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PENSIONS AND GENETICS: CAN LONGEVITY GENES BE RELIABLE

RISK FACTORS FOR ANNUITY PRICING?

By Angus Macdonald and Kenneth McIvor

abstract

We consider a number of gene variants that have been found to affect longevity. Their
effects have been modelled using Cox or logistic regressions, whose fitted parameters have simple
asymptotic sampling distributions. The expected present value of a life annuity allowing for these
genetic risk estimates inherits a sampling distribution, which can be found by simulation. We
find that possibly significant uncertainty about annuity premiums may be overlooked if the
standard errors of parameters estimated in medical studies are ignored by medical underwriters.
Such considerations may play an important part when the acceptability of using a risk factor in
underwriting is conditional on proof of its relevance and reliability. This is the current position
in respect of genetic information in many countries, most prominently in the UK.
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1. Pension Annuities and Genetics

1.1 Longevity Genes and Annuity Pricing
Previous studies of genetics and insurance have focused on genes leading to early onset

of disease, affecting life and critical illness insurance. Here, we consider genes affecting the
longevity of older people, hence annuity business. Genes associsted with longer lifetimes
are called ‘longevity genes’, while genes associated with shorter lifetimes are called ‘frailty
genes’. Table 1 lists some of the genes that have been linked to longevity. Most of them
are related to Alzheimer’s disease (AD) and heart disorders.

Medical risks have long been taken into account in pricing insurance, and are increas-
ingly being used in pricing annuities. The extent to which genetic information may be
taken into account alongside other medical evidence has been strictly limited in several
countries, but in at least one case (the United Kingdom) its use depends on being able to
demonstrate the relevance—technical, clinical and actuarial—of a given genetic test (see
Macdonald (2007)). Any such demonstration will depend on published genetic epidemiol-
ogy. The actuarial problem is to extract, from this literature, a basis for a pricing model,
including an assessment of its reliability. This work faces two major problems:



Can Longevity Genes be Reliable Risk Factors for Annuity Pricing? 2

Table 1: Genes, and their possible related disorders, that have been repeatedly studied
for associations with longevity and have shown significant correlations (De Benedictis et
al., 2001).

Gene Disease

ApoE Alzheimer’s disease, Cardiovascular disease
ApoB Coronary artery disease
ApoA-IV Alzheimer’s disease
ACE Myocardial infarction, Cerebral infarction,

Alzheimer’s disease, Essential hypertension
CYP2D6 Parkinson disease
HLA1 & HLA2 Immune Disorders
P53 Cancer
Factors V, VII Myocardial infarction
Fibrinogen Coronary artery disease
Prothrombin Myocardial infarction
MTHFR Cardiovascular disease, Cancer
mtDNA Coronary artery disease, Diabetes,

Parkinson disease, Alzheimer’s disease
PARP Unknown

(a) Actuarial questions require age-related rates of disease onset, while many medical
questions can be answered by simpler statistics. Thus Macdonald & Pritchard (2000)
trawled the large literature on AD (up to about 1998), and found just one study that
reported age-related risks in enough detail.

(b) Premium rates based on an epidemiological study are functions of the data under-
lying that study. Assessing their reliability, in any statistical sense, requires either:
(i) access to the data; or (ii) publication of ancillary information, such as the full
correlation matrix of any parametric models fitted in the study. Both are quite rare.
Lu, Macdonald & Waters (2006) were able to use summary data available from some
non-parametric studies of polycystic kidney disease, but the opportunity was unusual.

We focus on three epidemiological studies of potential longevity genes, each of which
gives sufficient information to allow us to estimate sampling distributions of annuity rates.
(a) Tan et al. (2001) fitted a Cox proportional hazards model using a population of 961

Italians of whom 212 (22%) were centenarians. Twelve genes were considered as risk
factors (see Table 2). The fitted relative risks and their sampling variances can be
used to bootstrap sampling distributions of annuity premium rates.

