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ABSTRACT

Genetic studies indicate that the inherited risk of breast cancer is mediated by the well-studied major genes
BRCA1 and BRCA2, and a polygenic component, probably with many genes each making a small contribution.
Recently, seven polygenes have been found (Pharoah et al., 2008) contributing an estimated 3.6% of all familial
risk (Easton et al., 2007) This suggests that the polygenic component may involve well over 100 genetic loci.

We extrapolate these new results into a polygenic model with 147 genetic loci and simulate lifetimes of
families to calculate the premium ratings appropriate for a family history of breast or ovarian cancer. We model
the adverse selection costs arising from restricting the use of genetic test information in critical illness insurance
underwriting in light of new European legislation banning the use of gender for insurance underwriting. In this
setting we confirm the overall conclusion of Macdonald & McIvor (2009) that the polygene confers higher adverse
selection risk than the BRCA genes. We establish that their three-gene polygenic model does not overly inflate
the insurance costs attributable to a polygenic component of breast cancer risk under a model with 147 polygenes.
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1. INTRODUCTION

Breast cancer (BC) is the most prevalent form of cancer in the world (Parkin, Bray, & Devesa,
2001) and a common cause of critical illness insurance claims. Established risk factors for BC include
age, lifestyle factors, reproductive factors, and genetics (Washbrook, 2006). We consider the impact of
the genetic risk on insurance products. Legal restrictions on the ability to use genetic information in
insurance underwriting create an opportunity for individuals to select against an insurance company.

Rare inherited mutations in either of two genes, BRCA1 and BRCA2, confer greatly increased risk
of BC and of ovarian cancer (OC). These are known as ‘single genes’ or ‘major genes’ because mutations
in either are sufficient to increase the risk, in this case by affecting production of a DNA-repairing protein
produced in the BC pathway (Tutt & Ashworth, 2002). The implications for life, critical illness and
income protection insurance have been extensively studied (Macdonald, Waters, & Wekwete, 2003a,b;
Gui et al., 2006; Lu, Macdonald, & Waters, 2011; Lu et al., 2011; Subramanian et al., 1999; Lemaire
et al., 2000).

Current and future epidemiology is turning towards multifactorial models of genetic risk, in which
variations in large numbers of genes, and environmental factors, interact to modify disease risk. Antoniou
et al. (2002) proposed such a model for BC risk, known as a ‘polygenic’ model because it assumes: (a)
that a large number of genes have two variants each; (b) that one variant of each gene increases risk and
the other reduces risk; and (c) that the overall risk is the sum of the contributions from each gene (in a
sense to be made precise later). The ‘high-risk’ varieties of each gene are not necessarily rare, but the
additional risk they each confer is small compared with that conferred by BRCA1 and BRCA2 mutations.
We refer to the collection of genetic loci in this model, and the variants at each, as a ‘polygene’.

In the absence of any known candidates for genetic loci contributing to the polygene, Antoniou
et al. (2002) assumed that there were three, each contributing an effect of identical size independently
of the others. Using the hypergeometric inheritance model of Lange (1997), they estimated the standard
deviation of the distribution of the relative risk attributable to a BC polygene.

Macdonald & Mclvor (2006) incorporated this polygenic model, along with models of BRCA1 and
BRCAZ2 risk, into a Markov model of stand-alone critical illness (CI) insurance. They estimated premium
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ratings conditional on either knowing an individual’s genotype (assuming genetic testing for the major
genes and the polygene) or a family history of BC and OC. They found that the larger proportion of
premium increases was the result of the polygene. However, they suggested that the heavy tails in the
distribution of relative risks caused by there being only three genetic loci in the polygene could have
skewed the results.

Seven single nucleotide polymorphisms (SNPs) that affect the onset of BC have subsequently been
described (Easton et al., 2007; Hunter et al., 2007; Stacey et al., 2007; Cox et al., 2007). They are all
candidates for the actual genetic loci in the polygene hypothecated by Antoniou et al. (2002). However,
since in total they contribute about 3.6% of the heritable risk of BC (Easton et al., 2007) and the two
major genes another 25%, it is highly probable that the number of genetic loci involved is likely to be well
over 100. We describe these developments in Section 2.1, and extend the findings to a plausible polygenic
model accounting for 75% of the total heritable risk. We note that even since commencing work on this
project using these seven SNPs, another eighteen loci have been identified with similar distributions,
validating the assumptions we make in Section 2.2. The identification of the genetic loci that contribute
to the risk of BC is progressing quickly and replication of results is already being sought for a further
sixty-nine loci (Ghoussaini et al., 2012).

In Section 3 we estimate the effect on stand-alone CI premiums of this polygenic model, given a
family history of BC or OC, along the lines of Macdonald & MclIvor (2006). We simulate the life histories
of women within families. We find the distribution of genetic risk within families that develop a family
history of BC or OC, and families that do not.

The European Court of Justice in March 2011 removed sex as a permissible insurance underwriting
factor, from December 2012. This has particularly interesting implications for the pricing of BC risk,
because men and women carry genotypes and develop family histories equally, but the risk of developing
BC overwhelmingly affects women (male BC exists but is very rare). Thus men may disclose information
affecting BC risk while being at virtually no risk of developing it themselves. We adapt our model to this
new European context in Section 4 Additionally, in Section 5, we adapt the model to the terms of the
moratorium in force in the United Kingdom which limits the use of genetic information in underwriting.
This extends the insurance market model of Macdonald & McIvor (2006) to potential adverse selection
in the light of recent epidemiology and in the new legal environment.

2. THE POLYGENIC MODEL

A polygenic model of inheritance exists where a trait is affected by variants of multiple genes. The
trait of interest to us is the age-related risk of developing BC.

We assume that individual genes — BRCA1, BRCA2 and the loci contributing to the polygene —
each show simple Mendelian inheritance. Thus a parent with a single mutated copy of either BRCA1
or BRCA2 (other risky major genotypes being rare enough to ignore) has a 50% chance of passing the
mutation on to each offspring (male or female) they have. A parent with no such mutation (which we
call the BRCAOQ genotype) pass on only the BRCAO genotype to offspring. Thus the increased BC risk
associated with major gene mutations shows the same simple Mendelian inheritance as the major gene
itself.

However BC risk conferred by the polygene does not show simple Mendelian inheritance. The pheno-
type associated with the polygene is the aggregate of the ‘phenotypes’ associated with each contributing
genetic locus. Although these ‘phenotypes’ may be thought of as each obeying Mendel’s laws, they are
effectively unobservable individually. Thus, a mother who has an average polygenic risk of BC may have
daughters whose polygenic risk can range between very high and very low. Especially when the number
of contributing loci is high, this may distort the pattern and usefulness of a family history of BC.

2.1 Pharoah’s Model

The model of Pharoah et al. (2008) combines multiplicatively the effects of seven known genetic loci
to assign a total relative risk of BC. They are assumed to have no effect on OC risk. Since everyone
has two functioning alleles of every gene (except those on the X and Y chromosomes), there are three
possible combinations of alleles at each locus: no high-risk alleles; one low-risk allele and one high-risk
allele; or two high-risk alleles. If the population prevalence of a high-risk allele at locus 7 is p;, these
three genotypes have population prevalences (1 — p;)?, ps(1 — p;) and p? respectively. Table 1 sets out



Table 1: Per allele risk with 95% confidence intervals and population prevalences of genetic loci known
to contribute to the polygenic risk of breast cancer (Pharoah et al., 2008) with the approximate standard
deviation of the per allele risk estimate.

