to avoid the mortality

experienced at outbreak host densities. Our results are consistent with the general principle that

parasitoids facing high mortality risk favour short development times over size and high searching

efficiency, whereas species facing low mortality risks favour size at the cost of increased

development time.

Crown Copyright & 2011 Published by Elsevier Ltd. All rights reserved.
1. Introduction

Insect parasitoids lay their eggs on or near a host, usually an
insect herbivore, and the parasitoid larvae develop by consuming
the host tissues. The population dynamics of the host and para-
sitoid are therefore closely interconnected and parasitoids can act
to depress host outbreaks and are important for the control of
insect pests (Berryman, 1996). Hosts suffer attack from a range of
parasitoid species (Godfray, 1994; Hawkins, 1994; Memmott et al.,
1994) and these parasitoids differ considerably in their life history
traits. For instance, parasitoids may attack different life stages of
the host, the duration of attack may differ (Godfray and Waage,
1991), and the parasitoids may have different attack efficiencies
(Parry, 1994). The length of time required to complete develop-
ment in the host can also vary, leading to different parasitoid
emergence times. Since there is such variation in parasitoid life
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history properties it is important to understand the conditions that
might select for different parasitoid traits. To determine such
conditions we outline theoretical techniques to explore the evolu-
tion of parasitoid life history parameters, in particular, the evolu-
tion of development time and the timing and efficiency of attack.
The findings help explain the generation and maintenance of the
variation in parasitoid properties observed in natural systems.

Theoretical studies that examine evolution in host–parasitoid
systems have chiefly focused on host evolution. These studies
investigate how hosts have evolved to evade parasitism through
changes to the duration of host development, the use of diapause and
host refuges (Kon and Takeuchi, 2001; McGregor and Roitberg, 2000;
Ringel et al., 1998; Holt et al., 1999). More recently studies have
examined the co-evolution of parasitoid virulence and host resis-
tance, which can be viewed in terms of an arms race between
virulence and resistance. When resistance is more costly hosts may
select not to invest in resistance, and in spatial models maladaptation
becomes possible giving rise to a mismatch between host resistance
and parasitoid virulence within a patch (Sasaki and Godfray, 1999;
Fellowes and Travis, 2000; Sisterson and Averill, 2004; Gandon et al.,
2006). While the study of resistance and virulence has very broad
rights reserved.
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implications, it does not address the question of how parasitoids may
have evolved to successfully locate the host in the first place. One
aspect which affects this is related to timing. The duration of the host
susceptible period is known to be a determinant for the persistence of
the host–parasitoid interaction and it is natural to ask how parasitoid
phenology evolves and impacts on persistence.

There are few theoretical studies that focus on investigating
parasitoid evolution. An exception is the study by Bonsall et al.
(2004) that considers evolution in parasitoid attack rate, compe-
titive ability and parasitoid longevity when the underlying
population dynamics are at equilibrium. Parasitoid polymorphism
arose when parasitoids had a distinct difference in their life
histories (fecundity or longevity) and invading species were found
to persist as transients for very long periods. Our study will
instead focus on parasitoid phenology, an important considera-
tion given the growing evidence for shifts in insect phenology in
many systems (Visser and Both, 2005). We consider the evolution
of the parasitoid emergence time, timing of parasitoid attack, and
attack rate, and examine how the evolutionary behaviour is
modified by constraints between these parameters. We consider
the evolution of parasitoid behaviour for both equilibrium and
non-equilibrium underlying population dynamics. Stable and
unstable dynamics are an important consideration in host–
parasitoid models and Holt et al. (1999) had already demon-
strated that unstable dynamics can change selective pressures on
hosts while White et al. (2006) found large population oscillations
can lead to the emergence of polymorphisms.

Modern evolutionary theory (adaptive dynamics) has shown
that the feedback between evolutionary and ecological dynamics
can lead to disruptive selection, evolutionary branching and
therefore to population variation in host–parasite systems
(Pugliese, 2002; Dieckmann et al., 2002; Best et al., 2009, 2010).
The evolutionary behaviour depends critically on the shape of the
trade-off that links evolving life history parameters. We wish to
extend the adaptive dynamics techniques to examine the evolu-
tion of parasitoid properties. In Hackett-Jones et al. (2009) a
framework was developed to represent differences in attack
period and emergence time between parasitoids in a host–para-
sitoid model. The model extends the classical Nicholson–Bailey
model (Nicholson and Bailey, 1935) by allowing multiple para-
sitoids with a full range of possibilities in attack windows and
emergence and avoids any implicit hierarchy in parasitoid phe-
nology. This model gives rise to parasitoid coexistence under
certain attack–emergence arrangements. This host–parasitoid
framework can exhibit equilibrium and non-equilibrium popula-
tion dynamics (cycles or chaos) and therefore we can examine
how variability in population abundance can change the evolu-
tionary behaviour of the parasitoid population. Thus using adap-
tive dynamics we consider parasitoid evolution within the
framework of Hackett-Jones et al. (2009) and explore the condi-
tions under which variation in parasitoid phenology may evolve.
0 1QPP
Q
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Fig. 1. Illustration of the parasitoid attack and emergence during one host

generation. Parasitoid P (Q) commences host attack at time tps (tqs) and finishes

oviposition and searching by time tpf (tqf). The total attack period is divided into

‘rounds’ (R1, R2, etc.) where different numbers of parasitoids attack the host—e.g.

in round 1 (R1) only parasitoid P is attacking the host. The emergence time of each

parasitoid is indicated by the downward arrows. Host density-dependence

operates for a time length Tdd during the host generation. Parasitoid P experiences

a fraction ap o1 of the host density-dependence as it emerges before the end of
2. The model

We present the generalised discrete-generation host–parasi-
toid model of Hackett-Jones et al. (2009). The model describes
parasitoid phenology (the timing of life history events) in the
context of koinobiont parasitoids (these parasitoids allow their
host to continue development after parasitism). The model
extends the classic Nicholson and Bailey (1935) framework to
consider the timing of three parasitoid life history events
(described below for two parasitoids P and Q):
host density-dependence period whereas Q emerges after the density-dependence

period and therefore experiences a fraction aq ¼ 1. The ordering of parasitoid

attack and emergence and the host density-dependence position and length is
1.

only illustrative and the model applies for any combination of these events.
(tps or tqs), the time at which adult (P or Q) parasitoids start

searching for and parasitising hosts.
2.
 (tpf or tqf), the time at which adult (P or Q) parasitoids finish

searching for and parasitising hosts. The time between starting
and finishing searching for hosts is referred to as the attack

window (Tp¼(tpf�tps) or Tq¼(tqf�tqs)).