(b) Arking et al. (2005) studied the KLOTHO genotype in a US Ashkenazi Jewish
population with 216 subjects. Denoting one allele (gene variant) F and the other
V, the possible genotypes are FF, FV, and VV. Again, a Cox model was fitted,
parameterised by relative risk with respect to the FV genotype.

(c) Hayden at al. (2005) studied the Apoliprotein E (APOE) genotype in a large cohort
of subjects over age 65. This gene has three major alleles, ǫ2, ǫ3 and ǫ4, hence six
genotypes: ǫ2/ǫ2, ǫ2/ǫ3, ǫ2/ǫ4, ǫ3/ǫ3, ǫ3/ǫ4 and ǫ4/ǫ4. They fitted a logistic model
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Table 2: List of genes studied in Tan et al. (2001) labelled g = 1, 2, . . . , 12.

g Gene Sample Size g Gene Sample Size

1 Apob35 787 7 INS− 438
2 Apob39 787 8 INS+ 438
3 THO7 555 9 mtDNAhapl-J 547
4 THO8 555 10 mtDNAhapl-U 547
5 THO10 555 11 mtDNAstr-136 393
6 SOD2-T 354 12 mtDNAstr-138 393

(similar to a Cox model) parameterised by relative odds with respect to the most
common genotype, ǫ3/ǫ3.

In Section 2 we discuss how to simulate sampling distributions of annuity premiums
based on Cox and logistic models. In Section 3 we show selected results. We discuss the
implications in Section 4

2. Methods

2.1 The Cox Model
The Cox model is a semi-parametric multiplicative hazard regression model. Let t

be a suitable timescale (such as age). Individual i (i = 1, 2, . . . , n) has force of mortality
λi(t) of the form:

λi(t; Zi) = λ0(t) exp(β⊤Zi) (1)

where: Zi is a p-dimensional vector of covariates (risk factors) for individual i; λ0(t) is
the baseline force of mortality; and β is the p-dimensional vector of regression coefficients.
Usually β is estimated, and sometimes the baseline hazard λ0(t) as well. Here, exp(β⊤Zi)
defines the relative risk, denoted RRi for brevity.

The logistic regression model is of the form:

λi(t; Zi)

1 − λi(t; Zi)
=

λ0(t)

1 − λ0(t)
exp(β⊤Zi) (2)

in which exp(β⊤Zi) defines the relative odds. Denoting the latter ROi for brevity, con-
stant relative odds imply non-constant relative risks as follows:

RRi(t) =
λi(t)

λ0(t)
=

1

λ0(t)
×

λ0(t)
1−λ0(t)

ROi

1 + λ0(t)
1−λ0(t)

ROi

=
ROi

1 − λ0(t) + λ0(t) ROi

. (3)

Andersen et al. (1993) is a definitive reference on hazard regression models.

2.2 Baseline Hazards
Tan et al. (2001) used Italian population mortality statistics from 1994 as an initial

estimate of the baseline hazard, but their iterative estimation technique resulted in a
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different baseline hazard for males and females combined. A single baseline hazard was
required because they wished to model gene × sex interactions. They did not publish
their baseline hazard, so as a proxy, we used Italian male and female population mortality
in 1994 life tables available online to obtain a baseline hazard rate as follows:

λ0(t) =
lf (t) λf (t) + lm(t) λm(t)

lf (t) + lm(t)
(4)

where lf (t) and lm(t) are the standard life table functions for the expected numbers alive
at time t, for females and males respectively, assuming that lf (0) = lm(0).

For both Arking et al. (2005) and Hayden et al. (2005) we used as a baseline hazard
US life table data from 2000.

2.3 Sampling Distributions of Relative Risks and Premiums
The three studies provided slightly different parameter estimates, in all cases with

estimated variances or standard deviations.
(a) Tan et al. (2001) modelled each of the twelve genes separately, not all twelve simul-

taneously. For each gene g, they gave a relative risk estimate R̂Rg for females, plus

a gene × sex term R̂R
g×s

g , such that the relative risk for males was R̂Rg × R̂R
g×s

g .
(b) For each KLOTHO genotype g, Arking et al. (2005) gave the regression coefficient βg

(trivially equal to 1 for genotype FV), not distinguishing between males and females.