Locus ¢ dbSNP Per Allele Risk Population Prevalence, i
Number (95% Confidence Interval) Di
1 rs2981582 1.26 (1.23, 1.30) 0.38 0.0179
2 rs3803662 1.20 (1.16, 1.24) 0.25 0.0200
3 rs889312 1.13 (1.10, 1.16) 0.28 0.0153
4 rs3817198 1.07 (1.04, 1.11) 0.30 0.0179
5 rs13281615 1.08 (1.05, 1.11) 0.40 0.0153
6 rs13387042 1.20 (1.14, 1.26) 0.50 0.0179
7 rs1053485 1.13 (1.18, 1.06) 0.86 0.0310

the estimated per allele risk and associated 95% confidence interval of the high-risk variant relative to
the low-risk and population prevalences for each of these polygenes with their identification number in
the SNP database', commonly referred to as ‘dbSNP Number’, as well as our own reference label, locus
i fori=1,2,...,7. Also given is a calculation of the standard deviation of the estimate, calculated as

Upper Confidence Interval — Lower Confidence Interval
g; =
2 x 1.96

Jfori=1,2,...,T7. (1)

2.2 Extending The Model

Easton et al. (2007) suggests that these seven loci account for 3.6% of familial risk, while the major
genes BRCA1 and BRCA2 account for another 25%. Antoniou et al. (2001) concluded that a polygenic
model is a better fit for the remaining familial risk than any model incorporating another major gene
(a putative BRCA3, which has not been found despite intensive searching). We assume that the genetic
loci which contributes to the polygene and have yet to be discovered, have characteristics broadly similar
to the seven described above. Therefore we assume that there are 20 additional sets of seven loci with
relative risk and associated confidence intervals to those of the set of seven known loci. Thus in total we
have 147 loci with the 140 undiscovered loci labelled locus 8,9,10,...,147. For convenience, we index
the postulated loci such that loci 8, 15, ..., 141 all have the same characteristics as locus 1; loci 9, 16,
..., 142 have the same characteristics as locus 2, and so on. These additional 140 loci account for the
remaining 71.4% of familial risk. Thus, our model is an extrapolation from the characteristics of known
loci to complete the posited polygene.

The interaction of major gene mutations with genetic loci contributing to the polygene was not
discussed in Pharoah et al. (2008). Further research has suggested where interactions may or may not
exist (see Antoniou et al., 2008), but this is not yet well established, so we have assumed that the effect
of the polygene risk on a BRCA1 or BRCA2 mutation carrier is the same as that on a non-carrier. Since
BRCA mutations are rare — Antoniou et al. (2002) estimated mutant allele frequencies of BRCA1 and
BRCAZ2 as 0.00051 and 0.00068 respectively — this should not distort results greatly.

2.2.1 Notation

We introduce notation to describe genotypes, hazard rates and relative risks.

(a) Let G be the set of all possible polygenotypes. Assume that n genetic loci contribute to the polygene.
Let G; be the set of all possible genotypes at the ith genetic locus. (For our model, G; = {0, 1,2} for
all ¢ would suffice.) Then the polygenotype in G of a woman drawn at random from the population
is a random variable denoted by G = (G1,Ga,...,G,), with G; € G;,i = 1,...,n. Additionally, we
denote by g = (g1, 92, - .-, gn) a realisation of G.

Thttp://www.ncbi.nlm.nih.gov/projects/SNP/



(b) Choose a starting age = low enough that no cases of BC have occurred. As noted in Antoniou et al.
(2001), the proportions of lives in the population with each polygene mutation will change as higher-
risk lives get BC and die earlier than lower-risk lives, lowering the average risk of survivors. The
population prevalence of major genes and the polygene at age x will be that arising from Mendelian
inheritance, with no survivorship effect yet.

(¢) Let p¢ be the probability that a woman free of BC at age z is still free of it age x + ¢, given she
has genotype g.

(d) Let pgy be the population prevalence at age « of polygenotype g € G.

(e) Denote the age-dependent population onset rate of BC at age x + t by puP%(x + t), and the
polygenotype-specific onset rate at age = + ¢ by ufc(m +t) for polygenotype g € G.

(f) Define A(z + t) to be the baseline onset rate of BC at age « 4+ t. We choose our baseline genotype
to be a woman with zero high-risk variants at each locus contributing to the polygene.

(g) Define RR; 4, to be the relative risk associated with polygenotype ¢g; € G; at locus ¢ € {1,...,n},
and RR, to be the relative risk for polygenotype g € G, assuming that the relative risks associated
with genotypes at each contributing genetic locus are constant (so we have proportional hazards).
The average relative risk within the population at age x + t is denoted RR(z + t).

(h) For the ith locus, define

Bi = log(RR; 1), (2)

where RR; ; is the per allele relative risk of the high-risk variant of locus %, given in Table 1.

With our notation established, we can now set out the main definition of our model. The multi-
plicative model is defined by assuming that a woman with genotype g; at the ith locus (i = 1,...,n) has
onset rate of BC equal to:

pyC (@ +1) = Mz + )RRy = Az + )RRy, __g.) = Ma+ 1) [[ RRig.- (3)
i=1
In our simple model, we may define g; to be the number of high-risk alleles carried at the ith locus.
Then

pe <@+ 1) = iy g0 (@+1) = Az + 1) exp(Big + ... + Bagn), (4)

which is a Cox-type proportional hazards model with the g; as covariates.

2.2.2 Distribution of Relative Risk

Since each locus contributes three possible genotypes, and we have assumed that there are 147 loci,
in total the polygene has 3'47 (of the order of 107") variants. For comparison, the population of the
world today is less than 10'°. We have modelled the 147 loci as 21 independent duplicates of the set of
seven known loci. This means that many of the resulting 3'47 polygenotypes have identical relative risks.
However there are still too many to carry out computations by direct summation over all polygenotypes.
We therefore find an approximate distribution for relative risk to allow the use of numerical methods to
simplify the calculations.

Let RR denote the relative risk of an arbitrary polygene variant, relative to the polygene which
has low-risk alleles at all loci. The distribution of log(RR) can be assumed to be approximately normal.
Antoniou et al. (2002), using the hypothetical polygene with three loci, gave a mean of 1.29 and a 95%
confidence interval of (1.096, 1.521) for the standard deviation of log(RR), which we denote oiog(gR)-
Under our assumptions above, log(RR) has standard deviation ojo5(rr) = 1.20, reasonably close to the
simpler model (which was used in Macdonald & Mclvor, 2006).

In this section, we assume that the genotype at each locus is denoted by the number of high-risk
alleles denoted G;, for G; € G; = {0,1,2}. Define p; to be the population prevalence of the high-risk
allele at the ith locus, so G; ~ Bin(2,p}) for i = 1,2,...,147. Then the relative risk contributed from
locus ¢, RR; in a woman drawn at random from the population is a random variable, taking on the values
RR; o, RR; 1 and RR;» with probabilities (1 — p})?,2pF(1 — p}) and pz‘Q respectively. G1,Ga, ..., G147



are assumed to be independent random variables and for j = 1,...,7, the random variable G;7; has
the same distribution as G}, for each k =0,1,...,20.
Then the (random) log relative risk can be written as

IOg RRZ = Bi Gz (5)

We assume that p,, = p; for j = 1,2,...,7 and k = 0,1,...,20 with the value of p; given
by Table 1. For j = 1,...,7, let G} be the random variable representing the total number of high-
risk variants in the 21 analogues of locus j, in a woman drawn at random from the population, i.e.

20
G; = > Gigre ~ Bin(427p;f). This distribution can be well approximated by a normal distribution:
k=0

G5 ~ N(42pj},42p;(1 —pj})). Moreover, let RR} ;. be the random variable representing the total relative
T

20
risk contributed by the 21 analogues of that locus, in that same woman, i.e. RR;TVGEf = [I RRj47 and
k=0

20 20 20
log RR} - = Y log RRjqi = Y BismeGivre = ) BiGjame = B; G5, (6)
k=0 k=0 k=0

Hence the total relative risk RRg of a woman drawn at random from the population has a distribution
given by:

7 7 7
log RRg =) 3;G; ~ N [ Y4289}, 4263p5(1 - p}) | - (7)

j=1 j=1 j=1

Hence, relative to polygenotype g = (0,0,...,0), the polygene relative risk is approximately log-
normally distributed with parameters piog rr = 17.4289 and 0'120g rr = 1.441 at outset.

Figure 1 compares the quantiles of log(RR¢) obtained by sampling from the underlying binomial
distributions for the log(RR¢), with a standard normal distribution. This shows visually that the normal
distribution is a good fit to our assumed polygene model.

