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Abstract

This thesis discusses the overall impact of genetic information on the insurance industry

using the “bottom-up” approach, in which individual studies of each genetic disorder of

interest are studied first. We review five relevant individual studies of adult polycystic

kidney disease (APKD), early-onset Alzheimer’s disease (EOAD), Huntington’s disease

(HD), hereditary non-polyposis colorectal cancer (HNPCC), breast & ovarian cancer (BC

& OC), and use myotonic dystrophy (MD) to exemplify the methodology of the “bottom-

up” approach, and bring these together to quantify the overall impact of genetic informa-

tion in both the critical illness (CI) insurance and the life insurance market. We also carry

out an individual study of OC in the income protect insurance (IPI) market. We conclude

that in most cases the cost of adverse selection is negligible and should not cause signif-

icant concerns for insurers, especially when we consider other factors, e.g. development

of health care and general trend of mortality improvement, which greatly overwhelm the

genetic risk. Further this thesis models the colorectal cancer (CRC) screening program as

an example and conclude that the CRC screening program appears to reduce the genetic

risk by about the same magnitude.
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Introduction

We begin by reviewing some facts of human inheritance and genetic testing in Chapter

1. We then look into the issues of genetic information and insurance, and development

of these issues in the UK. Some relevant actuarial work and our research objectives are

also discussed in Chapter 1. The impact of genetic information on the insurance industry

is the central question we address. To answer this question, the “top-down” approach

has been completed in Macdonald (1997, 1999 & 2003b) based on high-level general

assumptions about the genetic morbidity, with no attempt to model the effect of particular

genes. One purpose of this thesis is to quantify the overall impact of genetic information

on the insurance industry using the “bottom-up” approach, as opposed to the “top-

down” approach. In the “bottom-up” approach, the impact of each genetic disorder

is to be studied individually based on the relevant epidemiological studies. By “each

genetic disorder”, we do not mean all genetic disorders known to us, but only selected

major genetic disorders, taken for their significant impact on the insurance industry.

The Association of British Insurers (ABI) made a list of eight genetic disorders. Taking

the list as the start, with some adjustments, we chose six genetic disorder to study in

this thesis, including adult polycystic kidney disease (APKD), early-onset Alzheimer’s

disease (EOAD), Huntington’s disease (HD), hereditary non-polyposis colorectal cancer

(HNPCC), breast & ovarian cancer (BC & OC), myotonic dystrophy (MD). Our research

work starts with MD and also uses MD to exemplify the methodology of the “bottom-up”

1



approach.

In Chapter 2 we review some important features of Myotonic Dystrophy (MD). MD is

one type of muscular dystrophy, characterized by the slow relaxation of the muscles after

contraction, especially hand muscles. MD is inherited in an autosomal dominant manner

and caused by an abnormal expansion of a trinucleotide (CTG) repeat. Using the data

we collect in relevant papers, we estimate the onset rate, post-onset mortality rate and

prevalence rate associated with MD. We then apply these rates in a semi-Markov model

of critical illness insurance (CI) and life insurance in order to test the effects of genetic

test results or family history on premium ratings. We then extend the model into market

models to calculate the cost of adverse selection, measured by the increase of insurance

premiums, under various moratoria on the use of genetic information.

In Chapter 3, we review similarly the other five genetic disorders. In Chapter 4, we

bring all these together to quantify the overall impact of genetic information of all six

genetic disorders, following the methodology introduced in Chapter 2. In Chapter 4, we

also discuss the adequacy of the “bottom-up” approach, e.g. the necessity of including

more genetic disorders in our list. Chapter 2, 3 and 4 could be regarded as the closure of

the “bottom-up” approach.

In Chapter 5, we look at colorectal cancer (CRC) and the CRC screening program.

The CRC screening program includes the Bowel Screening Program for the general pop-

ulation and the HNPCC Surveillance Program for HNPCC families. The purpose of a

CRC screening program is to detect CRC at early stages so the CRC associated risks can

be reduced. We study the effect of a CRC screening program on the onset rate of CRC

and the mortality caused by CRC and their subsequent effect on life insurance premium

rates.

In Chapters 6 and 7, we look at ovarian cancer (OC) and income protection insurance

(IPI). This work is an extension of the study of BC and IPI, Lu, Macdonald & Waters

(2008) and Lu et al. (2008). In Chapter 6, we introduce some important features of

2



OC relevant to the pricing of IPI contracts, e.g. diagnosis, treatment, recovery rate and

recurrence rate; and we propose a semi-Markov model to model the life history of a woman

at risk of OC. In Chapter 7, we use this model to calculate IPI premium rates based on

genetic test results or family history, and then extend this model to an IPI market model,

so as to estimate the costs of adverse selection under various moratoria on the use of

genetic information relevant to OC.

In Chapter 8, conclusions are drawn and further research work is proposed.

Appendix A details the model for critical illness (CI) insurance based on medical

studies and population data (Gutièrrez & Macdonald, 2003). Appendix B shows an

expanded CI insurance market model of MD. Appendix C has 5 sections, each of which

shows the technical details of genetic disorders of interest in this thesis. In Appendix D,

we briefly introduce Fourth-Order Runge-Kutta methods.
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Chapter 1

Background

1.1 Genetics and Genetic Disorders

1.1.1 Genetics and the Mechanism of Reproduction

Every human has in almost every cell nucleus 23 pairs of chromosomes, 46 in total,

including 22 pairs of autosomes, and 1 pair of sex chromosomes. Of each pair, one copy

comes from the father and the other copy from the mother, i.e. these two copies contain

different information, although they have the same structure. One of the main functions

of chromosomes is to pass the paternal and maternal information, carried by sperm and

egg respectively, to their child(ren), to this end, each sperm or egg contains only 23

chromosomes. During the production of the sperm and the egg, the two copies of each

pair of the chromosomes exchange genetic information, i.e. each of the 23 chromosomes

inside the sperm or the egg, is a hybrid of the genetic information carried by the two

copies of each pair of the chromosomes in the parent. Note that the exchange of the

genetic information increases the variability of the chromosomes.

Each chromosome consists of two strands of nucleotides connected together. Each

strand is a sequence of A, T, C, G nucleotides, e.g....-A-T-C-G-C-A-G-A-C-.... The other
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strand will be decided by the complementary A-T, C-G link1. For example, if one strand

is ...-A-T-C-G-C-A-G-A-C-..., the other strand is precisely ...-T-A-G-C-G-T-C-T-G-.... A

sequence of triples of nucleotides, e.g. -T-A-G-, determines the sequence of amino acids

in the corresponding protein, which is the basic unit of all life. Genes consists of a series

of these sequences that encode information for the synthesis of proteins.

A correct sequence of -A-, -T-, -C-, -G- nucleotides leads to the correct production of

a protein. When a mutation happens, e.g. -T- in the sequence -A-T-C-G-C-A-G-A-C- is

knocked out and replaced by -A-, -C- or -G-, an altered triple may lead to the sequencing

of a different amino acid, and consequently the production of a specific faulty protein.

Mutations could happen to both copies of a gene, one on each of a pair of chromosomes.

The type of faulty protein differentiates two kinds of single gene disorders: recessive

disorders and dominant disorders.

For the first type, recessive disorders, the faulty protein produced is harmless. A

mutation carrier will not be affected, since one copy fails to produce the correct protein,

while the other copy still functions well. Only when both chromosomes carry a mutated

gene, will this person develop the genetic disease, and often persons affected have the

syndrome at a very early age, since no correct protein is produced since birth.

For the second type, dominant disorders, the faulty protein produced is harmful.

The wrong protein produced may be attributable to a mutation in either copy of the

gene. Since one copy is still functional, dominant disorders often cause late onset genetic

disease. Mutations in both copies of a gene associated with a dominant disorder are rare,

and bring about the same effect as a recessive disorder, which means that inheriting two

mutations will also lead to early onset disorder; or be incompatible with life.

1By A-T, C-G link, we mean that the nucleotide A bonds to T, and the nucleotide C bonds to G,

exclusively.
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1.1.2 Genetic Disorders

Genetic disorders can also be classified according to the way in which genetic material

contributes:

1. Monogenic disorders: These are genetic disorders, often rare, where a specific mu-

tation in a single gene causes a particular condition. Some mutations happen in

autosomal chromosomes, causing disorders that may affect both males and females.

Some mutations happen in sex chromosomes, resulting in sex-related genetic dis-

orders, which only affect males or females. Monogenic genetic disorders can also

be divided into dominant and recessive disorders, which mechanism is described in

Section 1.1.1.

2. Multi-gene disorders: These are conditions in which one mutation itself is not enough

to trigger the disease, but requires contributions from the environment and also

interactions with other genes. These disorders include some common diseases —

much heart disease and all cancers.

3. Chromosome disorders: These are conditions caused by the addition or deletion of

a whole chromosome or parts of a chromosome. For example, Down’s syndrome is

caused by a complete extra copy of chromosome 21.

Penetrance means the probability that a mutation carrier would develop the disease

by age x, if all other decrements were absent (Macdonald, 2003a). Few genetic diseases

have complete, i.e. 100%, penetrance. In the case of incomplete penetrance, the mutation

carriers can remain asymptomatic at very old ages.

6



1.2 Genetics and Insurance

1.2.1 Genetic Information, Genetic Testing and Family History

In a broad sense, as mentioned in ALRC (2003), “almost all information about a person’s

health and physical well-being can be called ‘genetic information’.” Adopted from Lu

(2006), there are three levels at which information may be regarded as ‘genetic informa-

tion’ as follows:

(a) A narrow definition usually refers to DNA-based genetic analysis looking for muta-

tions which are associated with certain diseases.

(b) A broad definition includes family history information about the medical conditions

of family members. It may also include the genetic test results of family members.

(c) A sweeping definition may include any inherited characteristics, such as sex, height

or hair colour.

In the first annual report by the Genetics and Insurance Committee (GAIC) in 2000, it

was said that the term “genetic test” is not easy to define. GAIC adopted the definition

used by the Advisory Committee on Genetic Testing, that “a genetic test is a test to

detect the presence or absence of, or change in, a particular gene or chromosome.” Also

in this paper, it said that genetic testing includes biochemical analysis, which detects

an inherited change in a gene in an indirect way by detecting a change in the level of a

specific gene product (protein), and the analysis of heritable genetic material itself, which

is DNA or chromosomes. Several important terms are: predictive genetic testing (which

can identify mutations that increase a healthy person’s chances of developing disorders

with a genetic basis); pre-symptomatic testing (which can determine whether a person

is at risk of developing a genetic disorder before any signs or symptoms appear); and in
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contrast conventional diagnostic testing (which provides information about the patient’s

current state).

1.2.2 Underwriting Practices

Several aspects of underwriting practices were reviewed in the first report by GAIC in

2000.

1. The premium for a life (or health) insurance policy comprises three main elements:

risk premiums, expenses and profit, in which risk premium is decided by the appli-

cant’s age, sex, status of smoking, the term of the policy and other related factors.

2. Two main roles of an underwriter in a life (or health) insurance company are:

(a) to identify the potential for adverse selection, which arises when insurance

applicants have better information than insurance companies, and consequently

may buy larger amounts of insurance cover than they would otherwise do.

(b) to assess extra premium loadings when applicants have extra risks, which ex-

clude them from the standard risk pool.

So the disclosure of genetic testing results might put people in a higher risk group,

resulting in higher risk premium loadings. In the case of life insurance, 95% of individual

are accepted at a standard rate, about 4% of applicants are accepted at an increased rate

to reflect the level of additional risk (typically in the range of +50% to +500%, i.e. 150%

to 600% of the standard premium rate), and about 1% of applicants are denied because

the risk they carry is exceptionally large. In the case of health insurance, underwriters

take similar considerations into account, but with narrower range for acceptable additional

premiums (typically, +25% to +200%, i.e. 125% to 300% of standard premium).
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1.2.3 Concerns Related to Genetics and Insurance

Concerns about genetics from both insurers and individuals were presented in HGAC

(1997). Two important principles, namely solidarity and mutuality, relate to the insurance

industry. The best example of the first principle in the UK is the National Health Service

and Social Security, in which everybody is treated equally, and is included in the scheme.

The best example of the second principle is commercial insurance business. In this case

consumers have the option, but no obligation, to purchase the insurance products provided

by an insurance company. The insurance company also has the option to deny an insurance

applicant on a sensible ground, and has discretion in premium-setting.

Individuals are concerned about the affordability of commercial insurance products.

Insurance matters to individuals’ lives. It links to home purchase and the protection of

dependents. So people could be afraid of taking genetic tests, because they might be

treated in a discriminatory way by an insurance company, e.g. cover declined because of

the significantly high risk. They might fear that a “genetic under-class” will form because

of this. Also they might be concerned about possible disclosure of their genetic information

to other specialists, e.g. their GP, who will be obliged to release this information to an

insurance company upon request. These concerns could deter people from taking genetic

tests and this could delay their receiving treatment in good time. In the case of colon

cancer, for example, early detection and an appropriate screening program can greatly

reduce the mortality associated with this disease. Insurers argue that such discrimination

is groundless due to the competitiveness of the insurance industry. The counter-argument

is that the complexity and incomparability of insurance policies would make consumers’

concerns meaningful.

A major concern of the insurance industry is the possibility of adverse selection,

which arises when customers have better information about their health condition than

the insurance company. When genetic information is banned from being used by insurers,
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they are in a unfavourable place, compared with the insurance applicants, who could take

advantage of the insurance company by purchasing larger amounts of insurance cover

than they might normally do. The insurance company will have to make up this loss

by raising premiums charged to applicants in the standard risk pool. If the increase is

sufficiently high, these people will be driven out of the market, leading to an increasing

proportion of applicants carrying mutations, and threatening the sustainability of the

insurance industry in extreme cases.

1.2.4 Moratoria in the UK

To prevent genetic discrimination, and protect individuals’ genetic information from im-

proper use by interested parties, e.g. insurance companies, a series of events has taken

place in the UK, starting in 1995, when the Human Genetics Advisory Commission

(HGAC) was appointed by the UK Government to investigate all matters arising from

human genetics, including insurance.

In HGAC’s 1997 report (HGAC, 1997), it commented that a complete ban on the use

of genetic tests in insurance would not be appropriate. Instead, they recommended that

insurers should respect a moratorium. They demanded that the moratorium, meaning

“a temporary stopping of an activity, especially by official agreement”, needed to be of

at least 2 years’ duration, and subject to review after that, since there had not yet been

enough evidence accumulated on this subject. They did not detail all the specifications

of a moratorium.

In 1998, in response to the HGAC’s report, the UK Government concurred that a per-

manent ban on the use of genetic tests by insurers would not be appropriate (Department

of Trade and Industry, 1998). The Government instead welcomed the Code of Practice

on Genetics introduced by Association of British Insurers (ABI), in which the basic rules

were:
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(a) insurers were not allowed to ask anyone to take a genetic test for insurance purposes;

(b) insurers could not use existing genetic test results except for mortgage-linked life

insurance, provided the sum assured exceeded £100,000;

(c) insurers could not use favourable genetic test results to offer better than standard

premiums.

The ABI also listed eight genetic disorders regarded as significant for insurance, in-

cluding early-onset familial Alzheimer’s disease (EOAD), familial adenomatous polyposis

(FAP), hereditary breast and ovarian cancer (BC & OC), hereditary motor and sensory

neuropathy (HMSN), Huntington’s disease (HD), Multiple endocrine neoplasia (MEN)

and Myotonic dystrophy (MD).

In May 1999, the Human Genetics Commission (HGC) was established by the UK

Government. The purpose of setting up this organization was to ensure that the Govern-

ment could have a complete view on genetics, including cutting-edge knowledge, before

they made decisions.

In 2000, the Genetics and Insurance Committee (GAIC) was set up by the Govern-

ment to determine which genetic tests were suitable for use by the insurance industry,

and for what specific types of contract. The first application from the ABI to GAIC was

a request to use the results of the genetic test for Huntington’s disease in connection with

applications for life insurance. This application was approved by GAIC in the same year.

In 2001, the Government signed a agreement with the ABI extending the moratorium

to five years, starting from October 2001. UK insurers would continue not to require any

genetic test results in respect of applications for life insurance products with sums assured

of less than £500,000, critical illness insurance with sums assured of less than £300,000

and for income protection with sum assured up to £300,000. Family history was not

included in the moratorium, meaning that insurers remained free to use it.
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In early 2005, the ABI extended the moratorium for another five years ending in

November 2011. Family history was still not included. Three types of moratoria will be

discussed in this thesis:

(a) Moratoria on all genetic test results. In this case, the underwriters are allowed to

use family history but not genetic test results. So applicants with a family history

will be charged a higher premium than those who do not have a family history, who

will be charged the Ordinary Rate (OR).