(c) For each APOE genotype g, Hayden et al. (2005) gave relative odds estimates R̂Og

for males and females.

Given a baseline hazard λ0(t), and a relative risk estimate R̂Rg(t) (either constant,
or from Equation (3)), it is simple to calculate the single premium for a whole-life annuity

of 1 per year, payable continuously; denote this P̂g. The notation emphasises that if we
knew the true relative risk RRg(t) we could compute the true premium rate denoted Pg,

but in practice we only obtain the point estimate P̂g. We could express the premium

rate as a function of the relative risk: Pg = f(RRg(t)) and through this relationship P̂g

inherits a sampling distribution from that of R̂Rg or R̂Og. This is our real target of
study. The simplest way to find it, given that f() is a somewhat complicated function, is

by simulating from the sampling distribution of R̂Rg or R̂Og.

Assuming the estimated parameter β̂g for gene or genotype g to be Normal (justified

asymptotically), exp(β̂g) is log-normal, with parameters µg and σg say. Hence, given R̂Rg

(in the Cox model) or R̂Og (in the logistic model) and its estimated standard deviation

S[R̂Rg] (S[R̂Og]) we can find µg and σg by equating first and second moments.
Then, repeated sampling from the approximate log-normal distribution will give us

a simulated sample from the sampling distribution of f(RRg(t)), the premium rate, as
required. In all cases we used 10,000 samples.
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3. Results

3.1 Premiums for Females Based on Tan et al. (2001)

The log-normal densities of R̂Rg for each gene g for females are shown in the left-
hand panels of Figures 1 and 2. For each of 10,000 samples from each distribution, we
calculated whole-life annuity premiums, for a female age 60 and force of interest δ = 0.05
per annum. The simulated sampling densities of these premiums (as a proportion of the
premium with RR = 1) are shown in the right-hand panels of Figures 1 and 2.

The most dispersed sampling (premium) distribution is that for a carrier of the INS−
gene (g = 7). This has a small sample size, 438, compared with (for example) Apob35,
with a sample size of 787. However the most uncertain premium estimates exist for those
genes that have an extreme relative risk estimate. For example, mtDNAstr-138 has the
smallest R̂Rg, 0.275, and its standard deviation is about average, but it produces a very

dispersed premium estimate. In other words, it is not necessarily S[R̂Rg] that dictates

S[P̂g], but also the magnitude of R̂Rg.
Table 3 presents some key statistics of the premium sampling distributions. In partic-

ular, we show some percentiles because they might have a rôle in deciding when a test for
a particular genotype might be regarded as a relevant and reliable indicator of increased
risk, given the available studies. We discuss such criteria briefly in Section 4.

3.2 Premiums for Males Based on Tan et al. (2001)
Tan et al. (2001) defined relative risks for males with respect to females, equivalent

to introducing a gene × sex interaction term. For example, suppose gene g halves female

risk (R̂Rg = 0.5) but has no effect on males. Then the interaction term, denoted R̂R
g×s

g ,

would be 2, so that overall the relative risk for males is R̂Rg × R̂R
g×s

g = 0.5 × 2 = 1.

If we assume: (a) that the sampling distributions of the R̂R
g×s

g are also log-normal;

and (b) that the estimates R̂Rg and R̂R
g×s

g are independent, given the data, then we

can easily find the sampling distributions of R̂Rg × R̂R
g×s

g , since the product of log-
normal(µ1, σ2

1) and log-normal(µ2, σ2
2) random variables is log-normal(µ1 + µ2, σ2

1 + σ2
2).

Assumption (a) may be reasonable, but independence is very unlikely, since given the
sampling distribution of the overall relative risk for males, any shift in the marginal
sampling distribution of R̂Rg is likely to be compensated for by an opposite shift in the

marginal sampling distribution of R̂R
g×s

g . However, there is nothing we can do about

this, lacking the sampling covariances of R̂Rg and R̂R
g×s

g . We can only comment that the
results for males may overstate the sampling variances and thus are more tentative than
the results for females.

