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Supplementary Information 
 
The details in this supplementary information compliment and extend the analysis presented in the 
main paper. For clarity some of the details presented in the main document are repeated here. 
 
The most general model framework examined in this study encompasses all the specific examples 
that are outlined in the main paper and below. The framework considers n  hosts types and m  
parasite types and represents the dynamics of susceptible hosts of type h , hX , and infected hosts of 
type h  infected with parasite type p , hpY  with the following equations. 
  
 dXh dt = ahXh − dhHXh − bhXh − βhpXhYpp∑ + γhpYhpp∑    (S1) 

hphpphhphp YYXdtdY Γ−= β        (S2) 
 
where ∑∑ +=

p ph h YXH , ∑= h hpp YY  mpnh ,...,1;,...,1 ==  and hphhphp b γα ++=Γ  

 
Here, for host type h , ha  represents the birth rate, hb  the natural death rate and hd  acts to reduce 
the birth rate due to density dependence. The terms hpα  and hpγ  represent the disease induced 
mortality rate (virulence) and recovery rate for hosts of type h  infected with parasite type p . The 
parameter hpβ  represents the transmission coefficient of infection for susceptible hosts of type h  
from infected hosts infected with parasite p . 
 
Under the assumption that the evolving life history parameters for the host are the host birth rate 
and host resistance (through its contribution to the transmission term) and for the parasite they are 
virulence and infectivity (again through its contribution to the transmission term) we can determine 
expressions for host and parasite fitness. We calculate the fitness expressions for rare mutant types 
(which we will denote as h~  and p~  for host and parasite respectively) attempting to invade an 
environment composed of resident types (h  and p ) at equilibrium (with equilibrium densities hX  

and hpY ). Note, we assume small mutations and therefore for the host the value of h~  is close to h  
and mutation imposes a small change to transmission (

ph~β  is close to hpβ ) and to the birth rate 

through a trade-off with resistance (
ha~  is close to ha ). Mutation operates in a similar manner for 

the parasite. It can be shown (see Kisdi (2006), Best et al. (2009), Hurford et al. (2010)) that the 
host fitness, s , and parasite fitness, r , are as follows 
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)(),,,( ~~~~ γαββαβα ++−= bXr phhphhphpphph      (S4) 
 

Adaptive dynamics theory indicates that types will evolve in the direction of local fitness gradients 
until a coevolutionary singular point is reached where both fitness gradients are simultaneously 
zero. The behaviour at such a singular point is then determined by properties of the second 
derivatives of the fitness expression, determining its evolutionary stability (is the singular strategy a 



local fitness maxima?) its convergence stability (are nearby strategies attracted to the singular 
strategy?) and its mutual invadability (can two strategies near the singular strategy mutually invade 
and co-exist?). In particular, when a singular point is mutually invadable then trade-off functions 
must exist that allows the process of evolutionary branching to occur leading to increased diversity.  
For further details see Geritz et al. (1998), Bowers et al. (2005) and Kisdi (2006). 
 
Below we present community dynamics (CD) and adaptive dynamics (AD) analysis for the cases 
considered in Figure 1-3 of the main text. Our CD analyses are based on non-degenerate/ general 
position arguments. It is conceivable (though perhaps unlikely) that other approaches – AD, 
simulation – might yield results which are not in accord with this viewpoint. We have found no 
such conflict. 
 
Case 1: Coevolution without costs. 
Here we assume the host and parasite can evolve to change the transmission term but these changes 
do not affect any other life history parameters (i.e. hpβ  is the only evolving parameter and the 
subscript can be removed from all other parameters). Therefore, there are no costs to the host for 
increasing its level of resistance or to the parasite for increasing its transmission. 
 