2.2.3 Baseline Rate of Onset of Breast Cancer

In equation 3, uf(x +t) is defined in terms of baseline hazard rate, A(z + t). However, A(z +t) is not
directly observable. What is observable is the population average onset rate, 42 (z +t), which embodies
the survivorship effect mentioned in (b) of Section 2.2.1 above. Here we show how to calculate A(x + t)
and constrain the average onset rate of BC for survivors at age z + ¢t in the model to be equal to the
population onset rate. Noting that the mean relative risk at age x + ¢, RR(z +t), is given by:

> pgtPiRR,

=75 g
RR(x+1t) = 967, 8
( ) Z Pg tpgc ( )
geg
we use the relation
BC
t
Moty = @FD )

" RR(z+1)
To find A(z + t), we solve differential equations for ;pg for g € G

BC h
x+t) D -
,uBC(x_i_t) e ) Ph tD

d heg

209 = —uBC(att) 9 = —Na—+t) RRy p? = -2 9 RR, = — S 9 RR,.
i e = ~hy ()t (2+t) Ry 0 RR(z +1) T2 S pnephRR, et
heg

(10)
Using the approximate distribution derived in Section 2.2.2, the sums over genotypes in equation 10
become integrals, i.e.
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Figure 1: Q-Q plot of Log Relative Risk with 21 sets of 7 polygenes from sampling and a standard Normal
distribution.

d . 1P +t) [7 fogrre(s) By ds " a1
— P — - Do exp(r).
dt =" J7o fiog RRG (5) D5 exp(s)ds "
where ;p}, is the probability that a woman free of BC at age x is still free of BC at age '+t given that the
logarithm of her relative risk is r, for —co <7 < 00, and fiog (rRr)(S) is the probability density function
of log RR¢. We calculated these integrals numerically using Simpson’s Rule over the range [—6.25, 6.25]
with a step size of 276,
The simultaneous differential equations were then solved using a fourth order Runge-Kutta method
with step size 2713 and the boundary conditions that op” = 1 for all r.

3. Cost oF FAMILY HISTORY

3.1 Insurance Model

In this section we consider women who develop a family history of BC or OC and the impact this
has on premiums payable for insurance. This allows us to consider the appropriateness of the use of
family history when underwriting in the absence of tests for either the major genes (MG) — BRCA1 and
BRCA2 — or polygenes (PG).

The insurance contract of interest is stand-alone critical illness insurance with benefits payable on
the occurrence of a defined critical illness, but not on earlier death. This type of product is of interest
due to the high proportion of claims that can be directly attributed to BC.

Consistent with previous work, we define a family history to be one in which two or more first degree
relatives have been diagnosed with BC or OC before age 50.

We construct a Markov model for the lifetime of an individual female as illustrated in Figure 2.
To incorporate the major genes, BRCA1l and BRCA2, we augment the set of possible genotypes to
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Figure 2: A model for critical illness insurance policyholder. Transition to ‘Dead’ or ‘Other CI’ states is
at rates depending only on age x. The onset rate of OC, u?c(x), depends also on the BRCA genotype
but is unaffected by polygenotype part of g, while the onset rate of BC, ufc, depends on both the
polygenotype and BRCA genotype parts of g.

G* ={0,1,2} x G. Observed overall genotypes are thus ¢* = (go, 91, - .., g147) Where gy € {0, 1,2} is the
major genotype corresponding to BRCAO, BRCA1, BRCA2 respectively. For consistency with previous
work, transition intensities from ‘Healthy’ to ‘Dead’ and ‘Other CI” are taken from Gutiérrez & Macdonald
(2003). These include onset of all cancers so onset rates of BC and OC have been removed from them,
using transition intensities from Macdonald, Waters, & Wekwete (2003a) as these were calculated from
the same data (Cancer Registrations 1990-1992). BC and OC onset rates are those used in Macdonald
& Melvor (2006), calculated from cancer registrations in England and Wales 1983-1987, for consistency
with the adjustments for BRCA mutations estimated by Antoniou et al. (2002).

3.2 Premiums

Premium rates for each relative risk are calculated as continuously payable level net premiums by
solving Thiele’s equations using a Runge-Kutta algorithm with step size 27!! years and force of interest
0.05 per annum. A summary of these premiums as a percentage of those chargeable to a life with no BRCA
mutation and RR = RR, is shown in Table 2, allowing us to see how deviations from the population
average risk at outset impacts premium rates.

First we examine premium rates for lives with no BRCA1 or BRCA2 mutation. Premiums for very
low risk lives (BRCAO and log RR < log RR — 1) approach a limit of between 70-80% of premiums
chargeable to a life with an average level of risk (BRCAO and log RR = log RR) depending on age and
term. Premiums for very low risk lives can be attributed to the amount required to cover costs of ovarian
cancer and other critical illness. However for even slightly elevated risk (BRCAQ and log RR = log RR+1)
premiums should be loaded approximately 40%, reaching uninsurable rates (> 400% of unrated premium)
for very high risk lives (BRCAO and log RR = log RR + 3), although the proportion of lives with such a
high risk is small.

If we ignore the polygene effect by looking at log RR = log RR, women with a BRCA mutation are
uninsurable at most ages and terms. In our model which incorporates both a major gene and polygenes,
a woman with a BRCA mutation but low polygenic relative risk becomes insurable. However in most
of these low relative risk cases, the effect of the BRCA gene is still stronger than the decrease in BC
risk from the polygene because the polygene does not change the high risk for ovarian cancer caused by
BRCA mutations.



Table 2: Female premium rates as percentage of the premium rates for a life with no BRCA mutation

and polygene relative risk log RR = log (RR;).

Age 30 Age 40 Age 50
Term 10 Term 20 Term 30 | Term 10 Term 20 | Term 10
BRCA % % % % % %
log (RR,) — 3 76 73 77 71 77 81
log (RR;) — 2 78 76 79 74 79 83
log (RR,) — 1 84 82 85 81 85 87
0 log (RR) 100 100 100 100 100 100
log (RR,) + 1 143 148 141 152 142 134
log (RR,) +2 | 260 277 250 294 255 228
log (RR,) +3 | 576 612 521 675 553 480
log (RR;) —3 | 113 240 208 327 242 173
log (RR,) —2 | 164 278 232 359 261 181
log (RR,) —1 | 303 381 300 445 313 204
1 log (RR,) 678 655 481 630 456 266
log (RR;) +1 | 1675 1360 955 1305 852 433
log (RR,) +2 | 4238 3040 2112 2929 1954 885
log (RR,) +3 | 10301 6626 4598 6965 4877 2091
log (RR,) —3 | 106 97 115 90 117 140
log (RR,) — 2 144 128 141 119 141 161
log (RR,) —1 | 246 213 210 195 204 217
2 log (RR,) 521 441 392 402 373 369
log (RR;) +1 | 1260 1026 834 954 810 781
log (RR,) +2 | 3184 2416 1787 2397 1865 1878
log (RR,) +3 | 7885 5303 3699 5987 4317 4779
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Figure 3: Stacked onset rates for selected critical illnesses and death of females.

The ratings due to polygene vary by age and term, the highest ratings for lives without a BRCA
mutation being for 40 year olds with a 10 year term. The reason for this can be seen in Figure 3: BC is a
significant proportion of the onset rates and this proportion reaches a peak between the ages of 40 and 50
so the polygene has the highest impact on policies with terms that include this age range. Its influence
decreases as heart attack and other forms of cancer unaffected by the polygene reduce the weighting of
BC in the makeup of premium rates.

For lives with a BRCA mutation, the highest ratings are earlier than the highest for lives without
a BRCA mutation — 30 year olds with 10 year term compared to 40 year olds with 10 year term
respectively — because the major genes have their strongest impact between ages 30 and 40, although
BC is overwhelmingly dominant at all ages considered.

3.3 Sitmulation
Due to the large number of possible genotypes, and inheritance possibilities, it is not tractable to

compute onset rates of family history analytically. Instead we simulate the future lifetimes of a large

number of lives and their families.
The simulation model that we use is described fully in Macdonald & Mclvor (2006). We summarise

it here, and set out the change to inheritance methodology.

(a) A family starts with 2 parents, whose polygenotype and BRCA genotype are randomly sampled
according to the population distributions in Table 1.

(b) The number of daughters is randomly sampled from a random variable with the probability mass
function given in Table 3. The distribution is from Macdonald, Waters, & Wekwete (2003a). Daugh-
ters are the same age and born when the mother, assumed to be healthy, is age 30.

(¢) Each daughter inherits polygenes and BRCA genes from their parents independently of each other
according to Mendel’s laws, acting at each major gene locus and each polygene locus.