(b) Moratoria on negative genetic test results only. In this case, underwriters are also

allowed to use family history. However, when people with a family history find out

that they do not carry a mutation, by taking a genetic test, they may be offered the

Ordinary Rate. (This is the form of moratorium in force in the UK.)

(c) Moratoria on genetic test results and family history. In this case, insurers cannot

use genetic tests or family history, and everyone will be charged the same level of

premiums. (This is the form of moratorium in force in Sweden.)

1.2.5 Studying the Impact of Genetic Information on the Insur-

ance Industry

To study the impact of genetic information on the insurance industry, two approaches

have been explored in the Genetics and Insurance Research Centre (GIRC) 2. The first

approach is a “top-down” approach, studied in three papers: Macdonald (1997, 1999

& 2003b). The first two papers studied the entire class of multi-factorial disorders and

2GIRC was set up in 1999 in the Department of Actuarial Mathematics and Statistics at Heriot-Watt

University, Edinburgh. Please go to its official webpage http://www.ma.hw.ac.uk/ams/girc/ for more

information.
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the last considered the entire class of single-gene disorders. Some of the features are

summarized as follows.

(a) These papers only look at life insurance. Whether the model proposed in the paper

could be extrapolated to other products is unknown.

(b) These works are based on very broad assumptions about mortality, without specific

reference to individual diseases. We do not expect this to be accurate, but it does

give a very broad sense of the level of adverse selection. However, these studies are

only useful when extreme assumptions lead to modest conclusions.

(c) Their advantage is that they need only the broadest guidance from genetic epidemi-

ology. However, when some of the assumptions become unrealistic, the “top-down”

approach is inappropriate, and a “bottom-up” approach is needed.

The second, “bottom-up”, approach starts with studies of individual genetic disorders

(for brevity, we call this type of study an individual study), and proceeds by aggregating all

these individual studies. In individual studies, epidemiological features of each disease are

carefully reviewed, e.g. prevalence rate, onset rate and post-onset mortality rate. Markov

or semi-Markov models are used to model various insurance products, incorporating the

epidemiology of the disease. Using these, we can assess the financial impact of genetic

information relating to the disease on insurance applicants, and insurance companies. The

financial impact is two-fold based on the concerns we discussed in Section 1.2.3. From an

applicant’s perspective, we calculate the premium rates for mutation-carriers, expressed

as a percentage of that for non-mutation carriers, and then the insurability of insurance

applicants with mutations is assessed based on underwriting practices we introduced in

Section 1.2.2. We can extend this analysis to applicants who have a family history of

the disease but whose genotype is unknown. From an insurer’s perspective, we further

calculate the possible cost of adverse selection. Although the “bottom-up” approach
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requires the studies of each individual genetic disorder, it is clearly impossible to include

all known genetic disorders. As mentioned in Section 1.2.4, the ABI listed eight genetic

disorders regarded as significant for insurance, including early-onset familial Alzheimer’s

disease (EOAD), familial adenomatous polyposis (FAP), hereditary breast and ovarian

cancer (BC & OC), hereditary motor and sensory neuropathy (HMSN), Huntington’s

disease (HD), Multiple endocrine neoplasia (MEN) and Myotonic dystrophy (MD). Not

all of these disorders have been made the subject of mathematical modelling in GIRC,

for various reasons as follows:

(a) MEN is an example of a cancer for which genetic testing and early treatment should

lead to substantially better outcomes (Gui, 2003), hence we may doubt that it would

have a substantial impact on the insurance industry. Please see Gui (2003) for more

details about this disease.

(b) HMSN is a very rare disease and most patients affected are very young, usually

below age 20, before they would be likely to purchase insurance. Therefore this

disease is proven not to have a substantial impact on the insurance industry, and so

has not been modelled.

(c) FAP is a type of hereditary colorectal cancer, which has a feature of polyps. Because

these polyps can be easily detected and removed in a screening program, the risk

associated with FAP is limited, and like MEN, ought to be substantially lowered by

genetic testing within at-risk families. Therefore, FAP is not included.

Some diseases not on the ABI list, however, have been modelled in GIRC as follows:

(a) Hereditary nonpolyposis colorectal cancer (HNPCC) is fully studied in Lu et al.

(2007).

(b) Adult polycystic kidney disease (APKD), originally on the ABI list, was later re-

moved because it is typically detected by ultrasonography, which is not DNA-based
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genetic testing according to the narrow definition of genetic testing the ABI adopted.

But because APKD is one of the most common dominant single-gene hereditary dis-

eases, APKD is studied in Gutiérrez & Macdonald (2003 and 2007).

After these adjustments, six genetic diseases, including adult polycystic kidney disease

(APKD), early-onset Alzheimer’s disease (EOAD), Huntington’s disease (HD), myotonic

dystrophy (MD), hereditary non-polyposis colorectal cancer (HNPCC) and breast cancer

& ovarian cancer (BC & OC), were chosen to be studied in GIRC. A series of papers, i.e.

individual studies in the ‘bottom-up’ program, was published as follows:

(a) APKD: Gutiérrez & Macdonald (2003) and Gutiérrez & Macdonald (2007).

(b) EOAD: Gui & Macdonald (2002) and Espinosa & Macdonald (2007).

(c) HD: Gutiérrez & Macdonald (2004).

(d) MD: This work will be presented as Chapter 2 of this thesis.

(e) HNPCC: Lu et al. (2007).

(f) BC & OC: Macdonald, Waters & Wekwete (2003a & b) and Gui et al. (2006).

The conclusions made in individual studies are as follows.

(a) The carriers of specific mutations, healthy at the time of applying for insurance, are

not insurable, with few exceptions.

(b) Individual genetic disorders will not result in substantial adverse selection costs for

the insurance industry.

We observe from the above list that no individual study of MD has yet been done.

So Chapter 2 will carry this out. This done, we are ready to model the overall cost of

adverse selection (for brevity, we call this part the aggregate study).
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Chapter 2

Myotonic Dystrophy

2.1 Introduction to Myotonic Dystrophy

2.1.1 Muscular Dystrophy

Muscular Dystrophy represents a group of muscular disorders characterized by progressive

muscle weakness and loss of muscle tissue. Over 30 muscle diseases fall into this category.

Of these, 9 types are well known and named specifically. They are: Becker’s muscular dys-

trphy (BMD), Duchenne muscular dystrophy (DMD), Emery-Dreifuss muscular dystro-

phy (EDMD), Limb-girdle muscular dystrophy (LGMD), Facioscapulohumeral muscular

dystrophy (FSHMD), Myotonic dystrophy (MD), Oculopharyngeal muscular dystrophy

(OPMD), Distal muscular dystrophy (DD), and Congenital muscular dystrophy (CMD).

The first 3, BMD, DMD and EDMD are sex-related, only affecting males, because the

mutations are in genes on the X chromosome. Females are carriers, but rarely affected.

The other 6 could affect both males and females because the mutations occur in genes

on autosomal chromosomes. Of these 9 well-defined types of muscular dystrophy, the

severity and the onset age vary largely. The earliest onset case is CMD. Childhood and

early adulthood onset cases include BMD, DMD, EDMD and FSHMD. LGMD patients
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could be affected from late childhood to middle age. Adult onset cases are DD, MD and

OPMD. MD is the most common form of adult onset muscular dystrophy.

2.1.2 A Brief History of Myotonic Dystrophy

Myotonia, characterized by the slow relaxation of the muscles after contraction, especially

hand muscles, was first described as such by Dr Julius Thomsen in 1876. MD was first

described by a German physician, Dr. Hans Steinert in 1904 (Harper, 2001). He studied

9 cases, noting symptoms such as muscle weakness and wasting, facial weakness, etc. Dr.

Hans Steinert first used the phrase “myotonic atrophica” to describe this disorder. In

1909, shortly after the premature death of Dr Hans Steinert, Batten and Gibbs pursued

the work. They expanded the literature on MD by publishing 5 cases and reviewing the

published cases of myotonic dystrophy and realized that all these cases could form a def-

inite disorder group. In 1911, Greenfield was the first person who recognized cataract

to be another form of onset of MD, after studying a sibship of 13 with cataracts, and

tracing cataracts in the paternal aunt and grandmother. This work can be recognized as

the first phase of the study of MD, including its discovery, establishment of the concept,

and the initial collection of clinical documents. The second phase of this work focused

more on the inheritance pattern, which the clinical aspects were expanded. The first sys-

tematic study of MD was carried out by Bell (1947) and Thomasen (1948). In their work,

they established autosomal dominant inheritance. The third phase of study concentrated

more on the molecular basis of MD. The first mapping of gene locus took place in 1971,

and in 1992, the cause of myotonic dystrophy was finally discovered to be an expanded

trinucleotide (CTG) repeat sequence.
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2.1.3 The Genetic Mechanism and Classification of Myotonic

Dystrophy

As we said in the previous section, MD is caused by an abnormal expansion of a trin-

ucleotide CTG repeat. There are three forms of MD: type 1 (MD1), type 2 (MD2)

and type 3 (MD3). In MD1, the expansion is in a non-coding region of the DMPK

(Dystrophia-myotonica protein kinase) gene on chromosome 19. In MD2, the expansion

is in a non-coding region of the ZNF9 (zinc finger protein 9) gene on chromosome 3. Very

few papers refer to the rare MD3, and we will not consider it here. MD1 is the most

common form, accounting for about 98 percent of all cases. MD2 has milder clinical pre-

sentation than MD1. MD3 is newly found and even rarer than MD2. Therefore, here we

will only consider MD1.

2.1.4 Classification of Myotonic Dystrophy 1

There are 3 forms of MD1: congenital MD (CMD); classical MD; and mild MD. These

forms are differentiated by the number of CTG repeats. Normal people have fewer than

50 CTG repeats. Mild MD1 is usually associated with 50–100 CTG repeats, classical

adult onset with 100–1,000 CTG repeats and the more severe CMD with over 1,000 CTG

repeats. (The classification varies in different parts of the literature.) Table 2.1 shows a

typical classification (Langlois, 2003).

Similar tables can be found elsewhere, often set up for different purposes. A general

pattern is that the bigger the number of CTG repeats, the earlier the onset will be. CMD

is more severe than other two cases, and the onset at birth makes the carriers uninsurable.

Therefore in the following paper, we concentrate on the adult onset cases of MD1.
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Table 2.1: Critical CTG expansion thresholds for myotonic dystrophy onset and symp-

toms. Source: Langlois (2003).

No. of CTG repeats Phenotype Comments

3–49 Normal Individual Over 90% of the general population has

fewer than 35 CTG repeats at the MD1 locus.

50–80 Very mild or no apparent Expansions in this range are incremental

symptoms except cataracts from generation to generation.

80–1000 Full mutation, adult onset 80 CTG repeats is the threshold

for saltatory amplification.

≥ 600 Full mutation, adult onset High risk of transmitting the congenital form

if the mother is the carrier.

1000–3000 Generally congenital Such expansions are most

frequently seen in congenital cases.

2.1.5 Clinical Aspects of Myotonic Dystrophy 1

One significant feature of the clinical aspects of MD 1 is the occurrence of a variety of ab-

normalities outside muscle tissue. Höweler (1986) gave a diagram, describing the severity

of three typical symptoms: cataract, muscle weakness and mental symptoms, categorized

by different age of onset. Two features were that mental retardation mostly happens in

CMD and young adulthood, while cataract mostly affects people in the late onset group.

Mild MD normally comes with cataract and light muscle stiffness. Facial muscles are one
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of the frequently affected muscle groups, weakness in which could cause motionlessness

of patients. Ptosis, the medical term for drooping eyelid, is another common symptom;

affected people might not be able to open their eyes. Other symptoms, e.g. diplopia,

more commonly known as double vision, are directly attributable to extraocular muscle

weakness. Jaw and tongue muscles are also commonly affected by MD1. All these facial

muscle weaknesses, along with mental retardation, very often cause speech problems in

CMD cases. Weakness of limb muscles, especially distal muscles 1 of the forearm is usually

associated with MD1. Myotonia, as a hallmark of MD, refers to the fact that affected

patients find it very hard to relax their hand after grasping an object. Extra-muscular

abnormalities involve other inner organs of the human body, e.g. heart, lungs, endocrine

system, brain, and skin.

The most comprehensive assessment of physical disability associated with MD1 is

Mathieu et al. (1992). In this paper, the authors used the muscular disability rating scale

(MDRS) as displayed in Table 2.2, to evaluate 295 MD patients living in the Saguenay-lac-

Saint-Jean (SLSJ) region (Quebec, Canada), which has the highest reported prevalence

of MD in the world, 189 per 100,000 population.

Table 2.2: Muscular disability rating scale (MDRS).

Grade Description

1 No clinical muscular impairment

2 Minimal signs (myotonia, facial weakness and etc)

3 Distal weakness

4 Mild or moderate proximal weakness

5 Severe proximal weakness (confined to wheelchair)

1The muscles further from the centre of the body are called distal muscles and the muscles closer to

the centre of the body are called proximal muscles
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This conclusion on the duration of the disease is that on average, a distal weakness

(grade 3) is identified after 9.6 years’ duration (SD = 5.9 years), a proximal weakness

(grade 4) is noticed after a progression of 18 years (SD = 9.1 years), and patients are

wheelchair-bound (grade 5) after a course of 27 years (SD = 9.9 years). The authors

noticed significant correlation between the duration of the disease and the severity.

2.1.6 Age at Onset

Mathieu et al. (1999), another study of MD patients in the SLSJ area, found that the

mean age at onset for males is 17.0, and for females is 20.0. However, these means are

all subject to high variances. The range for males is 0–44, and that for females is 0–51.

In Lynas (1957), the mean of age at onset is 31.1, and the range of age at onset is 7–70.

Other papers, e.g. Maas (1937) and Bell (1947) show similar conclusions.

2.1.7 Negative Correlation between Age at Onset and Number

of CTG Repeats

Several reports agreed on a broad conclusion that the age at onset has a negative rela-

tionship with the number of CTG repeats (Hunter et al., 1992; Novelli et al., 1993). This

phenomenon coincides with the clinical aspects of MD we discussed previously. Hamshere

et al. (1999) recently found that the correlation of (CTG) repeat length in leucocytes,

with age at onset, is significant only for patients with small expansions. In Hsiao et al.

(2003), 96 subjects belonging to 26 families were identified as MD1 patients. The inverse

correlation between the age at onset and the number of the CTG repeats only existed for

small expansions (≤ 250). This opinion is very similar to Hamshere et al. (1999).
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2.1.8 Age at Death and Cause of Death

Thomasen (1948) found the mean age at death of 24 patients to be 43.5 years. Bell

(1947) found the mean age at death of 85 published cases to be almost the same at 44.7

years, compared with approximately 60 years for the population as a whole over the same

period. Klein (1958) recorded a somewhat higher mean age at death (50.6 years), which

may reflect the generally improved life expectancy since the publication of Bell (1947).

This result was in agreement with Grimm (1975a).

Two papers have contributed to the measurement of MD-associated death, de Die-

Smulders et al. (1998) and Mathieu et al. (1999). In the first paper, the causes of

MD-related death were sudden death, arrhythmias, pneumonia, and postoperative death.

In the second paper, of 75 patients who died during the observation, 32 died from a

respiratory problem, either pneumonia or acute respiratory failure, and 15 patients from

a cardiovascular disease. The latter result agrees with the former result.

2.1.9 Prognosis

Estimating the age at onset, the age at death and the cause of death, and in general the

prognosis for patients with MD are not easy tasks because the age at onset, the onset

symptoms, the progression of the disease, the weakness of muscles, the age at death and

the cause of death vary dramatically (Harper, 2001).

2.1.10 Diagnosis of Myotonic Dystrophy 1

Accurate diagnoses of MD1 and MD2 are most likely to be made by doctors with spe-

cialized training in both neurology and the adult neuromuscular system. Several factors

might explain the difficulty of accurately diagnosing MD.

(a) In most cases, patients are treated by family doctors, who might not be aware that
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these symptoms are related to MD1 or MD2.

(b) Depending on the presentation of symptoms, people may be referred to other medical

specialists including cardiologists, endocrinologists etc. However, they might not be

aware of the criteria or the full range of clinical symptoms of MD, which is a multi-

system disease. These specialists might give opinions based on their experience but

fail to make a collaborative diagnosis.

(c) Neuromuscular disorders covers more than 40 different diseases. All these diseases

might share some common characteristics, e.g. progressive degeneration of muscle

systems. Before some textbook symptoms of MD appear, even neurologists find it

hard to tell what disease it might be.

(d) Not all delayed relaxation of muscle is the result of myotonia, and a number of

conditions may cause confusion. Other diseases, e.g. other muscular dystrophies

introduced previously, can also cause great confusion.