3.
 ðap or aqÞ, the emergence-time of the (P or Q) parasitoid larvae

from a parasitised host relative to the timing of host density-
dependent competition. The model assumes parasitised hosts
undergo the same competition for resources as unparasitised
hosts, therefore a later emerging parasitoid incurs additional
mortality via this competition.

Derivation of the model involves solving a system of ordinary
differential equations which describe the within season dynamics,
as outlined in Appendix A and given in detail in Hackett-Jones
et al. (2009). The host suffers attack from multiple parasitoids and
these parasitoids will differ in their attack window, emergence time

and searching efficiency. In Eqs. (1)–(3) the model framework
describes the density in generation n of a single host Hn and two
parasitoids, Pn and Qn. The generalisation to N parasitoids is
straightforward.

Hnþ1 ¼ ere�gHnTdd Hne�apðtpf�tpsÞPn e�aqðtqf�tqsÞQn , ð1Þ

Pnþ1 ¼ e�gHnTddap Hn ð1�e�apðt2�tpðaÞÞPn Þ
�

þe�apðt2�tpðaÞÞPn�aqðt2�tqðaÞÞQn
apPn

apPnþaqQn
ð1�e�ðt1�t2ÞðapPnþaqQnÞÞ

þe�apðt2�tpðaÞÞPn�aqðt2�tqðaÞÞQn e�ðt1�t2ÞðapPnþaqQnÞð1�e�apPnðtpf�tpðbÞÞÞ
�

,

ð2Þ

Qnþ1 ¼ e�gHnTddaq Hn ð1�e�aqðt2�tqðaÞÞQn Þ
�

þe�apðt2�tpðaÞÞPn�aqðt2�tqðaÞÞQn
aqQn

apPnþaqQn
ð1�e�ðt1�t2ÞðapPnþaqQnÞÞ

þe�apðt2�tpðaÞÞPn�aqðt2�tqðaÞÞQn e�ðt1�t2ÞðapPnþaqQnÞð1�e�aqQnðtqf�tqðbÞ ÞÞ
�
:

ð3Þ

The host life cycle is partitioned into attack ‘rounds’ according to
the order of parasitoid attack (Fig. 1). We scale time such the host
life cycle (egg-adult) takes T¼1 time units. The terms describing
the change in host density between generations (Eq. (1)) have a
straightforward interpretation where er represents the per capita
growth rate of the host in the absence of host density-dependence
and the term e�gHnTdd represents the proportion that survive Ricker
type density-dependence over a period Tdd time units. The
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probability that a host escapes parasitism by P is given by the zero
term of the Poisson distribution, defined as e�apðtpf�tpsÞPn where the
parameter ap denotes the searching efficiency of parasitoid P. The
probability of a host escaping parasitism by Q is similarly defined
as e�aqðtqf�tqsÞQn .

The terms describing the between generation change in para-
sitoid density also have a straightforward interpretation in terms of
the probability that P or Q parasitises the host in a given round of
attack. The first term in parentheses in Eq. (2) (i.e. the term
ð1�e�apðt2�tpðaÞÞPn Þ) is the probability that P parasitises the host in
round 1, the second term is the probability that P parasitises the
host in round 2 given that neither P nor Q parasitised it in round
1 and the third term is the probability that P parasitises the host in
round 3 given that neither P nor Q parasitised it in round 1 or
round 2. Hosts parasitised with parasitoid P may also suffer
mortality due to the Ricker density-dependence experienced by
all hosts meaning that only a proportion e�gHnTddap survive to
become parasitoids where ap is the fraction of the host density-
dependent period experienced by P parasitised hosts. The terms
representing the change in density between generations for para-
sitoid Q (Eq. (3)) can be defined in an analogous manner. Note that
the equations apply for any combination of P–Q attack since the
ordering determines the parameters t1, t2, tp(a), tp(b), tq(a), tq(b) which
act to turn on or off particular rounds. In our model parasitoids do
not compete directly for hosts and this allows us to focus on the
evolution of phenology. Definitions of model parameters are
presented in Table 1, and given together with baseline values.

In the absence of parasitoid (Qn) the model collapses to

Hnþ1 ¼ erHne�gHnTdd e�apðtpf�tpsÞPn , ð4Þ

Pnþ1 ¼Hne�gHnTddap ð1�e�apðtpf�tpsÞPn Þ, ð5Þ
Table 1
Definitions of attack window timings and other parameters used in the model. The

appropriate baseline values or range of values (in square brackets) are indicated.

Note, we present the full parameter definitions in this table to allow the model to

be applied to all realistic parameter sets (however, for the baseline parameters

used in this study some of the attack window timing definitions could be

simplified).