(d) Per-allele relative risk for locus 4, for ¢ = 1,2,...,147, is sampled from a normal distribution with
standard deviation o; and mean equal to the point estimate listed in Table 1.
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Table 3: Probability mass function of number of daughters in a family conditional on there being at least
one daughter. Source: Macdonald, Waters, & Wekwete (2003a).

No. of Daughters Probability

0.54759802
0.33055298
0.09749316
0.02111590
0.00285702
0.00035658
0.00002634

~N O U W N

(e) Full life histories of mother and daughters are simulated using their respective genotypes and treating
each of the decrements in Figure 2 as independent competing risks.

As noted in Macdonald & Mclvor (2006), this results in censorship whereby a life who moves to
another critical illness state cannot have a subsequent cancer but the effect is minimal as only around
6% of lives have made such a move to other critical illness states by age 50, which is our cut-off age for
family history.

The simulation of a large number of lives (within 15,000,000 families) allows us to observe the
distribution of relative risk at any age x.

3.4 Distribution of Relative Risk by Underwriting Class

In order to calculate the premiums to charge an insured population, we find the distributions of
relative risk and BRCA mutations for every age for lives with and without a family history.

For each life, at every age = + t, we know her genotype, whether she is healthy and which relatives,
if any, have so far been diagnosed with BC or OC before age 50. We categorise this large quantity of data
at each age by: BRCA genotype; log RR; and presence of family history. Since log RR is a continuous
quantity we discretise it over the range [—6.25,6.25] into 100 ‘bins’ of uniform length 0.125. For family
history categorisation, we define two underwriting classes
(a) ST — Unrated — Females without a family history.

(b) FH — Females who have developed a family history.

Denote the mean and standard deviation of log relative risk at age x in ST by uffg: rr(z) and
al‘zg rr(x) respectively and similarly for FH.

We ran the model 500 times to produce confidence intervals for the estimates of the means and
standard deviations of log RR and to check convergence, results were compared to 100 simulations with
little difference so we omit the comparison. The resulting discretised distributions for the average of our
simulations are shown in Figure 4 for ST and F'H at ages = 30, 40 and 50. (Note that Figure 4 includes
male lives which we need in simulations in Section 4.)

The distribution of relative risk of BRCAOQ lives within each underwriting class, remains roughly the
same at each age despite higher risk lives leaving the class (by either getting cancer or developing a family
history). There is very little difference in the spread of logpp in ST and in FH; Ufgé{RR(x)/aﬁ)gRR(m)
is close to 1. However, as can be seen from the plots and Table 4, there is a significant difference in the
mean of log RR in each class of approximately 1.2. This results in average relative risk within F'H being
approximately 250% higher than within ST at ages 30, 40 and 50, making it a good proxy for genetic
risk.

For lives with a BRCA mutation, Tables 6 and 8 show that the differences between the mean of
logpr in each underwriting class are lower than that of BRCAQ and decreases with age. While there are
insufficient lives with a family history at age 30 to draw solid conclusion, there are significant differences
between F'H and ST at ages 40 and 50. The spread of logry in FH is slightly smaller than ST for
BRCA2 at age 50. However at all other ages, and for BRCA1, there are no significant differences.
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Table 4: Mean of log relative risk for female lives with no BRCA mutations in underwriting classes ST

and FFH.
Age () ungR(m) 95% Confidence ,ulf,’quR(x) — ufngR(x) 95% Confidence
Interval Interval
20 17.43 (17.25,17.60) 0.874 (0.459,1.423)
30 17.43 (17.25,17.59) 1.179 (1.064,1.347)
40 17.42 (17.25,17.59) 1.196 (1.157,1.243)
50 17.40 (17.23,17.57) 1.112 (1.084,1.140)

Table 5: Standard deviation of log relative risk for female lives with no BRCA mutations in underwriting

classes ST and FH.

Age (x) UfngR(x) UlFogRR(x)/UngR(m) 95% Confidence
Interval

20 1.203 1.025 (0.792, 1.307)

30 1.203 1.047 (0.966, 1.130)

40 1.199 1.011 (0.989, 1.011)

50 1.188 1.004 (0.991, 1.019)

Table 6: Mean of log relative risk for female lives with BRCA1 mutations in underwriting classes ST and

FH.
Age (z) pivgrr(z)  95% Confidence  pffpp(z) — pivk rr(z)  95% Confidence
Interval Interval
20 17.43 (17.25,17.60) 0.742 (—0.810,2.676)
30 17.43 (17.25, 17.60) 0.898 (0.000, 2.003)
40 17.31 (17.14,17.46) 0.874 (0.750, 1.040)
50 17.17 (17.02,17.31) 0.555 (0.467,0.651)

Table 7: Standard deviation of log relative risk for female lives with BRCA1 mutations in underwriting

classes ST and F'H.

Age (z)  oitrr(z)  Ohirr(z)/oios rr(z)  95% Confidence
Interval

20 1.203 0.336 (0.133, 1.085)

30 1.203 0.677 (0.242, 1.448)

40 1.142 0.946 (0.871, 1.023)

50 1.085 0.976 (0.926, 1.032)
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Figure 4: Distribution of relative risk for females and males at ages (a) 30, (b) 40, and (c) 50, averaged
over 500 simulations.
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Table 8: Mean of log relative risk for female lives with BRCA2 mutations in underwriting classes ST and
FH.

Age (z)  pios rr(z)  95% Confidence pisfrr(2) — pivs rr(z)  95% Confidence

Interval Interval
20 17.43 (17.26,17.60) 0.560 (—0.241,2.213)
30 17.43 (17.26,17.60) 1.065 (0.001,2.344)
40 17.34 (17.18,17.49) 1.010 (0.876,1.190)
50 17.20 (17.06,17.35) 0.820 (0.729,0.950)

Table 9: Standard deviation of log relative risk for female lives with BRCA2 mutations in underwriting
classes ST and FH.

Age (z) ot rr(2)  obrrr(2)/oig rr(z)  95% Confidence

Interval
20 1.202 0.245 (0.086, 0.712)
30 1.202 0.425 (0.175, 1.376)
40 1.154 0.930 (0.830, 1.028)
50 1.098 0.905 (0.847, 0.977)

The proportions of lives with a BRCA mutation in each of the underwriting classes is also significantly
different, as can be seen in Table 10.

3.5 Ratings for Presence of Family History
With these distributions of polygene relative risk and of major gene mutations, we will calculate the

level premiums that would cover the cost of CI benefits payable assuming underwriters may use family

history as a factor. We introduce notation to be used in this section. Suppose a life aged = has applied
for a policy with term n years.

(@) falog RR,Go|FH(T,g) is the joint probability density function for log RR and major genotype, G,
conditional on a life aged x having developed a family history of BC or OC. For succinctness, this
is abbreviated to ff'H(r, g). A similar expression is used for ST.

(b) A, gom is the expected present value of 1 paid on transition to a state other than Healthy or Dead
for a life with relative risk ¢” and major genotype g currently aged x.

(¢) arg,om is the expected present value of an annuity of 1 paid continuously while in the Healthy state
for a life with relative risk " and major genotype g currently aged x.

(d) IIST. is the level premium for a life without a family history.

(e) IIFH is the level premium for a life with a family history.

Table 10: Proportions of lives with a BRCA mutation.

ST FH
Age BRCA1 BRCA2 BRCA1 BRCA2

30 0.0020 0.0027 0.0125 0.0112
40 0.0019 0.0025 0.0639 0.0518
50 0.0015 0.0023 0.0400 0.0293
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Table 11: Distribution of rating for presence of family history.

Age Term Mean 95% Confidence Standard

Interval Deviation
10 1.927 (1.624, 2.252) 0.1661
30 20 1.873 (1.627, 2.126) 0.1262
30 1.685 (1.504, 1.869) 0.0930
40 10 2.473 (2.354, 2.594) 0.0596
20 2.020 (1.932, 2.103) 0.0419
50 10 1.586 (1.548, 1.625) 0.0204

Table 12: Level net premiums for females with a family history of BC or OC as a percentage of those
for females without a family history, averaged over simulations. Also shown are equivalent results from
Macdonald & Mclvor (2006). Note MG results use P+MG for experience basis but MG only for pricing
basis.

