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Supplementary Information 

In the main paper we focus on a model framework that considers n host types and represents 
the dynamics of susceptible hosts of type h, , and infected hosts of type h, , with the 
following equations. 
 

    (S1) 

       (S2) 
 
where ,  and . 
 
Under the assumption that the evolving life history parameters are the host birth rate and 
disease transmission (as in the main text) then the fitness, , of a mutant (subscript m) 
attempting to invade a resident (subscript r) population at equilibrium is given by 
determining the largest eigenvalue of the mutant submatrix, , of the Jacobian of (S1) and 
(S2). This Jacobian is given by 

      (S3) 

We use the Next Generation Theorem to compute the mutant host’s invasion fitness by 
finding the largest eigenvalue of   (see Hurford et al. 2010). In particular we can set 

 where F is a matrix of all terms involving creation of new hosts (i.e. births) and 
V is a matrix of all terms involving removal of hosts (i.e. death) and transition of hosts 
between states, such that,  

 

Given this decomposition, then it can be shown that  is equivalent to the 
fitness of the mutant host given by the dominant eigenvalue of  (see Hurford et al. 2010). 
We find that 

     (S4) 

For the mutant to invade we require that . To simplify analytical calculations we use a 
sign equivalent proxy of the fitness (found by rearranging  in (S4) and which gives 
equivalent results for the singular strategy, ES and CS conditions when considering single 
species evolution). This is 

     (S5) 

with the condition that the mutant can invade if  in (S5). 
 



In the main text we illustrate the community dynamics and adaptive dynamics analysis that 
examines the simplifying case where  (which we will refer to as case 1). In this 
document we present the full analysis for all the cases discussed in the main paper. 
 
Case 1: Let us consider the case where  such that susceptibility to infection is host 
specific but transmissibility is the same for all (infected) hosts.  
 
We can extract the  from the summation terms in equations (S1) and (S2) and defining 

we find from (S2) that at equilibrium, 
 
         (S6) 
and further using equation (S6) we can substitute for  in (S1) at equilibrium to give  
 
    (S7) 
 
Equation (S7) can be satisfied if  but we are interested in solutions when . By 
summing equation (S6) over h and using the constraints associated with (S1) and (S2) we can 
simplify the equations that determine the equilibrium densities (when  and when 

) to 

       (S8) 

         (S9) 

        (S10) 
These are equation (3)-(5) in the main text. We wish to solve equation (S8)-(S10) to find 
solutions . We therefore systematically examine equations (S8)-(S10) for 
different values of l to determine where there are consistent solutions. Thus generically from 
equation (S8): (i) for there are more than two equations in two unknowns, , and so 
there are no solutions (ii) for  there is a unique solution for , (iii) for   there 
are many solutions for ; from equation (S9): (i) for   there is a unique solution for 

, (ii) for  there is one equation and more than one unknown,  and so there 
are many solutions; and from equation (S10): (i) for  there is one equation in many 
unknowns  and so there are many solutions. Generically, (S8), (S9) and (S10) 
has a unique solution  when  (S8iii, S9i and S10i) or a unique solution 

 when  (S8ii, S9ii and S10i) and there are no solutions for  as equation 
(S8) cannot be satisfied. These conditions are necessary and sufficient for equilibrium 
solutions (but not sufficient for feasibility and stability). The key insight from the community 
dynamics is that no more than two host types can coexist and that therefore the maximum 
level of diversity that can occur is dimorphism. 
  
The results highlighted by the community dynamics can be examined in the full evolutionary 
model by undertaking an adaptive dynamic (AD) analysis. For the general case (equations S1 
and S2) it can be shown that a proxy for the fitness of a rare mutant (with parameters denoted 
with subscript m) attempting to invade a resident (subscript r) is as follows: 



   (S11) 

Under the assumptions that  and that there is a trade-off  then an 
evolutionary singular strategy, , occurs when the fitness gradient is zero 
 

     (S12) 

Here,  is the equilibrium value of  when . The evolutionary behaviour at the 
singular point is determined by the following conditions: 

Evolutionary Stability (ES):   

         (S13) 
 

Convergent Stability (CS):   

     (S14) 

Evolutionary branching occurs when a singular point is convergence stable (attracting) but 
evolutionarily unstable (invadable), and provided the resident and mutant types are mutually 
invadable at the singular point (which is guaranteed in evolutionary systems if the conditions 
for branching hold). In this model evolutionary branching leading to dimorphism can occur 
for trade-offs that satisfy  (as here the system is not ES but is CS in equations 
(S10) & (S11) respectively). 
 
To examine whether further branching (further diversity) can occur we consider a dimorphic 
resident population and examine whether branching can occur from either resident host type. 
After branching, the dimorphic population will follow a unique evolutionary trajectory until 
either it reaches a co-singular point (i.e. a singular point for both types) or the 
maximum/minimum limits of evolution. Consider a rare mutant with parameter  
attempting to invade a resident population with parameters  and . Assuming the mutant 
type is close to  the proxy for fitness can be written as 

  (S15) 

Assuming both types are at the co-singular point, then the singular point for type  occurs 
at 

   (S16) 

For evolutionary stability we again have 
ES:        (S17) 

The condition for convergence stability is now more complex as it depends on the 
evolutionary trajectory of both host types. However, we know that a requirement for 



evolutionary branching (even at a convergent but evolutionarily unstable singular point) is 
mutual invadability. It can be shown that,  

Mutual Invadability (MI):     (S18) 

As such host types are unable to build up either side of the singular point, and further 
evolutionary branching will never occur. By symmetry this will be exactly the same for a 
mutant close to . Therefore further branching from either of the host types cannot occur 
and both the adaptive dynamics and community dynamics reach the same conclusion. These 
results are supported by simulations of the evolutionary process. 
 