Community Dynamics 
 
The CD analysis seeks to determine the non trivial steady states of (S1) and (S2) and in particular 
assess whether steady states exist that support multiple host and/or parasite types. When there are 
no costs to evolution in host resistance or parasite transmission equations (S1) and (S2) and the 
constraints associated with them can be written as 
 

a− dH − b− βhp 1−γ Γ( )Ypp∑( ) = 0    for   lh ,...,1=    and   0,...,1 =+ nl XX  (S5) 

( )( ) 01 =−Γ∑h hhp Xβ    for   qp ,...,1=    and   0,...,1 =+ mq YY    (S6) 

0=−− ∑∑ p ph h YXH         (S7) 

 
(up to re-ordering of types). We wish to solve equations (S5)-(S7) to find solutions 

HYYXX ql ,,...,,,..., 11 . We therefore systematically examine equations (S5)-(S7) for different 
values of l  and q  to determine where there are consistent solutions. Now (S5) is not generic; 
either 1>l  and then in general 0=pY  for all p  is the only feasible solution (and such disease-free 
solutions are not of interest in this study) or 1=l . When 1=l  then from (S6) we have that 1=q . 
Thus when there are no costs, irrespective of other details, the only solution is ( )HYX ,, 11  and 
therefore only one host and one parasite strain can coexist. 
 
 
Adaptive Dynamics 
 
When there are no costs, the host and parasite fitness (equations (S3) and (S4)) can be reduced to  
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The host and parasite evolve in the direction of the fitness gradients hs ~∂∂  and pr ~∂∂  until they 
reach a singular strategy where the fitness gradients are simultaneously zero. Here, the fitness 
gradients can be written as 
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and so the fitness gradient depends upon hhp ∂∂β  and php ∂∂β  only (since all other terms are 
positive). The specific terms used in Figure 1 therefore lead to the following evolutionary 
outcomes.  
 
A: Universal transmission (see Fig 1A) 
When the transmission function is universal (e.g. chNpKhp +−= )(β  as in Fig 1A which requires 
that 0, >cK  and hN > ) then 
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Therefore the fitness gradients for both host and parasite are always positive and so the host and 
parasite evolve to their maximum type (see Fig 1A). Note, (S10) is true for any universal 
transmission function that has similar properties to Figure 1A.  
 
B: Gene For Gene (GFG) like transmission (see Fig 1B) 
 
When the transmission function approximates a GFG infection process (e.g. 

( ))1(11 )( ph
hp eK −−+−=β  in Fig 1B with 0>K ) then 
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As in A above the fitness gradients for both host and parasite are always positive and so the host 
and parasite again evolve to their maximum type (see Fig 1B). Note, (S11) is true for any GFG like 
transmission function that has similar properties to Figure 1B. 
 
C: Matching Allele (MA) like transmission (see Fig 1C) 
 
When the transmission function approximates a MA infection process 
(e.g. ( )( )22/)(exp phKhp −−=β  in Fig 1C with 0>K ) then 
 

 ( )22/)()( phhp ephK
h

−−−−=
∂
∂β

 and  ( )22/)()( phhp ephK
p

−−−=
∂
∂β

   (S12) 

 
When ph =  the fitness gradients equal zero and there is a coevolutionary singular point which is a 
coevolutionary repellor (i.e. it is not convergence stable – Geritz et al. (1998)). In particular, 
although selection always drives the parasite to ‘match’ the current host type (to maximise 
transmission), the host can evolve away from the singular point to escape parasitism. If ph >  the 



host will evolve to increase its type and if ph <  the host will evolve to decrease its type. This 
means the host will evolve in one direction and be ‘followed’ by the parasite. However should the 
parasite evolve beyond the host (which depends on the balance between mutation rates and 
stochastic processes) the host will switch its direction of evolution. This causes the change in 
direction of evolution observed in Fig 1C leading to evolutionary cycles. Note, (S12) is true for any 
MA like transmission function that has similar properties to Figure 1C. (Note also that if the 
mutation rate of the host is sufficiently greater than that of the parasite the host can escape the 
parasite and that if the mutation rate of the parasite is sufficiently greater than that of the host the 
parasite can force the host to remain fixed.) 
 