In Figures 3 and 4 we show the log-normal sampling distributions of the relative risk
estimates in the left-hand panels, alongside the simulated densities of the single premium
for a male age 60 based on force of interest δ = 0.05 per annum. The premium sampling
distributions are generally more dispersed than those for females. This is consistent with
the fact that there were fewer male centenarians in the study. Some key statistics are
shown in Table 3.
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Figure 1: The log-normal densities of the relative risk estimates (left), and the empirical
densities of single premiums (right) for a whole-life annuity beginning at age 60 for female
carriers of genes g = 1, . . . , 6.
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Figure 2: The log-normal densities of the relative risk estimates (left), and the empirical
densities of single premiums (right) for a whole-life annuity beginning at age 60 for female
carriers of genes g = 7, . . . , 12.
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Table 3: The mean, standard deviation and quantiles of single premiums for a whole-life annuity for a female age 60 based on
a log-normal distribution of relative risk estimates. They are expressed as percentages of a baseline premium rate, taken to be
that for relative risk RR = 1.

Quantiles of the Premium Distribution
as a Percentage of the Baseline Premium

Sex Gene Mean St. Dev. 2.5th 5th 10th 25th 50th 75th 90th 95th 97.5th
% % % % % % % % % % %

Female Apob35 106.4 3.5 99.4 100.6 101.9 104.1 106.5 108.8 110.8 111.9 113.0
Apob39 116.2 4.9 106.0 107.7 109.8 113.0 116.4 119.7 122.3 124.0 125.2
THO7 93.4 4.0 85.3 86.7 88.3 90.8 93.5 96.2 98.6 99.9 101.0
THO8 101.1 5.1 90.8 92.5 94.6 97.9 101.3 104.6 107.5 109.2 110.6
THO10 108.6 3.1 102.5 103.4 104.7 106.6 108.7 110.7 112.5 113.5 114.5
SOD2-T 101.6 4.2 93.2 94.6 96.1 98.9 101.7 104.5 106.9 108.3 109.6
INS− 89.9 8.4 72.7 75.6 79.0 84.2 90.2 95.7 100.5 103.3 105.4
INS+ 106.5 3.6 99.4 100.5 101.9 104.2 106.6 109.0 111.1 112.3 113.2
mtDNAhapl-J 114.4 5.8 102.6 104.5 106.9 110.7 114.6 118.5 121.7 123.6 125.1
mtDNAhapl-U 90.2 5.3 79.7 81.5 83.3 86.6 90.3 93.9 97.0 98.6 100.3
mtDNAstr-136 105.0 7.3 89.8 92.5 95.3 100.3 105.3 110.1 114.1 116.5 118.5
mtDNAstr-138 125.3 9.4 104.2 108.3 112.7 119.8 126.7 132.3 136.1 137.9 139.3

Male Apob35 106.8 6.5 93.4 95.5 98.4 102.5 107.1 111.4 115.0 117.0 119.0
Apob39 105.2 14.7 73.6 79.1 85.6 96.0 106.5 115.9 123.4 127.5 130.0
THO7 99.3 6.2 86.6 88.8 91.3 95.3 99.5 103.6 107.1 109.2 110.9
THO8 110.2 5.3 99.4 101.1 103.2 106.8 110.4 113.9 116.8 118.5 120.0
THO10 103.1 5.9 91.1 93.1 95.3 99.1 103.3 107.3 110.5 112.3 113.9
SOD2-T 99.6 7.8 83.4 86.6 89.5 94.5 99.8 105.1 109.5 112.1 114.1
INS− 104.0 14.7 71.7 77.6 84.3 94.6 105.3 114.7 122.1 125.8 128.7
INS+ 99.4 7.6 84.3 86.7 89.4 94.3 99.5 104.6 109.0 111.4 113.6
mtDNAhapl-J 117.5 5.1 106.9 108.6 110.7 114.3 117.8 121.0 124.0 125.6 127.0
mtDNAhapl-U 86.2 11.6 62.4 66.3 71.2 78.5 86.5 94.4 101.2 104.8 107.8
mtDNAstr-136 106.3 9.3 86.9 90.3 94.2 100.2 106.6 112.8 117.9 120.7 123.1
mtDNAstr-138 125.0 8.0 107.1 110.8 114.5 120.1 125.9 130.8 134.4 136.1 137.6
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3.3 Premiums Based on Arking et al. (2005)
The sampling distributions of the relative risks and (by simulation) of annuity premi-

