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abstract

Hereditary Nonpolyposis Colorectal Cancer (HNPCC) is characterised by the familial ag-
gregation of cancer of the colon and rectum (CRC). It may be caused by any of five mutations
in DNA mismatch repair (MMR) genes or by non-genetic factors, such as life style. However, it
accounts for only about 2% of CRC, which is a very common cancer. Previous actuarial models,
of diseases with only genetic causes, assumed that a family history of the disease shows muta-
tions to be present, but this is not true of HNPCC. This is a significant limitation, since the best
information available to an underwriter (especially if the use of genetic test results is banned)
is likely to be knowledge of a family history of CRC. We present a Markov model of CRC and
HNPCC, which includes the presence of a family history of CRC as a state, and estimate its
intensities allowing for MMR genotype. Using this we find the MMR mutation probabilities for
an insurance applicant with a family history of CRC. Our model greatly simplifies the inten-
sive computational burden of finding such probabilities by integrating over complex models of
hidden family structure. We estimate the costs of critical illness insurance given the applicant’s
genotype or the presence of a family history. We then consider what the cost of adverse selec-
tion might be, if insurers are unable to use genetic tests or family history information. We also
consider the effect of using alternative definitions of a family history in underwriting.
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1. Introduction

1.1 Genetic Testing, Family History and Insurance

Before genetic testing was developed, the only basis for suspecting that a disease might
be genetic in origin was a tendency of cases to cluster within families. Epidemiologists
and insurance underwriters were both interested in such ‘family histories’, but neither had
any more evidence. Now, genetic testing has identified many of the genes in which errors,
called mutations, may cause disease. The simplest cases arise when a mutation in a single
gene can cause disease, called the ‘single-gene disorders’. We may divide the single-gene
disorders into two groups, which are significantly different for actuarial purposes:
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(a) Some are purely genetic in origin; the disease has no known cause except defects
in particular genes. Huntington’s disease (HD) and adult polycystic kidney disease
(APKD) are examples.

(b) Others are common diseases, of which some but not all cases are linked to mutations
in single genes. Most important are breast cancer (BC) and ovarian cancer (OC),
where 5–10% of cases are caused by mutations in the BRCA1 and BRCA2 genes,
and colorectal cancer (CRC), where an inherited form called hereditary nonpolyposis
colorectal cancer (HNPCC) is responsible for up to 5% of cases (see Section 2.3).

The difference matters because regulators or governments in several jurisdictions have
limited the use that insurers may make of genetic information. These moratoria (we
will call them such, even if the legal form they take is an outright ban) nearly all forbid
the use of adverse genetic test results, sometimes with exceptions for very large policies.
Therefore the question: “what is the appropriate premium rate for a known carrier of a
given mutation?” is only applicable, in practice, in these exceptional cases. Moratoria in
some countries (for example Sweden) also ban the use of family histories, but in others
(for example the UK) insurers are free to use family histories. Thus, the most important
practical question is: “what is the appropriate premium rate for a person with a given
family history of a genetic disorder?”. A necessary step in answering this is to estimate
the probabilities:

P[ Applicant carries a causative mutation | Family history ]. (1)

This is simplest if the disease is purely genetic in origin, for all the family members
who have the disease must carry the mutation, and Mendel’s laws let us find the above
probabilities, usually quite easily. We may reasonably assume that ‘family history’ means
an affected parent (this covers most cases), and partition the population into three groups:
(a) Persons with an affected parent, who have themselves inherited the mutation.
(b) Persons with an affected parent, who have themselves not inherited the mutation.
(c) Persons with no family history, who we assume are not at risk of the disease.

The combination of rarity and dominant inheritance means that if the mutation affects
a proportion p of the population, the proportions in these three groups at birth are p, p
and 1 − 2p, respectively, from which initial condition we can find the proportions when
the applicant is any age x. Thus we can weight the expected present values (EPVs)
of insurance cashflows according to the probabilities (1). This model has been used to
study HD (Gutiérrez and Macdonald, 2004), APKD (Gutiérrez and Macdonald, 2003)
and early-onset Alzheimer’s disease (Gui and Macdonald, 2002).

But if a small subset of a common disease originates in single-gene defects, affected
family members need not carry a causative mutation, and a family history could arise
wholly or partly by chance. (Cases in the absence of defective genes are called ‘pheno-
copies’ or ‘sporadic cases’.) Then the population may not be partitioned as above, and
the probabilities (1) are not simple to find. Moreover, the following complications arise.
(a) Mutations may not cause disease in all who carry them (called ‘incomplete pene-

trance’).
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(b) The same disease may be caused by defects in any of several genes. For example,
breast cancer may be caused by defects in the BRCA1 or BRCA2 genes.

(c) Defects in a gene may cause more than one disease. For example, mutations in
BRCA1 can cause breast or ovarian cancer.

(d) Defects at different points in the same gene may present different risks of the disease.

Previous researchers have modelled BC/OC (Lemaire et al., 2000; Subramanian et al.,
1999). In particular Macdonald et al. (2003a,b) calculated the probability that a BRCA1
or BRCA2 mutation was present in a woman applying for critical illness (CI) insurance,
based on a specific family history of BC/OC at the time of application. The family
histories modelled included affected mother, aunts and sisters. This model was limited in
some respects however:
(a) The family histories were more typical of those collected by clinicians than by un-

derwriters. An insurance proposal form usually asks only about first-degree relatives
(FDRs); that is, parents and siblings. Obtaining accurate information is not trivial.

(b) The family histories were static, not dynamic, in nature. For example, suppose a
woman age x applied for insurance having two affected sisters. The development of
the family history over time was ignored, so it was not known if, say, only one sister
had been affected when the applicant was age x − 1, and it was the recent onset in
respect of her second sister that had influenced her decision to buy insurance. Thus
the model was limited in its approach to measuring adverse selection.

(c) The approach was computationally very intensive, as all unknown factors about the
family had to be integrated out in a high-dimensional application of Bayes’ theorem.

This paper has two main aims. First, to parameterise a model of the onset of CRC
in general, and HNPCC in particular. This is the first actuarial study of HNPCC, one
of the most common single-gene disorders. Second, to introduce a new dynamic model
of family history which is not limited to purely genetic disorders, and will allow family
history underwriting and adverse selection to be modelled in a simple way, similar to that
described above in respect of purely genetic disorders. In another paper we will apply the
same model to BC and OC.

1.2 Colorectal Cancer and HNPCC

In the UK, CRC is the second commonest cancer affecting women (after BC) and
the third most common cancer in men (after prostate and lung cancer); more than 35,000
people are diagnosed with CRC every year. It can be sporadic or hereditary, and the
hereditary forms, of which HNPCC is one, together account for about 10% of cases.

The ‘nonpolyposis’ in HNPCC means that there are few if any polyps (small pre-
cancerous growths) in the colon. This is also true of most sporadic CRCs, so HNPCC
is not easily distinguished from sporadic CRC by clinical signs alone. It is caused by
mutations in any one of the DNA mismatch repair (MMR) genes MLH1, MSH2 MSH6,
PMS1 and PMS2. These mutations may also cause cancer of the endometrium and other
organs.

In Section 2, we describe the genetic basis of HNPCC and the rôle of the MMR genes.
A model of HNPCC is presented in Section 3 and transition intensities and CI premium
rates (for known mutation carriers) are estimated in Sections 4 and 5, respectively.
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1.3 A Dynamic Family History Model

Suppose a person X has a father with HD. Then no other information, except a
genetic test result, will change the probability that that X carries a HD mutation. In
effect, we make the simplification:

Family history = Affected parent.