Therefore, clinical presentation is not now enough for an accurate diagnosis without

the help of a molecular test. However, that was not the case before molecular analysis was

available. Harper (2001) introduced two clinical tests offering presymptomatic detection:

namely the early detection of lens opacities by slit-lamp examination, and the recognition

of subclinical myotonia by electromyography. Both are now recognized to have significant

false-positive and false-negative rates. They may still be useful if a confirmed mutation

carrier is being monitored regularly and wishes to know if there is any evidence of early

ocular or muscle disease.

Since the emergence of the molecular test, the genetic test has become the most

convincing and reliable result in diagnosis of MD. In Brunner et al. (1992), the authors

corrected the diagnoses for 11 subjects who had been ascertained by genetic linkage stud-

ies, and found that 9 subjects had expanded CTG repeats and 2 subjects had normal
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numbers of CTG repeats. Shelbourne et al. (1993) concluded that the genetic test pro-

vided better diagnoses. The genetic test method used in these two papers were Southern

blot analysis and polymerase chain reaction (PCR), respectively.

These two methods have their own advantages and disadvantages. The Southern blot

method is used to detect larger than 100 CTG repeats. So this is a standard procedure

to detect MD1 mutations. But when the number of CTG repeats is below 100, it must be

identified by PCR, which cannot provide reliable results when the region of CTG repeats

is longer than 500 base pairs. So PCR is not suitable for the detection of severe MD1

mutations (Ashizawa, 2000).

2.1.11 Treatment for Myotonic Dystrophy

Unfortunately, there is no known cure for any type of muscular dystrophy (Harper, 2001).

Inactivity might worsen the disease. Physical therapy and orthopedic instruments (e.g.

wheelchairs, standing frames) may be helpful. But the aim of physical therapy and drug

therapy is not to prevent disease progression, but to alleviate the suffering associated with

it.

In Hashem & Sinden (2002), the authors talk about the treatment for the diseases

caused by abnormal expansion of DNA repeats, including Huntington’s disease (HD), MD

etc. They propose to introduce damage into the DNA, which would subsequently lead

to an increased rate of repeat deletion. This is very encouraging news for MD patients.

However, we are still a long way from any applicable, affordable and easy-to-use therapy.

2.1.12 Anticipation

Anticipation, meaning that each successive generation is normally more severely affected

than the last, with earlier onset, is not only associated with MD, but also other hereditary

diseases caused by abnormal DNA repeat expansions. Huntington’s disease is another
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good example. In the case of MD, the number of CTG repeats becomes very unstable

in the transmission of DNA through generations. Anticipation was first described by

Fleischer in 1918 (Höweler, et al., 1989). Höweler (1986) observed that the children in

60 of 61 parent/child pairs had onset age one or two decades earlier than that of their

parents. This again showed the existence of anticipation. However, it is very hard to

explain the mechanism of anticipation without the advances in molecular studies of the

last decades of the 20th century. Harley et al. (1993) and Buxton et al. (1992), both

found that a variable DNA insert of as much as 5 kb in length, tentatively explained the

phenomenon. Also Ashizawa et al. (1992) studied CTG expansions in 43 parent/child

pairs and observed generally that there is an increasing amplification of the CTG repeats

over generations.

Shelbourne et al. (1993) published the first report of a transmission from father to

son, where the CTG repeat expansion reduced to a size within the normal range, and the

son remained asymptomatic. Similar observations are made in Abeliovich et al. (1993),

Hunter et al. (1993), and O’Hoy et al. (1993), although this does not happen as frequently

as expansion does. The largest study is Ashizawa et al. (1994). 1,489 parent/child pairs

were studied: 10% of paternal transmissions and 3% of maternal transmissions showed a

contraction.

Therefore, in the transmission of DNA, the CTG expansion can be unstable. Most

likely, there will be an expansion of CTG repeats. However, there is some probability

that a reduction of CTG repeats could happen.
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2.2 The Epidemiology of Myotonic Dystrophy

2.2.1 The Penetrance Rate of Myotonic Dystrophy 1

The age-related cumulative risk (penetrance), denoted F (x), can be regarded as the prob-

ability of developing MD by age x, if we assume there were no other causes of decrement

(Macdonald, 2003a). When x approaches a suitable limiting age, e.g. 100 year old, we

obtain the lifetime penetrance. Nesterov et al. (1983) claimed to have shown that in-

complete penetrance of the MD gene, with penetrance of 83% in Ukrainian families, and

91% in Russian families. Höweler (1986) studied 14 MD families, and found that 46% of

subjects were affected. Thus the penetrance of the MD gene was almost complete. Harper

(2001) mentioned an earlier study (Harper, 1973) where the ascertainment was through

the parent, not the child. Almost 50% proportion of offspring were affected. This implies

that MD has almost complete penetrance. Therefore, we conclude that the penetrance of

a MD mutation carrier is close to 100%.

2.2.2 The Onset Rate of Myotonic Dystrophy 1

Given estimates of the penetrance F (x), the rate of onset (hazard rate), µ(x), is then

given by:

µ(x) =
F ′(x)

1− F (x)
, (2.1)

which can be computed by analytical or numerical differentiation.

We searched exhaustively the literature on the penetrance of MD. We found several

papers carrying detailed pedigrees and descriptions. These include Maas (1937), Bell

(1947), Thomasen (1948), Lynas (1957), Harper (1972), Grimm (1975a), Höweler (1986)

and Magee (1996). However, these works did not employ survival analysis. So the patients’
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information was collected mainly for clinical use, i.e. prognosis and diagnosis, but not

for survival analysis. Other authors carried out quasi-survival analysis, calculating the

cumulative proportion of the patients affected by MD based on retrospectively collected

pedigrees. The pedigrees contained either incomplete, or redundant information from an

actuary’s point of view.

Frohock (2003) studied MD patients and obtained Kaplan-Meier estimates of the

cumulative onset probability. Unlike Huntington’s disease, in which there is a relatively

limited number of mutation genotypes, the number of CTG repeats in MD could range

from 50 to several thousands. So we could not differentiate the genotypes of patients by

the exact number of the CTG repeat expansion. In Frohock (2003), the MD mutation

carriers are categorized into two groups: genotype I, with the number of the CTG repeats

more than 250 (for brevity, this genotype is denoted as CTG250+), and genotype II, with

the number of the CTG repeats less than 250 (for brevity, this genotype is denoted as

CTG250–). Kaplan-Meier estimates of cumulative onset probability of both genotypes

are provided in Frohock (2003). We smoothed these Kaplan-Meier estimates as shown

in equations (2.2) and (2.3). Figure 2.1 shows the observed and fitted cumulative onset

probabilities, and the corresponding onset rates µCTG250+
x and µCTG250−−

x .

F (x)MD,CTG250+ =
exp (−3.952× 10−6x3 − 1.624× 10−4x2 + 0.1206x− 4.951)

1 + exp (−3.952× 10−6x3 − 1.624× 10−4x2 + 0.1206x− 4.951)
,

(2.2)

F (x)MD,CTG250−− =
exp (4.343× 10−5x3 − 0.006044x2 + 0.4437x− 8.731)

1 + exp (4.343× 10−5x3 − 0.006044x2 + 0.4437x− 8.731)
. (2.3)
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Figure 2.1: Observed and the fitted cumulative onset probabilities (top) and onset rates

(bottom) for MD mutation CTG250+ and CTG250– carriers. Source: Frohock (2003)

and our fitted curves.
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For mutation CTG250+ carriers, since data after 50 years old is scarce and the

penetrance is nearly complete by age 50, we can expect a little increase of the onset rate

after age 50. Therefore we assume that the onset rate levels off after age 50.

2.2.3 Post-Onset Mortality

On the topic of post-onset mortality, we located three papers, de Die-Smulders et al.

(1998), Mathieu et al. (1999) and Mladenovic et al. (2006).

In de Die-Smulders et al. (1998), 180 MD patients (from a register of MD, set up

in Southern Limburg, Netherlands) were collected for the study of survival after onset.

Kaplan-Meier methods were used to calculate the empirical survival probability for both

males and females. However, this experiment is not based on the length of follow-up since

onset, but the age of patients. This means that at the start of observation, some patients

have been ill for some time, but exactly what time is unknown to us. So for this reason,

we did not use this paper.

Mathieu et al. (1999) and Mladenovic et al. (2006) studied data from the Saguenay-

Lac-Saint-Jean (SLSJ) region (Quebec, Canada), and the Belgrade area, respectively. As

mentioned before, the SLSJ region has the highest prevalence rate of MD in the world.

These authors carried out Kaplan-Meier estimation which would suit the needs of our

research. However, the drawback of Mathieu et al. (1999) is that the author specified

four cohorts, Mild, Adult, Early adult and Childhood, but not age ranges for each cohort.

Also, the follow-up period in Mathieu et al. (1999) is 10 years after onset, which is shorter

than Mladenovic et al. (2006). Therefore, we adopted the results from Mladenovic et al.

(2006) because they specify the cohort age ranges, have a longer follow-up period and are

more recently published.

Mladenovic et al. (2006) provides Kaplan-Meier estimates of the post-onset 15-year

duration-dependent survival probability for three cohorts, CMD (onset before age 20),
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classical onset (onset between age 20 and age 50), and mild onset (onset after age 50).

We are not interested in CMD, because we assume that critical illness insurance and life

insurance operate between ages 20 and 60. We decided not to use the mild onset case,

because the fitted curve behaves very irregularly due to lack of data and the survival

probability by duration 16 years is about the same for both cases. Instead, for both mild

onset and classical onset, we use the estimate for classical onset.

We use a logit transformation to fit a smoothed curve to the Kaplan-Meier estimate

for the classical onset case. Equation (2.4) gives the fitted function F (z)MD,Mortality, as a

function of duration z since onset. The post-onset mortality rate µMD,Mortality
z is given by

equation (2.1). However, Wilkie (2000) pointed out the anomaly that µMD,Mortality
z could

be assumed to fall substantially below the normal age-related mortality rates µStandard
x , e.g.

English Life Tables 15, at certain ages. Therefore, to avoid this anomaly we assume that

mortality after onset of MD is no better than normal age-related population mortality, e.g.

µMD,Dead
x,z = max

{
µMD,Mortality

z , µStandard
x

}
. Using a standard mortality table to adjust the

duration-dependent mortality is a technique we will use often in the rest of this thesis. We

call this treatment the Wilkie adjustment to mortality. Figure (2.2.3) shows the Kaplan-

Meier estimate and the fitted curve of the post-onset mortality probability (top) and the

corresponding post-onset mortality rate µMD,Mortality
z (bottom).

F (z)MD,Mortality =
exp (0.001903z3 − 0.06907z2 + 1.007z − 6.082)

1 + exp (0.001903z3 − 0.06907z2 + 1.007z − 6.082)
. (2.4)

According to Equation (2.1) and (2.4), we derive that:

µMD,Mortality
z =

exp (0.001903z3 − 0.06907z2 + 1.007z − 6.082)

1 + exp (0.001903z3 − 0.06907z2 + 1.007z − 6.082)

×(0.005709z2 − 0.1381z + 1.007) (2.5)
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Figure 2.2: Observed and fitted post-onset survival probability F (z)MD,Mortality as a func-

tion of the duration of the disease (top) and the post-onset mortality rate µMD,Mortality
z

as a function of duration since onset of MD . Data source: Mladenovic et al. (2006).
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2.2.4 Prevalence Rate and Distribution of Mutations

Overall, the prevalence rate of MD is about 1 per 8,000. But prevalence rates in different

areas vary hugely. Table 2.3 is a short summary of the prevalence rates in different areas.

Table 2.3: Prevalence of myotonic dystrophy, per 100,000 of population

Source Place Frequency

Osame & Furusho (1983) Kagoshima and Koinawa districts, Japan 5.5

Hsiao et al. (2003) Taiwan 0.46

Ford, Kidd & Hammond-Tooke (2006) Otago, New Zealand 11.6

Bouchard et al. (1988) Saguenay, Quebec (Canada) 210.5

Grimm (1975b) Germany 5.5

Mladenovic et al. (2005) central Serbia 3.8

López De Munain et al. (1993) Basque Country, Spain 26.5

Medica, Markovi & Peterlin (1997) Istria, Croatia 18.1

Klein (1958) Switzerland 4.9

Mostacciulol et al. (1987) Veneto, Italy 36.3

Siciliano et al. (2001) Padova and North-West Tuscany, Italy 9.31

Magee & Nevin (1999) Northern Ireland 119.5

MacMillan & Harper (1991) Wales (South) 7.1

Sizhong et al. (2000) reports a very low frequency of MD in Chinese Han people.

Mor-Cohen et al. (1997) mentioned similar result in Ashkenazic Jews. Goldman, Ramsay

& Jenkins (1994) used genetic tests to explain the absence of MD in southern African

Negroids. At the other extreme, the Saguenay-Lac-Saint-Jean (SLSJ) region (Quebec,

Canada) has 30 to 60 times the worldwide prevalence as shown in Table 2.3. Mathieu,
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Braekeleer & Prévost (1990) identified 746 patients distributed in 88 families. They traced

all the patients back to a couple who settled in “Nouvelle-France” in 1657. Because of the

isolation of this area, the MD gene passed on over 10–14 generations. Since in this paper,

we are mainly interested in the UK, we use the estimate of 7.1 per 100,000 (MacMillan

& Harper, 1991). This result is also cited in Harper (2001).

The distribution of mutation genotypes is estimated by referring to the data specified

in Frohock (2003), which provides the number of the CTG repeat of a sample of patients,

including symptomatic patients and asymptomatic patients. We found that 39 patients

have genotype CTG250–, and 44 patients have genotype CTG250+. Therefore we assume

that the patients have roughly equal chance of having genotype CTG250– and genotype

CTG250+ at birth.

2.3 A Critical Illness Insurance Model

2.3.1 Models for Critical Illness Insurance

Since there is no standard critical illness insurance model used by the industry, we adopt

the critical illness insurance model from Gutiérrez & Macdonald (2003) as presented in

Figure 2.3. This is a continuous-time discrete-state Markov model. In this model, an

insured person pays premiums while in State 0, and receives a lump-sum benefit upon

transition into State 1 or State 2. This model was used in the case of APKD (Gutiérrez

& Macdonald, 2003 and 2007) and EOAD (Gui & Macdonald, 2002 and Espinosa &

Macdonald, 2007) for the reason that the onset of APKD or EOAD will trigger the

payment for these diseases immediately.
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Figure 2.3: A multiple-state Markov model for myotonic dystrophy and in critical illness

insurance for an insurance applicant with genotype gi.
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In this model, three intensities as shown need to be parameterized. Intensity µi01
x is

found from the onset rates of MD in Section 2.2.2. Intensities µi02
x and µi03

x have been

estimated in Gutiérrez & Macdonald (2003). Please see the Appendix A for details.

2.3.2 The Timing of the Critical Illness Insurance Payment

The Extended Model for Critical Illness Insurance

The onset of the MD is associated with less severe symptoms, e.g. myotonia and cataract.

These will not trigger the CI insurance payment. In practice, the payment for MD is

delayed until some time after onset. This feature could be reflected by the addition of a

new state, i.e. State 4: Payment for MD, to the model shown in Figure 2.3. The intensity

µi14
z is the transition rate from State 1 to State 4, in which z is the duration since onset

of MD. The new model is shown in Figure 2.4.
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Figure 2.4: A semi-Markov model for myotonic dystrophy and critical illness insurance

for insurance applicants with genotype gi. The variable z is the duration since onset of

myotonic dystrophy.
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The intensities µi01
x , µi02

x and µi03
x in Figure 2.4 are the same as the corresponding

intensities in Figure 2.3. See Section 2.3.1 for details. Since the intensity µi14
z is duration

dependent, this model is semi-Markov. We assume in Figure 2.4 that µi02
x = µi12

x and

µi03
x = µi13

x .

We use the accelerated life model to represent the intensity µi14
z based on post-onset

mortality µMD,Mortality
z . Huntington’s disease (HD) is fully studied in Gutiérrez & Mac-

donald (2004), in which the payment of a CI benefit for HD also occurs some time after

onset. In this paper, the authors assume that the payment will be paid after 1/3 (Stage

II) or 2/3 (Stage III) of the mean remaining lifetime after onset of HD (on average), which

is governed by the post-onset mortality µHD,Mortality
z . Stage II and Stage III represent two

stages of the progression of HD, defined in Harper (1996). In this paper, we continue to

use the terms Stage II and Stage III to represent the times at which an insurance company

might pay a CI claim in respect of MD. However, unlike HD, these two stages do not carry

any medical explanation, but simply their mathematical meaning. The accelerated life-

time model is used to deal with delayed payment. Please refer to Gutiérrez & Macdonald

(2004) for more details about this model. We only give a simple description in Section

2.3.2.

