
SUPPORTING INFORMATION: ANALYTIC TECHNIQUES

Here we provide a derivation of the results given in the main text. For simplicity, we will de-

rive the stability conditions for the baseline model, where increased tolerance of parasite-induced

mortality incurs a cost to resistance through recovery, with density-dependent birth and no in-

fected reproduction. For clarity, we give the model again here,

dX
dt

= (a − qN)X − bX − βXY + γY, (A1a)

dY
dt

= βXY − (α + b + γ)Y. (A1b)

The invasion fitness of the host is defined as the growth rate of a mutant invading a resident

equilibrium population. By rewriting the above dynamics for a mutant host with parameters

(ᾱ, γ̄) and taking the Jacobian, we find the invasion fitness,

s = (a − qN∗ − b − βY∗)(ᾱ + b + γ̄) + βγ̄Y∗. (A2)

where ∗s indicate the resident population densities. (In fact this expression is a proxy for the true

fitness as it is not derived directly from the mutant’s growth rate. However, it is sign equivalent

to the true fitness and does not affect our analysis.) If s > 0 the mutant may invade the resident

population (provided it overcomes demographic stochasticity whilst rare), but if s < 0 the mutant

will always die out.

Our aim has been to identify those evolutionary scenarios where variation can arise through

evolutionary branching. The outcomes of evolution in theoretical models are known to be highly

dependent on the shape of the trade-off that is assumed. So, to keep our conclusions general,

we will focus on identifying those defence mechanisms and associated costs where evolutionary

branching can occur for some trade-off and those where it can never occur. As such our analysis

follows the geometric methods of reference (25) in the main text.

Since the fitness depends on both mutant and resident parameters we write s = s(γ̄, ᾱ, γ, α).

An evolutionary singularity occurs when the local fitness gradient is zero. Using subscripts to
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denote derivatives (i.e. s14 = ∂2s/∂γ̄∂α), this can be written as s1 + s2g′(γ) = 0. We thus obtain a

condition for the singularity on the gradient of the host’s trade-off,

g′(γ) = − s1

s2
=

α + b
γ

. (A3)

Evolutionary stability determines whether the singularity is a local fitness maximum and is

given by,

E =
∂2s
∂ᾱ2 = s11 + 2s12g′(γ) + s22g′(γ)2 + s2g′′(γ). (A4)

which when evaluated at the singular point gives,

E =
γ(q(α + b + γ) − β(a − b))

q(α + b + γ) + β(α + b)
g′′(γ). (A5)

Convergence stability depends upon the combination of evolutionary stability and mutual

invasibility. As such we calculate the mutual invasibility condition,

M =
∂2s

∂ᾱ∂α
= s13 + (s14 + s23)g′(γ) + s24g′(γ)2. (A6)

Notice that M does not depend upon the curvature of the trade-off, g′′(γ), and so is independent

of the trade-off shape. As stated in the main text, evaluating this condition for our baseline model

gives M = 0 necessarily.

As we explain in the main text, for evolutionary branching to occur, a singular point must

be evolutionarily unstable (E > 0) but convergence stable (E + M < 0). By changing the trade-

off shape, g′′(γ), we can ensure that E > 0. However, for both conditions to be satisfied, we

must have M < 0. Since we have found that this is never the case, we know that in this model,

evolutionary branching can never occur.

This model can easily be developed to add reproduction from infecteds (an additional birth

term a f Y in (A7a)) or move density-dependence on to death or on to parasite-induced death (an

additional density term qN in (A7b)). In these cases the analytic expressions for E and M become

rather lengthy, but numerical investigation shows that M is always positive in these cases, and

so branching still cannot occur.
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These methods can also easily be adapted to alternate resistance mechanisms. For example, if

resistance is through avoidance (lowered transmission), then we simply take the various deriva-

tives with respect to β rather than γ. However, we found that the general conclusions of the

model stay the same when this is done.

When considering sterility tolerance we simply modify our system of equations to,

dX
dt

= (a − qN)(X + f Y) − bX − βXY + γY, (A7a)

dY
dt

= βXY − (α + b + γ)Y. (A7b)

We now assume that infected hosts (Y) can give birth to susceptible offspring but that this is

reduced by some factor f . We assume that a host can reduce the sterility effects of the parasite

(increase f ) at a cost to its death rate (increase b). By implementing the methods described above

we find that parameter values exist where M < 0 and thus the host can branch for certain trade-

offs.