Genetic Age 30 Age 40 Age 50
Study Model 10 years 20 years 30 years 10 years 20 years 10 years
% % % % % %
Ours P+MG 192.7 187.3 168.5 247.3 202.0 158.6
MG 110.1 108.4 106.1 149.1 132.8 113.4
M&M (2006) P+MG 444.0 341.0 274.7 244.2 207.4 170.6
MG 137.5 132.0 122.7 112.9 108.9 102.8

The appropriate level premium for lives that have presented a family history is calculated as

2 o0
Z [/ ffH(rv Q)Ar,g,x;m d’l“:|

= (12)
|:/ ffH(Ta g)ar,g,z:m dT]
g=0 =" 7

and a similar expression can be written down for IISZ..

We use the estimated distributions based on each of our 100 simulations to calculate estimated
ratings and show how uncertainty may cause them to vary. Results of this are shown in Table 11 and
Figure 5. They show a narrow confidence interval for age 50 at entry. However younger ages at entry
have a broader interval, up to 65% of the unrated premium.

The approach taken by Macdonald & McIvor (2006) was to compare weighted premiums for lives
with a family history (as calculated above) to the premiums appropriate for a life with BRCAO and
polygene relative risk RR = 1. However, the average polygene risk within the unrated pool will be
somewhat higher — they used a binomial distribution for the log risk, centred at 0 — which increases
the average premium for lives without a family history, offsetting some of the extra payable for the lives
with a family history. In a reconciliation exercise, this was found to be around 40%.

Allowing for this change, and comparing our average ratings in Table 12, the results from the two
polygene models do show some differences at ages at entry 40 and 50 of 30-40% while age 30 is far greater
at all terms by 100-250%. Macdonald & Mclvor ran their model only once and at age 30 they had 91
lives with a family history, 9 of which had a BRCA mutation as well as polygene relative risk greater
than 1, resulting in large premium ratings. It is therefore possible that the difference between our results
and theirs at age 30 is down to sampling. In either case, the largest part of rating is attributable to the
polygenes.
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Table 13: Probability mass function of the number of children in a family. The probability that a
particular child is born female is 1/2.06.

Number of Children Probability

0 0.090
0.130
0.400
0.200
0.137
0.031
0.009
0.003

~N O Uk W N

Table 14: Premium rates for males as a percentage of premium rates for females with log RR = log RR
and no BRCA mutation.

Age 30 Age 40 Age 50
Term 10 Term 20 Term 30 Term 10 Term 20 Term 10
74% 8% 104% 97% 113% 128%

4. EFFECT OF THE ‘TEST-ACHATS’ EUROPEAN COURT OF JUSTICE RULING

In March 2011 the European Court of Justice ruled, in a case brought by Belgian consumer organi-
sation Test-Achats, that pricing with sex as a rating factor is contrary to the principles of the European
Union and would not be permitted from 22nd December 2012, (see European Court of Justice, 2011).
We assume that insurers’ response will be to charge premiums based on aggregate risk on an assumed
business mix. It is not clear whether this extends to underwriting based on justifiable biological risk and
it is possible that this would need to be tested in court. For example it is not clear whether or not a man,
who has a family history of BC among his female relatives should be given the same rating his sister
would be given. There are two possibilities:

(a) Females receive a rating reflecting the average risk of a female with a family history and male lives
are not rated.
(b) Males and females are rated equally for a family history of BC or OC based on aggregate risk.

The model described above needs to be adjusted to include male lives. Each family is randomly
assigned a number of children following the distribution of of family size and sex given in Macdonald,
Waters, & Wekwete (2003a) (see Table 13). We define the probabilities a newborn is female or male as
ps = 1/2.06 and p,,, = 1.06/2.06 respectively.

Research by Tai et al. (2007) shows an increased risk of male BC due to BRCA mutations, partic-
ularly BRCA2. However, detailed research is limited, partly due to the rarity of BC in males. BRCA
mutations have also been linked to prostate cancer (see Narod et al., 2008) but this is not usually a severe
form of cancer and diagnosis is often missed until later in life. Consequently it would not be particularly
helpful in identifying potential BRCA carriers from family history. We therefore perform simulations
and calculate male premiums ignoring BRCA mutation in males except for transmission from father to
daughter. Transition rates for males are those given in Gutiérrez & Macdonald (2003).

Table 14 gives the premium rates as a percentage of those for a female with log RR = log RR and
no BRCA mutation.

The percentages of females and males who develop a family history in our simulations are shown in
Table 15. At each age there is no significant difference between the percentages of females with a family
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Table 15: Percentage of healthy lives with a family history of breast or ovarian cancer shown by sex and
age.

Females Males
Age Mean 95% Confidence Standard Mean 95% Confidence Standard
Interval Deviation Interval Deviation
20 0.0002 (0.0001, 0.0003)  0.00005  0.0002 (0.0001, 0.0003)  0.00005
30 0.0020 (0.0015, 0.0028)  0.00034  0.0020 (0.0015, 0.0028)  0.00032
40  0.0220 (0.0169, 0.0285) 0.00334 0.0226  (0.0170, 0.0294) 0.00356
50 0.0880 (0.0680, 0.1117) 0.01290 0.0940 (0.0717, 0.1202) 0.01407

history of BC or OC and those of males.
To distinguish between males and females we introduce further notation

(a) fz(r, g) is the joint distribution function for log RR and and major genotype, Go.

(b) fz rm and my pg are the probabilities that a female and male respectively, develop a family history
of BC or OC by age «.

(c) Af:m and Ai\{m are the expected present values of 1 paid to a life aged x in underwriting class ST
immediately on transition to a claim state for females and males respectively for a term of n years.

(d) ai 7l and ai‘% are the expected present values of a continuously payable annuity at rate 1 per annum
while in an insured state, to a life currently aged x and in underwriting class ST for females and
males respectively for a term of n years.

(e) Afj g0 and af’ g.om are the female log relative risk and major genotype specific assurance and
annuity functions defined above in Section 3.5.

For calculation of unisex premiums we set an even split between the sexes at each age of our insured
population: P(Male) = P(Female) = 0.5.
First we calculate the expected present value of benefits for a female in ST aged x for term ¢ as

2

Al = Z Uoo 2T(r, g) Af,g’z:ﬂdr] , (13)

g=0 -/ =
and the expected present value of her continuously payable annuity as

2

o= | [ gl ] (14)

g=0 =77

We want to rate lives in F'H for only the extra risk they bring to the pool due to the higher onset
rates of BC and OC females in the class will experience. It is then necessary to consider them as paying
the premium Hf% plus an additional sum. They are therefore included among the proportion of females
when calculating our unisex premiums for underwriting class, ST, as

ST _ Agﬂ P(Female) + Ai\% P(Male)
@il ¥ P(Female) + al%, P(Male) -

(15)

Note that setting the proportion of males, P(Male) = 0 results in the premiums calculated above in
equation 12.

Treating females from F H as if they were in ST, who are on average lower risk, will create a shortfall
in income which must then be spread across the rated business.

4.1 Females receive a rating, Males do not
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Table 16: Distribution of ratings applicable only to females for a presence of family history where unrated
premium is unisex.

Age Term Mean 95% Confidence Standard

Interval Deviation
10 2.076 (1.720, 2.473) 0.1983
30 20 1.934  (1.666, 2.220) 0.1415
30 1.674 (1.492, 1.863) 0.0961
40 10 2.504 (2.362, 2.657) 0.0741
20 1.960 (1.868, 2.065) 0.0484
50 10 1.515 (1.473, 1.563) 0.0233

The simplest of the two underwriting possibilities recognises that the presence of a family history of
BC or OC does not suggest a high risk for male lives and allows all males to belong to class ST. Males
and females are charged the same unisex premium for the ‘standard’ risk. Females who have a family
history pay an extra premium for the increased risk they pose. Thus the total premium for FH lives,
FHE g
x:tl’

2 00
P(Female) Z/ fulryg9) (A”rl‘;;g,m:ﬂ - Hf% arF’gmﬂ) dr + P(Male) (Afﬂ — Hf%ai{ﬂ)
g=0"">

FH __ ST
1_[w:t - + Hm:t .

2 %)
fo, i P(Female) Z(:)/_Oo FEH(p, g)afg,m;ﬂ dr
o

(16)

In comparing Tables 11 and 16, the effect of unisex premiums is to increase ratings slightly at

younger ages where male CI costs are lower than females — reducing the premiums that females pay —

and to decrease ratings slightly at older ages where males have high heart attack and stroke rates (see
Figure 6) — increasing the premiums that females pay.