The Accelerated Lifetime Model

The accelerated lifetime model is used in industry to test the lifetime of a component.

The idea is that since we might not be able to wait for long enough to assess the lifetime of

a component under normal circumstances, instead we assess this component’s shortened

lifetime when under pressure, stress, or heat. Then we use a parametric model to find the

normal (i.e. usual) distribution of the lifetime of the component.

Given the distribution FX(x) of a random variable X representing a lifetime, we

36



multiply the timescale by a constant φ > 1 to obtain a new random variable Y such that:

FY (x) = P[X ≤ φx] = FX(φx). (2.6)

Referring to Equation (2.1), the intensity µX(x) corresponding to the random variable

X is defined as:

µX(x) =
F ′

X(x)

1− FX(x)
, (2.7)

The relation between the intensities associated with X and Y is:

µY (x) = φµX(φx), (2.8)

the relation between the mean of the random variable Y and X is that:

E [Y ] =
1

φ
E [X] (2.9)

An Application of the Accelerated Lifetime Model

In the case of HD, φ = 3 and φ = 1.5 were chosen to correspond to a claim being paid

after 1/3 (Stage II) and 2/3 (Stage III) of the mean remaining lifetime after onset of

HD, respectively (Gutiérrez & Macdonald, 2004). In the case of MD, we choose the same

values of φ as suggested in Gutiérrez & Macdonald (2004). The intensity µi14
z is calculated

based on post-onset mortality µMD,Mortality
z (Equation (2.5)). In the case that φ = 3, we

have:

µi14
z = 3× exp (0.001903(3z)3 − 0.06907(3z)2 + 1.007(3z)− 6.082)

1 + exp (0.001903(3z)3 − 0.06907(3z)2 + 1.007(3z)− 6.082)

×(0.005709(3z)2 − 0.1381(3z) + 1.007), (2.10)

and in the case that φ = 1.5, we have:

µi14
z = 1.5× exp (0.001903(1.5z)3 − 0.06907(1.5z)2 + 1.007(1.5z)− 6.082)

1 + exp (0.001903(1.5z)3 − 0.06907(1.5z)2 + 1.007(1.5z)− 6.082)

×(0.005709(1.5z)2 − 0.1381(1.5z) + 1.007), (2.11)
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The payment for MD should happen some time between the onset of MD and death.

Two extreme scenarios are that:

(a) Payment for MD is made at onset, which implies that φ = +∞;

(b) Payment for MD is made at death, which implies that φ = 1.

Our choices of φ = 3.0 and φ = 1.5 are two values between these two extreme values 1

and +∞. Although, unlike in the case of HD, we can not locate any paper to substantiate

these choices, 1/3 (Stage II) and 2/3 (Stage III) of the mean remaining lifetime after onset

of MD are two appropriate points to choose to represent the time uncertainty of payment

for MD. See Section 2.4.1 for a short discussion on the relation between φ and the resulting

premium rates.

2.3.3 Numerical Methods

Once a Markov model has been fully calibrated, generally we have two questions which

need to be answered, the first being how to find occupancy probabilities, and the second

being how to find the reserves we need to set up at any time for a life present in any

state before the policy expires. The first question is answered by solving the Kolmogorov

forward equations and the second by solving Thiele’s equations. These are both systems

of linear ordinary differential equations (ODE).

Assuming we are looking at an N -state model, the states being labelled 0, 1, 2 . . . (N−
1). The transition rate from state i to j (i 6= j) is defined as:

µij
x = lim

dt→0

dtp
ij
x

dt
, (2.12)

where tp
ij
x is defined as:

tp
ij
x = P [in state j at age x + t | in state i at age x] . (2.13)
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Then Kolmogorov’s Forward Equations are:

∂

∂t
tp

ij
x =

∑

k 6=j

tp
ik
x µkj

x −
∑

k 6=j

tp
ij
x µjk

x . (2.14)

Our other major task is to calculate the prospective reserve set up by insurers in

respect of an insured person at any time t. Two types of cash flows need to be defined.

(a) Define bi
x+t as the continuous rate of payment from the insured person per annum

while remaining in state i at age x + t.

(b) Define cij
x+t as the lump-sum payment to the insured person made when transition

from state i to state j takes place at age x + t.

Further suppose there is a constant force of interest δ. Define tV
i
x to be the Expected

Present Value (EPV) of the future loss conditional on being in state i at time t. Thiele’s

equations follow:

∂

∂t
tV

i
x = tV

i
xδ + bi

x+t −
∑

j 6=i

µij
x+t(c

ij
x+t + tV

j
x − tV

i
x) (2.15)

Normally, we can only solve this system numerically. Fourth Order Runge-Kutta

methods (Press et al., 1988) are one of the most commonly used methods to solve systems

of ODE. We used this method with step-size 0.0005 year. See Appendix D for technical

details.

In Figure 2.4, the intensity µi14
z is duration dependent, which means this model is

semi-Markov. Equations (2.14) and (2.15) are not valid. However, we can bring this semi-

Markov model back to a Markov framework regime by assuming the insurer reinsures all

risks once an insured person suffers onset of MD. Define z,t
iV j

x as the prospective reserve

for a life in state ij at age x+ t with duration z since entry into the state. So the insurers

need only pay a single premium equal to the price of this reinsurance deal, which is, if

onset occurs at time t:
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0,t
iV j

x =

∫ T−t

0

e−δs
sp

i11
x+t(µ

i14
s + µi12

x+t+s)ds, (2.16)

where sp
i11
x+t is defined as:

sp
i11
x+t = exp

(
−

∫ s

0

(µi14
h + µi12

x+t+h + µi13
x+t+h)dh

)
, (2.17)

and T is the original policy term.

2.4 Critical Illness Insurance Underwriting

2.4.1 Underwriting of an Applicant who is a Myotonic Dystro-

phy Mutation Carrier

Knowing a genetic test result, based on the model shown in Figure 2.4, we can calculate

the level rate of premium for a unit sum assured for a healthy insurance applicant with

different genotype, i.e. mutation CTG250+ and CTG250– carriers and non-mutation

carriers. Tables 2.4 and 2.5 show the net level premium rates for different entry ages and

policy terms, payable continuously, for a unit sum assured for both males and females, as

a percentage of the premium for standard risk, assuming claims arise at Stage II or Stage

III, respectively.

The ‘standard risk’ means healthy non-mutation carriers. Note that unhealthy non-

mutation carriers might be either insured at an increased premium or become completely

uninsurable. We observe some features in Tables 2.4 and 2.5.

(a) As suggested by Brackenridge & Elder (1998), applicants might be accepted at a

rate of +200% to +300% for certain CI insurance products, i.e. 300% to 400% of

the premiums for standard population, but most insurers would decline cases where

the premium rating was over +200% to +250%, i.e. 300% to 350% of the premium
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Table 2.4: Level net premium rates for carriers of MD mutations, as a percentage of the

premium for standard risks. Claims arising at Stage II (φ = 3.0). Critical illness insurance

contracts with unit sum assured.

Male Female

Age Term CTG250– CTG250+ Age Term CTG250– CTG250+

(Years) (Years) % % (Years) (Years) % %

20 10 1,512 7,378 20 10 921 4,333

20 1,517 6,891 20 1,079 4,791

30 1,037 3,785 30 895 3,224

40 689 2,203 40 691 2,198

30 10 939 4,547 30 10 735 3,467

20 821 3,075 20 757 2,810

30 582 1,863 30 612 1,962

40 10 474 1,517 40 10 477 1,528

20 431 1,162 20 480 1,317

50 10 260 618 50 10 301 752

for standard population. Therefore, almost all the insurance applicants with mu-

tations, either CTG250+ or CTG250– become uninsurable, with few exceptions.

The premium charged for healthy mutation carriers could be as high as 74 times

standard premium (male mutation CTG250+ carrier, entry age 20, policy term 10,

claim arising at Stage II).

(b) In Table 2.4, the exceptions are male and female mutation CTG250– carriers at

age 50 purchasing 10-year term insurance. They might be accepted at a higher

premium rate (i.e. above +200%), although in practice they might be quite likely
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Table 2.5: Level net premium rates for carriers of MD mutations, as a percentage of

the premium for standard risks. Claims arising at Stage III (φ = 1.5). Critical illness

insurance contracts with unit sum assured.

Male Female

Age Term CTG250– CTG250+ Age Term CTG250– CTG250+

(Years) (Years) % % (Years) (Years) % %

20 10 551 2,464 20 10 376 1,475

20 805 3,819 20 644 2,670

30 610 2,485 30 620 2,124

40 420 1,486 40 517 1,488

30 10 350 1,521 30 10 314 1,176

20 432 1,782 20 477 1,634

30 329 1,170 30 441 1,236

40 10 197 550 40 10 227 554

20 230 690 20 322 780

50 10 130 264 50 10 167 307

to be declined. In Table 2.5, both male and female mutation CTG250– carriers at

ages 40 and 50 purchasing 10-year term insurance are likely to be accepted at an

extra premium rates.

(c) At lower ages, females are charged a higher level of standard premium, while at

higher ages, males are charged a higher level of standard premium. Since the onset

rate of MD and the post-onset mortality rate are not gender-differentiated, these

differences come from intensities µi02
x and µi03

x , which represent the intensity of

contracting other CI and adjusted intensity of death respectively (See Appendix A

for details).
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(d) Mutation CTG250+ carriers have a higher onset rate than mutation CTG250– car-

riers. Therefore the corresponding premium rates charged for the former are higher.

(e) The extra premium rates are very sensitive to the entry age. The relative level of

extra premium rate decreases with increased policy term and increased entry age.

(f) We can see in Table 2.4 and 2.5 that the premium rates for mutation carriers are

very sensitive to the choice of φ. In Section 2.3.2, we discussed that the value of

φ ranges between 1 and +∞: the former represents the scenario that the payment

for MD is made at death and the latter represents the scenario that the payment

for MD is made at onset. In order to see the relation between φ and the resulting

premiums, we choose φ to be 1, 1.2, 1.5, 2, 3 or 6 (corresponding to a claim being

paid after 1, 5/6, 2/3, 1/2, 1/3 or 1/6 of the mean remaining lifetime after onset of

MD. For simplicity, we calculate the net level premium rates as a percentage of

the premium for standard risks for both males and females aged 30 seeking 30-year

policies. These percentages are plotted against φ in Figure 2.4.1.

We can see some features in Figure 2.4.1:

(a) The premium rates increase dramatically with φ, especially for mutation CTG250+

carriers.

(b) Even we choose φ = 1, which implies that the payment for MD is made at death

and gives the lowest premium rates, mutation carriers are still very likely to

be rejected by the insurers for both males and females.

2.4.2 Underwriting Based on Family History Only

Based on the Mendelian rule, a new-born baby with a family history, meaning that one

of the baby’s parents or siblings is a mutation carrier, has a 50% probability of being a
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Figure 2.5: The net level premium rates for both males and females aged 30 seeking 30

years CI policies, calculated with various choices of φ, presented as a percentage of the

premium for standard risks.

mutation carrier, assuming there is only a very small chance that both parents are muta-

tion carriers. Recall that in Section 2.2.4 we estimated that mutation carriers have equal

chances to carry mutation CTG250+ and mutation CTG250– at birth. We also assume

that we cannot infer from the parent’s age at onset whether a CTG250– or CTG250+

mutation is implicated. Therefore at birth, a new born baby has a 25% chance to be a

mutation CTG250+ carrier, a 25% chance to be a mutation CTG250– carrier, and a 50%

chance to be a non-mutation carrier (NC). We use pi to represent these probabilities for

genotype gi. This is the start of our calculation. Let OPi0
x be the probability of remaining

in State 0 by age x for genotype gi, according to the model in Figure 2.3. Please see Table

2.6 for numerical results.

Knowing the family history when underwriting, insurers are interested in the proba-
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Table 2.6: Numerical results of occupancy probability OPi0
x for both males and females

with genotype gi at different ages.

Females Males

Age NC CTG250– CTG250+ Age NC CTG250– CTG250+

20 0.497750 0.233880 0.217254 20 0.496331 0.233213 0.216634

30 0.496036 0.207336 0.104627 30 0.492044 0.205667 0.103784

40 0.492684 0.162441 0.026150 40 0.486267 0.160325 0.025809

50 0.484113 0.111015 0.005400 50 0.473280 0.108530 0.005279

bilities:

P [genotype gi | healthy at age x and with family history] ,

denoted Pi, which can be calculated as:

Pi =
OPi0

x pi∑3
j=1 OPj0

x pj

. (2.18)

Please see Table 2.7 for the numerical results of probability Pi.
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Table 2.7: Numerical results of probabilities Pi for males and females with genotype gi at

different ages.

Females Males

Age NC CTG250– CTG250+ Age NC CTG250– CTG250+

20 0.524564 0.246479 0.228957 20 0.524564 0.246479 0.228957

30 0.613907 0.256604 0.129489 30 0.613907 0.256604 0.129489

40 0.723179 0.238437 0.038384 40 0.72318 0.238437 0.038383

50 0.806145 0.184862 0.008992 50 0.806146 0.184862 0.008992
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In this case, the net level premium will be the ratio of the EPV of 1 unit of benefit

to the EPV of 1 unit of premium each weighted by the Pi. Table 2.8 shows the net

level premiums as a percentage of the standard rate, payable continuously, for males and

females with a family history, claims arising at Stage II and III for different entry age and

policy term. In Table 2.8, we can see some features as follows:

(a) In most cases, insurance applicants with a family history are uninsurable. The level

of extra premiums charged can be as high as 20 times the standard premium (male,

entry age 20, policy term 10 years, claims arising at stage II). However, more people

at higher ages can be accepted at an increased premium rates (male and female,

entry age 50, claims arising at either stage II or III).

(b) Compared with the results from Tables 2.4 and 2.5, the level of extra premiums de-

creases. This is the effect of averaging out between 3 sub-populations, and especially

because non-mutation carriers carry higher weights than the mutation carriers. In

particular, if an applicant at risk of MD remains healthy at a high age, they be-

come more unlikely to be a mutation carrier, and therefore their risks decrease to

an acceptable level.

(c) As in Tables 2.4 and 2.5, the extra premiums are more sensitive to age than to

policy term.

(d) We compare the results in Tables 2.4, 2.5 and 2.8. In all cases, the family history un-

derwriting makes the premiums for mutation CTG250+ carriers significantly lower

than the corresponding cases under the genetic test results underwriting. For mu-

tation CTG250– carriers, this is only true at late ages, but not true at early ages.

This is generally because the weights assigned to each genotypes, i.e. probabilities

Pi, play a strong role in family history underwriting. In Table 2.7, the possibilities
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of being mutation carriers are still high at early ages, but decrease dramatically at

late ages, especially for mutation CTG250+ carriers.

Table 2.8: Level net premium rates for critical illness insurance applicant with family

history of MD, as a percentage of the premium for standard risks. Critical illness insurance

contracts with unit sum assured.

Male Female

Age Term Claim Arising Claim Arising Age Term Claim Arising Claim Arising

At Stage II(%) At Stage III(%) At Stage II(%) At Stage III(%)

20 10 2,046 743 20 10 1,231 478

20 1,746 1,052 20 1,237 776

30 954 680 30 823 616

40 575 427 40 574 451

30 10 827 342 30 10 651 289

20 551 371 20 511 364

30 356 265 30 370 294

40 10 234 141 40 10 235 147

20 199 153 20 213 172

50 10 132 108 50 10 141 114
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2.5 Critical Illness Insurance and Adverse Selection

2.5.1 Adverse Selection and Moratoria on Genetic Information

in Underwriting

Adverse selection may arise in the context of genetics and insurance if persons who know

they are at increased risk because they have some genetic information (see Chapter 1 for

details) are more likely to buy insurance and need not share that information with the

insurers. Governments may impose moratoria on insurers regarding the use of all types

of genetic information. In the UK, there is currently an agreed moratorium on the use

of DNA-based test results (a narrow definition of genetic information), while in Sweden

there is a moratorium covering both DNA-based test results and family history (a broad

definition of genetic information).

In the underwriting process, insurers tend to pool applicants with roughly equal levels

of risk into underwriting classes and charge the same premium within each underwriting

class. However, when a moratorium is imposed, applicants at different level of risks might

be forced into the same underwriting class. In this case, applicants knowing their increased

level of risk would buy more insurance, and a premium set according to the average risk

in the underwriting class will not be sufficient to cover the actual claims. Insurers would

have to increase the premium rate in order to recover the loss caused by the behaviour

of ‘adverse selectors’. The increase in the premium rate is the cost of adverse selection,

which will depend on the type of insurance, the size of the market for that insurance and

the form of moratorium imposed, as well as on the epidemiology of each genetic disorder

of interest.