ums are shown in Figure 5. For brevity we omit the table of statistics. Both KLOTHO
genotypes are detrimental to survival (relative to the FV genotype) and therefore signifi-
cantly reduce premium rate estimates. As we would expect from such a small study (216
participants), the sampling distributions are very dispersed. However, these relative risks
have to be interpreted with caution. Being based on individuals over age 95, it is possible
that the detrimental effects may be limited to very elderly populations.

3.4 Premiums Based on Hayden et al. (2005)
Figure 6 shows the sampling distributions of premium rates (for a whole-life annuity

issued to a life aged 65, with force of interest δ = 0.05) for APOE genotypes ǫ2/ǫ2, ǫ2/ǫ3,
ǫ2/ǫ4, ǫ3/ǫ4 and ǫ4/ǫ4, relative to the premium rates in respect of the ǫ3/ǫ3 genotype.
These are based on 10,000 simulations from a log-normal sampling distribution of the
relative odds, using as baseline hazard rates US mortality from calendar year 2000. That
is, we attribute population mortality to carriers of the most common genotype, ǫ3/ǫ3.

The notable frailty genotypes seem to be ǫ2/ǫ2 and ǫ2/ǫ3 for females, and ǫ4/ǫ4 for
males. The genotype ǫ3/ǫ4 appears to be a frailty genotype in females but a longevity
genotype in males, while the opposite is the case for ǫ2/ǫ4.

4. Discussion and Conclusions

4.1 Acceptable Uncertainty
Relative risk or relative odds estimates are often published in epidemiological studies.

We have highlighted their sampling properties and the sampling distributions inherited
by premium rates based on them. Many of the genes in this study might at first sight
appear to be financially important; however the sampling distributions of the correspond-
ing premium rates introduce much more uncertainty. This kind of statistical information
is relevant to any consideration of using genotype information in insurance practice, for
example in the deliberations of the Genetics and Insurance Committee (GAIC) in the
UK.

GAIC was charged, by the UK Government, with ensuring that any use of genetic
test results by insurers would have a sound actuarial and scientific basis. To date, GAIC
has approved only one genetic test (for Huntington’s disease, in the case of life insurance).
GAIC will face difficult questions if it is required to review tests for more complex dis-
orders, whose results do not indicate an overwhelming increase or decrease in population
mortality, and as such sampling error should be taken into account. This is the case for
longevity genes. When presented with sampling distributions of relative premium rates,
GAIC will have to answer questions such as: what percentile of the premium rate sam-
pling distribution might justify the use of a test by insurers? (we call this an ‘acceptance
percentile’, but it is only one of many criteria that could be adopted). Such questions
may well arise as research into genes with modest effects on mortality and morbidity, by
current standards, enters the medical mainstream.

If an acceptance percentile were adopted as a criterion for the use of a genetic test,
the next question is: what premium loading should be applied? This question is probably
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Figure 3: The density curves of log-normally distributed relative risk estimates R̂Rg,

R̂R
g×s

g and R̂Rg × R̂R
g×s

g (left) and the empirical densities of single premiums (right) for
a whole-life annuity beginning at age 60 for male carriers of genes g = 1, . . . , 6.