4.2 Females and Males receive a rating

If rating females but not males for a family history of BC or OC is seen as sex discrimination, the
shortfall in unrated premium will be spread over males also, i.e. males with family history belong to
underwriting class F'H. Our rated premium becomes more general:

2 )
P(Female) Z/ fu(r,9) (Af:g,z;ﬂ — Hf% af’g_’x:ﬂ) dr + P(Male) (Aivzjﬂ — Hf% a%ﬂ)
g=0"">

FH _ ST

H/J}Zt - 2 o + Hzﬂ

fu, 7 P(Female) Z / ffH(r, g) afjg@:ﬂ dr +my pg P(Male) a%ﬂ
g=0""

(17)

Since the extra cost of a high proportion of high-risk female lives in the F'H underwriting class is
spread over approximately twice the number of lives than when only females are rated, it is not surprising
that the ratings and standard deviations in Table 17 are approximately half those in Table 16.

5. CALCULATING ADVERSE SELECTION IN AN INSURANCE MARKET

With the identification of these seven loci, the possibility of testing for an individual’s overall BC
risk is one step closer. If a life has a pre-symptomatic genetic test, then under the UK’s moratorium on
the use of genetic information in underwriting, the life is not required to divulge these test results. This
asymmetry of information presents the life with an opportunity to change their buying behaviour. Lives
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Figure 6: Stacked onset rates for selected critical illnesses and death in males. The population average
female CI rate is overlaid for comparison.

Table 17: Distribution of rating applicable to male and female lives for presence of family history based
on a unisex standard premium.

Age Term Mean 95% Confidence Standard

Interval Deviation
10 1.538 (1.364, 1.740) 0.1010
30 20 1.465 (1.334, 1.599) 0.0719
30 1.334 (1.2437 1.422) 0.0487
40 10 1.730 (1.659, 1.793) 0.0355
20 1.463 (1.418, 1.507) 0.0227
50 10 1.248 (1.229, 1.269) 0.0106
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who see themselves as low-risk may buy less insurance, while lives who see themselves as high-risk may
buy more insurance. Both are forms of adverse selection.

Researchers have found adverse selection in insurance markets where individuals have private in-
formation: Brown (1992) in health insurance; Finkelstein & Poterba (2002) in annuities markets; and
Finkelstein & McGarry (2006) in a market for long-term care. However, Zick et al. (2000) suggest that
women who have tested positive for BRCA1 mutations are not more likely to purchase more life cover
than untested women. Neither are women who have tested negative for BRCA1 less likely to purchase life
cover than untested women. They suggest that their follow-up period is too short since many participants
were still dealing with the health impacts of receiving a positive test result.

In this section we look at the potential cost of adverse selection based on the results of genetic tests.

We set up a model for an insurance market and parameterise it appropriately. The likely buying
patterns and testing arrangements are uncertain so we investigate how the cost might change in response
to these factors.

5.1 Market Model
We expand our insurance model to an insurance market, incorporating buying behaviour that may

change due to the result of genetic testing. The product of interest is again stand-alone critical illness.
To ensure the model is Markov, the premium is payable continuously as a current risk premium instead
of a level premium. This risk premium at time ¢ is calculated for each sex as the weighted average cost
of expected claims arising in (¢,¢ 4 dt), with weights equal to occupancy probabilities in insured states
assuming no adverse selection — all lives purchase insurance at the same standard rate. To conform to
the EU legislation, these gender-specific risk premiums will have to be averaged across the two sexes with
the weights for each being the overall probability a male and female is insured respectively, calculated
assuming adverse selection to take place.

Since the premiums payable assume a lower-than-experienced rate of claim, a loss will arise. This
loss is the cost of adverse selection and is calculated as the difference between outgo and premium income
and expressed as a percentage of premium income received with adverse selection present, to show how
much all premiums must increase as a result of the insurer not seeing test results.

All lives are assumed to be 20 years old, healthy, untested and uninsured at the start of our modelling.

The model is illustrated in Figures 7 and 8.

Different scenarios are modelled to show the effects of uncertain parameters as follows:

(a) The rates of going into a tested state are those used by Macdonald & Mclvor (2009) which they
based on Ropka et al. (2006)’s estimate of 59% uptake: High with rate 0.08916 per annum; Medium
with rate 0.04458 per annum; or Low with rate 0.02972 per annum. All testing is performed on lives
between ages 20 and 40.

(b) Market size is at two levels represented by the rate at which a standard life enters the insured state:
a Large market with rate 0.05 per annum or Small market with 0.01 per annum.

(c) After receiving test results, a life may change their buying behaviour. Low risk lives either buy at
the same standard rate, half the standard rate or do not buy at all. High risk lives, regardless of
the size of market, will buy at rate 0.25 per annum which we take to represent a ‘Severe’ level of
adverse selection; or at rate 0.1 per annum which we consider to be ‘Moderate’ adverse selection. A
life is deemed to be high risk if their log relative risk is higher than the log of the population average
relative risk plus the threshold in the scenario (see below). They are low risk if their risk is lower
than the log of the population average relative risk minus the threshold.

The threshold of relative risk serves to classify lives into three categories of relative risk. It is varied
to show the effect of how different from the population a life needs to see herself as being before she
considers herself to be high risk or low risk i.e. whether the product represents high or low value to
her. We limit ourselves to using high-risk and low-risk thresholds that are symmetric around the log of
population average relative risk. However, in reality, the distance from this average that is needed to
change behaviour may differ for low-risk and high-risk lives. We choose average relative risk as a central
point because the premium charged will be approximately equal to the appropriate premium for a BRCAQ
life with average relative risk. appropriate premium for a BRCAO life with average relative risk When
tested lives consider whether they are getting a cheap or expensive rate, it will be with reference to this
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F2 Uninsured Fl Uninsured F4 Uninsured F5 Uninsured
Tested Untested Untested Tested
No Family History No Family History Family History Family History
F3 Insured F6 Insured
No Family History Family History
F7 F8
Critical
Dead
Illness

Figure 7: A model of female insurance states for an insurance market where genetic testing may be

available before and after family history at different rates. The arrows to Dead and Critical Illness states
are omitted but these may be entered from any other state.

M1 Uninsured M4 Uninsured
No Family History

Family history

M3 Insured M6

Insured
No Family History

Family history

M7 M8
Critical

Dead
Illness e

Figure 8: A model of male insurance states in an insurance market. Depending on legislation, lives in
state state M6 will belong to either underwriting class ST or FH.
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Table 18: Proportion of lives at age 20 considered Low or High Risk at each threshold point.

Threshold 00 05 10 15 20 25 30

Low Risk (%) 72.8 576 41.1 260 145 7.0 29
High Risk (%) 27.2 153 7.5 3.2 1.1 04 0.1

average premium. However, this will create an imbalance between the proportions of high and low risk
lives (see Table 18). Macdonald & MclIvor (2009) used the mode of their distribution as the centre.

5.2 Family History Onset Rate
The market model includes the onset of family history as an event. This intensity was parameterised
by fitting a statistical model to the onset rate derived from the results of the simulations in Section 3

above and calculating
New family history cases in period

Onset Rate = (18)

Exposed to risk

There is a large difference where a parent carries a BRCA mutation so these are considered separately.
As there was no statistically significant difference between sexes, we ignore sex as a factor.

Denote the BRCAO specific onset rate of family history as pfzcoae(@,7) for a life aged = with
log RR = r and similarly for BRCA1 and BRCA2.

As can be seen in Figures 9, 10 and 11, the dependence on the individual’s log polygene risk is
strongly linear.

Family history cannot arise after the life is age 50 as the definition is limited to cancer before age 50
and all lives are assumed to be born at the same time. Fitting linear models with interactions between
age and risk yields formulae for the family history onset rates. For BRCAO this results in the following:

exp(—21 — 0.4696x + 0.008122 + 0.0463zr — 0.000622r), if z < 50

19
0, if z > 50. (19)

NgRCAo(fEa r) = {

Since the BRCA mutations are only assumed to have an effect from age 30 onwards, these rates are
fitted in two stages, x < 30 and 30 < x < 50. We pool the lives from all families where a BRCA mutation
is present for x < 30 due to sparse data:

exp(—12.44512 — 4.44898z + 0.2486xr), if z <30
e oan (@, 1) = { exp(—37.63246 + 4.341262 — 0.2344ar + 1.5182r), if 30 < 2 < 50 (20)
0, if 2 > 50
and
exp(—12.44512 — 4.44898x + 0.2486xr), if x <30
tHRoa2(T, 1) = { exp(—31.44989 4 0.20735x — 0.011zr + 1.17576r), if 30 < 2 < 50 (21)
0, if > 50.