We use the CI insurance market model shown in Figure 2.6 to model the life history of

a person. We are interested in the relevant events in a CI insurance market, e.g. purchase

of the insurance product, taking a genetic test, etc. The CI insurance market model is
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Figure 2.6: A Markov model of insurance purchase and CI insurance events for a person

in sub-population i.

adopted from Gutiérrez & Macdonald (2004). This is a continuous-time discrete-state

Markov model.

This model is deceptively simple in the case of MD, but is good for purposes of demon-

stration. A more detailed expanded model for computation is displayed in Appendix B

for comparison. Label i indicates the sub-populations. Here we have 5 sub-populations

as follows:

(a) sub-population 1: Non-mutation carriers, with no family history.

(b) sub-population 2: Carrying mutation CTG250+, with family history.

(c) sub-population 3: Not carrying mutation CTG250+, with family history.

(d) sub-population 4: Carrying mutation CTG250–, with family history.

(e) sub-population 5: Not carrying mutation CTG250–, with family history.
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The proportion of the population in sub-population i, at birth, is denoted pi. Given our

assumed prevalence rate of MD in the UK of 7.1 per 100,000, we take proportions in each

sub-population to be as follows: p1 = 0.999858, p2 = p3 = p4 = p5 = 3.55× 10−5.

The details of this model have been extensively discussed in Gutiérrez & Macdonald

(2003). Therefore we only introduce the main features of this model briefly here:

(a) We assume that the CI insurance market operates between ages 20 and 60. Indi-

viduals could buy insurance before or after taking a genetic test. They could also

become uninsurable because of onset of MD, another critical illness or death.

(b) The insurer classifies the whole population into underwriting classes according to

the risk factors used. Everyone in an underwriting class is charged the same rate

of premium, which we assume satisfies the equivalence principle within that class.

If there is no moratorium, insurers will categorize the population according to the

heterogeneity of risks. However, when a moratorium is imposed, very different levels

of risk will be forced into the same underwriting class. In the UK, family history

may be used in the underwriting process, while genetic test results usually may

not. So individuals could have better information about their risk status than the

insurance company if they have had a genetic test. When people are charged lower

premiums than they would have been had they disclosed their true risk, adverse

selection arises. In Sweden, even family history may not be used in underwriting.

In this case, the level of adverse selection should in theory be higher.

(c) The rate of premium within each underwriting class is calculated according to the

equivalence principle. However, we do not use level premiums, because a level

premium depends on the age x at which insurance was purchased and policy term.

This is not compatible with Thiele’s equations. Therefore, we need to find an

age-dependent premium rate. This rate is the weighted average intensity from the
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insured states in a given underwriting class to the CI claim states. If we use C to

denote an underwriting class, the rate of premium in that class, denoted as ρCx+t, is

calculated as follows:

ρCx+t =

∑
ij∈C

pi tp
i0j
x µij4

x+t

∑
ij∈C

pi tp
i0j
x

, (2.19)

where label ij stands for the state j shown in Figure 2.6 for sub-population i.

The delayed payment also need to be allowed for by using Equation (2.16). Once

everything is brought back to a Markov framework regime, we can use Thiele’s

equations to calculate the expected insurance loss incurred conditional on occupying

any state in each sub-population. The insurance loss is defined as:

Insurance Loss = Present Value of Outgo− Present Value of Income (2.20)

We ignore the expenses in this thesis. So ‘outgo’ stands for insurance payment and

‘income’ stands for premium from an insurer’s perspective.

(d) The sum of these insurance losses conditional on being in state i0, weighted by the

prevalence rate of each sub-population, is the insurance loss in the whole insurance

market.

(e) If there is no adverse selection, the expected insurance loss in the whole insur-

ance market is zero, i.e. EPV of loss without adverse selection = 0, because the

equivalence principle is correctly applied. However, if there is adverse selection,

the insurance loss is non-zero. Insurers will have to increase all premiums by the

proportion:

52



EPV of loss with adverse selection− EPV of loss without adverse selection

EPV of premium payable with adverse selection
,

(2.21)

to absorb the loss. This quantity is our measure of the level of adverse selection.

(f) The risk measure of the cost of adverse selection varies when different models are

chosen. For example, in de Jong & Ferris (2006), the authors used correlation be-

tween the amount of insurance required and the risk premium rate for an individual

within a particular risk group to model the cost of adverse selection in the context of

insurance. Adverse selection has also been studied from an economist’s perspective,

e.g. in Hoy & Polborn (2000), the authors constructed an economic model and used

the expected utility to evaluate the social value of genetic information. Our choice

of risk measure is suitable in this context when we use Markov model to model the

life histories and policyholder behaviours in the insurance market.

2.5.2 Calibration of the CI Market Model

In the CI insurance market model in Figure 2.6, several intensities have been fully defined,

including those into CI claim states and into the dead state (See Appendix A for details).

Several other intensities need careful explanations, e.g. insurance purchase rates and

genetic testing rates.

(a) Insurance purchase rates µi01
x+t and µi23

x+t. The function of the purchase rate is two-

fold. First, we use the purchase rate in sub-population 1 (we call it normal rate)

to represent the size of insurance market. If the purchase rate is equal to 0.05

per annum, we call this a large market, while if the purchase rate is equal to 0.01

per annum, we call this a small market. These assumptions implies that about

85% and 30% of persons, respectively, will buy insurance at some time between
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ages 20 and 60. Second, in a large market, sub-populations 2 – 5 might choose

to purchase CI contracts at normal rate, or half or normal rate, or not at all,

while in a small market, sub-populations 2 – 5 do not purchase any CI contract.

The nil purchase rate assumption is probably more realistic because the applicants

with family history of MD are normally rejected by the insurers or accepted at an

extremely high premium rate. (See Table 2.8 for details.)

(b) Genetic testing rate µi02
x+t. The baseline test rate is 0.014 per annum for ages 20

– 40, which implies that about 10% would be tested after 8 years. The other two

scenarios are 0.014 per annum for ages 20 – 60 (testing longer period of genetic

test), and 0.035 per annum for ages 20 – 40 (implying about 24% would be tested

in 8 years).

The form of adverse selection includes:

(a) Increased purchase rate. In the case of moderate adverse selection, we assume the

purchase rate is double that of the normal rate, i.e. 0.1 per annum in large market

and 0.02 per annum in small market. These assumption imply that 63% and 18% of

population would buy insurance in 10 years in large and small market, respectively.

In the case of severe adverse selection, we assume the purchase rate is 0.25 per

annum. This assumption is deliberately high, which implies that 91% of population

would buy insurance in 10 years in both large and small market.

(b) Increased sum assured. In (a) we assume that ‘adverse selectors’ buy the same

amount of insurance as normal. This possibility is the second source of adverse

selection, e.g. increased sum assured. Gutiérrez & Macdonald (2004) suggest that

in this case the general premium increase, e.g. the cost of adverse selection, is

very nearly proportionate to the multiple of the average sum assured taken out by

‘adverse selectors’, therefore we omit the tables.
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2.5.3 Moratoria on Using Genetic Test Results

When moratoria on using genetic test results are imposed, either on all test results or

on negative test results, there are two underwriting classes (UC), that we call UC-I and

UC-II. In UC-I, persons will be charged standard premiums and in UC-II, persons will be

charged extra premiums because they have family histories. Tables 2.9 and 2.10 display

the cost of moderate adverse selection following a moratorium on the use of genetic test

results, with family history underwriting allowed, in a CI insurance market operating

between ages 20 and 60, assuming the claims for MD will be paid at Stage II or Stage

III, respectively. Tables 2.11 and 2.12 demonstrate the results of severe adverse selection.

Generally, the increases are all very small, even with severe adverse selection, but we can

observe the following features:

(a) The relative costs are more substantial in the smaller market.

(b) Premium increases are lower if the moratorium applies only to adverse test results.

This is because tested persons who are not mutation carriers will be removed from

the underwriting class rated for family history and charged standard premiums.

The latter then contains a higher proportion of mutation carriers, so the premium

charged in respect of that class is higher.

(c) A longer period of genetic testing has little effect on the cost of adverse selection.

This is because of high penetrance of MD mutations. Only very few applicants

carrying a MD mutation will remain healthy after age 40.

(d) The cost of adverse selection is higher in the case that claims arise at Stage II than

when claims arise at Stage III.
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Table 2.9: Percentage increases in CI insurance premium rates arising from moderate

adverse selection. Moratoria on the use of genetic test results, family history underwriting

still allowed. CI Market operating between ages 20 and 60. Claims arising at Stage II of

MD.

Insurance

Purchase Age Moratorium on Using

Size of of At-Risk Rate of Range of All test results Adverse test results

Market Individuals Testing Testing Males Females Males Females

% % % %

Large Normal 0.014 20–40 0.00090 0.00096 0.00086 0.00092

Half 0.014 20–40 0.00184 0.00195 0.00175 0.00185

Nil 0.014 20–40 0.00561 0.00594 0.00558 0.00591

Small Nil 0.014 20–40 0.00529 0.00571 0.00526 0.00568

Large Normal 0.014 20–60 0.00092 0.00097 0.00088 0.00093

Half 0.014 20–60 0.00188 0.00199 0.00179 0.00189

Nil 0.014 20–60 0.00590 0.00623 0.00587 0.00620

Small Nil 0.014 20–60 0.00552 0.00595 0.00549 0.00592

Large Normal 0.035 20–40 0.00204 0.00216 0.00185 0.00196

Half 0.035 20–40 0.00412 0.00436 0.00367 0.00389

Nil 0.035 20–40 0.01236 0.01308 0.01229 0.01301

Small Nil 0.035 20–40 0.01169 0.01262 0.01163 0.01256
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Table 2.10: Percentage increases in CI insurance premium rates arising from moderate

adverse selection. Moratoria on the use of all genetic test results, family history under-

writing still allowed. CI Market operating between ages 20 and 60. Claims arising at

Stage III of MD.

Insurance

Purchase Age Moratorium on Using

Size of of At-Risk Rate of Range of All test results Adverse test results

Market Individuals Testing Testing Males Females Males Females

% % % %

Large Normal 0.014 20–40 0.00067 0.00071 0.00064 0.00068

Half 0.014 20–40 0.00133 0.00141 0.00125 0.00133

Nil 0.014 20–40 0.00423 0.00451 0.00426 0.00450

Small Nil 0.014 20–40 0.00397 0.00427 0.00396 0.00426

Large Normal 0.014 20–60 0.00067 0.00071 0.00064 0.00068

Half 0.014 20–60 0.00133 0.00141 0.00125 0.00133

Nil 0.014 20–60 0.00445 0.00469 0.00444 0.00468

Small Nil 0.014 20–60 0.00412 0.00442 0.00411 0.00441

Large Normal 0.035 20–40 0.00153 0.00163 0.00137 0.00145

Half 0.035 20–40 0.00301 0.00320 0.00264 0.00281

Nil 0.035 20–40 0.00942 0.00996 0.00940 0.00994

Small Nil 0.035 20–40 0.00879 0.00947 0.00877 0.00945
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Table 2.11: Percentage increases in CI insurance premium rates arising from severe adverse

selection. Moratoria on the use of all genetic test results, family history underwriting still

allowed. CI Market operating between ages 20 and 60. Claims arising at Stage II of MD.

Insurance

Purchase Age Moratorium on Using

Size of of At-Risk Rate of Range of All test results Adverse test results

Market Individuals Testing Testing Males Females Males Females

% % % %

Large Normal 0.014 20–40 0.00214 0.00227 0.00206 0.00218

Half 0.014 20–40 0.00329 0.00348 0.00314 0.00333

Nil 0.014 20–40 0.00817 0.00866 0.00813 0.00861

Small Nil 0.014 20–40 0.02462 0.02670 0.02450 0.02656

Large Normal 0.014 20–60 0.00219 0.00232 0.00210 0.00222

Half 0.014 20–60 0.00338 0.00358 0.00323 0.00342

Nil 0.014 20–60 0.00866 0.00915 0.00861 0.00911

Small Nil 0.014 20–60 0.02609 0.02823 0.02594 0.02808

Large Normal 0.035 20–40 0.00485 0.00513 0.00444 0.00470

Half 0.035 20–40 0.00735 0.00778 0.00665 0.00704

Nil 0.035 20–40 0.01794 0.01902 0.01785 0.01892

Small Nil 0.035 20–40 0.05407 0.05865 0.05379 0.05833
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Table 2.12: Percentage increases in CI insurance premium rates arising from severe adverse

selection. Moratoria on the use of all genetic test results, family history underwriting still

allowed. CI Market operating between ages 20 and 60. Claims arising at Stage III of MD.

Insurance

Purchase Age Moratorium on Using

Size of of At-Risk Rate of Range of All test results Adverse test results

Market Individuals Testing Testing Males Females Males Females

% % % %

Large Normal 0.014 20–40 0.00168 0.00178 0.00162 0.00172

Half 0.014 20–40 0.00250 0.00266 0.00239 0.00254

Nil 0.014 20–40 0.00627 0.00665 0.00626 0.00664

Small Nil 0.014 20–40 0.01890 0.02052 0.01887 0.02047

Large Normal 0.014 20–60 0.00168 0.00176 0.00161 0.00171

Half 0.014 20–60 0.00251 0.00267 0.00239 0.00254

Nil 0.014 20–60 0.00659 0.00696 0.00657 0.00695

Small Nil 0.014 20–60 0.01985 0.02147 0.01981 0.02142

Large Normal 0.035 20–40 0.00383 0.00407 0.00351 0.00373

Half 0.035 20–40 0.00566 0.00601 0.00510 0.00541

Nil 0.035 20–40 0.01380 0.01465 0.01377 0.01461

Small Nil 0.035 20–40 0.04159 0.04517 0.04151 0.04507
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2.5.4 Moratoria on Using Genetic Test Results and Family His-

tory

A moratorium on using genetic test results and family history causes premiums to increase

in two different ways.

(a) Persons in the higher-risk sub-population now could purchase a normal amount of

insurance cover at the ordinary rate. A new underwriting class forms, comprising

persons in all sub-populations. This will increase the premium rate. But this is

arguably not adverse selection if the behaviour of persons in the high-risk sub-

populations is just the same as that of persons in the low-risk sub-populations.

(b) Further, insurance buyers may increase their purchase rate and/or amount of cover

in reaction to the information they have and the lower premiums they have been

charged. In this way, adverse selection arises.

Tables 2.13 and 2.14 show the cost of adverse selection when a moratorium on all

genetic information is in place, assuming the claim for MD arises at Stage II or Stage III,

respectively. Both moderate and severe levels of adverse selection are shown. The rate of

genetic testing is 0.014 per annum with moderate adverse selection, and 0.035 per annum

betweeen ages 20 and 40 with severe adverse selection. We can observe that in absolute

terms these increases are negligible.
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Table 2.13: Percentage increases in standard premium rates for CI insurance arising from

new underwriting classes, and in all premiums arising from moderate or severe adverse

selection, following a moratorium on the use of all genetic test results and family history.

CI market operating between ages 20 and 60. Claims arising at Stage II of MD.

OR Premium Increase Premium Increase Premium Increase

Arising From New Arising From Arising From

Size of Underwriting Classes Moderate Adverse Selection Severe Adverse Selection

Market Males Females Males Females Males Females

% % % % % %

Large 0.03173 0.03357 0.01635 0.01726 0.03602 0.03800

Small 0.02520 0.02731 0.02160 0.02339 0.17898 0.19337

Table 2.14: Percentage increases in standard premium rates for CI insurance arising from

new underwriting classes, and in all premiums arising from moderate or severe adverse

selection, following a moratorium on the use of all genetic test results and family history.

CI market operating between ages 20 and 60. Claims arising at Stage III of MD.

OR Premium Increase Premium Increase Premium Increase

Arising From New Arising From Arising From

Size of Underwriting Classes Moderate Adverse Selection Severe Adverse Selection

Market Males Females Males Females Males Females

% % % % % %

Large 0.02393 0.02536 0.01271 0.01344 0.02828 0.02988

Small 0.01873 0.02034 0.01621 0.01758 0.13862 0.15003
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2.6 A Life Insurance Model

In Section 2.2.3, we found that the mortality after onset of MD depends on duration since

onset as well as age. Therefore, for a life insurance policy, we use a semi-Markov model

adopted from Gutiérrez & Macdonald (2004) shown in Figure 2.7, to calculate net level

life insurance premium rates.
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Figure 2.7: A multiple-state semi-Markov model for myotonic dystrophy and life insurance

for insurance applicants with genotype gi. Mortality after onset depends on age x and

duration since onset z.

Intensity µi01
x follows the definition of the onset rate of MD, which is specified in

Section 2.2.2. For intensity µi02
x , because the impact of MD on mortality is negligible, so

we use the life table ELT15 without any adjustment. Post-onset mortality µi12
x,z is defined

in Section 2.2.3, i.e.

