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Appendix A Response of susceptible density to parameter changes

drives change in CSS trait value.

The equation for the location of the singularity is,

∂r
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∣∣∣∣∣
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=
(
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= 0, (A.1)

where the invasion fitness, r, is given by equation (5) - main text. The infecteds ODE is,

dY

dt
= βXY − (α(1 + cH) + b+ γ)Y. (A.2)

Differentiating equation (A.1) with respect to the strength of DDV , c, combining with equilibrium total

host density from equation (A.2), its derivative with respect to c, and equation (A.1) leads to,
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analogously,
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X
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where equations (A.4-A.8) are all evaluated at β = β̄ = β∗.

From equation (A.3) it is clear that ∂
∂c

∂α
∂β̄

is sign-equivalent to −∂X∂c . Analysis indicates that ∂X
∂c > 0 for

a wide range of random parameter values and it therefore follows that ∂
∂c

∂α
∂β̄

< 0, see main text figure 1a.

Similarly this holds for host reproduction, a.

From equation (A.5) it is clear that ∂
∂µ

∂α
∂β̄

is sign-equivalent to −∂X∂µ . Analysis indicates that ∂X
∂µ < 0 for

a wide range of random parameter values and it therefore follows that ∂
∂µ

∂α
∂β̄

> 0, see main text figure 2c.

Similarly this holds for crowding, q.

From equation (A.7) it is clear that ∂
∂b

∂α
∂β̄

> 0 when ∂X
∂b < 0. Analysis indicates that ∂X

∂b < 0 for a wide
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range of random parameter values and it therefore follows that ∂
∂b

∂α
∂β̄

> 0, see main text figure 2b. Similarly

this holds for recovery, γ.

Finally, since α is an increasing function of β, ∂
∂b

∂α
∂β̄

> 0 implies that the trait value at the CSS will increase

with an increase in b (this holds for all of the above parameters).

Appendix B Parasite virulence in the non-seasonal DDV model

cannot branch

For the trait to branch the singularity must be convergent stable (CS) and not evolutionarily stable (non-ES).

The combination of these conditions results in the requirement,
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∣∣∣∣∣
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) ∣∣∣∣∣
β̄=β=β∗

< 0 (B.1)

⇔ ∂H

∂β

b+ γ

β(1 + cH)

∣∣∣∣∣
β̄=β=β∗

> 0, (B.2)

where the invasion fitness, r, is given by equation (5) - main text. Equation (B.2) follows by combining

the derivative of the equilibrium solution of equation (2) - main text with respect to β (i.e. ∂
∂β ( 1

Y
dY
dt ) = 0),

equation (B.1) and equation (6) - main text. Thus branching is only possible when,

∂H

∂β
> 0. (B.3)

The derivatives of the endemic equilibria with respect to β are related according to,
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∂β
=

b+ µ

b+ µ+ γ

β − cα
cα
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∂β
(B.4)
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(B.5)

∂H

∂β
=

β

cα

∂X

∂β
, (B.6)

where equation (B.6) follows from differentiating the equilibrium condition of equation (2) - main text with

respect to β (i.e. ∂
∂β ( 1

Y
dY
dt ) = 0) and equations (B.4) and (B.5) follow from combining equation (B.6),

the equilibrium condition of equation (3) - main text and ∂H
∂β = ∂X

∂β + ∂Y
∂β + ∂Z

∂β . Hence, the derivatives
∂X
∂β ,

∂Y
∂β ,

∂Z
∂β ,

∂H
∂β are all sign-equivalent.

Differentiating the equilibrium condition of equation (1) - main text with respect to β (i.e. ∂
∂β ( 1

X
dX
dt ) = 0)

and substituting in equations (B.4-B.6) leads to,

∂X

∂β
φ = XY cα(b+ µ+ γ), (B.7)

where,

φ = ((aβ(1− 2qH)− cα(b+ Y β))(b+ µ+ γ) + (β − cα)(µγ −Xβ(b+ µ))). (B.8)

The endemic equilibrium point (X,Y, Z) is stable only if the determinant of the Jacobian of the system given
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by equations (1− 3) - main text at the endemic equilibrium is negative. It can be shown that this condition

implies that,

φ < 0, (B.9)

and hence it follows from equation (B.7) that ∂X
∂β < 0 and thus ∂H

∂β < 0 by equation (B.6). Since this

contradicts the branching requirement given by equation (B.3) parasite virulence cannot branch under the

assumptions of this model.

Appendix C Branching in a related DDV model

We consider a related DDV model with an alternative representation of the virulence component,

dX

dt
= aH(1− qH)− bX − βXY + µZ (C.1)

dY

dt
= βXY − (α0 + αDH + b+ γ)Y (C.2)

dZ

dt
= γY − (b+ µ)Z. (C.3)

Here virulence is separated into two components, an adaptive baseline component, α0 = α0(β), that is

present even when there is no density pressure and hence host condition is good, and a density dependent

component αD which is not adaptive with β. There is therefore one cost to being infected which varies with

parasite load and another that varies with host condition but not pathogen load.