Parameter Description Baseline

value

tps (or tqs) Time P (or Q) starts attacking and

searching for hosts

½0,0:25�

tpf (or tqf) Time P (or Q) finishes attacking hosts ½0:25,0:5�

Tp¼tpf�tps (or Tq) Length of P (or Q) attack window 0.25

t1 ¼minðtqf ,tpf Þ Time of the first parasitoid to finish

attacking

t2 ¼minðt1 ,maxðtps ,tqsÞÞ t2 determines which happens first: a

parasitoid has finished attacking (t1) or

both parasitoids have started attacking by

maxðtps ,tqsÞ

tpðaÞ ¼minðtps ,t1Þ Time P starts attacking or time Q finishes

if that happens earlier

tqðaÞ ¼minðtqs ,t1Þ Time Q starts attacking or time P finishes

if that happens earlier
tpðbÞ ¼maxðtps ,t1Þ Time P starts attacking or time Q finishes

if that happens later
tqðbÞ ¼maxðtqs ,t1Þ Time Q starts attacking or time P finishes

if that happens later
Tdd Length of host density-dependent (HDD)

period

0.5

g Strength of density-dependence 1

er Per capita growth rate of hosts e1

ap or aq Fraction of HDD experienced by P (or Q) [0,1]

ap or aq Searching efficiency of P (or Q) [3,20]
which is discussed in Cobbold et al. (2009). It shows a range of
dynamics from stable coexistence of the host and parasitoid to
population cycles and chaos. Increases in the emergence-time ap,
stabilise the host–parasitoid dynamics. When ap ¼ 0 we have the
classic host–parasitoid model of Beddington et al. (1975), in
which host density-dependence is followed parasitism. In the
case ap ¼ 1 we recover the model by Wang and Gutierrez (1980)
in which parasitism follows host density-dependence. The attack
window in these models has the same effect as parasitoid
searching efficiency. Thus, increasing the duration of the attack
window can destabilise the host–parasitoid dynamics.

2.1. Evolutionary methods for stable point population equilibria

The theory of adaptive dynamics is used to determine the
evolution of the parasitoid life history properties in our model.
This theory analyses the fitness of a mutant parasitoid, which we
assume to be parasitoid Q, attempting to invade an environment
composed of a resident parasitoid, P, and a resident host, H. The
fitness, denoted sP(Q), corresponds to the per capita growth rate
for Q, or equivalently the largest Lyapunov exponent and is given
by Metz et al. (1992) and for our systems is defined as

sPðQ Þ ¼ lnðMÞ, where M¼
@Qnþ1

@Qn

����
Qn ¼ 0, Hn ¼ H, Pn ¼ P

: ð6Þ

Here, H and P are the equilibrium values of the resident host and
parasitoid. The fitness can be written explicitly as

sPðQ Þ ¼ ln

�
e�gHTddaq Hðaqðt2�tqðaÞÞþaqðtqf�tqðbÞÞe

�apPðt1�tpðaÞÞ

þ
aq

apP
e�apPðt2�tpðaÞÞð1�e�apPðt1�t2ÞÞÞ

�
: ð7Þ

Note, the fitness depends on parameters associated with the
mutant parasitoid and on the densities of the resident host and
parasitoid, H and P (which depend on resident parameters). The
unique stable point equilibrium values H and P can be found
numerically by solving the following system of equations:

P¼Hð1�e�apPðtpf�tpsÞÞe�gHTddap , ð8Þ

gTddH¼ r�apðtpf�tpsÞP: ð9Þ

Since P is at its demographic attractor it implies that sP(P)¼0 and
this allows us to rewrite the fitness expression (Eq. (7)) as

sPðQ Þ ¼ lnðe�gHTddðaq�apÞFÞ, ð10Þ

where

F¼
1

apð1�e�apPðtpf�tpsÞÞ
faqapPðt2�tqðaÞÞþaqapPðtqf�tqðbÞÞe

�apPðt1�tpðaÞÞ

þaqe�apPðt2�tpðaÞÞð1�e�apPðt1�t2ÞÞg: ð11Þ

This expression proves useful to understand the outcome of
parasitoid evolution. The success of the mutant parasitoid can
be determined by analysing the fitness function. If fitness is
positive the mutant can invade. The population will evolve in
small steps in the direction of the local fitness gradient until the
fitness gradient is zero where it reaches a singular strategy, n�,
which is a solution of the following expression:

@sPðQ Þ

@nq

����
nq ¼ np ¼ n�

¼ 0:

Here n� represents the evolving parameter (and in this study we
allow at least one of a, a or ts to evolve). The evolutionary
behaviour at the singular strategy is determined by the second
derivatives of the fitness functions evaluated at the singularity
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(Metz et al., 1996; Geritz et al., 1998). The singular point may be
evolutionary stable (ES) and convergent stable (CS) in which case
it is an uninvadable, evolutionary attractor. If it is neither ES nor
CS it is an invadable, evolutionary repeller. If it is ES but not CS it
is known as a Garden of Eden strategy (Nowak, 1990) (here the
singular strategy is uninvadable but nearby strategies are
repelled). The process of evolutionary branching occurs when
the singular strategy is CS but not ES. Here we are attracted
towards the singular strategy but when nearby it is invadable and
disruptive selections leads to dimorphisms.
2.2. Evolutionary methods for periodic, quasiperiodic and chaotic

attractors

It is rarely possible to determine the largest Lyapunov expo-
nent (fitness) algebraically when the underlying dynamics are not
at a stable point equilibrium (but see Hoyle et al., in press). It is
possible, however, to compute the largest Lyapunov exponent
numerically (Eckmann and Ruelle, 1985; Metz et al., 1992;
Ferriere and Gatto, 1993) under non-equilibrium conditions and
the fitness of the mutant strategy Q can be determined by
calculating

sPðQ Þ ¼ lim
t-1

1

t
lnðMt�1 �Mt�2 � . . . �M1 �M0Þ, ð12Þ

where

Mt ¼

�
e�gHt Tddaq Htðaqðt2�tqðaÞÞþaqðtqf�tqðbÞÞe

�apPt ðt1�tpðaÞÞ

þ
aq

apPt
e�apPt ðt2�tpðaÞÞð1�e�apPt ðt1�t2ÞÞÞ

�
: ð13Þ

Here, Ht and Pt are successive population values of H and P for the
resident population on its attractor. In practice we numerically
determine the value of sP(Q) in Eq. (12) over a sufficiently long
time series (or the cycle period in the case of periodic attractors).
The values of sP(Q) for different resident–mutant combinations
can be used to determine the sign structure of the fitness
expression and to construct pairwise invadability plots (PIPs)
(Metz et al., 1992; Geritz et al., 1998), which can be used to infer
the position of the singular strategies and their evolutionary
behaviour.