µi12
x,z = µMD,Dead

x,z . (2.22)

In this model, insured applicants pay premiums continuously while remaining in states
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0 and 1, and the claim is paid when they enter state 2 either directly from state 0, or

through state 1. We calculate the net level premium for a unit sum assured. We assume

a constant force of interest δ = 0.05.

We can easily write out expressions for the EPVs of a unit of premium and a unit of

benefit as follows, assuming the entry age is x and the policy term is n:

EPV [Premium] =

∫ x+n

x

e−δt
tp

i00
x dt +

∫ x+n

x

e−δt
tp

i00
x µi01

x+t

∫ n−t

0

e−δs
sp

i11
x+t,0dsdt, (2.23)

EPV [Benefit] =

∫ x+n

x

e−δt
tp

i00
x µi02

x+tdt +

∫ x+n

x

e−δt
tp

i00
x µi01

x+t

∫ n−t

0

e−δs
sp

i11
x+t,0µ

i12
x+t+s,sdsdt.

(2.24)

Then the net level premium for a unit of benefit payable continuously should be

EPV [Benefit] /EPV [Premium].

2.7 Life Insurance Underwriting

2.7.1 Underwriting Based on Myotonic Dystrophy Mutation

Status

Table 2.15 shows the net level life insurance premium rates for mutation CTG250+ and

CTG250– carriers as a percentage of those for non-mutation carriers, as the ‘standard’

premium rates.

(a) Generally, females’ mortality is lower than that of males. Therefore premium in-

creases are higher for females, especially for cover expiring at later ages.

(b) The premium increases are lower than those for CI insurance.
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(c) As suggested by Brackenridge & Elder (1998), applicants might be accepted at a

rate of +200% to +300% for certain life insurance products, but most insurers would

decline cases where the premium rating was over +200% to +%250. We may see

that male mutation CTG250– carriers at high ages are more likely to be insured at

an increased rate than are females, while mutation CTG250+ carriers are generally

uninsurable, with a few exceptions at higher ages.

Table 2.15: Level net premium rates for life insurance, known MD mutation carriers, as

a percentage of the premium for standard risks.

Male Female

Age Term CTG250– CTG250+ Age Term CTG250– CTG250+

(Years) (Years) % % (Years) (Years) % %

20 10 182 506 20 10 317 1,171

20 365 1,311 20 678 2,739

30 491 1,659 30 844 3,058

40 445 1,264 40 730 2,203

30 10 234 781 30 10 345 1,346

20 387 1,254 20 582 2,025

30 394 1,102 30 600 1,782

40 10 189 426 40 10 246 629

20 244 544 20 348 854

50 10 127 186 50 10 154 271
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2.7.2 Underwriting Based on Family History Only

Table 2.16 shows the net level premium rates for insurance applicants with a family history,

as a percentage of those for non-mutation carriers, as the ‘standard’ premium rates. These

premium rates are the weighted average premium rates conditional on insurance applicants

aged x being non-mutation carriers, mutation CTG250+ carriers and CTG250– carriers.

The weights are the probabilities defined in equation (2.18).

(a) Females are still charged higher relative premium rates than males.

(b) Males are more likely to be insured at an increased premium rate, except cases in

which applicants aged 20 seek a policy with term longer than 10 years. Females are

only likely to be insured, at an increased premium rate, at high ages.

Table 2.16: Level net premium rates for a healthy applicant with a family history of MD,

expressed as a percentage of the premium for standard risks.

Age Term Females Males

(Years) (Years) % %

20 10 397 213

20 823 432

30 894 518

40 663 412

30 10 328 221

20 453 311

30 408 283

40 10 155 133

20 184 149

50 10 111 106
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2.8 Life Insurance and Adverse Selection

The cause of adverse selection and measurement of the cost of adverse selection was

discussed in Section 2.5. We use a semi-Markov model shown in Figure 2.8 to model

the life insurance market, in order to calculate the cost of adverse selection. This model

is adopted from Gutiérrez & Macdonald (2004). Sub-populations and their prevalence

rates are defined in Section 2.5.1. State i6 is labelled “Dead, or MD and Not Insured”. If

someone develops MD or dies before they buy life insurance, they will become uninsurable.

The reasons for having two states labelled MD (after purchase of insurance) are as follows:

(a) These two states might sometimes be in two different underwriting classes.

(b) We wish to consider the cost of adverse selection, depending on any moratorium

in force. The losses conditional being in state i3 and state i5 could be different,

because adverse selection could include the purchase of larger amounts of insurance.

2.8.1 Calibration of the Life Insurance Market Model and Method-

ology of Calculating the Cost of Adverse Selection

Onset rates, mortality rates and post-onset mortality rates have been discussed in Section

2.2. The functions of the purchase rate and test rate are fully introduced in Section 2.5.2.

The mechanism of calculating the cost of adverse selection in the CI insurance market

has been detailed in Section 2.5.1. To calculate the cost of adverse selection in the life

insurance market, based on the model shown in Figure 2.8, we will go through the following

steps.

(a) As explained in Section 2.5.1, instead of using level net premiums, we calculate a

premium rate which only depends on age. In a certain underwriting class C, this
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Figure 2.8: A semi-Markov model of insurance purchase and life insurance events for a

person in sub-population i.

premium rate is equal to the weighted average intensity from the insured states into

the claim states as follows:

ρCx+t =

∑
ij∈C

pi

(
tp

i0j
x µij6

x+t +

∫ t

0
t,zp

i0j
x µij6

x+t,zdz

)

∑
ij∈C

pi

(
tp

i0j
x +

∫ t

0
t,zp

i0j
x dz

) , (2.25)

where label ij stands for an insured state j shown in Figure 2.8 for sub-population

i. The intensity µij6
x+t,z in Equation (2.25) is duration dependent, so the probability

z,tp
i0j
x , where j = 4, 5, should indicate the duration this person remains in State 4

or 5. The probability z,tp
i04
x is defined as follows:

z,tp
i04
x = t−zp

i01
x × µi14

x+t−z × zp
i44
x+t−z

= t−zp
i01
x × µi14

x+t−z × exp

(
−

∫ z

0

(µi46
x+t−z+y,y)dy

)
, (2.26)
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which implies that this person enters into State 4 at age x + t − z and remains in

State 4 for duration z until (s)he reaches the age x + t.

The calculation of z,tp
i05
x is similar.

(b) We use the trick we introduced in Section 2.3.3 to bring the calculation back to

a Markov model regime, by ‘paying’ a ‘sum assured’ equal to the policy value on

entering an MD state from an insured state. The policy value t,0V
i4
x for a policy

with term n years and sum assured 1 is:

t,0V
i4
x =

∫ n−t

0

e−δs
sp

i44
x+t,0(µ

i46
x+t+s,s − ρCx+t+s)ds, (2.27)

and t,0V
i5
x is similar. Then we can use Thiele’s equations to calculate the expected

insurance loss conditional on being in any of the states.

(c) The expected insurance loss within the life insurance market is calculated as the

weighted sum of insurance losses in each sub-population conditional on the proba-

bilities of being in the starting states i0. Then the cost of adverse selection in the

life insurance market is measured by the ratio:

EPV of loss with adverse selection− EPV of loss without adverse selection

EPV of premiums payable with adverse selection
.

(2.28)

2.8.2 Moratoria on Using Genetic Test Results

Table 2.17 shows results of moderate adverse selection in the life insurance market for

both males and females, following a life insurance market operating between ages 20 and

60. As in CI market, we set the genetic testing rate at 0.014 per annum between ages

20 and 40 as our baseline, and compare it with another two scenarios, 0.014 per annum
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between ages 20 and 60, and 0.035 per annum between ages 20 and 40. Table 2.18 shows

the results of severe adverse selection in life insurance market. Here, we only consider a

test rate of 0.035 per annum. All results, even in the case of severe adverse selection, are

less than 0.1%, and so the cost of adverse selection may be regarded as negligible with

respect to MD alone.

Table 2.17: Percentage increases in life insurance premium rates arising from moderate

adverse selection. Moratoria on the use of genetic test results, family history underwriting

still allowed. Life insurance market operating between ages 20 and 60.

Insurance

Purchase Age Moratorium on Using

Size of of At-Risk Rate of Range of All test results Adverse test results

Market Individuals Testing Testing Females Males Females Males

% % % %

Large Normal 0.014 20–40 0.00129 0.00079 0.00126 0.00077

Half 0.014 20–40 0.00251 0.00153 0.00144 0.00088

Nil 0.014 20–40 0.00607 0.00387 0.00225 0.00142

Small Nil 0.014 20–40 0.00547 0.00356 0.00256 0.00167

Large Normal 0.014 20–60 0.00130 0.00080 0.00127 0.00077

Half 0.014 20–60 0.00252 0.00154 0.00146 0.00089

Nil 0.014 20–60 0.00623 0.00400 0.00231 0.00147

Small Nil 0.014 20–60 0.00600 0.00367 0.00263 0.00172

Large Normal 0.035 20–40 0.00298 0.00182 0.00283 0.00173

Half 0.035 20–40 0.00576 0.00352 0.00319 0.00195

Nil 0.035 20–40 0.01352 0.00861 0.00498 0.00314

Small Nil 0.035 20–40 0.01223 0.00795 0.00574 0.00372
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Table 2.18: Percentage increases in life insurance premium rates arising from severe ad-

verse selection. Moratoria on the use of genetic test results, family history underwriting

still allowed. Life insurance market operating between ages 20 and 60.

Insurance

Purchase Age Moratorium on Using

Size of of At-Risk Rate of Range of All test results Adverse test results

Market Individuals Testing Testing Males Females Males Females

% % % %

Large Normal 0.035 20–40 0.00750 0.00457 0.00723 0.00441

Half 0.035 20–40 0.01096 0.00668 0.00819 0.00500

Nil 0.035 20–40 0.02045 0.01293 0.01191 0.00747

Small Nil 0.035 20–40 0.06208 0.03963 0.05558 0.03540

2.8.3 Moratoria on Using Genetic Test Results and Family His-

tory

As discussed in Section 2.5.4, the premium rates increase for two reasons when a mora-

torium on using genetic test results and family history is imposed. Table 2.19 shows the

percentage increases in standard life insurance premium rates arising from defining new

underwriting classes, and moderate and severe adverse selection, following a moratorium

on the use of genetic test results and family history. The conclusions are similar to those in

the case of CI insurance: the only noticeable increase results from severe adverse selection

in a small market with high genetic testing rates.
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Table 2.19: Percentage increases in standard premium rates for life insurance arising from

new underwriting classes, and in all premiums arising from moderate or severe adverse

selection, following a moratorium on the use of all genetic test results and family history.

Life insurance market operating between ages 20 and 60.

OR Premium Increase Premium Increase Premium Increase

Arising From New Arising From Arising From

Size of Underwriting Classes Moderate Adverse Selection Severe Adverse Selection

Market Females Males Females Males Females Males

% % % % % %

Large 0.07209 0.043098 0.02183 0.01320 0.04884 0.02954

Small 0.05649 0.034033 0.02730 0.01662 0.23896 0.14577
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Chapter 3

Genetic Disorders

In Section 1.2.5, we discussed two methods of exploring the impact of genetic information

on insurance, the first called “top-down”, and the second called “bottom-up”. The second

approach requires detailed individual studies of individual genetic disorders before these

studies are aggregated to assess the overall impact.

It is clearly impossible to model all genetic disorders and then aggregate them. In

Section 1.2.4, we mentioned that the ABI listed eight genetic disorders regarded as sig-

nificant for insurance, including early-onset familial Alzheimer’s disease (EOAD), familial

adenomatous polyposis (FAP), hereditary breast and ovarian cancer (BC&OC), hereditary

motor and sensory neuropathy (HMSN), Huntington’s disease (HD), Multiple endocrine

neoplasia (MEN) and Myotonic dystrophy (MD). Starting with the ABI list, with some

adjustments (see Section 1.2.5), we choose six genetic disorders, taken to have significant

impact on insurance. Of these genetic disorders, four are diseases with no cause except

mutations in a single gene, namely EOAD, APKD, HD and MD, and two of them are

single gene subsets of common disorders, namely HNPCC and BC & OC. Our individual

study of MD in Chapter 2 exemplified the methodology to be used in the “bottom-up”

approach, summarized as follows:
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(a) Two types of insurance policy are studied separately, CI insurance and life insur-

ance and their corresponding insurance markets. Within each market, we ask two

questions: what is the cost of insuring mutation carriers, and what is the potential

cost of adverse selection, as addressed in Section 1.2.3.

(b) To answer these questions, we are interested in several aspects of the epidemiology

of each genetic disorder. These aspects, as shown in Chapter 2, are the onset rates

of the relevant diseases for mutation carriers, mortality rates after the onset of the

relevant diseases and prevalence rate of causal mutations.

(c) The insurability of mutation carriers is addressed by modelling the life histories

underlying insurance products using a Markov or semi-Markov model. The mod-

els follow the same pattern of the model shown in Figure 2.3, subject to suitable

adjustment. An example of such adjustment, in the case of MD, was introduced

in an extended model as shown in Figure 2.4, because the claim payment for MD

is delayed until some time after onset. Please refer to other individual studies for

more details.

(d) The cost of adverse selection is addressed by modeling the whole insurance market

using a Markov or semi-Markov model. This model includes several factors, e.g.

insurance applicants’ insurance-purchasing behavior, genetic testing, development

of a family history, etc. The CI market model shown in Figure 2.6 is an example.

In what follows, we aim to estimate the overall impact of genetic information using

the “bottom-up” approach, and, insofar as we are able, to complete the program launched

by the commencement of studies of individual genetic disorders. In this chapter, we review

the epidemiology of our selected genetic disorders briefly, to add to the work on MD of

the last chapter. In Chapter 4, we will bring these together to study the overall impact

of genetic information.
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3.1 Adult Polycystic Kidney Disease

3.1.1 Introduction to Adult Polycystic Kidney Disease

Adult polycystic kidney disease (APKD) is one of the most common single-gene dominant

genetic disorders. It is also called autosomal dominant polycystic kidney disease, in

contrast to the other type of polycystic kidney disease, autosomal recessive polycystic

kidney disease, which is quite rare, occurs early in life and is more lethal than the dominant

type.

APKD is characterized by large cysts in one or both kidneys and a gradual loss of

normal kidney tissue which can lead to end-stage renal disease (ESRD, meaning kidney

failure) at relatively young ages. ESRD is not treatable unless renal replacement therapy

(RRT, meaning dialysis and/or a kidney transplant) is available. Two genes, each causing

APKD, have been identified: APKD1 and APKD2. Mutations in APKD1 are more

common, accounting for 85% of APKD, and are associated with earlier progression to

ESRD. It is possible that another mutation, APKD3, exists, which might also cause

APKD, but so far there is no concrete evidence. An accurate diagnosis of APKD relies

on ultrasonic imaging or molecular genetic testing. The accuracy of ultrasonic testing is

nearly 100% for all patients with APKD aged above 30 years (Gutiérrez & Macdonald,

2007).

3.1.2 Epidemiology of APKD

Estimates of Onset Rates Associated with APKD1 and APKD2 mutations

Gutiérrez & Macdonald (2003) used studies of the onset rate of APKD that did not differ-

entiate between mutations in the APKD1 and APKD2 genes. This paper only considered

the CI insurance market. Two data sources were used: Churchill et al. (1984) and the
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U.S. renal diseases system (USRDS).

Gutiérrez & Macdonald (2007) improved the results in Gutiérrez & Macdonald (2003)

by using studies that distinguish between mutations in the two different genes. In this

paper, the sources were Hateboer et al. (1999), Johnson & Gabow (1997) and Ravine et

al. (1992). In view of the very small samples of APKD2 subjects in Johnson & Gabow

(1997) and Ravine et al. (1992), Hateboer et al. (1999) was taken to be the most reliable

study of APKD2. We also will use only Hateboer et al. (1999) as a source for APKD1.

Figure 3.1 (top) shows a curve fitted to Kaplan-Meier estimates of age-specific survival

probabilities where the ‘event’ is the earlier of ESRD or death. Therefore the intensity

derived from this fitted curve, called ‘quasi onset rate’, is not just the onset intensity of

ESRD, but the summation of the onset intensity of ESRD and the force of mortality.

Therefore the force of mortality must be subtracted from the ‘quasi onset rate’ to find

the onset rate of ESRD. The force of mortality here is that of the English Life Table

No.15 for women and men in normal health, because heavier mortality is accounted for

by the post-onset mortality. Figure 3.1 (bottom) shows the adjusted onset rate of ESRD

for APKD1 and APKD2 mutation carriers. See Appendix C.1 for more technical details.
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Figure 3.1: Parametric functions fitted to Kaplan-Meier estimates of the probabilities of

surviving ESRD or death for APKD1 and APKD2 mutation carriers (top). Fitted onset

rates of ESRD for APKD1 and APKD2 mutation carriers, adjusted using the mortality

of English Life Tables No.15 (bottom). Data source: Hateboer et al. (1999)
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Post-Onset Mortality Rate

The post-onset mortality rates depend on the treatment after ESRD and also whether

it is short-term or long-term (Gutiérrez & Macdonald, 2007). APKD patients have two

options after ESRD, dialysis or renal transplant (RRT).