5.3 Cost of adverse selection
The cost of adverse selection may be expressed as a percentage of premium income and defined as

E(PV Benefits|Adverse Selection)—E(PV Premium Income|Adverse Selection)
E(PV Premium Income|Adverse Selection)

; (22)

with a risk premium rate calculated assuming no adverse selection occurs. This gives a value for how
much premium rates of all lives must increase as a result of adverse selection being present in the market.



23

BRCAO Family, Age>46 BRCAO Family, 41<Age<=46

Log FH Rate
-10
l
Log FH Rate
-10
l

Lo Lo
T T
T T T T T T T T T T
14 16 18 20 22 14 16 18 20 22
Log RR Log RR
BRCAO Family, 36<Age<=41 BRCAO Family, 31<Age<=36
[To) L(? _]

Log FH Rate
-10
l
Log FH Rate
-10
l

-15
-15

14 16 18 20 22 14 16 18 20 22

Log RR Log RR

Figure 9: Logarithm of family history onset rates for families with no BRCA mutation in either parent.
Each circle represents the calculated onset rate for a particular age, sex and relative risk combination.
Groups of size less than 10 are omitted from the plots.
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Figure 10: Logarithm of family history onset rates for families where a parent has a BRCA1 mutation.
Each circle represents the calculated onset rate for a particular age, sex and relative risk combination.

Groups of size less than 10 are omitted from the plots.
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Figure 11: Logarithm of family history onset rates for families where a parent has a BRCA2 mutation.
Each circle represents the calculated onset rate for a particular age, sex and relative risk combination.

Groups of size less than 10 are omitted from the plots.
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To calculate benefit outgo and premium income, it is necessary to first calculate the probability of
uninsured lives being in insured states at time 0 < ¢ < 40 (or equivalently between ages 20 and 60). We

denote these probabilities, with consideration for genotype, as {pi¥, i.e.
9piF = P(In State k at age = + t|G* = g and in State j at age x). (23)
They may be calculated by solving the Kolmogorov forward equations:
dy jk il ik
%gpgo = Z (fpéoﬂé%H - ?péoﬂlzcé-kt)- (24)

1#k

This was done using a 4th order Runge Kutta algorithm with a step size of 27! and boundary conditions:
gpgol’Fl =1 and gpgoj’Fk =0 for (j,k) # (1,1) and similarly for males.

We introduce notation for the critical illness hazard rate at age x, which is the same for any state:
aé‘j , for a female with genotype g and aé\{z for males; and @/, as the mean critical illness hazard rate for
lives in state j with weightings equal to occupancy probabilities assuming no adverse selection.

The continuously payable risk premium rate at time ¢ may then be found using a similar technique
to that used to the premiums in equation 15, by calculating the mean critical illness hazard rate for

female lives in ST, af’ _?;t, and including lives in F'H when averaging across the sexes:

> vy [pradeys (Ip56 + Ip35) + pmani (70307 + 1p30°)]
HST(t) — geg*

(25)
> g [pr (056 + 1050) + P (1056° + 1930°)]
geg*

Lives in states M3 and F'3 (see Figures 8 and 7) belong to the same underwriting class, ST, due
to the requirement of unisex rates. However, the question over how to treat males with a family history
among their female relatives is still present. Again there are two possible cases:

(a) Only females underwritten (lives in M6 are in ST underwriting class)

HFH(t) = 072Fo6+t - 6‘503+t + 197 (1); (26)
(b) Males and females are both underwritten (lives in M6 are in the F'H underwriting class)
Z P30 Pg Py (Qboe — Adore)
T7H () = 252 + 1057 (1), (27)

> pg (Ip5ps + 103 Pm)
geG*

While these two possibilities may present difficulty to an insurer’s underwriting department, the
proportion of lives that develop a family history represents only 0.09% of male lives at its peak at age 50
from Table 15, so when testing is available to all lives, the impact of underwriting is negligible and we
give results for females being underwritten.

The expected present value of benefits and premiums needed for equation 22 are then calculated
with occupancy probabilities found in the presence of adverse selection, by numerical integration using
Simpson’s formula of the following;:

40
E(PV Benefit|Adverse Selection) = Z Dy [pf/o e % (fszOLST +{ p§}7FH) al g0y dt
S
Oy msT M1,FH
: : : M
+pm/0 (?pm +{ Pao ) ag,20+tdt:| (28)
and
40
E(PV Premium|Adverse Selection) = Z Dy [pf/o e (fpfol’ST + fp%l’ST) 57 (t)dt
geG™

40
b [ (B T 1 | (20
0
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Table 19: Cost of severe adverse selection. Testing for PG only is available to all lives, regardless of the
presence of a family history of BC or OC. Underwriting is performed on females only.

Standard Test Rate Low Risk Threshold

Insurance Insurance 0.0 0.5 1.0 1.5 2.0 2.5 3.0
Rate Rate

0.05 High 0.050 1.430 1.326 1.042 0.691 0.385 0.179 0.069

0.025 2.839 2584  2.010 1332 0.752 0.360 0.146

0.000 6.178  5.421  4.084 2.646 1.478 0.711 0.293

Medium 0.050 0.959 0.891  0.701 0.465 0.259 0.120 0.046
0.025 1.855  1.693 1.321 0.878 0.497 0.238 0.096

0.000 3.785  3.361  2.568 1.687 0.952 0.460 0.190

Low 0.050 0.715 0.664 0.522 0.346 0.192 0.089 0.034
0.025 1.366 1.247 0974 0.649 0.367 0.176 0.071

0.000 2709 2418 1.859 1.228 0.696 0.338 0.140

0.01 High 0.010 8.711  9.179  7.900 5.504 3.124 1.449 0.547
0.005 11.212  11.588 9.786 6.708 3.774 1.755 0.673

0.000 14.629 14.803 12.210 8.191 4.548 2.111 0.818

Medium 0.010 6.365  6.555  5.528 3.802 2.143 0.990 0.372

0.005 7981 8.068  6.701 4.559 2.560 1.190 0.456

0.000 10.062  9.977  8.142 5463 3.047 1.419 0.551

Low 0.010 4.966  5.038 4.196 2.865 1.608 0.741 0.278

0.005 6.142  6.121  5.033 3.409 1912 0.888 0.340

0.000 7.608  7.450  6.038 4.049 2.263 1.056 0.410

with a step size of 271! and force of interest, § = 0.05.

5.4 Results

The results of these scenarios are shown in Tables 20 to 22. These tables show the impact of

successively adding sources of adverse selection as follows:

(a)
(b)

High risk lives adversely select at a Severe rate after a polygene test (Table 19).

Low risk lives change behaviour after a polygene test, while high lives risk buy at the standard rate
(Table 20).

High risk lives adversely select at a Severe rate after tests for polygene and BRCA — lives with a
low risk polygene but with BRCA1 or BRCA2 mutations also adversely select (Table 21).

High risk lives adversely select at a Moderate rate after tests for polygene and BRCA — lives with
a low risk polygene but with BRCA1 or BRCA2 mutations also adversely select (Table 22).

High risk lives adversely select at a Severe rate after tests for polygene and BRCA — lives with a
low risk polygene but with BRCA1 or BRCA2 mutations also adversely select. Tests available only
to lives with a family history of breast or ovarian cancer (Table 23).

The costs involved look comparable to those in Macdonald & McIvor (2009). However our model

differs from theirs in a number of ways, key of which is the European Union ruling described in Section
4. This spreads the costs over approximately twice the volume of premium. Thus the costs suggested
by our model would need to be approximately doubled to apply to a regime where sexual discrimination
is permitted. Where this is the case, our somewhat moderate costs could become quite substantial
particularly when passed on to the customer.