However, if X’s father has had CRC, it might be hereditary or sporadic. Then other
information does matter; for example, whether X has a sister who has had CRC, or has
ten older brothers who have not had CRC. We cannot make the simplification above.
But we note that it amounts to turning the presence of a family history into a question
with a ‘yes’ or ‘no’ answer: is either parent affected or not? Insurance underwriters to
some extent do the same, by setting thresholds below which a family history is deemed
unimportant, and above which it matters. In the example before, a woman had one
affected sister at age x − 1, but by age x she had two. If the relevant threshold for
underwriting was ‘two or more affected FDRs’, then she crossed that threshold between
age x− 1 and age x. This suggests that, given an explicit definition of family history, we
can model its appearance as an event, or a transition between states, along with all the
other transitions in the model. Then, we partition the population in the following way:
(a) Persons in a family in which the mutation is present, who do themselves carry it.
(b) Persons in a family in which the mutation is present, who do not themselves carry it.
(c) Persons in a family in which the mutation is not present, who cannot carry it.

This is not the same as the partition mentioned in Section 1.1. There, the presence or
absence of a family history defined the partition. Here, a family history may appear
— the underwriting threshold may be crossed — in any of the three groups, it is the
presence or absence of mutations, in the family and in the applicant, that determines
the partition. Each person’s actual risk depends solely on whether or not they carry the
mutation, therefore on the group they are in, as before. But now their risk of developing
a family history also depends on which group they are in, in a dynamic way.

To implement the model, we need to estimate the probability that a family history
has appeared by any age x, in each group; in other words, the distribution of the random
time until onset of family history. This requires: a model of onset of HNPCC; a model
of family structure; and an underwriting criterion for a family history to have developed.
From the distribution, we obtain a transition intensity between states ‘No Family History’
and ‘Family History’ in a Markov or semi-Markov model of a person’s life history. This is
described in Sections 6 and 7. The chief problem is that the insurance underwriter usually
does not know about unaffected family members, so as in Macdonald et al. (2003a,b) we
use the model of family structure to integrate that information out. The computational
burden of this approach was mentioned above, but here it matters less because it need
only be done once in order to find the intensity of onset of a family history.

With the paremterised model, we find CI insurance premiums based on a family
history of CRC in Section 8, and estimate the cost of adverse selection in a market with
moratoria in Section 9. Our conclusions are in Section 10.
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2. The Genetic Basis of HNPCC

2.1 Defining HNPCC Clinically

Before the genetic basis of HNPCC was identified, the disease was recognised by
familial aggregation of CRCs that had an early age of onset, an excess of primary tumours
(often multiple) located in the proximal colon, and an excess occurrence of cancers in
certain other organs, in particular the endometrium. See Warthin (1913); Lynch and
Krush (1971); Boland and Troncale (1984) for a brief history of the diagnosis of HNPCC.

Criteria to provide uniform diagnoses were developed by the International Collabo-
rative Group on HNPCC in Amsterdam in 1991 (Vasen et al., 1991). The Amsterdam
criteria have three major requirements:
(a) histologically verified CRC in three or more relatives, one of whom is a first-degree

relative of the other two;
(b) CRC in at least two generations; and
(c) one or more CRC cases diagnosed before age 50.

Recent developments suggest that the Amsterdam criteria are too restrictive, and
underestimate the prevalence of HNPCC. They ignore extracolonic cancers, and small
families rarely meet them. Improved criteria have been proposed, such as the modified
Amsterdam criteria (Bellacosa et al., 1996) and Bethesda criteria (Rodriguez-Bigas et al.,
1997), see also Mitchell et al. (2002). Note, however, that even the original Amsterdam
criteria demand more information than is usually obtained by an insurance underwriter.

The average age at diagnosis of first CRC in HNPCC patients is 44 years. Lynch and
Smyrk (1996) suggested that a patient younger than 45 years should prompt a careful
perusal of family history and probably genetic testing.

2.2 HNPCC Genes

Here we summarise briefly the detailed account given in Lu (2006). By 1993, linkage
studies had identified HNPCC genes on chromosomes 2 and 3, which led Ionov et al.

(1993) and Thibodeau et al. (1993) to observe that some tumours have microsatellite
instability, a form of error in DNA replication not present in normal tissue. Peltomaki
et al. (1993), Aaltonen et al. (1993) and later Liu et al. (1996) found that most CRCs from
HNPCC patients showed microsatellite instability. This suggested that HNPCC might
be caused by mutations in DNA mismatch repair (MMR) genes responsible for correcting
faults in DNA replication.

Much evidence proved that more than one gene contributes to DNA mismatch re-
pair and the HNPCC syndrome could be associated with mutations of any one of them.
Mutations of five genes, namely MSH2, MLH1, PMS1, PMS2, MSH6, have so far been
identified to be responsible for most cases of HNPCC.

Microsatellite instability is seen in sporadic CRC as well but only accounts for 10%–
15% of cases (Lynch and Smyrk, 1996; Marra and Boland, 1995). Risinger et al. (1993)
found microsatellite instability in 17% of sporadic endometrial cancers and endometrial
cancers from HNPCC kindreds.
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2.3 The Frequency of HNPCC and of MMR Mutations

We can estimate the frequency of HNPCC by combining estimates of the prevalence
of CRC and the proportion of CRC due to HNPCC. Lu (2006) gives details of many
studies into the frequency of HNPCC, which we omit for brevity. We have chosen to
follow Aaltonen et al. (1998), who found that 2% of all CRC patients in Finland have
HNPCC mutations. The Finnish Cancer Registry also found the risk of CRC by age 85
is 5% in the general population. This suggests that the population frequency of HNPCC
is 1/1000, which we take as our assumption.

MLH1 and MSH2 mutations account for 90% of all HNPCC cases (Lynch and de la
Chapelle, 2003), and we assume: (a) that they have roughly equal frequencies (consistent
with the results of Vasen et al. (2001) that we use later); and (b) that the other minor
MMR mutations have similar prognoses to those of MLH1 and MSH2 mutations. The
penetrance of CRC in respect of MLH1 and MSH2 mutation carriers is estimated at about
65% and 70% by age 75 years, therefore we model all HNPCC mutations approximately
by assuming that the population frequencies of these two mutations are 0.0005/0.65 =
0.000769 and 0.0005/0.7 = 0.000714 respectively.

3. A Model for HNPCC and Critical Illness Insurance

We represent the life history of a critical illness (CI) policyholder by the Markov model
in Figure 1. The onset of an HNPCC associated cancer (CRC, endometrial cancer (EC,
females only), or other extracolonic cancers) will trigger payment of the benefit. The
policyholder is also at risk of other critical illnesses which include heart attack, stroke
and other cancers not associated with HNPCC. We use g to denote genotype, and the
transition intensity µgjk

x represents the transition rate between states gj and gk at age x,
in respect of a person with genotype g.

Let tp
gjk
x denote the probability of being in state gk at age x+ t conditional on being

in state gj at age x (we call this a ‘transition probability’), and let OPgj
x be the probability

of being in state gj at age x (we call this an ‘occupancy probability’). We obtain these
probabilities by solving numerically the Kolmogorov forward equations.

Also, let tV
gj
x be the expected present value (EPV) of the future discounted loss at

age x+ t, conditional on being in state gj at age x (that is, the prospective policy value).
We obtain these by solving numerically Thiele’s differential equations.

See Hoem (1988) for details of these differential equations. To solve them, we used a
Runge-Kutta algorithm with step-size 0.0005 years, and (in Thiele’s equations) a force of
interest 0.05 per year.

4. Estimating Onset Rates of HNPCC Associated Cancers

4.1 The Data

In two related papers, Vasen et al. (1996, 2001) studied the onset of HNPCC based
on data collected from the Netherlands HNPCC registry. From January to July 2000, 193
families were registered, of which 116 met the original or modified Amsterdam criteria
while 77 were suspected of HNPCC. Cancer diagnosis was verified by medical or pathologic
reports. Mutation analysis was performed in respect of the members of all these families.
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Figure 1: Model 1: A model of HNPCC and critical illness insurance, given exact genotype
labelled g. (*Females only.)