We note here that a similar model structure was proposed by Weitz et al. (2005) who considered the 
evolution of MA like transmission in a bacteria-phage chemostat. Their model did not include costs 
but did include host variability by assuming the host reproduction rate had a Gaussian distribution 
(and so a single host type would be optimal in the absence of disease) and the presence of the 
chemostat provided an additional feedback for the host (as hosts with higher growth rates utilised 
greater resources). Weitz et al. (2005) showed that evolutionary branching could result in multi-
strain coexistence (polymorphism) for the host and parasite. If we include host variation in a similar 
manner in our MA framework above (which is in the absence of a chemostat) we do not find 
polymorphism. We find that if the Gaussian distribution representing host reproduction is 
sufficiently narrow then the host and parasite can converge and remain fixed at a coevoltionary 
singular point (a similar result to Weitz et al. (2005)). Otherwise we find that the host and parasite 
exhibit evolutionary cycles as described in our original model (Case 1, C) above. In particular we 
can use adaptive dynamics analysis to show algebraically that at a coevolutionary singular point the 
condition for mutual invadability is zero and hence evolutionary branching could not occur. We 
therefore speculate that it is the chemostat environment, that imposes additional feedbacks through 
the dynamic resource variable, that allows for the branching (and subsequent further branching) 
observed in Weitz et al. (2005). 
 
 
Case 2: Coevolution with costs and restricted diversity. 
 
Here we assume the host and parasite can evolve to change the transmission term and that these 
changes affect other life history parameters. We assume that as the host increases resistance to the 
parasite it pays a cost in terms of a reduced birth rate. As the parasite increases transmission it pays 
a cost in terms of increased virulence or through decreases in the level of transmission against other 
host strains (see Fig 2).  
 
Community Dynamics 
As in case 1 the CD analysis seeks to determine the non trivial steady states of (S1) and (S2) and 
assess whether steady states exist that support multiple host and/or parasite types. The functions in 
figure 2 can be represented by simplifying the general transmission term such that 

211
pphhp µµββ += . Here 1

hβ  is a function of host type h and 1
pµ  and 2

pµ  are functions are parasite 

type p. For example, the function in figure 2A is chNKphp +−= )(β  and so here )(1 hNh −=β , 

Kpp =
1µ  and cp =

2µ  (also )(haa =  and )(pαα =  which give rise to costs in resistance for the 
host and infectivity for the parasite, see figure 2 for full details). The CD proceeds as follows. 
 
With 21

pphhp µµββ +=  and phphhphp ddbb γγαα ==== ,,, , equations (S1), (S2) give 
 
 ( ) 0)( 21 =−Γ+ hpphppph YYXµµβ    mpnh ,...,1;,...1 ==     (S13) 



 Xh ah − dH − b− (βhµp
1 +µp

2 ) 1−γ p Γ p( )Ypp∑( ) = 0    .,...,1 nh =    (S14) 

 
Furthermore, (S13), on summation on h, gives 
 
 ( )( ) 01)( 21 =−Γ+∑h hppphp XY µµβ    mp ,...,1=      (S15) 
 
From (S14) and (S15) (and the constraints associated with (S1) and (S2)), it follows that 
equilibrium points are solutions of 
 
  ah − b−βhW1 −W2( ) = 0    for   lh ,...,1=     and  0,...,1 =+ nl XX   
 (S16) 
 ( ) 0111 =Γ−−∑p pppp YW γµ         (S17)   

 ( ) 0122 =Γ−−− ∑p pppp YdHW γµ        (S18) 

  ( ) ( )( ) 01/21 =−Γ+Γ XZ pppp µµ    for   qp ,...,1=    and   0,...,1 =+ mq YY   (S19) 

 ( ) 0=−∑h hhXZ β           (S20)  

 0=−∑h hXX          (S21) 

 0=−− ∑p pYXH          (S22) 