One observation of note is that a large part of the cost of adverse selection could come from low

risk lives buying at a lower rate after testing. Although the reduction in the portfolio of insured lives by
any individual low risk life increases the average risk by a smaller amount than the gain of a high risk
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Table 20: Cost of adverse selection when high-risk lives buy at the standard rate. Testing for PG only is
available to all lives, regardless of the presence of a family history of BC or OC. Underwriting is performed
on females only.

Standard Test Rate Low Risk Threshold

Insurance Insurance 0.0 0.5 1.0 1.5 2.0 2.5 3.0
Rate Rate

0.05 High 0.025 1.361 1.212 0.937 0.627 0.362 0.180 0.077

0.000 4.623 3.960 2951 1913 1.079 0.529 0.223
Medium 0.025 0.875 0.782 0.607 0.408 0.236 0.117 0.050
0.000 2770 2412 1.829 1.204 0.687 0.339 0.144

Low 0.025 0.639 0.572 0.445 0.299 0.174 0.087 0.037
0.000 1.964 1.723 1.317 0.873 0.501 0.248 0.105
0.01 High 0.005 2374 2.066 1569 1.035 0.592 0.292 0.124

0.000 5.836 4915 3.611 2316 1.297 0.632 0.267

Medium 0.005 1.527 1.338 1.024 0.680 0.391 0.194 0.082
0.000 3.562  3.062 2289 1.494 0.847 0.416 0.176

Low 0.005 1.113 0979 0.752 0.501 0.289 0.143 0.061
0.000 2,526 2190 1.658 1.092 0.623 0.307 0.130

Table 21: Cost of severe adverse selection. Testing for MG and PG is available to all lives, regardless of
presence of a family history of BC or OC. Underwriting is performed on females only.

Standard Test Rate Low Risk Threshold

Insurance Insurance 0.0 0.5 1.0 1.5 2.0 2.5 3.0
Rate Rate

0.05 High 0.050 1.462 1.373 1.103 0.763 0.464 0.262 0.153

0.025 2893 2.646 2.080 1.410 0.833 0.444 0.230

0.000 6.278  5.512  4.172 2.733 1.565 0.797 0.378

Medium 0.050 0982 0923 0.742 0.513 0.311 0.175 0.102
0.025 1.891 1.734  1.367 0.930 0.551 0.294 0.152

0.000 3.846  3.418  2.625 1.744 1.009 0.517 0.247

Low 0.050 0.732  0.688  0.552 0.382 0.232 0.130 0.076
0.025 1.392  1.277  1.008 0.687 0.407 0.217 0.113

0.000 2753 2459 1901 1.270 0.738 0.380 0.182

0.01 High 0.010 8.913  9.490 8337 6.045 3.729 2.085 1.196
0.005 11.448 11.932 10.252 7.271 4.392 2398 1.325

0.000 14.909 15.189 12.712 8.780 5.182 2.762 1.473

Medium 0.010 6.516  6.782  5.837 4.176 2.557 1.423 0.813

0.005 8.1565 8314 7.026 4.945 2981 1.626 0.897

0.000 10.263 10.247 8.486 5.862 3.475 1.860 0.994

Low 0.010 5.086  5.214  4.432 3.147 1919 1.066 0.608

0.005 6.278  6.310  5.279 3.698 2.227 1.214 0.670

0.000 7763  7.655  6.296 4.346 2.582 1.384 0.741
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Table 22: Cost of moderate adverse selection. Testing for MG and PG is available to all lives, regardless
of presence of family history of BC or OC. Underwriting is performed on females only.

Standard Test Rate Low Risk Threshold

Insurance Insurance 0.0 0.5 1.0 1.5 2.0 2.5 3.0
Rate Rate

0.05 High 0.050 0.818 0.781 0.632 0.438 0.265 0.148 0.085

0.025 2225 2.033 1.596 1.078 0.632 0.329 0.162

0.000 5.569  4.857  3.660 2.389 1.359 0.681 0.310

Medium 0.050 0.536  0.513 0416 0.288 0.174 0.097 0.056
0.025 1435 1.314 1.035 0.702 0.413 0.215 0.106

0.000 3.372 2981 2281 1.510 0.869 0.438 0.200

Low 0.050 0.396  0.379 0307 0.213 0.129 0.072 0.041
0.025 1.050 0963 0.760 0.516 0.304 0.159 0.078

0.000 2401 2136 1.646 1.097 0.634 0.321 0.147

0.01 High 0.010 7.140  7.609  6.651 4.795 2.939 1.629 0.925
0.005 9.643  9.984 8501 5983 3.588 1938 1.053

0.000 13.092 13.166 10.881 7.447 4.360 2.297 1.200

Medium 0.010 5.085  5.312 4563 3.252 1.980 1.093 0.618

0.005 6.698  6.805 5.718 4.002 2397 1.294 0.702

0.000 8.783  8.692 7.136 4.897 2.883 1.525 0.798

Low 0.010 3.918  4.041 3435 2433 1476 0813 0.459

0.005 5.090 5.112  4.262 2973 1.780 0.961 0.521

0.000 6.556  6.427  5.255 3.609 2.130 1.129 0.592

life, the volume of low risk lives underbuying compared to high risk lives overbuying causes this high cost
relating to low risk lives.

Adding BRCA to the test regime makes only a small impact when already testing for polygenes.
This validates the overall finding of Macdonald & McIvor (2009), that the bigger part of adverse selection
cost is down to the polygene.

As previously stated, very few lives develop a family history. If testing is limited only to those who
have a family history then the cost from adverse selection is negligible, reaching a peak of 0.003% in a
small market with High test rate.

As the science develops and more genes are identified, the feasibility and cost of testing will improve.
Pharoah et al. (2008) discusses the use of population testing as a way of identifying high-risk women in
order to target the more expensive means of detecting breast cancers, e.g. MRI screening, for early
diagnosis. If the testing is extended in this way the potential for anti-selection increases greatly, with
most lives being aware of their risk profile. Early detection will however change the shape of rate tables
and these early cases could be at a stage that is not covered under the critical illness cover e.g. ductal
carcinoma in situ is not considered a critical illness by many insurers, but left untreated may develop
into invasive breast cancer. Where the prognosis improves such that a claim would not be viable, the
inclination to adversely select would decrease so we consider that the Moderate adverse selection rate to
reflect this case.

In a small market, under the Moderate adverse selection scenarios there are still fairly moderate
costs involved, up to 14%. Indeed the change from the Severe rate, is quite small as compared to the
standard rate of insurance, this is already a severe rate of uptake.

6. CONCLUSIONS

The discovery of a small number of ‘breast cancer polygenes’ has allowed us to take another look at
Macdonald & Mclvor (2006)’s work which previously used a hypothetical model in order to assess the
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Table 23: Cost of severe adverse selection. Testing for MG and PG is available only after the development
of a family history of BC or OC. Underwriting is performed on females only.

Standard Test Rate Low Risk Threshold

Insurance Insurance 0.0 0.5 1.0 1.5 2.0 2.5 3.0
Rate Rate

0.05 High 0.050 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.025 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Medium 0.050 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.025 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Low 0.050 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.025 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.01 High 0.010 0.001 0.002 0.002 0.003 0.002 0.002 0.002
0.005 0.002 0.002 0.002 0.003 0.002 0.002 0.002

0.000 0.002 0.002 0.002 0.003 0.002 0.002 0.002

Medium 0.010 0.001 0.001 0.001 0.001 0.001 0.001 0.001

0.005 0.001 0.001 0.001 0.001 0.001 0.001 0.001

0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Low 0.010 0.001 0.001 0.001 0.001 0.001 0.001 0.001

0.005 0.001 0.001 0.001 0.001 0.001 0.001 0.001

0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001

findings and update their results as necessary. They had suggested the simplifications of that model
create a heavy tail that distorts the costs. We have found that their results for family history ratings,
when corrected to use the standard premium as numeraire, are reasonable. Additionally their conclusion
that the bigger part of adverse selection risk is attributable to polygenes still stands in a model based
on actual genetic data. However they understate the size of the adverse selection cost compared to that
arising under our actual gene model.

The change of European law to enforce the use of unisex pricing, while creating additional concerns
for an insurer’s underwriting team and adding a level of risk from business mix, acts to spread the cost of
adverse selection over a wider base whose behaviour is not subject to change. The premiums chargeable
to a female with family history would be roughly halved if the same rating was applied to a male despite
the lack of additional risk implied for the male.
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