This evolutionary behaviour can be verified by undertaking
related multi-strain simulations that represent the adaptive
dynamic process. In these simulations, the population dynamics
are numerically solved for a fixed time (ta) according to Eqs. (4)–(5)
initially with a monomorphic population. Mutant strains are
generated by small deviations around the current evolving para-
meter n (the choice of current strain from which to mutate
depends on its relative density) and introduced at low density.
The population dynamics are then solved using Eqs. (1)–(3) (and its
multi-strain extensions) for a further time ta. Strains whose
population density falls below a (low) threshold are considered
extinct and removed before considering new mutations and
repeating the procedure. In this way, the parasitoid parameters
can evolve. One difference between the theory and simulations is
that the simulations are not mutation-limited (i.e. new mutants
could evolve before previous mutants had reached equilibrium or
gone extinct). Although this could be overcome by increasing ta,
this set-up has been shown to correctly approximate the evolu-
tionary behaviour predicted by adaptive dynamics in studies
where the dynamical attractor is an equilibrium point and has
been used successfully to assess the adaptive dynamics for non-
equilibrium attractors (White et al., 2006; Hoyle et al., in press).
3. Results

3.1. Evolution of a single parasitoid parameter

When the underlying population dynamics exhibit a stable
point equilibrium we can classify the singular strategy analyti-
cally. In the case where the attack windows for P and Q are
identical Eqs. (10) and (11) can be simplified and the fitness
expression becomes

sPðQ Þ ¼ ln
aq

ap
e�gHTddðaq�apÞ

� �
: ð14Þ

Clearly if ap¼aq then the fitness is positive when aqoap.
Similarly, if ap ¼ aq the fitness is positive when aq4ap. Therefore
if these life history properties evolve independently, selection will
lead to parasitoids that emerge from the host early to minimise
the fraction of the host density-dependence phase that they
experience (corresponding to a decrease in parasitoid mortality),
or that maximise the searching efficiency (corresponding to
increased parasitoid fecundity). In the case where the attack
windows are the same and the underlying dynamics are non-
equilibrium the fitness expressions (using Eq. (12)) can be written
as

sPðQ Þ ¼ lim
t-1

1

t
ln

aq

ap
e�gHt�1Tddðaq�apÞ � . . . �

aq

ap
e�gH0Tddðaq�apÞ

� �
: ð15Þ

When aq ¼ ap in Eq. (15)

sPðQ Þ ¼ lim
t-1

1

t
ln

aq

ap

� �t

¼ ln
aq

ap

� �
ð16Þ

and when aq¼ap in Eq. (15)

sPðQ Þ ¼ lim
t-1

1

t
lnðe�gHt�1Tddðaq�apÞ � . . . � e�gH0Tddðaq�apÞÞ

¼ �gTddðaq�apÞ

�
lim
t-1

1

t
ðHt�1þ � � � þH0Þ

�
: ð17Þ

Therefore the results for non-equilibrium underlying dynamics
are equivalent to those with equilibrium underlying dynamics
when the parameter a or a can evolve independently.

Analysis can also be undertaken to assess the evolution of the
attack timing (for brevity the analysis is not shown here). If the
start of the attack window, ts evolves independently it can be
shown that selection will lead to parasitoids that start their attack
earlier (provided the overall attack window is not reduced). This
result applies under equilibrium and non-equilibrium population
dynamics.
3.2. Evolution of two parasitoid parameters linked by a trade-off

We now consider the evolution of two parasitoid life history
parameters. These parameters are linked by a trade-off that
ensures that a benefit from a change in one parameter is bought
at a cost through a change in the other parameter.
3.2.1. An a versus a trade-off

We consider a trade-off linking a, the parasitoid’s emergence
time, to a, its searching efficiency (so a¼ f ðaÞ). To ensure the
correct cost-benefit structure we impose the constraint that
f uðaÞ40 representing the situation where an early emerging
parasitoid (low a) will be less efficient at searching for hosts
(low a) (Strand, 2000). All non-evolving parameters are fixed and
in particular the parasitoids are assumed to have equal attack
windows and so Eq. (14) defines the fitness.



E. Hackett-Jones et al. / Journal of Theoretical Biology 275 (2011) 1–11 5
In the case of equilibrium underlying population dynamics the
singular strategy is defined by the solution, a�, of

@sPðQ Þ

@aq

����
aq ¼ ap ¼ a�

¼ 0) f uða�Þ ¼ gHTddf ða�Þ: ð18Þ

The evolutionary behaviour at the singular strategy can be
determined as follows:

ES if
@2sPðQ Þ

@a2
q

�����
aq ¼ ap ¼ a�

o0) f 00ða�Þ�g2H2T2
ddf ða�Þo0: ð19Þ

CS if
@2sPðQ Þ

@a2
p

�����
aq ¼ ap ¼ a�

�
@2sPðQ Þ

@a2
q

�����
aq ¼ ap ¼ a�

40

) f uuða�Þ�gTddf ða�ÞHuða�Þ�g2T2
ddH2f ða�Þo0: ð20Þ

It can be shown (see Appendix B) that Huða�Þ ¼ 0 in Eq. (20) and so
the condition for CS is identical to the condition for ES. Therefore,
trade-offs with accelerating costs (f 00o0) and weak decelerating
costs (f 0040 but with low magnitude) are both ES and CS and
therefore evolutionary attractors. Trade-offs with strong deceler-
ating costs are neither ES nor CS and are evolutionary repellers.
Evolutionary branching cannot occur and therefore the popula-
tion remains monomorphic.