 
 
Case 2: Let us now consider the case where  such that transmission is composed 
of the hosts susceptibility to infection and the transmissibility of other hosts in a 
multiplicative manner.  
 
The community dynamics analysis for the case  proceeds as follows. The  term 
can once again be extracted from the summation terms in (S1) and (S2) but the  term 
cannot and so we define . Equations (3)-(5) in the main text are replaced by the 
following equations and we seek solutions where  
 

      (S19) 

        (S20) 

         (S21) 

      (S22) 
 
The polynomial form of equation (S22) means that to make progress we need to assume that 
a solution exists which allows us to make a linear approximation of (S22) near to this 
solution.  Then, in order, the separate parts provide  linear equations in  unknowns,  

 linear equation in  unknowns ,  linear equation in  unknowns  
and 1 linear equation in  unknowns . Thus generically: 
From (S16): 

i. For  there are no solutions for  
ii. For  there is a unique solution for  

iii. For  there are many solutions for  
From (S17): 

i. For  there are many solutions for  
From (S18): 

i. For  there is a unique solution for  
ii. For  there are many solutions for  

From (S19) 
i. For  there are many solutions for  



Consistent solutions are only possible when  (S19(iii) and S21(i)) or  (S19(ii) and 
S21(ii)). Generically, these conditions are necessary but not sufficient for equilibrium 
solutions. Under this set-up no more than two host strains can coexist.  
 
For the adaptive dynamics analysis we assume a trade-off  (as in case 1) but we 
also assume that host transmissibility is linked to the level of host resistance such that 

. The fitness expression is therefore 
 

   (S23) 

 
A singular strategy, , occurs when  
 

    (S24) 

 
The singular strategy is ES if       (S25) 
 
The singular strategy is CS if     (S26) 
 

where  and . 

 
Note, that . If, as in case 1,  then  and the CS condition 
becomes  (note also that here  and we recover the CS condition for case 
1 shown in equation (S14)). If  then transmissibility and susceptibility are 
correlated in a positive manner such that types that are most likely to be infected (high ) are 
also most likely to infect (high ). In this scenario the region of branching is increased. If 

 then transmissibility and susceptibility are correlated in a negative manner such 
that types that are least likely to be infected (low ) are also most likely to infect (high ). 
In this scenario the region of branching is decreased and depending on the magnitude of 

 may disappear and be replaced by a region where the singular strategy exhibits garden 
of eden behaviour (specifically if ). 
 
As in case 1 we can examine whether further branching can occur. We can examine the 
success of a rare mutant attempting to invade a dimorphic resident population. As in the main 
text it can be shown analytically that the condition for mutual invadability (MI) is zero at 
each of the resident strains composing the dimorphic resident population. Therefore host 
strains are unable to build up either side of a dimorphic singular point, and further 
evolutionary branching cannot occur. These results are supported by simulations of the 
evolutionary process. 
 



Case 3: Let us now consider the community dynamics when  is not simplified. It can be 
shown that the equilibrium points (for ) are solutions of 
 

       (S27) 

         (S28) 

       (S29) 
 
The polynomial form of equation (S28) means that to make progress we need to assume that 
a solution exists which allows us to make a linear approximation of (S28) near to this 
solution. In order, the separate parts provide  linear equations in  unknowns ;  
linear equation in  unknowns  and 1 linear equation in  unknown 

. Thus generically each part has multiple solutions with codimensions 
respectively and the linear system has a unique solution. Generically, there are no 
conditions on  necessary for equilibrium solutions (but feasibility and stability is not 
determined). This means there is no restriction on the coexistence of different host strains and 
so polymorphism is possible. 
 
In the main text we consider an example of a transmission term where transmission depends 
on both host susceptibility, , and the interaction between the susceptible, h, and infectious, 
k, host types such that transmissibility is greatest between similar host types such that  

. Here transmission depends on the ‘relatedness’ of 

susceptible and infectious host types and is greater between similar types. As in case 1 we 
assume a trade-off . The fitness expression is  
 

   (S30) 

 
A singular strategy, , occurs when  
 

    (S31) 

 

The singular strategy is ES if     (S32) 

 

The singular strategy is CS if   (S33) 

 
Note the CS condition is that same as that for case 1 (equation S14) and the right hand side of 
the ES condition becomes zero if  (and here case 3 is equivalent to case 1). The region 



that supports evolutionary branching increases as c increases or as w decreases. These results 
are supported by simulations of the evolutionary process. 
 
Simulations: In the simulations shown in the figures, the population dynamics were 
numerically solved for a fixed time ( ) according to equations (1) and (2) initially with a 
monomorphic population. Therefore we initially have a single host, , that has 
susceptibility to infection  (since  and  are linked) and a birth rate  (since  is 
linked to  through the trade-off). A mutant type is generated as a small deviation around 
the current resident trait (and has either a slightly higher or slightly lower trait value) and 
therefore a mutant type,  (where m is close to r, and therefore is close to )  is 
introduced at low density. The population dynamics were then solved for a further time  
with types whose population density fell below a (low) threshold considered extinct and 
removed before considering new mutations. This way the trait h (and  and ) can evolve 
and evolutionary branching can lead to the coexistence of dimorphisms and polymorphisms. 
When more than one type coexists the choice of current type from which to mutate depends 
on its relative population density.  
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