 
(up to re-ordering of types). We seek solutions satisfying 0,...,1 =+ nl XX  and 0,...,1 =+ mq YY  in the 
space S of unknowns XZWWHYYXX ql ,,,,,,...,,,..., 2111 . Overall we have 5++ ql  linear equations 
in the same number of unknowns and so generically we might expect a unique solution for any ql, . 
However, this is not the case.  In order, the separate parts (S16)-(S22) provide l  linear equations in 
2 unknowns 21,WW ; 1 linear equation in 1+q  unknowns 11 ,,..., WYY q ;  1 linear equation in 2+q  
unknowns 21 ,,,..., WHYY q ; q  linear equations in 2 unknowns XZ , ; 1 linear equation in 1+l  
unknowns ZXX l ,,...,1 ;  1 linear equation in 1+l  unknowns XXX l ,,...,1 ;  and 1 linear equation in 

2+q  unknowns HYYX q ,,...,, 1 . Thus generically, these component linear equations, respectively, 
have solutions for 2≤l , any q , any q , 2≤q , any l , any l , and any q . Thus, overall solutions are 
only possible when 2≤l  and 2≤q .  Generically, these conditions are necessary and sufficient for 
equilibrium solutions (but not sufficient for feasibility and stability). Host-parasite coexistence is 
only possible when we have 1 host strain and 1 parasite strain or 2 host strains and 1 or 2 parasite 
strains. Therefore, as shown in figure 2 the maximum level of diversity is the coexistence of 2 host 
and 2 parasite strains. 
 
 
Adaptive Dynamics 
We can again confirm the CD results using AD. To undertake an AD analysis we impose trade-offs  
that arise by making the birth rate a function of host type, so )(haaa h == , and virulence a function 
of parasite type, )( pp ααα ==  (or such that parasites that have higher transmission on some hosts 
have lower transmission on others; see Fig 2B). The AD analysis will focus in particular on whether 
evolutionary branching can occur in one of the two evolving species. For branching to occur one of 
the species must exhibit mutual invadability at the singular point (that is, 0~2 <∂∂∂= hhsMIh  or 

0~2 <∂∂∂= ppsMI p ). If it does, then there will be a set of parameters and trade-offs that produce 
branching in that species in the coevolutionary system (Kisdi 2006). 



 
A: Universal transmission (see fig 2A) 
When the transmission function is chNpKhp +−= )(β  (see Fig 2A with 0, >cK  and hN > ) we 
can use the fitness expressions (equations (S3) and (S4)) with the imposed trade-off conditions to 
show that a co-singular strategy exists when the following two expressions are simultaneously 
satisfied. 
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For a suitable choice of trade-off functions it can be shown that these expressions can be satisfied. 
To determine the evolutionary properties of the co-singular point using analytical analysis become 
difficult but it can be shown using a mixture of analysis and numerical investigations with 
parameter substitution that for an appropriate choice of trade-offs the co-singular point is 
convergence stable and that the mutual invadability conditions for the host is 0<hMI  and for the 
parasite is 0=pMI . This implies that evolution will be directed towards the co-singular point but 
when close by the host will branch and the host will become dimorphic (the parasite remains 
monomorphic). After host branching the resident population is composed of two host types and one 
parasite type at equilibrium and a combination of analytic and numerical analysis can then be 
undertaken to assess whether further branching can occur. The results indicate that 0=hMI  for 
both host types and that 0<pMI  for the parasite. Therefore the parasite can now undergo 
evolutionary branching and the population becomes composed of two host types and two parasites 
types. Again further adaptive dynamics can be applied to a resident population composed of two 
hosts and two parasites. This indicates that 0=hMI  and 0=pMI  for all coexisting host and 
parasite types and therefore further branching cannot occur. This confirms the findings of the CD 
analysis and indicates that two host and two parasite types is the maximum level of diversity that 
can evolve under universal transmission with costs.  
 
B: Specific transmission (See fig 2B). 