Besides these Dutch families, 58 Norwegian families, also suspected of HNPCC, were
investigated by mutation analysis.

Based upon the mutation analysis, the families with various MMR gene mutation
were distinguished from families with no such mutation, but which met the original or
modified Amsterdam criteria. Three groups of individuals were regarded as mutation
carriers:
(a) putative carriers, who had CRC or EC, but excluding proven non-carriers;
(b) relatives identified as carrying a mutation; and
(c) obligate carriers, based on their position in the pedigree.

Table 1 shows the cumulative risks of CRC and EC, calculated using Kaplan-Meier
methods, extracted from the graphs in Vasen et al. (2001), and Table 2 shows the cumu-
lative risks of other cancers cited by Vasen et al. (2001).

4.2 Onset of Colorectal Cancer

The age-related cumulative risk (penetrance), denoted F (x), can be regarded as the
probability of developing a cancer by age x, if we assume there were no other causes of
decrement. Given estimates of these probabilities, we fit smooth functions to them, or
their logit transformation, by unweighted least squares. The rate of onset (hazard rate),
µ(x), is then given by:

µ(x) =
F ′(x)

1 − F (x)
(2)

and can be computed by analytical or numerical differentiation.
We fitted a polynomial function to the logit transforms of the non-zero values in each

column in Table 1. The fitted functions were extrapolated to the ages where values were
zero or unavailable. Equations (3) and (4) give the fitted penetrances of CRC, for male
and female MLH1 mutation carriers respectively and Equations (5) and (6) for male and
female MSH2 mutation carriers. Figure 2 illustrates the observed and fitted probabilities
and the hazard rates derived from them.
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Table 1: Cumulative risks (%) of developing colorectal cancer (CRC) or endometrial
cancer (EC, females only) by age for carriers of MLH1 or MSH2 mutations, given sex and
type of mutation. (Source: Vasen et al. (2001).)

MLH1 Mutation MSH2 Mutation
Sex M F F M F F

Cancer CRC CRC EC CRC CRC EC
Age % % % % % %

20 0.0 0.0 0.0 0.0 0.0 0.0
25 0.0 0.0 0.0 2.4 0.7 0.7
30 6.9 5.7 0.0 6.0 1.9 1.2
35 14.9 11.2 0.0 13.6 2.6 2.7
40 20.0 16.9 2.4 28.6 11.7 5.0
45 29.2 26.3 5.4 40.5 12.6 8.9
50 43.1 30.4 11.6 56.1 34.1 20.0
55 51.0 40.0 19.8 63.3 47.1 24.5
60 55.9 45.1 24.6 70.5 49.1 35.0
65 55.9 51.2 24.6 73.2 51.5 37.3
70 64.9 54.1 24.6 73.2 54.1 37.3

Table 2: Cumulative risks (%) of developing other extracolonic cancers by age (years) in
carriers of MLH1 or MSH2 mutations. A 95% confidence interval for the life time risk is
also shown. Source: Vasen et al. (2001).

MLH1 mutation MSH2 mutation
Age 40 50 60 70 95%CI 40 50 60 70 95%CI

% % % % % % % % % %

Stomach 0.0 0.4 2.1 2.1 0.0–4.7 0.7 1.2 4.3 4.3 0.5–8.1
Urinary Tract 0.0 0.0 0.0 1.3 0.0–3.9 0.4 1.5 5.4 12.0 3.5–20.0
Small Bowel 0.0 0.7 4.0 7.2 1.5–12.9 0.8 1.2 4.5 4.5 0.5–8.5
Ovary 0.6 2.3 3.4 3.4 0.0–6.8 1.7 6.4 10.4 10.4 3.2–17.6
Brain 0.0 0.0 0.0 0.0 — 1.2 1.2 1.2 1.2 0.0–2.6



A Dynamic Family History Model of HNPCC and Critical Illness Insurance 9

20 30 40 50 60 70

0.
0

0.
2

0.
4

0.
6

0.
8

age

cu
m

ul
at

iv
e 

ris
k

Male MLH1
Female MLH1
Male MSH2
Female MSH2

20 30 40 50 60 70

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

age

ha
za

rd
 r

at
e

Male MLH1
Female MLH1
Male MSH2
Female MSH2

Figure 2: The observed and fitted probability (top) and rate of onset (bottom) of colorectal
cancer for male and female MLH1 or MSH2 mutation carriers. Data: Vasen et al. (2001).
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F (x)CRC
MLH1.m = 0.3406 − 0.039040x+ 0.001294x2 − 0.000009611x3 (22 ≤ x ≤ 70). (3)

F (x)CRC
MLH1.f = 0.2193 − 0.02570x+ 0.0008584x2 − 0.000006075x3 (23 ≤ x ≤ 70). (4)

F (x)CRC
MSH2.m =

exp(−10.92 + 0.3512x− 0.002579x2)

1 + exp(−10.92 + 0.3512x− 0.002579x2)
(20 ≤ x ≤ 68). (5)

F (x)CRC
MSH2.f =

exp(−12.36 + 0.3498x− 0.002421x2)

1 + exp(−12.36 + 0.3498x− 0.002421x2)
(20 ≤ x ≤ 70). (6)

We assume that F (x)CRC
MLH1.m = 0 below age 22 and F (x)CRC

MLH1.f = 0 below age 23.

4.3 Onset of Endometrial Cancer and Extracolonic Cancers

The risk of endometrial cancer (EC) among female mutation carriers is much less than
the risk of CRC (the life-time risk is less than 40%). We fitted the penetrance functions
shown in Equations (7) and (8) for MLH1 and MSH2 mutation carriers, respectively. The
observed and fitted penetrances and the rates of onset are illustrated in Figure 3.

F (x)EC
MLH1 =

exp(−17.78 + 0.4975x− 0.003655x2)

1 + exp(−17.78 + 0.4975x− 0.003655x2)
(20 ≤ x ≤ 65). (7)

F (x)EC
MSH2 =

exp(−4.307 − 0.1973x+ 0.008763x2 − 7.432 × 10−5x3)

1 + exp(−4.307 − 0.1973x+ 0.008763x2 − 7.432 × 10−5x3)
(20 ≤ x ≤ 65).

(8)
MMR mutation carriers may be at higher risk than non-carriers of developing ex-

tracolonic cancers. Table 2 presents these risks in respect of type of cancer and type of
mutation. The penetrances are relatively small, compared with those of CRC and EC.

Equations (9) and (10) show fitted penetrances of extracolonic cancers for male and
female MLH1 mutation carriers respectively and Equations (11) and (12) for male and
female MSH2 mutation carriers. Figure 4 illustrates the observed and fitted penetrances
and the onset rates.

FOECC
MLH1.m(x) =

exp(−30.6539 + 0.8128x− 0.0058x2)

1 + exp(−30.6359 + 0.8128x− 0.0058x2)
20 ≤ x ≤ 70. (9)

FOECC
MLH1.f (x) =

exp(−18.76 + 0.4747x− 0.003334x2)

1 + exp(−18.76 + 0.4747x− 0.003334x2)
20 ≤ x ≤ 70. (10)
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Figure 3: The observed and fitted probability (top) and rate of onset (bottom) of endome-
trial cancer (EC) for MLH1 and MSH2 mutation carriers. Data: Vasen et al. (2001).
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Table 3: Cumulative risks (%) of developing any one of the five extrocolonic cancers for
MLH1 or MSH2 mutation carriers. The cancers include cancer of: stomach, urinary tract,
small bowel, ovary (female only) and brain.