To verify these results and for continuity with the results for
non-equilibrium population dynamics (see later) we undertake
multi-strain simulations that approximate the adaptive dynamics
process. The simulation methods require that the trade-off func-
tion is specified explicitly. We use the following form:

a¼ f ðaÞ ¼ amax�
ðamax�aminÞðamax�aÞ
amax�aminþgða�aminÞ

, ð21Þ

which produces a smooth curve between ðamin,aminÞ and
ðamax,amaxÞ in which the parameter g controls the curvature
(and therefore cost structure) of the trade-off (see Fig. 2). Simula-
tion results are in close agreement with the analytic findings. An
evolutionary attractor is shown in Fig. 3A and indicates that
strains are attracted towards and fix at the singular strategy.
0 0.5 1

a

a
max

a
min

Fig. 2. The trade-off for a versus a. Here amin ¼ 0, amax ¼ 1. The solid line has g40

and accelerating costs. The dashed line has g¼ 0, and the dotted line has go0 and

decelerating costs.
Strains are repelled away from an evolutionary repeller and reach
the minimum (or maximum if the initial value of a is above the
singular strategy) attainable value (Fig. 3B). Fig. 3C shows both
the position of the singular strategy determined analytically and
the final strain of the parasitoid at the end of the evolutionary
simulations as a function of the trade-off curvature. The simula-
tions indicate that the population evolves to the singularity for
trade-offs with accelerating and weak decelerating costs and
evolves away from the singularity for trade-offs with strong
decelerating costs (Fig. 3C).

For non-equilibrium underlying population dynamics it is not
possible to assess the fitness of the mutant strategy algebraically.
Instead we use numerical techniques to compute the fitness
functions and produce pairwise invadability plots that indicate
the position and nature of the singular strategy. These results are
verified using multi-strain simulations. Fig. 3D indicates an
evolutionary attractor for accelerating costs and an evolutionary
repeller for strong decelerating costs. A singular strategy is not
observed in PIPs for trade-offs with weak decelerating costs. Here,
the PIPs indicate that the population will evolve to the minimum
value of a and this is confirmed by the simulation results.

3.2.2. An a versus ts trade-off

We consider a trade-off linking parasitoid emergence, a, with
the onset of parasitoid attack, ts, where a¼ f ðtsÞ. All other para-
meters are assumed fixed and equal for all parasitoid types. To
produce the required trade-off cost structure the benefit of early
attack must be associated with the cost of late emergence.
Empirical support indicating a relationship between host age
and egg-adult development time in koinobiont parasitoids
(Harvey, 2005) are consistent with the trade-off being a decreas-
ing function of ts. When the underlying dynamics are equilibrium
the singular strategy occurs when

f uðtsÞ ¼�
aP

gHTdd

:

The nature of the singular strategy cannot be determined analy-
tically as the fitness function is not twice differentiable at the
singular strategy due to the min/max expressions in t1 and t2. To
determine the derivatives of t1 and t2 one requires a fixed attack
window set-up which is not compatible with this type of trade-off
(or any trade-off which involves changing the position of the
attack window). Therefore, to determine the nature of the
singular point we use numerically generated PIPs and simulation
methods.

For equilibrium underlying population dynamics results indi-
cate that trade-offs with strong accelerating costs produce evolu-
tionary attractors, trade-offs with strong decelerating costs
produce evolutionary repellers and trade-offs with weak accel-
erating or decelerating costs lead to evolutionary branching
(Fig. 4A). When the underlying population dynamics are non-
equilibrium the region of branching is lost and the region where
evolutionary repellers occur is extended to all trade-offs with
decelerating costs and those with weak accelerating costs
(Fig. 4B). The occurrence of branching can be understood by
considering a PIP in the region where branching is exhibited
(Fig. 4C). It can be seen that the singular strategy is CS but once at
the singular strategy parasitoid types with a lower value of a can
invade and coexist with the resident type (the fitness is positive
directly below the singular strategy). Usually when evolutionary
branching occurs the singular strategies can be invaded by types
on either side of the singular strategy. The unusual, one-sided
invasion properties in this study are a direct result of the
discontinuity in the second derivatives of the fitness function at
the singular strategy (see Appendix C). Simulations confirm that
branching occurs at the singular strategy and two types evolve



Fig. 3. Simulation results and the position of the singular strategy for an a versus a trade-offs. (A) A single simulation of the evolving value of a showing how the

population is attracted to the singular strategy a� . The underlying dynamics are at equilibrium and the trade-off has accelerating costs, g¼ 4. (B) A single simulation of the

evolving value of a showing how the population is repelled away from the singular strategy a� reaching a final value of amin . The underlying dynamics are at equilibrium

and the trade-off has decelerating costs, g¼�0:5. (C) and (D) the final evolved value of a, represented by circles, and the position of the singular strategy (solid line for

attracting and dashed line for repelling singular strategies) for different values of the trade-off curvature, g. In (C) the underlying population dynamics are at equilibrium.

In (D) the underlying dynamics are non-equilibrium. Initially we started each simulation with a monomorphic population in which a¼ 0:8. Parameters are r¼1, g¼1,

Tdd¼0.5, Tp ¼ Tq ¼ 0:25, ts¼0, tf¼0.25, amin ¼ 0, amax ¼ 1 and in (A–C) amin ¼ 3, amax ¼ 6 and (D) amin ¼ 15, amax ¼ 20.
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and coexist with values of a typically lower than that exhibited at
the singular point (Fig. 4D).

3.3. The dependence of the singular strategy on other life history

parameters

We explore how the position of the singular strategy depends
on the length of the host density-dependent period, Tdd, the
strength of host density-dependence, g, and the length of the
parasitoid attack window, T ¼ Tp ¼ Tq. We focus on the case where
we have a trade-off between a and a. When the underlying
population dynamics are at equilibrium we can analytically
address this problem. For non-equilibrium dynamics we employ
a simulation approach.