Here the transmission function is ( )
p
hpNNN php 210
)(

+
−−−=β  (see Fig 2B with pN >  and pNN > ) 

and with trade-offs that arise through the relationships )(haaa h ==  and )( pNN p = (this imposes 
the restriction that parasites that have higher transmission on some hosts will have lower 
transmission on others). This means that the lines intersect and therefore transmission is no longer 
universal. The adaptive dynamics analysis for this function follows in the same pattern as for case 
2A above and indicates that the maximum level of diversity that can evolve is two host and two 
parasites.  
 
C: Universal transmission (see fig 2C) 
Here the transmission function is ( ) chpKhp ++−= 1)2/310/sin( ππβ  (see Fig 2C with 0, >cK ) 
and with trade-offs that arise through the relationship )(haaa h ==  and )( pp ααα == . This 
function represents universal transmission in a similar manner to case 2A but also includes 
inflection points where the curvature of the transmission function changes sign. It has the general 
form represented by CD above which indicate that two host and two parasites are the maximum 
level of diversity that can arise. The adaptive dynamics analysis for this function follows in the 
same pattern as for case 2A above and confirms the findings of the CD analysis. In particular the 
mutual invadability criteria for the host and parasite are zero once a two-host and two-parasite 
resident environment is established. Simulations of the evolutionary process indicate that for a 



suitable choice of trade-off evolutionary branching of the host followed by branching of the parasite 
can lead to a dimorphic host and parasite population (Fig 2C iii and iv). 
 
Case 3: Multiple branching leading to Polymorphism. 
 
As in the examples of case 2, here we again assume that the host and parasite can evolve to change 
the transmission term and that these changes affect other life history parameters. We assume that as 
the host increases resistance to the parasite it pays a cost in terms of a reduced birth rate. As the 
parasite increases transmission it pays a cost in terms of increased virulence or through decreases in 
the level of transmission against other host strains (see Fig 3). 
 
Community Dynamics 
As in previous cases the CD analysis seeks to determine the non trivial steady states of (S1) and 
(S2) and assess whether steady states exist that support multiple host and/or parasite types. The 
community dynamics analysis for the general model proceeds as follows. Equations (S1) and (S2) 
give the following 
 
 ( ) 0=−Γ hpphhphp YYXβ  mpnh ,...,1;,...1 ==      (S24) 
 
and further 
 
 ( )( ) 01 =Γ−−−− ∑p phphphphhhh YbHdaX γβ  .,...,1 nh =    (S25) 

 
Furthermore, (S24), on summation on h, gives 
 
 ( )( ) 01 =−Γ∑h hhphpp XY β  mp ,...,1=       (S26) 
 
From (S25) and (S26) (and the constraints associated with (S1) and (S2)), it follows that 
equilibrium points are solutions of 
 
 ( )( ) 01 =Γ−−−− ∑p phphphphhh YbHda γβ    for   lh ,...,1=    and   0,...,1 =+ nl XX  (S27) 

 ( )( ) 01 =−Γ∑h hhphp Xβ    for   qp ,...,1=     and   0,...,1 =+ mq YY     (S28) 

 0=−− ∑∑ p ph h YXH         (S29) 

 
(up to re-ordering of types). We seek solutions satisfying 0,...,1 =+ nl XX and 0,...,1 =+ mq YY in the 
space S of unknowns HYYXX ql ,,...,,,..., 11 . Overall we have 1++ ql  linear equations in the same 
number of unknowns and so generically we might expect a unique solution for any ql, . However, 
this is not the case. In order, the separate parts (S27)-(S29) provide l linear equations in 1+q  
unknowns HYY q ,,...,1 ; q linear equations in l  unknowns lXX ,...,1 and 1 linear equation in 1++ ql  
unknowns HYYXX ql ,,...,,,..., 11 . Thus generically: 
From (S27): 

i. For lq <+1 there are no solutions for HYY q ,,...,1  
ii. For lq =+1  there is a unique solution for HYY q ,,...,1  

iii. For  lq >+1  there are many solutions for HYY q ,,...,1  
From (S28): 

i. For  ql < there are no solutions for lXX ,...,1  



ii. For  ql = there is a unique solution for lXX ,...,1  
iii. For  ql > there are many solutions for lXX ,...,1   