MLH1 Mutation MSH2 Mutation
Age 40 50 60 70 40 50 60 70
Male Risk 0.0% 1.10% 6.02% 10.33% 3.07% 5.00% 14.58% 20.54%
Female Risk 0.6% 3.37% 9.21% 13.38% 4.71% 11.08% 23.46% 28.8%

FOECC
MSH2.m(x) =

exp(29.80 − 2.014x+ 0.039x2 − 0.00023x3)

1 + exp(29.80 − 2.014x+ 0.039x2 − 0.00023x3)
42 ≤ x ≤ 65. (11)

FOECC
MSH2.f (x) =

exp(−10.45 + 0.2501x− 0.001618x2)

1 + exp(−10.45 + 0.2501x− 0.001618x2)
20 ≤ x ≤ 70. (12)

Below age 42, the intensity corresponding to FOECC
MSH2.m(x) is extrapolated linearly to zero

at birth.

4.4 Population Risk of CRC and EC

Point estimates of rates of onset of CRC and EC in the population were given by:

No. of cases of onset at age x

Person-years exposed to risk at age x

based on the National Cancer Statistics in England and Wales in 1988–1992, and the
corresponding population totals. We fitted the following beta functions to the onset rates
of CRC for both males and females, on the age range 0–89 years, using weighted least
squares, with the exposures as convenient weights.

µCRC
pop.m(x) = 0.001400

Γ(10.196)

Γ(8.196)Γ(2)

(

80x

892

)7.196(

1 −
80x

892

)

(13)

µCRC
pop.f (x) = 0.001092

Γ(8.207)

Γ(6.742)Γ(1.465)

(

80x

892

)5.742(

1 −
80x

892

)0.465

. (14)

In the case of EC, we fitted an exponential function up to age 54 (but assumed to be
zero before age 20) and a polynomial beyond age 57, blended linearly between these ages.

µEC
pop(x) =

{

exp(−17.32 + 0.09261x+ 0.004273x2 − 5.200 × 10−5x3) 20 ≤ x ≤ 54
−4.665 × 10−4 + 2.446 × 10−5x− 1.555 × 10−7x2 57 ≤ x ≤ 89

(15)
These rates are illustrated in Figure 5.
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Table 4: Level net premiums for a unit sum assured for level CI cover for persons with
a known gentotype. The premium rates for known mutation carriers are presented as a
percentage of the premium for non-carriers (standard risks).

Age at Policy Non-carrier MLH1 carrier MSH2 carrier
Entry Term Males Females Males Females Males Females

% % % %

20 10 0.00031 0.00054 2,040 992 1,996 674
20 0.00062 0.00089 1,727 1,068 2,095 905
30 0.00122 0.00145 1,101 903 1,457 922
40 0.00212 0.00214 716 709 918 746

30 10 0.00112 0.00148 1,662 1,169 2,289 1,085
20 0.00218 0.00241 1,033 950 1,613 1,058
30 0.00370 0.00353 680 743 972 848

40 10 0.00399 0.00398 774 875 1,342 1,167
20 0.00653 0.00576 530 696 837 927

50 10 0.01113 0.00892 409 604 549 842

5. Critical Illness Insurance Premiums by Genotype

Using the intensities obtained in Section 4, we calculate the level premium for a £1
sum assured under a CI insurance contract for an identified MMR mutation carrier, for
various terms and entry ages.

The rates of developing other critical illnesses is based on the model described in
Gutiérrez and Macdonald (2003) and we refer readers there for details. The rate of
mortality is based on the English Life Tables No. 15 adjusted to exclude deaths which
follow a CI insurance claim.

Table 4 shows examples of the premium rates for a unit sum assured for a healthy
person whose genotype is known. The standard premium rate is assumed to be that for
non-carriers, and it is shown while the premium rates for mutation carriers are presented
as a percentage of those standard premium rates. The extra premiums are 4 to 23 times
the basic premium. Note that most insurers would decline the application should the
extra premium be 200% to 250% higher than the basic premium.

We can find other features in Table 4:
(a) The premium rates are more sensitive to entry age than to policy term.
(b) In the case of male MLH1 carriers, a lower entry age results in a larger extra premium

than does a higher entry age. The extra premium for a 20-year policy on entry at age
20 is 17 times the basic premium, compared with 5 times at entry age 40.

(c) Female MSH2 mutation carriers would be charged much lower premiums than male
carriers at low entry ages with short terms, because the rate of onset of CRC for
males is about two or more times that for females before age 40. After age 40, the
onset of EC results in roughly the same overall risk of cancer for both sexes.
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Table 5: Subpopulations defined by an insurance applicant’s own genotype and any mu-
tation present in their family.

Mutation Present Mutation Carried Applicant’s
Subpopulation in Family by Applicant Genotype

i = 1 None None gi = 1
i = 2 MLH1 MLH1 gi = 2
i = 3 MLH1 None gi = 1
i = 4 MSH2 MSH2 gi = 3
i = 5 MSH2 None gi = 1

6. A Model of Family History of HNPCC

6.1 Family History Does Not Always Reveal the Presence of a Mutation

In practice it is unlikely that insurers would learn an applicant’s genotype, and pos-
sibly illegal to use that information anyway. The most they might learn is that there is
a history of disease among the (healthy) applicant’s first-degree and (less likely) second-
degree relatives. If the disease has no cause except mutations in a single gene, Mendel’s
laws then govern the applicant’s chances of carrying the mutation. But non-carriers of
MMR mutations can also develop CRC, EC and other extracolonic cancers, so the ap-
plicant’s MMR genotype probabilities, given a family history of these cancers, are not
determined by Mendel’s laws alone. However, these genotype probabilities are clearly the
correct basis for underwriting. In Section 7 we will present a method for estimating these
probabilities. The model on which this method is based is set out in the next section.

6.2 Modelling Onset of Family History

Based on our genotype model in Figure 1, we partition the population into five groups
or subpopulations, labelled by the letter i, according to the combination of the person’s
own genotype and, in groups 2–5, the presence of a specific mutation in their family; see
Table 5. The genotype of an applicant in Subpopulation i is denoted gi, and these values
are also shown in Table 5. We make the following assumptions.
(a) Persons in all five subpopulations are at risk of CRC and (females only) EC.
(b) A person’s risk of CRC or EC depends only on their own genotype; the rates of onset

are as estimated in Section 4. Given the genotype, the family history is irrelevant.
(c) The proportion of the population in Subpopulations 2 and 4 are given by the popula-

tion mutation frequencies, which we took to be 0.000769 and 0.000714, respectively.
(d) A child of a mutation carrier has probability 1/2, at birth, of being a carrier. Hence

the proportions in Subpopulations 3 and 5 are the same as those in Subpopulations
2 and 4, respectively.

The key innovation in the model is that, provided the definition of family history is
sufficiently precise, then the ‘onset’ of a family history is an event that occurs at a precise
time, so it can be modelled as a transition between states, governed by a transition
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Figure 6: Model 2: A model of HNPCC, development of a family history, and critical
illness insurance, in subpopulation i. (*Females only.)

intensity capable of being computed from the other model assumptions. The events that
precipitate the ‘onset’ of a family history are, of course, events in the life histories of the
applicant’s relatives.

Figure 6 shows how we represent the development of a family history for Subpopu-
lation i as a transition between the states labelled i0 and i6. Because of assumption (b)
above, we have µi0j

x = µi6j
x for j = 1, . . . , 5. Note that a family could exist at birth, so the

applicant starts in state i6, depending on the definition of family history being used.
The probability that a healthy person age x is a mutation carrier, given only the

presence or absence of a family history, is proportional to the occupancy probabilities in
the relevant states as follows:

P[ In Subpopulation i | No Family History by Age x ] =
OPi0

x
∑5

j=1 OPj0
x

(16)

P[ In Subpopulation i | Family History by Age x ] =
OPi6

x
∑5

j=1 OPj6
x

. (17)

7. Estimating the Rate of ‘Onset’ of Family History

7.1 Defining Family History

Underwriting practice can differ considerably from clinical practice, usually taking
account only of affected FDRs. For example, Table 6 shows the underwriting guidelines
for applicants with a family history of CRC used by one large reinsurer. We consider
three scenarios that might represent underwriting criteria:
(a) Scenario 1: at least one FDR develops CRC before age 60;
(b) Scenario 2: at least two FDRs develop CRC before age 60;
(c) Scenario 3: at least one FDR develops CRC before age 60 and at least one FDR

develops EC before age 60.
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Table 6: Example underwriting guidelines for applicants with a family history of CRC.