The invasion fitness is given by,

r = β̄X − (α0(β̄) + αDH + b+ γ), (C.4)

with β̄ representing mutant transmission and the population equilibria taken for resident trait values. The

singularity condition is given by,

(
∂α0

∂β̄
−X

) ∣∣∣∣∣
β̄=β=β∗

= 0 (C.5)

For evolutionary branching to be possible, the system must have mutual invasibility at the singularity,

requiring,

(
∂2r

∂β̄2
+
∂2r

∂β2

) ∣∣∣∣∣
β̄=β=β∗

=

(
−∂

2α0

∂β̄2
+ β̄

∂2X

∂β2
− αD

∂2H

∂β2

) ∣∣∣∣∣
β̄=β=β∗

> 0 (C.6)

⇔
(
∂2α0

∂β̄2
− 2

∂X∗

∂β

) ∣∣∣∣∣
β̄=β=β∗

< 0, (C.7)

where equation (C.7) follows by differentiating the equilibrium condition of equation (C.1) twice with respect

to β (i.e. ∂2

∂β2 ( 1
X
dX
dt ) = 0) and combining with equation C.6. Additionally for branching the singularity must
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not be ES, requiring,

∂2r

∂β̄2

∣∣∣∣∣
β̄=β=β∗

= −∂
2α0

∂β̄2

∣∣∣∣∣
β̄=β=β∗

> 0, (C.8)

therefore if ∂X
∂β < 0, then the mutual invasibility condition give by equation (C.7) is satisfied whenever

evolutionary stability is violated.

Differentiating and combining the equilibrium conditions of equations (C.1-C.3) with respect to β yields

the same relations as equations (B.4-B.6) but this time with cα = αD,

∂Y

∂β
=

b+ µ

b+ µ+ γ

β − αD
αD

∂X

∂β
(C.9)

∂Z

∂β
=

γ

b+ µ+ γ

β − αD
αD

∂X

∂β
(C.10)

∂H

∂β
=

β

αD

∂X

∂β
. (C.11)

As per Appendix B substitution of equations (C.9-C.11) into the equation given by differentiating the

equilibrium condition of equation (C.1) with respect to β (i.e. ∂
∂β ( 1

X
dX
dt ) = 0) yields,

∂X

∂β
φ = XY αD(b+ µ+ γ), (C.12)

where,

φ = ((aβ(1− 2qH)− αD(b+ Y β))(b+ µ+ γ) + (β − αD)(µγ −Xβ(b+ µ))), (C.13)

and the condition that the determinant of the Jacobian of the system given by equations (C.1-C.3) must be

negative in order for the endemic equilibrium to be stable implies that,

φ < 0, (C.14)

and hence it follows from equation (C.12) that ∂X
∂β < 0 for this model.

Thus the mutual invasibility condition given by equation (C.7) is always met for this model when evo-

lutionary stability is violated (i.e. when equation C.8 is satisfied). When the singularity is additionally

convergent stable branching can occur. We have confirmed that branching occurs using simulations of the

evolutionary process.
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Appendix D Proof that the CSS position is unaffected by season-

ality in the basic SIRS model.

The basic SIRS model corresponds to equations (1 − 3) - main text when c = 0. When the dynamics are

periodic the invasion fitness of the system over a period from P0 to P1 is:

r =
1

T

∫ t=P1

t=P0

(β̄X(t)− (α(β̄) + b+ γ))dt, (D.1)

where β̄ denotes the mutant transmission rate and X is the equilibrium susceptible density at the endemic

steady state of the SIR system which depends on the resident trait β.

Integrating both sides of the infecteds ODE, equation (2) - main text, over the period from P0 to P1

gives, ∫ t=P1

t=P0

Ẏ (t)

Y (t)
dt =

∫ t=P1

t=P0

(βX(t)− (α+ b+ γ))dt (D.2)

⇔ [lnY (t)]t=P1

t=P0
=

∫ t=P1

t=P0

(βX(t)− (α+ b+ γ))dt, (D.3)

and since Y (P1) = Y (P0) the average susceptible density is conserved as follows,

1

T

∫ t=P1

t=P0

Xdt =
(α+ b+ γ)

β
. (D.4)

Substituting the above expression into the invasion fitness, equation (D.1), yields,

r =
β̄

β
(α(β) + b+ γ)− (α(β̄) + b+ γ). (D.5)

Since this expression does not depend on the amplitude of seasonality, δ, (or either the forcing period, ε,

or the period of the dynamics, T ) the evolutionary steady state equation ( ∂r
∂β̄
|β̄=β=β∗ = 0) will also be

independent of δ (and ε, T ). The CSS values (β∗,α∗), therefore, will not vary with the amplitude or period

of seasonality. There is an analogous proof for the case of chaotic dynamics.

Appendix E Models displaying invariance of evolutionary attrac-

tor under seasonality.

The property that evolved virulence is invariant under increased seasonality of forced parameters for a

virulence transmission trade-off can be found for a variety of models and a variety of forced parameters.

In the basic SIRS model the parameters a, µ, q and β (and combinations of them) can be forced without

altering the evolutionary end-point of virulence. We have shown that this is true for a in Appendix D. In

the case of µ and q the argument is identical to Appendix D as neither parameter appears in the infecteds

ODE (equation 2 - main text).

In the case of β, the invasion fitness again is equation (D.1) which now includes a time dependence in the β
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term. Averaging the infecteds equation yields,∫ t=P1

t=P0

βXdt = T (α+ b+ γ) (E.1)

⇔ 1

T

∫ t=P1

t=P0

g(t)Xdt =
(α+ b+ γ)

β0
, (E.2)

where the latter equation follows from the definition of forced transmission, β = β0g(t). Substituting this

equation (E.2) into the invasion fitness leads to,

r =
β̄0

β0
(α(β) + b+ γ)− (α(β̄) + b+ γ) (E.3)

which is not dependent on the amplitude of forcing, δ, or on the period of the forcing, ε, or on the period

of the dynamics, T . The remaining parameters, however, α, b and γ, result in a time dependent invasion

fitness when they are forced.

Therefore, for SIRS type models, forcing of any parameter that does not govern the infectious period

has no impact on the evolutionary endpoint of parasite virulence. The result, however, does not generally

extend to models with an exposed class [1].
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