Assuming that the underlying dynamics of the system are at a
stable equilibrium the dependence of the singular strategy, a�, on
Tdd and g, can be found by considering the combined parameter
G¼gTdd and differentiating Eq. (18). Differentiating both sides of
(18) with respect to G, noting that a� and H are both functions of
G, and repeatedly using the chain rule, gives

da�

dG
ðf 00ða�Þ�f ða�ÞG2H2Þ ¼ f ðaÞ HþG

dH

dG

� �
40: ð22Þ

In Appendix B the Jury conditions are used to show that the sign
of the right hand side of (22) is positive. Therefore, the sign of
da�=dG depends only on the sign of the expression in round
brackets, which is precisely Eq. (19) (and therefore (20)), the
condition determining if a� is ES and CS. When the singular
strategy is an evolutionary attractor, da�=dGo0 and the value of
a� at the singular strategy decreases as a function of g or Tdd.
When it is an evolutionary repeller, da�=dG40 and the value of a�
at the singular point increases with g or Tdd. An analogous
calculation shows that the opposite result holds for dependency
of a� on Tð ¼ tf�tsÞ, since dH=dTo0.

Simulation methods can be used to confirm the analytical
findings and extend the results to the situation where the under-
lying dynamics are non-equilibrium. In Fig. 5A the evolved value
of a is plotted against g. This shows that a� decreases as g

increases for equilibrium dynamics g41:6, but a� increases as g

increases for non-equilibrium dynamics go1:6 and there is a
clear switch in the trend as the underlying dynamics change from
non-equilibrium to equilibrium. Similar findings are observed
when the length of the attack window is varied (Fig. 5B). Thus,
the trend in the evolved levels of parasitoid parameters depends
critically on the nature of the underlying population dynamics.

The behaviour of a� can be understood biologically for each
case as follows. Under equilibrium dynamics (Fig. 5Ai) as g

increases, the effect of density-dependence on the parasitoid
increases, so the parasitoid evolves to reduce a�, and thus avoid
the ever-strengthening density-dependence, which correlates
with parasitoid increased mortality. When the underlying host–
parasitoid dynamics are non-equilibrium as g increases the
population cycles decrease in amplitude and have smaller average
width (compare Fig. 5Aii and iii). This means the impact of host
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density-dependence reduces and it is more beneficial for the
parasitoid to have a larger a and hence a larger attack rate via the
trade-off. This is demonstrated in Fig. 5Aiv which indicates that
although the average value of host density at the singular
strategy, a�, may decrease, the total density-dependence effect
(g multiplied by the average host density) follows the same trend
as the evolved value of a� (Fig. 5A).

As Tð ¼ tf�tsÞ increases under equilibrium conditions (Fig. 5Bi),
the host density decreases and so the parasitoid can afford to
evolve increased a�. Under non-equilibrium conditions as T

increases the cycles have larger amplitude and larger average
width (compare Fig. 5Bii and iii) and this leads to an increase in
the average host density at the singular strategy and the total
density-dependent effect (Fig. 5Biv). Therefore the parasitoid will
reduce its a� in order to lessen the effects of density-dependence.
4. Discussion

We have examined parasitoid evolution in a discrete-time
host–parasitoid model using an adaptive dynamics framework. In
particular, we have explored the evolution of parasitoid develop-
ment time and the timing and efficiency of parasitoid attack
under equilibrium and non-equilibrium population dynamics. The
evolutionary behaviour depends on the shape of the trade-off and
the specific parameters that are linked by the trade-off. For trade-
offs with strong accelerating costs we observe evolutionary
attractors and for strong decelerating costs non-ES repellers. For
these trade-offs the underlying dynamics do not alter the
observed evolutionary behaviour but it does alter the boundary,
in terms of the trade-off cost structure, that partitions the
evolutionary attractor and repeller behaviour. Evolutionary
branching is observed for a trade-off between the onset of
parasitoid attack and emergence with weak accelerating or
decelerating costs. Branching requires that the underlying
dynamics exhibit equilibrium behaviour and is lost under non-
equilibrium dynamics. The underlying population dynamics are
shown to have a striking effect on the value of the evolving life
history parameters at the singular strategy with the trend in the
evolved parameter switching when the underlying dynamics
change from equilibrium to non-equilibrium.

Parasitoids show a wide range of variation in life history
proprieties and this may permit several parasitoids to attack a
single host (Godfray et al., 1994; Hawkins, 1994; Memmott et al.,
1994). Previous theoretical studies that examine the evolutionary
processes that underpin this coexistence have developed host–
parasitoid frameworks that include superparasitism or multi-
parasitism of the host (Bonsall et al., 2004). These mechanisms
allow multiple competitors to coexist and parallel the theoretical
findings for multi-strain coexistence in more general infectious
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Fig. 5. (A) Final evolved values of a� for changing strength of host density-dependence, g. (i), (ii), (iii) Dynamics of host–parasitoid system at a� for various values of g as

indicated by the arrows (host: solid line, parasitoid: dashed line). (iv) The average host density over time, Hav, (solid line) and the total density-dependence effect, gHav,

(solid line with circles) at the evolutionary singular strategy, a� . (B) Final evolved values of a� for changing attack window length, tf. (i), (ii), (iii) Dynamics of host–

parasitoid system at a� for various values of tf as indicated by the arrows (host: solid line, parasitoid: dashed line). (iv) The average host density over time, Hav, (solid line)

and the total density-dependence effect, gHav, (solid line with circles) at the evolutionary singular strategy, a� . All simulations have an a versus a trade-off with amin ¼ 0,

amax ¼ 1, amin ¼ 10, amax ¼ 20. Initially we started each simulation with a monomorphic population in which a¼ 0:5 and the trade-off curvature is chosen to be g¼ 1,

which corresponds to an evolutionary attractor. Other parameters are Tdd¼0.5, r¼1, ts¼0 and in (A) tf¼0.25 and (B) g¼2.
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disease systems (Nowak and May, 1994). In our study we show
how a evolutionary branching can lead to the generation of
dimorphic parasitoid strains in a system that does not include
super/multiparasitism. Evolutionary branching requires a trade-
off between the onset of parasitoid attack and the emergence of
the parasitoid from the host. We find that parasitoids that attack
early but emerge late from the host can coexist with those that
attack later but emerge earlier. Here the benefit to reproduction
of early attack is balanced by the cost to mortality of late host
emergence. Such evolutionary branching is not specific to a trade-
off between onset of parasitoid attack and emergence and can
occur when the duration of parasitoid attack is traded-off against
emergence or if there is a three way trade-off involving onset of
attack, emergence and attack efficiency (see Hackett-Jones et al.,
2009). The key criteria is that costs/benefits to reproduction in
differences in attack timing are traded-off against mortality
effects due to timing in emergence and that the trade-off has a
weak cost structure.