Applicant Family History Premium Rate

below 50 one FDR with CRC before age 60 +50/Excl

below 50 two or more FDR(s) with CRC before age 60 CMO/Decline/Excl

over 50 exclude those with one or more FDR with CRC Standard

over 50 one FDR with CRC before age 60 +25

over 50 two or more FDRs with CRC before age 60 +75/CMO/Excl

(FDR =First Degree relative, CMO = Refer Chief Medical Officer, Excl = Exclude)

Table 7: The distribution of the number of siblings. Source: Macdonald et al. (2003a).

No. of siblings k 0 1 2 3 4 5 ≥6
Probability P[k] 0.2311 0.5006 0.1973 0.0541 0.0124 0.0034 0.0011

7.2 A Model of Family Structure

Given a person in Subpopulation i, we can compute: (a) the probability that they
already have a family history when they are born; and (b) the probability that they have
developed a family history by age x, which we denote iF fh

x . By numerical differentiation,
we then obtain the intensity µi06

x in Figure 6. Clearly, the family histories that it is
possible for a person to have depend on the number and configuration of their FDRs, and
since this is usually not known by the insurer, we need a simple model of family structure
over which we can average to obtain iF fh

x . We make the following assumptions:
(a) The parents are 30 years older than the applicant and any siblings are all the same

age as the applicant.
(b) The distribution of the number of siblings is as given by Macdonald et al. (2003a)

and is shown in Table 7. We assume the applicant has no more than 6 siblings.
(c) Siblings could be male or female with equal probability.
(d) The applicant’s siblings in a mutation-carrying family (Subpopulations 2–5) are each

carriers with probability 1/2, independently of each other.
(e) Exactly one of the parents in a mutation-carrying family is a carrier. We neglect the

rare possibility that both parents are carriers.

7.3 The Probability of a Family History at Birth

A person may be born with a family history if one or both parents develops CRC
before age 30 (note that EC affects fertility). Both parents doing so is such a rare event
that we neglect it, so we need only consider Scenario 1, and the possibility that one parent
develops CRC before age 30.

If we assume that mortality is the same before and after onset of CRC (perhaps a
reasonable approximation to make before age 30) and if we ignore all decrements except
death and onset of CRC, then we can compute, for a parent with sex s and genotype g:
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ωg
s = P[Healthy at Age 30] =

P[Alive, No CRC at Age 30]

P[Alive, No CRC at Age 30] + P[Alive, CRC at Age 30]
.

Then the probability that neither parent has had CRC by age 30 in Subpopulation i is
approximately:

ω1
m ωgi

f + ωgi
m ω1

f

2
. (18)

Thus we find that under Scenario 1, the probability of a family history at birth is 0.06 in
Subpopulations 2 and 3, 0.04 in Subpopulations 4 and 5, and less than 0.001 in Subpop-
ulation 1.

7.4 The Probability of Developing a Family History after Birth

Most people will not be born with a family history, but will be at risk of developing
one thereafter, depending on the life histories of their parents and siblings. We illustrate
the calculation for Scenario 1; the details for the other scenarios are in the Appendix.

Consider a healthy person age x in Subpopulation i. Let iP 0P
x denote the probability

that neither of their parents has developed CRC by age x + 30, and let iP 0S
x denote the

probability that none of their siblings has developed CRC by age x. So iF fh
x can be

written as two terms, depending on whether or not a parent develops CRC:

iF fh
x = (1 − iP 0P

x ) + iP 0P
x × (1 − iP 0S

x ). (19)

Referring to the model in Figure 1, let sP
gijk
x,t denote that probability that a person

of sex s and age x in Subpopulation i, with genotype gi, who is currently in state gij, is
in state gik at age x+ t. In particular, sP

gi01
x,t is the probability that a healthy person has

contracted CRC. Then the first term in Equation (19) is evaluated in the same way as
Equation (18):

iP 0P
x =

1

2
(1 − mP

101
30,x∧30)(1 − fP

gi01
30,x∧30) +

1

2
(1 − mP

gi01
30,x∧30)(1 − fP

101
30,x∧30) (20)

where x ∧ 30 indicates that onset of CRC after age 60 does not contribute to a family
history. Given the assumptions in Section 7.2, the unconditional probability that any
sibling has had CRC by age x or by age 60 (whichever is less), denoted iPx∧60, is (mP

101
0,x∧60+

mP
gi01
0,x∧60 + fP

101
0,x∧60 + fP

gi01
0,x∧60)/4, and:

iP 0S
x =

6
∑

k=0

P[k] (1 − iPx∧60)
k (21)

where P[k] is given in Table 7.

7.5 Illustration

Figure 7 illustrates the rate of developing a family history under each scenario. Note
that the scales are not all the same. We see the following features:
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Figure 7: The rate of developing family history for applicants in non-MMR-mutation-
carrying families, MLH1 mutation-carrying families and MSH2 mutation-carrying families
under family history Scenarios 1 (top), 2 (middle) and 3 (bottom).
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(a) The rates of ‘onset’ are considerably higher under Scenario 1, which uses the weakest
definition of family history.

(b) There is a downward jump at age 30 in all cases. This is because the parents then
reach age 60 and can no longer contribute to a family history.

(c) The rates of ‘onset’ for mutation carriers increase after age 30, peak at about age 45
and then decrease. This pattern is consistent with the onset rate of CRC in Figure 2.

(d) The rate of ‘onset’ for MLH1 mutation carriers jumps at age 20 under all scenarios.
This is because the rate of onset of CRC is assumed to be zero before age 20.

(e) The risk of developing a family history after age 60 is zero, by definition.

8. Premium Rates Allowing for a Family History of CRC

Here, we consider what premium rates would be charged to a person age x applying
for CI insurance, who has a family history of CRC, assuming this information may be used
in underwriting. Let C denote the set of states included in this underwriting class. The
EPV of any insurance cashflows in respect of an arbitrary member of this underwriting
class is just a weighted average of the EPVs in respect of each genotype represented in
that underwriting class, the weights being the proportions OPij

x present therein at age
x. Let Bij

x and C ij
x be the EPVs of a unit benefit and a unit premium, respectively, in

respect of an applicant age x in state ij of the model in Figure 6. The level premium,
denoted LPC

x, is:

LPC
x =

∑

ij∈C OPij
x Bij

x
∑

ij∈C OPij
x C ij

x

.

Table 8 gives the level premium for level CI insurance for a person with a family
history of CRC, expressed as a percentage of the OR premium. We observe the following:
(a) The extra premium depends on the definition of family history. Only the intensity

µi02 in Figure 6 is altered; the other intensities are unchanged.
(b) The extra premium varies from 30% to 374% for different entry ages and terms.

This means that practically all applicants for CI cover with a family history of CRC
or other HNPCC-related cancers are insurable, under current underwriting practice.
This is significantly more lenient than, for example, Table 6 would suggest.

9. The Extended Critical Illness Insurance Model

9.1 An Insurance Market Model

So far we have considered a transparent insurance market in which there is no mora-
torium and no adverse selection.
(a) Model 1 represented the life history of a person who had already bought CI insurance.
(b) Model 2 extended Model 1 by allowing for the development of a family history.
(c) To model adverse selection and moratoria, we need to extend Model 2 to make the

purchase of insurance an event in the life history. We will call this Model 3.
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Table 8: Level premiums for a term insurance with £1 sum assured for level CI cover for
persons with family history, as a percentage of the premium for a standard risk, using
three different definitions of family history.