Can Longevity Genes be Reliable Risk Factors for Annuity Pricing? 11

g=7

g=8

0 1 2 3 4
Relative Risk Estimate

0
1

2
3

4
D

en
si

ty

0 1 2 3 4
Relative Risk Estimate

0
1

2
3

4
D

en
si

ty

R̂Rg distribution

R̂Rg distribution

R̂R
g×s

g distribution

R̂R
g×s

g distribution

R̂Rg × R̂R
g×s

g distribution

R̂Rg × R̂R
g×s

g distribution

0.6 0.8 1.0 1.2 1.4 1.6
Premium Rate (as a percentage of that with relative risk RR=1)

0
5

10
15

D
en

si
ty

0.6 0.8 1.0 1.2 1.4 1.6
Premium Rate (as a percentage of that with relative risk RR=1)

0
5

10
15

D
en

si
ty

g=9

g=10

0 1 2 3 4
Relative Risk Estimate

0
1

2
3

4
D

en
si

ty

0 1 2 3 4
Relative Risk Estimate

0
1

2
3

4
D

en
si

ty

R̂Rg distribution

R̂Rg distribution

R̂R
g×s

g distribution

R̂R
g×s

g distribution

R̂Rg × R̂R
g×s

g distribution

R̂Rg × R̂R
g×s

g distribution

0.6 0.8 1.0 1.2 1.4 1.6
Premium Rate (as a percentage of that with relative risk RR=1)

0
5

10
15

D
en

si
ty

0.6 0.8 1.0 1.2 1.4 1.6
Premium Rate (as a percentage of that with relative risk RR=1)

0
5

10
15

D
en

si
ty

g=11

g=12

0 1 2 3 4
Relative Risk Estimate

0
1

2
3

4
D

en
si

ty

0 1 2 3 4
Relative Risk Estimate

0
1

2
3

4
D

en
si

ty

R̂Rg distribution

R̂Rg distribution

R̂R
g×s

g distribution

R̂R
g×s

g distribution

R̂Rg × R̂R
g×s

g distribution

R̂Rg × R̂R
g×s

g distribution

0.6 0.8 1.0 1.2 1.4 1.6
Premium Rate (as a percentage of that with relative risk RR=1)

0
5

10
15

D
en

si
ty

0.6 0.8 1.0 1.2 1.4 1.6
Premium Rate (as a percentage of that with relative risk RR=1)

0
5

10
15

D
en

si
ty

Figure 4: The density curves of log-normally distributed relative risk estimates R̂Rg,

R̂R
g×s

g and R̂Rg × R̂R
g×s

g (left) and the empirical densities of single premiums (right) for
a whole-life annuity beginning at age 60 for male carriers of genes g = 7, . . . , 12.
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Figure 5: The density curves of log-normally distributed relative risk estimates (left), and
the empirical densities of single premiums (right) for a whole-life annuity beginning at
age 60 for carriers of KLOTHO FF and VV genotypes.

beyond GAIC’s remit, and would be left to individual insurers, who would be allowed to
take into consideration their different risk tolerances and underwriting practices.

4.2 Acceptance Percentiles
As an example of how ‘acceptance percentiles’ might contribute to such decisions as

described above, Table 4 shows which genotypes might be regarded as having a significant
impact at a 75%, 90%, 95% and 97.5% level, based on percentiles from Tables 3 and the
equivalent tables for KLOTHO and APOE genotypes (not shown). Note that upper or
lower percentiles are used, depending on whether a gene is a candidate longevity gene or
a candidate frailty gene.

If the criterion of a one-tailed 97.5% confidence interval (of annuity prices) were
adopted (implying very low uncertainty) then, among the genes considered by Tan et
al. (2001), for females, four ‘longevity’ gene variants would appear to be important:
Apob39, THO10, mtDNAhapl-J and mtDNAstr-138. For males, there would be only
two: mtDNAhapl-J and mtDNAstr-138. Tan et al. (2001) estimated the frequency of
these genes in the Italian population: Apob39 and THO10 are both common (frequency
≈ 30–40%) whereas mtDNAhapl-J and mtDNAstr-138 are relatively rare (frequency ≈

1–5%). Therefore, in the scenario of widespread genetic testing the genes Apob39 and
THO10 could lead to large-scale segmentation of the annuity market (always supposing
that results based on an Italian population generalise to other populations).