Little is known about the effects of development time on
parasitoid fitness or the conditions that may select for early
emergence at the expense of parasitoid size and future attack
efficiency (Harvey, 2005). Early parasitoid attack may provide
access to underexploited host populations and early emergence
may be an advantage if the host suffers high mortality from other
factors. The optimal parasitoid phenotype will depend on trade-
offs that link development time to other parasitoid life history
properties, which hinges critically on the interaction between
growth rate and mortality (Godfray, 1994; Harvey, 2005). Our
study indicates that parasitoid development time depends criti-
cally on the level of host mortality. Increasing the strength of
density-dependence selects to decrease parasitoid emergence/
development time under equilibrium dynamics. This is consistent
with the findings of Harvey and Strand (2002) who demonstrated
that parasitoids exposed to high risks of host mortality exhibit
reduced development time in order to minimise this risk. The
trend reverses for non-equilibrium dynamics, increasing the
strength of density-dependence selects to increase parasitoid
emergence/development time. In particular, parasitoids that
coexist with hosts that undergo large oscillations with prolonged
outbreaks selected for the evolution of early-emergence from the
host, while small oscillations in host density led to the evolution
of late emerging parasitoids (see Fig. 5). The host oscillations are
driven by the host–parasitoid dynamics and large oscillations give
rise to an increase in the total host density-dependence effect
leading to the selection of early emerging parasitoids to avoid this
mortality. When host oscillations are small, the host density-
dependence effect is reduced and selection acts to increase
parasitoid development time and searching efficiency. Thus, our
results are consistent with the general principle that parasitoids
facing high mortality risk favour short development times over
size and high searching efficiency, whereas species facing low
mortality risks favour size at the cost of increased development
time (Pennacchio and Strand, 2006). The results are also consis-
tent with Holt et al. (1999) who found that unstable dynamics can
weaken or change the direction of selection compared to what is
observed under stable equilibrium. The role of non-equilibrium
dynamics in parasitoid evolution could be particularly important
for insect herbivores and their natural enemies where population
cycles are a common occurrence.

Evolutionary branching is observed for certain trade-offs in
this study for equilibrium underlying population dynamics.
Branching is not observed when the underlying dynamics are
non-equilibrium. This contrasts with previous findings for single-
species discrete-time models which indicate that evolutionary
branching can arise for non-equilibrium underlying population
dynamics when it could not occur under equilibrium conditions
(White et al., 2006; Hoyle et al., in press). In White et al. (2006)
large population oscillations prevent the maximisation of the
birth rate as overcompensating density-dependence acting on the
birth rate promotes selection for survival. Our study involves
interacting species with density-dependence acting on parasitoid
mortality. Under equilibrium conditions there is a benefit to
reduced mortality and therefore reduced reproduction and such
parasitoids can coexist with those that have higher reproduction
but also incur higher mortality. Population oscillations remove
the possibility of parasitoid coexistence and therefore must
impose additional costs/benefits to mortality and reproduction.
This study, therefore, further emphasises the need to understand
the role of population oscillation on the evolution of life history
properties in ecological systems.

The model presented in this paper clearly demonstrates that
the underlying ecological dynamics play an important role in
determining the evolution of parasitoid phenology and searching
efficiency. A range of empirical relationships between host age
attacked and parasitoid egg-to-adult development time and body
size have been observed in nature. The feeding ecology of the host
is frequently correlated with the evolution of these strategies
(Harvey, 2005), as feeding ecology determines host risk to pre-
dation and disease. Our work has shown that host mortality
from competition can play a similar role in determining the
evolution of parasitoid strategies. Our initial attempt to study
parasitoid evolution has omitted an explicit description of para-
sitoid size structure in our model, but rather inferred it from the
general observation that high searching efficiency correlates
with large adult parasitoids. Parasitoid size is often regarded as
an important indicator of fitness and a natural extension of
the model with explicit inclusion of host and parasitoid size
structure could offer further insights into the range of develop-
mental relationships found empirically. Further studies which
examine the host–parasitoid coevolutionary dynamics are
needed to fully understand how phenology has evolved in these
systems. The evolutionary stability of these phenological relation-
ships in the face of environmental change has implications for
population regulation and broader ecological issues such as
species invasion.
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Appendix A. Deriving the host–multi-parasitoid model

We outline the derivation of the host–multi-parasitoid model
presented in Section 2. A continuous time system of ODEs is used
to describe the population dynamics that occur within a season.

The equations for the continuous time model are

dHðtÞ

dt
¼�apHðtÞP0�aqHðtÞQ0�gH0HðtÞ, ð23Þ

dPðtÞ

dt
¼ apHðtÞP0�gH0PðtÞ, ð24Þ

dQðtÞ

dt
¼ aqHðtÞQ0�gH0Q ðtÞ: ð25Þ

Here H0, P0 and Q0 are constants which correspond to the density
of hosts and adult parasitoids of type P and Q at the start of the
season. Thus, H(t) are the number of host present at time t during
the season. Hosts become P or Q parasitised-hosts at rates apP0
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and aqQ0 respectively. Both hosts and parasitised-hosts are sub-
jected to density-dependent mortality at rate gH0.

The equations above govern the most general situation when
both P and Q are attacking the host. For periods where one
(or both) of the parasitoids are not attacking the associated
searching efficiency is set to zero. Similarly when density-depen-
dence is not operating g is set to zero.