Age at Policy Scenario 1 Scenario 2 Scenario 3
Entry Term Male Female Male Female Male Female

% % % % % %

20 10 395 217 474 235 398 210
20 365 236 456 267 380 234
30 265 219 326 253 277 222
40 197 188 232 215 203 191

30 10 259 191 473 315 343 235
20 192 174 319 276 242 212
30 153 153 226 226 181 180

40 10 177 176 373 368 302 295
20 142 151 254 286 212 233

50 10 130 147 219 287 195 250

Model 3 is shown (partially) in Figure 8. It is a model of the entire CI insurance
market operating up to age 60. A person may buy CI insurance at any time, before or
after developing a family history, or taking a genetic test. Persons in States i0 to i5 are at
risk of suffering a critical illness or death, and we refer to these states as ‘at-risk’ states.
For simplicity we combine all states representing a claim (States i1 to i5 in Figures 1 and
6) into a single ‘CI Event’ state (State i6 in Figure 8). We assume the following:
(a) A person is born healthy with or without a family history of CRC, depending on the

criterion of family history being used. Hence he/she is in state i0 or state i2 at birth.
(b) A person may buy CI insurance after age 20, if they are in State i0 or State i2.
(c) After the onset of a family history, an individual may be advised to have a genetic test.

We ignore the unlikely event of genetic testing in the absence of a family history. This
assumption would change if a screening program for MMR mutations were introduced,
but at present there are no such programs.

(d) People with a family history or an adverse genetic test result may be charged higher
than standard premium rates. Hence they may buy insurance at a different rate from
persons charged the standard rate. This is modelled by varying the intensities µi01

x ,
µi23

x and µi45
x .

(e) Once insurance has been purchased, the subsequent onset of a family history or taking
of a genetic test are irrelevent.

(f) A payment of bij6x = 1 is made on entering state i6 from an ‘at-risk’ state ij at age x.
(g) A premium at rate ψij

x is paid continuously by a person age x in an insured state ij.
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Figure 8: Model 3: A model of the critical illness insurance market allowing for family
history of CRC and genetic testing, for a person in Subpopulation i. All states are at risk
of death and critical illness (the same events as shown in Figure 1).

9.2 Definition of Underwriting Classes

The insurer may divide the whole population into several underwriting classes, ac-
cording to the risk factors used. Everyone in an underwriting class is charged the same
rate of premium, which we assume satisfies the equivalence principle within that class.
Table 9 lists possible components of each underwriting class under various restrictions on
the information that can be used in underwriting.

Consider line No. 1 in Table 9 as an example. There are three underwriting classes,
the ‘ordinary rates’ class (OR), the ‘family history’ class (FX) and the ‘positive genetic
test result’ class. The OR class includes persons with no family history and those who
have a family history but have been verified as non-carriers by genetic testing. The FX
class consists of those who have a family history except those who have genetic test results.
The ‘positive genetic test result’ class consists those who are verified carriers. The FX
underwriting class is heterogeneous.

Given an underwriting class denoted C, EPVs of insurance cashflows in respect of
its members will be weighted averages of the EPVs in respect of the various genotypes
represented in C. The weights, which we denote W ij

x (C), are just the occupancy proba-
bilities in Model 3, which will depend on movements among the various states, including
the purchase of insurance, the onset of family histories and the taking of genetic tests.
(We include C in the notation explicitly because we will consider alternative definitions
of underwriting classes shortly. Clearly W ij

x (C) = 0 if ij /∈ C, and note that the W ij
x (C)

are not the same as the occupancy probabilities OPij
x defined earlier in respect of Model

2.) We need to make some reasonable assumptions about the intensities representing all
these events. We believe the following assumptions are reasonable:
(a) The size of the insurance market is defined by the rate of purchase of insurance
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Table 9: Possible underwriting classes with five sub-populations labelled by i. (F) denotes
persons who have a family history and (U) denotes those who do not. ⊕ denotes a positive
test result and 	 denotes a negative test result.

Factors Allowed in Underwriting Composition of Underwriting Classes

Genetic -ve +ve Ordinary
Testing Family Test Test Rates Rated for Rated for

No. Exists? History Result Result Class Family History Genetic Test

1 Yes Yes Yes Yes i = 1–5 (U) i = 1–5 (F) i = 2,4 (⊕)
i = 1,3,5 (	)

2 Yes Yes Yes No i = 1–5 (U) i = 1–5 (F)
i = 1,3,5 (	) i = 2,4 (⊕)

3 Yes Yes No No i = 1–5 (U) i = 1–5 (F, ⊕ and 	)
4 Yes No No No i = 1–5
5 No Yes No No i = 1–5 (U) i = 1–5 (F)
6 No No No No i = 1–5

in Subpopulation 1. An annual rate µ101
x = 0.05 represents a large market while

µ101
x = 0.01 represents a smaller market. If these apply between ages 20 and 60, 86%

of people will buy insurance in the large market and 33% in the smaller market.
(b) Persons in subpopulations 2–5 with no family history purchase insurance at the same

rate as persons in Subpopulation 1.
(c) Rates of onset of family history µi02

x were obtained in Section 4.
(d) The rate of genetic testing is µi24

x = 0.02 per annum. This implies that 18% of people
would have a genetic test within 10 years of the onset of a family history.

(e) A person in the FX class would usually be charged a higher premium than the OR
class. This would discourage them from buying insurance at the normal rate. In the
large market we assume that they buy insurance at the normal rate, or at half that
rate, or they do not buy insurance at all. We assume that they do not buy insurance
in the smaller market.

(f) We make the extreme assumption that ‘adverse selectors’ buy insurance at rate µi45
x =

0.25 per annum. So, if a moratorium allows adverse selection to happen, 70% of people
will buy insurance within 5 years of receiving an adverse genetic test result.

9.3 Modelling Adverse Selection

We use Model 3 (Figure 8) to measure losses caused by adverse selection using the
method described by Macdonald (2003b). The decision to buy insurance is an event
whose timing is uncertain, therefore the level premium that would be charged for cover
until age 60 depends on the age at purchase. This cashflow is not adapted to a Markov
framework, which would require all cashflows to depend solely on the current age. The
simplest solution is to charge a rate of premium, within each underwriting class, equal to
the expected claims in the next time interval dt. That is, the rate of premium ψC

x+t in
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Table 10: Percentage increases in premium rates arising from severe adverse selection.
Moratoria on the use of genetic test results, family history underwriting still allowed. CI
market operating between ages 20 and 60. The rate of genetic testing is 0.02 per annum.