From (S29): 
i. For any l and q there are many solutions for HYYXX ql ,,...,,,..., 11  

Thus, overall solutions are only possible when ql =  (S27iii and S28ii) or 1+= ql  (S27ii and 
S28iii). Generically, these conditions are necessary and sufficient for equilibrium solutions (but not 
sufficient for feasibility and stability). We note that there is no limit on how large q or l may be. 
Host-parasite coexistence is only possible when the number of host strains and the number of 
parasite strains are equal or the host strains exceeds the parasite strains by 1. This therefore permits 
‘any’ level of diversity, but imposes the restriction that if it is to occur through a process of 
evolutionary branching then it requires a strict, repeating, pattern in which a host branching event is 
followed by parasite branching event. 
 
Adaptive Dynamics 
 

A: Host parasite range - ⎟
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To provide a concrete example of this process we consider the host-parasite coevolutionary 
framework proposed by Best et al. 2010 (this considers the evolution of host and parasite range). 
The host can escape infection by increasing h, the range of host resistance to parasites, at a cost to 
reproduction, so a trade-off arises through the relationship )(haaa h == . The parasite can infect a 
greater range of hosts by increasing p at a cost to the maximum transmission 0β , so a trade-off  
arise through the relationship )(00 pββ = . Here, σ  scales the effects of the difference between the 
resistance range for host and infection range for parasites. 
 
We start by considering the MI conditions of the host and parasite in the initial one host-one 
parasite coevolutionary system. We find that for the host, 
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whilst for the parasite, 
 

0=pMI .          (S31) 
 
It can be shown that for a suitable choice of parameters and trade-offs that the host will branch and 
become dimorphic. The next state to consider is therefore a two host-one parasite system. We now 
find the MI conditions to be for the host, 0=hMI  and for the parasite in a dimorphic host 
population (with parameters h1 and h2), 0<pMI . In this case the host is now unable to branch, but 
the parasite can, leading to a two-host two-parasite system.  
 
At this stage the algebra of calculating the MI terms becomes unmanageable and so we rely on the 
results from the community dynamics, numerical assessments of the adaptive dynamics criteria and 
simulations of the system. In particular it can be shown that the host can branch in a two host, two 
parasite resident environment. A simulation of this system (Figure 4, main paper) shows the 
evolutionary behaviour of the host and parasite and indicates that branching can lead to host 
parasite polymorphism. Similar analysis can be undertaken for the remaining functions in figure 3. 



The community dynamics in conjunction with numerical calculations of the adaptive dynamics 
criteria and simulations indicates that the multi-branching events (in the sequence host then 
parasite) can occur and lead to multi-type diversity. 
 
In addition to the functional forms shown in figure 3 in which the transmission term tends to zero 
for some host and parasite combinations the following functional forms that are extensions of figure 
3A also lead to multiple branching (Fig S1). Here, transmission tends to a constant above zero (a 
consistency above zero). Therefore the key additional criterion that allows the generation of 
diversity is that in addition to costs and specificity there must also be consistency such that parasite 
strains also infect a number of host types to a similar extent Although these mathematical functions 
for transmission lead to multi-type diversity it is biologically unrealistic that transmission could 
tend to a constant above zero (but they are included here for completeness).  
 
 
 

 
 
Figure S1: Transmission functional forms indicating the values of the transmission coefficient, hpβ , 
for susceptible host type h against ten representative parasite types ( 10,...,1=p ) with type 1=p  
indicated in red and other types progressing in order from this type. Here  

( ) 1)1(11 )(
0 ++−= −− ph

hp eββ . 
 