In the short-term study by Tsakiris et al. (1999), 1.4% of the sampled patients died

within 90 days. In a long-term study, Canadian Organ Replacement Register (CORR) car-

ried out Kaplan-Meier estimation for patients receiving either dialysis or renal transplant

treatment. These Kaplan-Meier estimates were fitted using Gamma functions in Gutiérrez

& Macdonald (2007). Be aware that these estimations are conditional on patients having

survived 90 days after the treatment. The post-onset mortality rates could be derived

directly based on these estimates. One important feature is that these survival rates are

duration-dependent. For brevity, we call these rates µAPKD,Mortality
x,z , where z denotes the

duration after the onset of ESRD. Please refer to Appendix C.1 for more technical details.

Although these rates could be applied directly, Wilkie (2000) pointed out the anomaly

that µAPKD,Mortality
x,z could sometimes be substantially lower than the normal age-related

mortality rates µStandard
x (e.g. English Life Tables 15) at certain ages. Therefore, to avoid

this anomaly, we assume that mortality after onset of ESRD is no better than normal age-

related population mortality, i.e. µAPKD,Death
x,z = max

{
µAPKD,Mortality

x,z , µStandard
x

}
. Figure

3.2 demonstrates the Gamma functions fitted to Kaplan-Meier estimates of survival prob-

ability functions for ESRD patients receiving either dialysis or RRT treatment. Figure

3.3 shows the derived force of mortality µAPKD,Mortality
x,z based on Figure 3.2.
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Figure 3.2: Gamma functions fitted to Kaplan Meier estimates of survival probability

function for ESRD patients receiving treatments, either dialysis or transplantation. Both

cases have two age-at-onset groups, 20–44 and 45–59.
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Figure 3.3: The derived force of mortality µAPKD,Mortality
x,z based on Figure 3.2 for ESRD

patients receiving treatment, either dialysis or transplantation. Both cases have two age-

at-onset groups, 20–44 and 45–59.
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For the intensity from ESRD to RRT, Gutiérrez & Macdonald (2007) assumed four

scenarios, because this transition would depend on the availability of kidneys for trans-

plantations, which varies from place to place.

(a) The intensity is 0.

(b) The intensity is low and is about 0.05 per year.

(c) The intensity is high and is about 0.15 per year.

(d) The intensity is extremely high and all the APKD patients can have renal transplant

directly upon ESRD.

For simplicity, in this thesis, we use only scenario (b), i.e. the intensity of transferring

from ESRD to RRT is 0.05 per year.

Prevalence Rate and the Distribution of Mutations

Gutiérrez & Macdonald (2003) and Gutiérrez & Macdonald (2007) both use the same

aggregate prevalence rate, 1 per 1,000 of the population (Dalgaard, 1957). APKD1 mu-

tations are both more common than APKD2 mutations (they account for about 85% and

15% of APKD, respectively) as well as being more severe. Therefore we take the preva-

lence rates for APKD1 and APKD2 mutations to be 0.00085 and 0.00015, respectively.
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3.2 Early-onset Alzheimer’s Disease

3.2.1 Introduction to EOAD

Alzheimer’s disease (AD) is named after Dr. Alois Alzheimer. The most striking early

symptom is the loss of memory (dementia), accompanied by other symptoms, such as

disorientation and it will progress to the domain of language, skilled movements, recog-

nition, and those functions closely related to the frontal and temporal lobes of the brain.

The Alzheimer’s Society (http://www.alzheimer’s.org.uk) estimates that over 700,000

people in the UK have dementia. AD is a complicated disorder. Normally, it can be fur-

ther classified into late- and early-onset forms, depending on whether the onset age is

after or before 65 years old.

For late-onset AD (LOAD), the main genetic factors known so far are connected with

the Apolipoprotein E (ApoE) gene, which has three common alleles — ε2, ε3 and ε4, of

which ε4 is the most important genetic risk factor for AD. Since each offspring receives one

allele from each parent, there are six possible genotypes ε2/ε2, ε2/ε3, ε2/ε4,ε3/ε3, ε3/ε4

and ε4/ε4. Each of these combinations of mutations carries a different risk of LOAD. See

Macdonald & Pritchard (2000) for more details.

For early-onset AD (EOAD), mutations in three genes have been reported, namely

the amyloid Precursor Protein (APP), Presenilin-1 (PSEN-1) and Presenilin -2 (PSEN-2)

genes. Mutations in these genes lead to increased production of a protein fragment called

amyloid beta peptide, which is found in the brain and other tissues. This peptide can

build up in the brain to form clumps called amyloid plaques. Over 130 mutations have

been described in PSEN-1, only 10 in the PSEN-2 gene and about 20 in APP (Armstrong

et al., 2004, Giacomello et al., 2005 and Espinosa-Castañeda, 2006). PSEN-1 is implicated

in 18–55% of all families with EOAD, PSEN-2 is very rare, and APP mutations account

for 10–15% of all families with EOAD (Bird, 2005 and Espinosa-Castañeda, 2006).
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Diagnosis is made primarily on the basis of family history, clinical observation, mem-

ory tests etc. Experts who specialize in memory disorders can now diagnose AD with an

accuracy of 85–90%, but a definitive diagnosis of AD must use microscopic examination

of brain tissue, only permitted post-mortem.

Patients with EOAD normally live 5 to 10 years from the time of diagnosis (Pasternak,

1999). Death often follows from cardiovascular disease, bronchitis and pneumonia. Death

may also be attributable to the terminal complications of AD, consisting of a progressive

vegetative state, malnutrition and dehydration, culminating in cardiorespiratory arrest

(Heyman et al., 1987).

There is currently no cure for Alzheimer’s disease. Most treatments can only make

patients comfortable, but do not show any signs of slowing down the progression of the

disease, in particular, alleviating the level of dementia. Physical exercise, intellectual

stimulation (e.g. chess or crosswords, regular social interaction) are proven to be effective

ways of reducing the risks of AD.

3.2.2 Epidemiology of EOAD

Onset Rates

In Gui & Macdonald (2002), a large number of pedigrees was collected from published

papers. The authors estimated the integrated onset rate using Nelson-Aalen methods

based on these pedigrees, and hence the onset rate itself. Two items of information, in

respect of each life sampled, were needed:

(a) The age at which each person entered the risk group, which is their age when their

parent or first sibling contracted EOAD.

(b) The age at onset of EOAD, or the age at censoring in other cases.
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Then the exposure time can be calculated according the above information. The problem

is that neither of these two items is straightforward. In most cases, the only information

the authors have is pedigrees, which do not specify this information. Therefore both items

requires approximation if the information is not given or cannot be approximated in a

better way, hence the exposure time has to be approximated. In this situation, the expo-

sure time is not an accurate single figure, but a range, with its minimum and maximum

values, called minimum exposure times and maximum exposure times, respectively. The

authors aimed to calculate the integrated onset rate based on these extremes and then

define a feasible region for the onset rate.

In Gui & Macdonald (2002), the estimation was based on certain unrealistic assump-

tions, in particular no ascertainment bias and full penetrance. Therefore the probability

of the an at-risk person carrying a mutation, denoted p, was assumed equal to 1/2, and

the lifetime penetrance, denoted σ, was assumed to be 1. Espinosa & Macdonald (2007)

used the same data and calculated bias-corrected estimates of onset rates with different

assumptions of lifetime penetrance σ and probability p. It is more realistic to assume that

p > 1/2 and σ < 1 because of the retrospective methods of ascertainment used to select

the pedigrees. The onset rates were estimated with four different choices of σ in Espinosa

& Macdonald (2007), (1) σ = 100%, (2) σ = 90%, (3) σ = 80% and (4) σ = 0.653 for

maximum exposures, σ = 0.728 for minimum exposures. Espinosa & Macdonald (2007)

showed that in case (1) the estimates are too high because of unrealistic assumptions,

and that in cases (2), (3) and (4) the onset rates are not hugely different. In this the-

sis, for simplicity, we use only a lifetime penetrance of 80%. Please refer to Espinosa &

Macdonald (2007) for more technical details. Figure 3.4 shows the integrated intensities

and smoothed versions of the estimator, in which (a) is the minimum exposure case, and

(b), the maximum exposure case. Figure 3.5 shows the survival probabilities, assuming

the lifetime penetrance is 0.8; again (a) shows the minimum exposure case, and (b), the

maximum exposure case. Figure 3.6 shows the corresponding onset rates of EOAD.
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Figure 3.4: Modified Nelson-Aalen Estimates of the integrated intensity of onset of EOAD,

in respect of PSEN-1 mutation carriers, with minimum (top) and maximum (bottom)

exposures. The smoothed versions of the estimator are shown as dotted lines.
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Figure 3.5: Survival functions for onset of EOAD, in respect of PSEN-1 mutation carriers,

with minimum (top) and maximum (bottom) exposures. The assumed lifetime penetrance

is 0.8.
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Figure 3.6: Estimated onset intensities of EOAD, in respect of PSEN-1 mutation carriers,

with minimum (top) and maximum (bottom) exposures. The assumed lifetime penetrance

is 0.8.
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Post-Onset Mortality

In Gui & Macdonald (2002b), a duration-dependent mortality rate after onset is derived.

We call it µEOAD,Mortality
z and it is shown in Figure 3.7, where z denotes the duration

after onset of EOAD. Please refer to Appendix C.2 for more technical details. As in the

case of APKD and MD, post-onset mortality µEOAD,Mortality
z should not be assumed to be

lower than normal population mortality, where the population mortality is that of ELT15.

Therefore we take µEOAD,DEAD
x,z = max

{
µEOAD,Mortality

z , µStandard
x

}
.
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Figure 3.7: Force of mortality µEOAD,Mortality
z for PSEN-1 gene mutation carriers after

onset of EOAD, as a function of duration z since onset.

Prevalence Rate

Gui (2003) estimated the prevalence rate of PSEN-1 mutation carriers based a population-

based prevalence study by Campion et al. (1996). This study estimated the prevalence
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of familial EOAD at 25.4 per 100,000 at risk. Of the 184 affected subjects tested for

mutations by Campion et al. (1996), 14.7% carried APP gene mutations while 58.8%

had PSEN-1 gene mutations. Hence the prevalence rate of PSEN-1 mutation carriers was

estimated at 15 per 100,000. Espinosa-Castañeda (2006) also used 15 per 100,000 as the

prevalence rate of PSEN-1 mutation carriers.

88



3.3 Huntington’s Disease

3.3.1 Introduction to Huntington’s Disease

Huntington’s disease (HD), also called Huntington disease, or Huntington chorea, takes

its name from the New York physician George Huntington who described it precisely in

1872 in his first medical paper. This disease has been heavily studied during the past

decades. HD’s most obvious symptoms are abnormal body movements called chorea, and

a lack of coordination, but it also affects a number of mental abilities and some aspects

of personality. This disease can occur at any age. HD patients do not lose their control

of movement suddenly, but endure the long-term progression of the disease. The nor-

mal symptom of onset is the uncontrolled body movement, and later symptoms affect

the cognitive system, mainly executive functions (e.g. planning, abstract thinking). Psy-

chopathological symptoms will appear, such as reduced display of emotions, anxiousness

and depression (Harper, 1996).

HD is a typical single-gene autosomal dominant genetic disorder. It is caused by

mutations in the Huntingtin gene. In a certain region of the gene, there is a sequence

consisting of a variable number of CAG trinucleotides. Normally the gene has fewer than

35 CAG repeats, but when this number exceeds 35, people may develop HD. When the

number of CAG repeats is 36–39, the penetrance is incomplete, and when the number of

CAG repeats is higher than 40, the onset of HD is practically certain, that is, the mutation

is completely penetrant. Therefore different CAG repeat lengths lead to different onset

rates.

Diagnosis of this disease normally begins with the recognition of unusual body move-

ments. But when the disease progresses to affect cognitive functions, and further psy-

chopathological functions, diagnosis is not easy, because of the potential confusion with

other neurological diseases. Genetic testing now provides the most reliable diagnosis. By
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counting the number of repetitions of the CAG triplet in the Huntingtin gene, we can

show conclusively whether the person tested is a mutation carrier. As to the prognosis of

HD, the onset age is correlated with the number of CAG repeats. The longer the CAG

repeats expansion, the earlier onset is likely to be.

HD does not have any effective treatment. So far no treatment can reduce the risks

of being affected by HD, but some may alleviate the symptoms, and make the patients

more comfortable. Maintaining high quality nutrition is an important part of treatment.

Other things, e.g. speech training, also help patients to maintain their speaking ability.

The long-term potential treatment may lie in genetic therapy. But so far these methods

exist only theoretically, and are still in the process of being tested on animal models.

3.3.2 Epidemiology of HD

Onset Rate

Brinkman et al. (1997) used Kaplan-Meier methods to estimate the cumulative proba-

bility of surviving without HD, categorized by numbers of CAG repeats. In Gutiérrez &

Macdonald (2004), the authors fitted the penetrance with Gamma distributions, and then

derived the onset rates of HD for different numbers of CAG repeats, because they were

interested in the effect of genetic information relating to HD only. Alternatively, we could

estimate an aggregate onset rate. In this thesis, we are interested in the overall effect of

genetic information relating to not only HD, but all chosen genetic disorders, so that we

choose to do the latter, and derive the aggregate onset intensity from the aggregate age-

at-onset distribution. Several large studies have found that the age at onset distribution

is very close to Normal, e.g. Bell (1934), Wendt & Drohm (1972). The aggregate age-at-

onset distribution we will use is that is parameterized by MacCalman (2009). Please see

Appendix C.3 for more technical details. Figure 3.8 shows the age-at-onset distribution

(top) and the derived onset rate of HD for mutation carriers (bottom).
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Figure 3.8: Normal age-at-onset distribution (top) and associated onset rate of HD (bot-

tom) for HD mutation carriers. Source: MacCalman (2009).
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Post-Onset Mortality

The post-onset mortality rate µHD,Mortality
x,z is estimated in Gutiérrez & Macdonald (2004),

based on Foroud et al. (1999), which estimated the survival probabilities as a function of

duration since onset of HD for three age-at-onset groups, 20–34, 35–49 and above 50. The

latter study was chosen because it used a definition of “onset” of HD matching that used in

the studies of the onset of HD. Please see Appendix C.3 for more technical details. Figure

3.9 (top) shows the fitted survival probability for three age-at-onset groups, and Figure

3.9 (bottom) displays the post-onset mortality rates µHD,Mortality
x,z , or force of mortality,

for these three groups. As in other cases, post-onset mortality µHD,Mortality
x,z should not be

assumed to be lower than normal population mortality, where the population mortality

is that of ELT15. Therefore we take µHD,DEAD
x,z = max

{
µHD,Mortality

x,z , µStandard
x

}
.

Prevalence Rate

Gutiérrez & Macdonald (2004) cited an overall mutation prevalence rate of 18.75 per

100,000 population (Harper, Lim & Craufurd, 2000). This figure is based on a disease

prevalence of about 7.5 per 100,000, where disease prevalence means the proportion of

people with symptoms of HD at any fixed calendar time. Since others, especially at

younger ages, will carry a HD mutation but not yet show symptoms, the mutation preva-

lence in the population is much higher. Harper (1996) suggests about 2.5 times higher,

hence the HD mutation prevalence of 18.75 per 100,000.
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Figure 3.9: The survival probabilities as a function of duration since onset of HD for three

age-at-onset groups (top) and corresponding post-onset mortality µHD,Mortality
x,z (bottom),

based on Foroud et al. (1999)
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3.4 Hereditary Non-Polyposis Colorectal Cancer

3.4.1 Introduction to HNPCC

Colorectal cancer (CRC) is cancer of the colon or rectum. CRC is the second common-

est cancer affecting women (after breast cancer) and the third commonest cancer in men

(after prostate and lung cancer). Colorectal cancers can be sporadic or hereditary. Ap-

proximately 6% of colorectal cancers are hereditary, of which around 83% are accounted

for by Hereditary Non-Polyposis Colorectal cancer (HNPCC), and the rest by Familial

Adenomatous Polyposis (FAP) (Lynch & Smyrk, 1996a).

FAP is an inherited condition in which numerous polyps grow in the colon. While

these polyps start out benign, malignant transformation into colon cancer occurs in 100%

of cases if not treated. FAP can have different inheritance patterns and genetic causes.