Insurance
Purchasing Family Moratorium on Using

Size of of People with History Adverse Test Results All Test Results
Market Family History Scenario Males Females Males Females

% % % %

Large Normal 1 0.009 0.009 0.009 0.009
2 0.000 0.000 0.000 0.000
3 0.000 0.000 0.000 0.000

Half 1 0.015 0.016 0.015 0.016
2 0.000 0.000 0.000 0.000
3 0.000 0.000 0.000 0.000

Nil 1 0.026 0.029 0.027 0.030
2 0.000 0.000 0.000 0.000
3 0.000 0.000 0.000 0.000

Small Nil 1 0.083 0.095 0.084 0.096
2 0.001 0.002 0.001 0.002
3 0.000 0.001 0.000 0.001

underwriting class C is:

ψC
x+t =

∑

ij∈C W
ij
x+t(C)µij6

x+t
∑

ij∈C W
ij
x+t(C)

. (22)

Using these rates of premium, we can compute the EPV of benefits payable in each
underwriting class, BC, and the expected value of the insurance loss, LC. The EPV of
the premiums payable is then BC − LC. If there is no adverse selection and people buy
insurance at the rate assumed when calculating the premium rate ψC

x+t, then LC = 0.
Suppose that, before a moratorium is imposed or agreed, there are just two under-

writing classes, OR and FX, because genetic testing does not exist. After a moratorium
is agreed, there are still just two underwriting classes, because genetic test results may
not be used, but their composition may have changed because of the extra information
available to insured persons. We will denote these changed underwriting classes OR∗ and
FX∗. Then adverse selection may give rise to a cost because:
(a) we continue to calculate premium rates ψC

x+t using the weightsW ij
x+t(OR) andW ij

x+t(FX);
but

(b) EPVs are based on premium rates ψC
x+t and the new weightsW ij

x+t(OR∗) andW ij
x+t(FX∗).
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Table 11: Percentage increases in premium rates arising from severe adverse selection.
Moratoria on the use of genetic test results, family history underwriting still allowed. CI
market operating between ages 20 and 60. The rate of genetic testing is 0.10 per annum.

Insurance
Purchasing Family Moratorium on Using

Size of of At-risk History Adverse Test Results All Test Results
Market Individuals Definition Males Females Males Females

% % % %

Large Normal 1 0.024 0.024 0.026 0.026
2 0.000 0.001 0.000 0.001
3 0.000 0.000 0.000 0.000

Half 1 0.040 0.041 0.043 0.044
2 0.001 0.001 0.001 0.001
3 0.000 0.000 0.000 0.000

Nil 1 0.067 0.071 0.074 0.079
2 0.001 0.001 0.001 0.001
3 0.000 0.000 0.000 0.000

Small Nil 1 0.214 0.233 0.233 0.255
2 0.004 0.005 0.005 0.006
3 0.001 0.002 0.002 0.002

9.4 A Moratorium on Genetic Test Results

Define the following EPVs:

B = BOR +BFX = EPV of benefits with no adverse selection
L = LOR + LFX = EPV of loss with no adverse selection
B∗ = BOR∗

+BFX∗

= EPV of benefits with adverse selection
L∗ = LOR∗

+ LFX∗

= EPV of loss with adverse selection.

(23)

Hence the insurer who sets premium rates assuming no adverse selection would suffer loss
L∗ and would raise all premium rates by a proportion (L∗−L)/(B∗−L∗) to compensate.

Table 10 shows the percentage increases in premium rate arising from severe adverse
selection, under a moratorium on genetic test results, the use of family history still being
permitted. We show the effects of two versions of this moratorium (lines 2 and 3 in Table
9), depending on whether or not a person with a clear test result may be offered the OR
rate of premium or not. The difference is tiny, and indeed the costs of adverse selection
are barely observable. All figures indicate premium increases of 0.1% or less.

As noted by Macdonald (2003a,b) and Gutiérrez and Macdonald (2003), we expect
the cost of adverse selection to increase if the moratorium bans the use of all test results.
The reason is that a small group of verified non-carriers would be included in the FX∗

class, and the rate of premium in that class would be reduced.
We found that the insurance loss was nearly proportional to the sum assured taken

out by ‘adverse selectors’, so as this increases above the average (the second possible
form of adverse selection) multiples of the premium increases in Table 10 give a sufficient
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indication of the cost of adverse selection.
Our choice of a modest rate of genetic testing (0.02 per annum) assumes that doctors

act as gatekeepers, controlling access to genetic tests according to clinical need. This is
true in the UK, where genetic tests are not easily available outside the National Health
Service. Of our three scenarios, Scenario 2 is perhaps closest to the clinical criteria for
diagnosing HNPCC. However, this means that our rate of genetic testing is probably not
all that extreme, therefore the costs in Table 10 are not worst-case in this respect. In
Table 11 we assume genetic testing to be more widespread, with a rate of testing of 0.1
per year, so that about 85% of people are tested within 20 years of developing a family
history. The costs are considerably higher than those in Table 10, although their absolute
values are still small (the largest premium increase is less than 0.3%).

9.5 A Moratorium on Genetic Tests and Family History

Extending a moratorium to family history information might affect an insurance
market in two ways, both leading to an increase in premiums, as described by Macdonald
(2003b). First, it will create a single underwriting class, that we denote OR†. People with
a family history, who before would tend to buy less insurance than normal, could now buy
insurance at the normal rate (ignoring the small effect of the consequent premium increase
on the demand for insurance). This cannot be called adverse selection, if its motivation is
simply to fulfil the normal needs for insurance rather than to exploit hidden information.
Let B† and L† be the EPVs of benefits and losses in this market. Let B̃ be the EPV of
benefits assuming that family histories were never observed, either by individuals or by
insurers. Then every healthy person would buy insurance at the normal rate. So the first
effect of the moratorium would be to increase the OR rate of premium by the proportion
B†/B̃ − 1.

An additional premium increase would arise if there was adverse selection in addition
to the above change in behaviour. Let L‡ and B‡ be the EPVs of losses and benefits
respectively given severe adverse selection (rate of insurance purchase 0.25). Hence pre-
miums rise further, in the proportion (L‡ − L†)/(B‡ − L‡). This time, we assume this
behaviour extends to those who have a family history but have not had a genetic test, as
well as those who have an adverse test result.

Table 12 illustrates each of these increases. We make the following points:
(a) Only the market size matters, because the insurance-buying behaviour of people

charged higher premiums is no longer relevant.
(b) The premium increases caused by extending the OR class are all fairly small.
(c) The cost of adverse selection is also small; the largest premium increase, in the smaller

market, is about 0.3%.
(d) The premium increases are largest under family history Scenario 1.
(e) As before, the insurance losses when there is adverse selection are practically propor-

tional to the sums assured taken out by ‘adverse selectors’.

10. Summary and Conclusions

Several common cancers, including CRC, have a small subset of inherited versions,
not easily distinguished from sporadic cases by clinical means. These are some of the most



A Dynamic Family History Model of HNPCC and Critical Illness Insurance 28

Table 12: Percentage increases in OR premium rates arising from new underwriting
classes, and in all premiums arising from severe adverse selection, following a moratorium
on the use of all genetic test results and family history. CI market operating between ages
20 and 60.

OR premium Increases Premium Increases
Arising from New Arising from

Family Underwriting Classes Severe Adverse Selection
Size of History Males Females Males Females
Market Definition % % % %

Large 1 0.164 0.170 0.048 0.044
2 0.002 0.002 0.001 0.001
3 0.001 0.001 0.000 0.000

Small 1 0.172 0.180 0.304 0.307
2 0.002 0.013 0.010 0.013
3 0.001 0.001 0.003 0.004

important single-gene disorders, and HNPCC is a typical example. Given a purely genetic
disorder (such as HD and APKD) a family history of the cancer reveals with certainty
the presence of a causative mutation, and this was a key assumption in previous actuarial
models of underwriting and adverse selection (Macdonald (2003a,b)). A family history
of one of these common cancers does not reveal the presence of a causative mutation, so
these models fail, or require excessive computation.

We focussed on HNPCC, and used the device of modelling the appearance of a family
history as an event in a person’s life history, represented by transition into a new state
in a multiple-state model. Thus, given a clear enough definition of ‘family history’, the
problem reduces to computing the age-related rate of ‘onset’ of a family history. This was
obtained by applying relevant epidemiological data to a simple model of a nuclear family.
Our conclusions in respect of CI insurance were as follows:
(a) The extra premiums for known mutation carriers are very high (Table 4). In all cases,

the extra premiums exceed 250%, which is about the limit of insurability. A carrier of
a MMR gene mutation is therefore very likely to be declined, if the mutation status
is disclosed to the insurer.