Solving (23) for H(t), and then substituting into the equations
for P(t) and Q(t) gives the following general solutions:

HðtÞ ¼ c1e�ðapP0 þaqQ0þgH0Þt , ð26Þ

PðtÞ ¼ �
apP0

apP0þaqQ0
c1e�ðapP0þaqQ0þgH0Þtþc2e�gH0t , ð27Þ

Q ðtÞ ¼�
aqQ0

apP0þaqQ0
c1e�ðapP0þaqQ0þgH0Þtþc3e�gH0t , ð28Þ

where c1, c2, c3 are integration constants. To obtain the full
discrete-generation equation model we partition the season
according to when parasitism by P or Q is occurring (for example
see Fig. 1) and use this to find the integration constants and to
work out H(n+1), P(n+1), Q(n+1), i.e. the densities at the start of
year n+1. A full derivation is given in Hackett-Jones et al. (2009).
Appendix B. The nature of the singular strategy when a¼ f ðaÞ

An implicit definition of the coexistence equilibrium is given in
(8)–(9). We rewrite it as

f ðaÞTP¼ r�gTddH¼ f ðaÞTHe�agTddH
ð1�e�rþgHTdd Þ ð29Þ

which is biologically realistic provided gTddHor. A trade-off has
been introduced such that ap ¼ f ðaÞ. To simplify the notation we
introduce FðaÞ ¼ Tf ðaÞ and G¼ gTdd:

Claim B.1. dH=da¼ 0 at the singular strategy, a¼ a�.

Proof. We differentiate Eq. (29) with respect to a and collect
terms as follows:

dH

da ðGþðFðaÞe
�aGH�GaFðaÞHe�aGH

Þð1�e�rþGHÞ�GFðaÞHe�aGHe�rþGHÞ

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{¼ C

¼ FðaÞHe�aGHGHð1�e�rþGHÞ�HFuðaÞe�aGHð1�e�rþGHÞ: ð30Þ

Using Eq. (29) we obtain

C¼ Gþ
r�GH

H
þGðr�GHÞð1�aÞ�GFðaÞHe�aGH

¼
1�tr Jþdet J

H
40,

ð31Þ

where J is the Jacobian associated to the coexistence steady state.
Since we are assuming (H,P) is a stable steady state the three Jury
conditions must be satisfied (Jury, 1964, 1974). Therefore
1�tr Jþdet J40 and hence C40.

The condition for a CS (20) requires evaluating dH=da at the

singular strategy a�. At a�, Fuða�Þ ¼ GHFða�Þ substituting this into

the RHS of (30) gives

dH

da C¼ 0)
dH

da ¼ 0: &

This result is a consequence of the trade-off between a and ap.
Independently, a and a have opposing effects on the coexistence
steady state. H is an increasing function of a (shown analytically
here by setting f uðaÞ ¼ 0), and decreases as a function of a.

Claim B.2. HþGðdH=dGÞ40 at the singular strategy a¼ a�.
Proof. We follow the method of Claim B.1 and differentiate
Eq. (29) with respect to G and collect terms as follows:

dH

dG

r

H
þGðr�GHÞð1�aÞ�GFðaÞHe�aGH


 �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{¼ C

¼�HþFðaÞHe�aGHaHð1�e�rþGHÞ: ð32Þ

First notice that on the LHS of (32) we have C which we proved
was positive in Claim B.1. The RHS of (32) can be rewritten as
follows:

�H�Hð1�aÞðr�GHÞþFðaÞH2e�aGH ¼�H�
1�tr Jþdet J

G

� �
þ

r

G
:

ð33Þ

Thus, by (33) and (31)

HþG
dH

dG
¼

Hðr�GHÞ

1�tr Jþdet J
40

by the Jury (1964, 1974) conditions as required. &
Appendix C. Continuity of derivatives of the fitness expression
at the singular strategy

In this section we consider the trade-off a¼ f ðtsÞ. The first and
second partial derivative of the fitness expression sP(Q) (given by
Eqs. (10) and (11)) with respect to tqs evaluated at the singular
strategy are given by

@sPðQ Þ

@tqs
¼

1

F
�gHTddFf uþ

@F
@tqs

� ����
�

, ð34Þ

@2sPðQ Þ

@t2
qs

�����
�

¼
1

F
ðgHTddÞ

2Fðf uÞ2�FgHTddf 00�2
@F
@tqs

gHTddf uþ
@2F
@t2

qs

" #�����
�

ð35Þ

respectively, where f u denotes derivative with respect to tqs and �
denotes evaluation at the singular strategy tqs ¼ tps ¼ t�s . At the
singular strategy it is easy to show F¼ 1. However, the deriva-
tives terms, @F=@tqs and @2F=@t2

qs are more complicated as the
involve derivatives of t1 etc., with respect to tqs. These functions
involve minimum and maximum expressions whose values
depend on whether tqs4tps and tps4tqs. In the case of @F=@tqs,

@F
@tqs
¼

aP

ð1�e�aPT Þ

@

@tqs
ðtpðaÞ�tqðaÞÞþe�aPT @

@tqs
ðt1�tpðaÞ þtqf�tqðbÞÞ

� �
and the derivatives on the right hand side take the same values in
both the case of tqs4tps and tqs4tps giving @F=@tqsj� ¼�aP. Hence
the first derivative of the fitness expression is continuous. This is
not the case for the second derivative. The derivatives involving t1

etc., in Eq. (35) do depend on whether tqs4tps giving rise to a
discontinuity in this derivative,

@2F
@t2

qs

�����
�

¼

�a2P2e�aPT

1�e�aPT
if tps4tqs,

a2P2

1�e�aPT
if tpsotqs:

8>>><
>>>:

Consequently, @2sPðQ Þ=@t2
qsj� is also discontinuous. The continuous

first derivative of the fitness expression allows us to analytically
find the singular strategy, the discontinuity in the second deriva-
tive prevents us from analytically determining the nature of the
evolutionary singular strategy.
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