The APOE genotype is arguably more important. Commercial testing for APOE
genotype is readily available and Hayden et al. (2005) is only one of many research teams
that have confirmed its rôle in longevity. Most APOE genotypes are frailty genotypes
that act to reduce annuity premiums (relative to the ǫ3/ǫ3 norm).

Our methodology is not confined to genetic risk. Indeed we are surprised that it has
taken genetic risk to draw attention to sampling issues in actuarial estimates based on
epidemiological and medical studies. Consideration of premium rate sampling error would
seem to be an elementary extension from professional statistical practice to professional
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Figure 6: The empirical densities of whole-life annuities for a female (top) and a male
(bottom) beginning at age 65, for APOE genotypes ǫ2/ǫ2, ǫ2/ǫ3, ǫ2/ǫ4, ǫ3/ǫ4, and ǫ4/ǫ4
relative to the annuity cost of a ǫ3/ǫ3 genotype carrier.
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Table 4: A list of all genes/genotypes studied, and whether they are significant at a 75%,
90%, 95% or 97.5% level. A ✓ represents a significant gene/genotype and a ✗ represents
a non-significant gene/genotype. The phenotype is the observable manifestation of the
gene/genotype, this is either frailty or longevity.

Gender Gene/Genotype 75% 90% 95% 97.5% Phenotype

Female Apob35 ✓ ✓ ✓ ✗ Longevity
Apob39 ✓ ✓ ✓ ✓ Longevity
THO7 ✓ ✓ ✓ ✗ Frailty
THO8 ✗ ✗ ✗ ✗ Longevity
THO10 ✓ ✓ ✓ ✓ Longevity
SOD2-T ✗ ✗ ✗ ✗ Longevity
INS- ✓ ✗ ✗ ✗ Frailty
INS+ ✓ ✓ ✓ ✗ Longevity
mtDNAhapl-J ✓ ✓ ✓ ✓ Longevity
mtDNAhapl-U ✓ ✓ ✓ ✗ Frailty
mtDNAstr-136 ✓ ✗ ✗ ✗ Longevity
mtDNAstr-138 ✓ ✓ ✓ ✓ Longevity
APOE ǫ4/ǫ4 ✓ ✓ ✓ ✓ Frailty
APOE ǫ3/ǫ4 ✓ ✓ ✓ ✓ Frailty
APOE ǫ2/ǫ4 ✗ ✗ ✗ ✗ Longevity
APOE ǫ2/ǫ3 ✓ ✗ ✗ ✗ Frailty
APOE ǫ2/ǫ2 ✓ ✓ ✓ ✗ Frailty

Male Apob35 ✓ ✗ ✗ ✗ Longevity
Apob39 ✗ ✗ ✗ ✗ Longevity
THO7 ✗ ✗ ✗ ✗ Frailty
THO8 ✓ ✓ ✓ ✗ Longevity
THO10 ✗ ✗ ✗ ✗ Longevity
SOD2-T ✗ ✗ ✗ ✗ Frailty
INS- ✗ ✗ ✗ ✗ Longevity
INS+ ✗ ✗ ✗ ✗ Frailty
mtDNAhapl-J ✓ ✓ ✓ ✓ Longevity
mtDNAhapl-U ✓ ✗ ✗ ✗ Frailty
mtDNAstr-136 ✓ ✗ ✗ ✗ Longevity
mtDNAstr-138 ✓ ✓ ✓ ✓ Longevity
APOE ǫ4/ǫ4 ✓ ✗ ✗ ✗ Frailty
APOE ǫ3/ǫ4 ✗ ✗ ✗ ✗ Longevity
APOE ǫ2/ǫ4 ✓ ✓ ✗ ✗ Frailty
APOE ǫ2/ǫ3 ✓ ✓ ✓ ✓ Frailty
APOE ǫ2/ǫ2 ✓ ✓ ✓ ✓ Frailty

Both KLOTHO FF ✓ ✓ ✓ ✓ Frailty
KLOTHO VV ✓ ✓ ✓ ✓ Frailty



Can Longevity Genes be Reliable Risk Factors for Annuity Pricing? 15

actuarial practice.
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