(b) In an insurance market with neither a moratorium nor adverse selection, the extra
premiums for persons with a family history of CRC vary between 30% and 374%
for different entry ages and terms and definitions of family history (Table 8). This
suggests that people with a family history are, in most cases, within the normal limits
of insurability.

(c) The cost of adverse selection, caused by a moratorium on genetic test results or
family history, is very small. In all cases we examined, premium increases to offset
the cost of adverse selection would be less than 1%. This conclusion holds even in
some sensitivity tests making even stronger assumptions about the severity of adverse
selection.
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(d) The definitions of family history we used in this paper are not identical to those
used in insurance underwriting, nor to those used in a clinical setting, although they
simplify and represent both reasonably well. The results do depend quite strongly on
the definition of a family history; under family history Scenarios 2 and 3 the costs of
adverse selection are less than those under Scenario 1.

(e) This is a simple and effective approach to modelling inherited disorders which are not
purely genetic. It eliminates much of the computational burden involved in previous
approaches (Macdonald et al., 2003a,b). It can be extended to other disorders which
have both genetic and sporadic causes, of which breast cancer is probably the most
important.

We recognise that the models we have used have many elements, each of which requires
assumptions that are hard to verify. Many of the model’s parameters are either based,
indirectly, on quite sparse data, or are reasonable guesses in the absence of any data.
Some specific limitations of the model are the following.
(a) The actuary wants to price policies with a wide range of entry ages and policy terms.

Thus models are parameterised by age-dependent intensities (or probabilities). This is
very demanding; most medical studies of modest size publish simpler statistics whose
statistical properties are robust given modest sample sizes. Thus extra assumptions
(for example, the form of the onset rates) are needed to parameterise the model using
published studies.

(b) Other choices of model might have advantages, for example a Cox or other regression
model might make best use of the data, with genotype and perhaps sex as covariates,
and would be directly applicable to our actuarial problems. However, we did not have
access to the data.

(c) Without access to the data, it is impossible to estimate any statistical properties
such as standard errors of premium rates, yet these are all derived from quite a small
study.

(d) The model of adverse selection assumes perfectly inelastic demand for insurance. An
economist’s model would seek a new market equibribium once adverse selection had
increased prices. This is perhaps a small defect when mutations are very rare.

Finally, we note that other studies have estimated the cost of adverse selection for
other genetic disorders, including HD, APKD, breast cancer and ovarian cancer. In all
these cases, the cost, in terms of premium increases, have been less than or are around
1%. But we are not yet in a position to say conclusively that the aggregate effects of all
these genetic disorders are still acceptably minor.
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APPENDIX

THE PROBABILITY OF ONSET OF FAMILY HISTORY AFTER BIRTH

Here we develop the age-related probability distributions of onset of a family history,
under Scenarios 2 and 3 of Section 7.1, and the simplifying assumptions of Section 7.2.

(a) Family History Scenario 2:

We begin with notation. Recall that in Section 7.3 we defined ωg
s to be the probability

that a person of gender s and genotype g is alive and healthy at age 30. Similarly,
we define νg

s to be the probability that such a person is alive and has had CRC by
age 30. Next, consider a person age x in subpopulation i. Let iP 0P

x , iP 1P
x and iP 2P

x

denote the probabilities that neither of their parents, one of their parent or both of
their parents, respectively, suffer onset of CRC by age x + 30. Let iP 0S

x , iP 1S
x and

iP 2S
x denote the probabilities that they have zero, one or two siblings, respectively,

who have suffered onset of CRC by age x.
The probability that they have a family history as defined under Scenario 2 (at least
two FDRs develop CRC before age 60) is denoted iF fh

x and is:

iF fh
x = iP 0P

x × (1 − iP 0S
x − iP 1S

x ) + iP 1P
x × (1 − iP 0S

x ) + iP 2P
x .

We find the terms in iF fh
x as follows. Note that we are working with Model 1 (Figure

1) and that sP
gjk
x,t denotes the probability that a person of sex s and genotype g who

is in state gj at age x will be in state gk at age x + t. For brevity in the following,
define sQ

gjk
x,t = 1 − sP

gjk
x,t .

iP 0P
x = P[ Neither parent has CRC at age x+ 30 | Both alive at age 30 ]

=
1

2

{

ωgi

m mQ
gi01
30,x∧30 ω

1
f fQ

101
30,x∧30 + ω1

m mQ
101
30,x∧30 ω

gi

f fQ
gi01
30,x∧30

}

.

iP 1P
x = P[ One parent has CRC at age x+ 30 | Both alive at age 30 ]

=
1

2

{

(νgi

m + ωgi

m mP
gi01
30,x∧30) ω

1
f fQ

101
30,x∧30 + ωgi

m mQ
gi01
30,x∧30 (ν1

f + ω1
f fP

101
30,x∧30)

+ (ν1
m + ω1

m mP
101
30,x∧30)ω

gi

f fQ
gi01
30,x∧30 + ω1

m mQ
101
30,x∧30(ν

gi

f + ωgi

f fP
gi01
30,x∧30)

}

.



A Dynamic Family History Model of HNPCC and Critical Illness Insurance 33

iP 2P
x = P[ Both parents have CRC at age x+ 30 | Both alive at age 30 ]

=
1

2

{

(νgi

m + ωgi

mmP
gi01
30,x∧30)(ν

1
f + ω1

f fP
101
30,x∧30)

+(ν1
m + ω1

mmP
101
30,x∧30)(ν

gi

f + ωgi

f fP
gi01
30,x∧30)

}

.

iP 0S
x is the same as in Equation (21). With iPx∧60 defined as it was just before

Equation (21), we also have:

iP 1S
x =

k=6
∑

k=0

P[k] k iPx∧60 (1 − iPx∧60)
k−1.

(b) Family History Scenario 3:

We must introduce endometrial cancer (EC). Under Scenario 3, at least one FDR
must have EC and at least one must have CRC. Let ζg

f be the probability that a
woman of genotype g is alive at age 30 but has had EC. Clearly ζg

m = 0. Also,
let iP 0PC

x and iP 0PE
x be the probabilities that neither parent has had EC or CRC,

respectively, and modify the notation for similar probabilities similarly. Then:

iF fh
x = iP 0P

x × iP 2SCE + iP 1PC
x × (1 − iP 0SE

x ) + iP 1PE
x × (1 − iP 0SC

x ) + iP 2PCE
x

Again we use the notation of Model 1 (Figure 1). Ignoring other diseases, we have
ωg

s + νg
s + ζg

s = 1 and approximately:

ωgi

s =
sP

gi00
0,30

sP
gi00
0,30 + sP

gi01
0,30 + sP

gi02
0,30

and similarly for νg
s and ζg

s . Then:

iP 0P
x = P[ Neither parent has CRC or EC at age x+ 30 | Both alive at age 30 ]

=
1

2

{

ωgi

m mQ
gi01
30,x∧30) ω

1
f (fQ
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30,x∧30 − fP

102
30,x∧30)

+ ω1
m mQ

101
30,x∧30 ω

gi

f (fQ
gi01
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30,x∧30)

}

.

iP 1PC
x = P[ One parent has CRC, neither has EC at age x+ 30 | Both alive at age 30 ]

=
1

2

{
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iP 1PE
x = P[ One parent has EC, neither has CRC at age x+ 30 | Both alive at age 30 ]

=
1

2

{

ωgi

m mQ
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.

iP 2PCE
x = P[ One parent has CRC, one EC at age x+ 30 | Both alive at age 30 ]

=
1

2
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iP 0SC
x = P[ No sibling has CRC at age x ]

=
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∑
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iP 0SCE
x = P[ No sibling has CRC or EC at age x ]

=
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iP 2SCE
x = P[ At least one sibling has CRC and one has EC at age x ]

= 1 − iP 0SC
x − iP 0SE

x + iP 0SCE
x .