When this condition results from mutations in the APC gene, it is inherited in an auto-

somal dominant pattern, which means one copy of the altered gene is sufficient to cause

the disorder. Colonoscopy is considered the diagnostic test of choice as it can provide

not only a quantification of polyps throughout the colon but also a histological diagno-

sis. Most individuals with the APC mutation will develop colon cancer by the age of 40.

Therefore, prophylatic surgery is generally recommended before the age of 25 (Gebert &

Knebel Doeberitz, 1999). In this thesis, we do not model FAP, because these polyps can

be easily detected and removed in a screening program, and the risk associated with FAP

is limited (see Section 1.2.5 for details).

HNPCC may be caused by mutations in DNA mismatch repair (MMR) genes or by

non-genetic factors, such as life style. Mutations in five MMR genes, namely MSH2,

MLH1, PMS1, PMS2 and MSH6 have so far been identified to be responsible for most

cases of HNPCC, with MLH1 and MSH2 mutations accounting for 90% of cases (Lynch

& de la Chapelle, 2003). One important feature of HNPCC is that the mutation carriers
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are not only at risk of CRC, but also are prone to develop endometrial cancer (females

only), brain cancer, small bowel cancer, gastric cancer, upper urinary tract cancer, and

extracolonic cancers, e.g. ovarian cancer (female only).

The ‘Amsterdam criteria’ have been used to identify HNPCC patients in clinical

practice. They have three major requirements:

(a) histologically verified CRC in three or more relatives, one of whom is first-degree

relative of the other two;

(b) CRC in at least two generations; and

(c) one or more CRC cases diagnosed before age 50.

Recent developments suggest that the Amsterdam criteria are too restrictive, and un-

derestimate the prevalence of HNPCC, because they ignore the extracolonic cancers, and

small families rarely meet them (Lu et al., 2007). Improved criteria have been proposed,

such as the modified Amsterdam criteria (Bellacosa, Genuari & Anti, 1996) and Bethesda

criteria (Rodriguez-Bigas, Boland, & Hamilton, 1997).

More advanced methods to identify HNPCC are the MSI test (Ikenaga et al., 2002)

and genetic testing (Hoedema et al., 2003). One of the interesting features of HNPCC

patients is microsatellite instability (MSI), while FAP patients normally show microsatel-

lite stability (MSS). MSI is almost ubiquitous in tumours from patients who are members

of HNPCC families. Liu, Parsons and Paradpoulos (1996) discovered that 92% of CRCs

in HNPCC patients show the MSI phenotype. Farrington et al. (1998) found 65% of

young patients with MSI tumours had germline MSH2 or MLH1 mutations. However,

for sporadic CRC patients, 10–15% of cases show MSI (Lynch & Smyrk, 1996b and Pa-

padopoulos, 2004).

As to the prognosis, several papers suggest that the survival rate of HNPCC patients

is better than that of sporadic CRC patients (Sankila et al., 1996, Lin et al., 1998,
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Watson et al., 1998, Farrington et al., 1998, Lynch & Smyrk, 1996a, Percesepe et al.,

1997, Bertario et al., 1999, Tomoda, Baba & Akazawa, 1999 and Elsakov & Kurtinaitis,

2006). The possible reason is that HNPCC patients can be identified and treated earlier

than patients with sporadic CRC.

‘Staging’ is a method to evaluate the severity of cancer in a patient. Two commonly

used CRC staging systems are the Duke Staging System and the TNM Staging System.

The Duke staging system originally was published by C.E. Dukes in 1932 for rectal cancer

only. It was adapted by Kirklin in 1949 and later by Astler and Coller in 1953 for

cancers of the colon and rectum (Astler & Coller, 1954). Their work contributed to the

Modified Duke System. The TNM System was recently developed by the American Joint

Committee on Cancer (AJCC) (Watson et al., 1998).

Treatment depends on the staging of CRC. When colorectal cancer is detected at early

stages (with little spread) it can be curable. However when it is detected at later stages

(when distant metastases are present) it is less likely to be curable. Surgery remains the

primary treatment while chemotherapy and/or radiotherapy may be recommended.

CRC screening is an effective way to detect CRC at its early stages and so to reduce

the CRC associated risks. CRC screening programs include the Bowel Screening Program

for the general population, and the HNPCC Surveillance Program for HNPCC families.

Several papers claim that the people participating in a screening program will have bet-

ter prognosis than those who choose not to do so (Järvinen, Mecklin & Sistonen, 1995,

Järvinen et al., 2000, de Vos tot Nederveen Cappel et al., 2002, Vasen et al., 1993 and

Renkonen-Sinisalo et al., 2000). In this chapter, we study the post-onset mortalities for

both HNPCC patients and sporadic CRC patients, assuming the sampled persons choose

not to take part in any surveillance program. In Chapter 5, we will study the effect of

CRC screening programs on CRC associated risks in more detail.
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3.4.2 Epidemiology of HNPCC

Onset Rates

Lu (2006) estimated the onset rate for both MLH1 and MSH2 mutation carriers and non-

mutation carriers. For mutation carriers, the estimates were based on data from Vasen et

al. (2001). People carrying MLH1 and MSH2 mutations are not only at risk of colorectal

cancer (CRC), but also are more likely to contract endometrial cancer (EC) (females

only) and extracolonic cancer (OECC) (including cancer of the stomach, urinary tract,

small bowel, ovary (female only) and brain). See Appendix C.4 for more technical results.

Figure 3.10 shows the fitted cumulative onset probability functions (top) and the derived

onset rates (bottom) for both male and female MLH1 and MSH2 mutation carriers, in

respect of CRC. Figure 3.11 shows the fitted cumulative onset probability functions (top)

and onset rates (bottom) for female MLH1 and MSH2 mutation carriers, in respect of

EC. Figure 3.12 shows the fitted cumulative onset probability functions (top) and onset

rates (bottom) for both male and female MLH1 and MSH2 mutation carriers, in respect of

OECC. Figure 3.13 shows the fitted population onset rates of CRC for males and females

and fitted population onset rates of EC for females.
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Figure 3.10: Fitted cumulative onset probability functions (top) and onset rates (bottom)

for both male and female mutation MLH1 and MSH2 carriers, in respect of CRC. Source:

Lu et al. (2007).
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Figure 3.11: Fitted cumulative onset probability functions (top) and onset rates (bottom)

for female MLH1 and MSH2 mutation carriers, in respect of EC. Source: Lu et al. (2007).
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Figure 3.12: Fitted cumulative onset probability functions (top) and onset rates (bottom)

for both male and female MLH1 and MSH2 mutation carriers, in respect of OECC. Source:

Lu et al. (2007).
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Figure 3.13: Fitted population onset rates of CRC for males and females and fitted

population onset rates of EC for females. Source: Lu et al. (2007).
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Post-Onset Mortality

Since mutations in MLH1 and MSH2 lead to the onset of cancers of several different sites

(CRC, EC (female only) and OECC), the mortality after people develop any one of these

three cancers needs to be estimated individually. In addition, the mortality experiences

of HNPCC patients and sporadic CRC patients are different, so we need to estimate the

post-onset mortality for both HNPCC and sporadic CRC patients.

(a) Post-onset mortality associated with CRC

We surveyed a number of papers on this topic. For brevity, please see the Appendix

C.4 for more details. We chose Watson et al. (1998) as our main data source because

this paper is one of the most comprehensive studies on post-CRC mortality, and we

obtained the orginal dataset from Dr. Patrice Watson, the principal author of

Watson et al. (1998). In Watson et al. (1998), this data was used to validate

the hypothesis that patients with HNPCC have a better prognosis than sporadic

CRC patients. Every patient in this data was staged according to the TNM system,

and survival probabilities were estimated using Kaplan-Meier methods according

to stage. In Chapters 3 and 4, the purpose of our model is to quantify the cost

of adverse selection, and the modelling of HNPCC is only one part of the model,

therefore we do not explicitly model staging.

In Watson et al. (1998), HNPCC cases, as the study group, were selected from 98

HNPCC families in the registries at Roswell Park Cancer Institute and Creighton

University. The Amsterdam criteria were used to ascertain the HNPCC patients. As

the control group, sporadic CRC cases were selected from the tumor registry (TR)

of a single hospital affiliated with Creighton University. The diagnosis of CRC is

taken as the start of survival analysis and the observation ends either by censoring

because of death, or 10 years after the analysis. Kaplan-Meier methods were used
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for the survival analysis.

Figure 3.15 shows the Kaplan-Meier estimate of the survival probability after con-

tracting CRC, with our fitted curve (top) and the corresponding intensity µCRC,Mortality,MC
z

(bottom) for HNPCC patients. Figure 3.14 shows the Kaplan-Meier estimate of the

survival probability after contracting CRC, with our fitted curve (top) and the

corresponding intensity µCRC,Mortality,NC
z (bottom) for sporadic CRC patients. The

superscripts MC and NC stand for mutation carriers and non-mutation carriers.

Equation 3.1 is the function of duration since onset of CRC fitted to the post-onset

survival probability associated with CRC for HNPCC patients and Equation 3.2

shows that for sporadic CRC patients. As in APKD and others diseases of inter-

est, the post-CRC mortality rates should not be lower than that of µStandard
x , e.g.

English Life Tables 15. For mutation carriers:

SCRC,Mortality,MC
z = 1− 0.05973z + 0.003277z2

−9.982× 10−5z3 + 1.035× 10−6z4, (3.1)

and:

SCRC,Mortality,NC
z =





1− 0.1893z + 0.02413z2 − 0.001342z3 z ≤ 15

21.32 · 0.032501.099

Γ(1.099)
· z0.09905 · exp(−0.03250z) z ≥ 20

(3.2)

Between 15 < z < 20, we use a sine blending function.

We have the following comments:

(a) For mutation carriers, since data after duration 30 is very sparse, we should

expect a substantial increase of the mortality rate after duration 30. We assume

that the mortality rate levels off after duration 30.

103



(b) For non-mutation carriers, we found that it is hard to fit the Kaplan-Meier esti-

mate of the survival probability after contracting CRC with one single function,

because of the irregularity of the Kaplan-Meier estimate. Therefore, we use two

functions to fit the Kaplan-Meier estimate. By trial and error, we fit the the

part I (duration between 0 and 15 years) with a polynomial function and the

part II (duration beyond 20 years) with the Gamma function. For duration

between 15 and 20 years, we use a sine blending function.
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Figure 3.14: Kaplan-Meier estimates of survival probability after contracting CRC with

fitted curve (top) and mortality intensity derived (bottom) for non-mutation carriers.

Data source: Watson et al. (1998).
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Figure 3.15: Kaplan-Meier estimates of survival probability after contracting CRC with

fitted curve (top) and mortality intensity derived (bottom) for mutation carriers. Data

source: Watson et al. (1998).

106



(b) Post-onset mortality associated with EC.

We reviewed several papers on this topic. Unfortunately, none of these papers

carried out any survival analysis, which could be used in our work, except Boks

et al. (2002). This might be because of the rarity of data compared with CRC.

Boks et al. (2002) is a case-control study. The study group consisted of 50 patients

with HNPCC-associated EC from the registry of the Netherlands Foundation for

Hereditary Tumors. The control group consisted of 100 patients with sporadic EC

registered in the Eindhoven Cancer Registry in the Netherlands. The observation

time of the survival analysis was from the date of diagnosis until death or the end

of the study in December 2000. The probability of survival since onset of EC was

estimated using Kaplan-Meier methods. In the onset intensity analysis of Vasen et

al. (2001), the observation time was from birth until date of diagnosis of cancer,

death, or to the end of the study on July 1st, 2000. So the starting time of the

survival analysis after onset of EC matches the ending time of the onset analysis

with no time gap.

The conclusion is that the cumulative survival probability of patients with EC from

HNPCC families is not significantly different from that of patients with sporadic EC.

The disadvantage of this study is that the length of follow-up was short, 5 years

for the control group and 10 years for study group, and the confidence intervals

were not shown in the diagram. We used truncated Gamma functions to fit the

Kaplan-Meier estimates and extrapolate the results to duration 40 years, because

we assume in this thesis that the life insurance market operates between age 20

and 60. The extreme length of extrapolation is due to rarity of data. Figure 3.17

shows the Kaplan-Meier estimate of the survival probability after contracting EC,

with our fitted curve (top) and the corresponding intensity µEC,Mortality,MC
z (bottom)

for HNPCC patients. Figure 3.16 shows the Kaplan-Meier estimate of the survival
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probability after contracting EC, with our fitted curve (top) and the corresponding

intensity µEC,Mortality,NC
z (bottom) for sporadic EC patients. Equation (3.3) is the

mathematical function fitted to the post-onset survival probability associated with

EC for HNPCC patients and Equation 3.4 is that for sporadic EC patients. As in

CRC, µEC,Mortality,MC
z and µEC,Mortality,NC

z should be assumed not to be lower than

the population mortality in the ELT15.

1− SEC,Mortality,MC
z =

0.0049180.6083

Γ(0.6083)

∫ z

0

t−1.608 exp(−0.004918t)dt (3.3)

1− SEC,Mortality,NC
z =

0.010360.6492

Γ(0.6492)

∫ z

0

t−1.649 exp(−0.01036t)dt (3.4)
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Figure 3.16: Kaplan-Meier estimate of the survival probability after contracting EC, with

our fitted curve (top) and the corresponding mortality intensity (bottom) for sporadic EC

patients. Data source: Boks et al. (2002)
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Figure 3.17: Kaplan-Meier estimate of the survival probability after contracting EC, with

our fitted curve (top) and the corresponding mortality intensity (bottom) for HNPCC

patients. Data source: Boks et al. (2002)

110



(c) Post-onset mortality associated with OECC.

OECC includes cancer of the stomach, urinary tract, small bowel, ovarian (female

only) and brain. For the post-onset force of mortality associated with OECC, ideally

we need to study the epidemiological literatures for each type of cancer, as in the case

of CRC and EC. However, due to the rarity of HNPCC-associated OECC, no survival

analysis study has been carried out in respect of some HNPCC-associated cancers

(e.g. urinary tract cancer and brain cancer), and in some other cases (e.g. stomach

cancer, small bowel cancer and ovarian cancer), the reliability of results is in doubt

due to the small number of samples. We include a list of papers in Appendix C.4.

Let µOECC,Mortality,NC
z and µOECC,Mortality,MC

z be the post-onset force of mortality

associated with OECC for sporadic patients and HNPCC patients, respectively. In

this thesis, for simplicity, we assume that µOECC,Mortality,NC
z = µCRC,Mortality,NC

z and

µOECC,Mortality,MC
z = µCRC,Mortality,MC

z . Considering the relatively low onset rates of

OECC, we shall believe this assumption should have a very limited effect on results.

As usual, the post-onset mortality associated with OECC should not be assumed

to be lower than that of ELT15.

The Mortality Excluding Death Caused by CRC, EC and OECC

In the cases of single-gene disorders, we normally assume that they have negligible effect

on overall mortality. But in the case of multifactorial disorders, e.g. HNPCC and BC &

OC, this is not the case. Therefore, we need to calculate the rate of mortality excluding

deaths caused by CRC, EC and OECC.

We calculated the ratio (rHNPCC
x ) of the numbers of deaths caused by CRC, EC and

OECC to the total population numbers of deaths during 1990–1992 for each age x using

the O.N.S. data. The force of mortality excluding deaths caused by CRC, EC and OECC

is calculated as µStandard
x × (1− rHNPCC

x ), where the population mortality µStandard
x is that
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of ELT15. For males, the fitted function for rHNPCC
x is

rHNPCC
x = −0.006208 + 0.004203x− 0.0004570x2

+2.152× 10−5x3 − 4.200× 10−7x4 + 3.613× 10−9x5, (3.5)

and for females, the fitted function for rHNPCC
x is

rHNPCC
x = −2.308 + 0.360524x− 0.02261x2 + 7.450× 10−4x3 − 1.380× 10−5x4

+1.443× 10−7x5 − 7.960× 10−10x6 + 1.801× 10−12x7. (3.6)

Figure 3.18 shows the ratio rHNPCC
x of the numbers of deaths caused by CRC, EC and

OECC to the numbers of deaths in the population during 1992–1992, and fitted curves

for males (top) and females (bottom). Figure 3.19 shows the adjusted mortality intensity

µStandard
x × (1− rHNPCC

x ) for males (top) and females (bottom).
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Figure 3.18: The ratio of the numbers of deaths caused by CRC, EC and OECC to the

number of deaths in the population during 1992–1992, and fitted curves for males (top)

and females (bottom)
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OECC for males (top) and females (bottom).
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Prevalence Rate and the Distribution of Mutations

Lu et al. (2007) mentioned that Aaltonen et al. (1998) found that 2% of all CRC patients

in Finland have HNPCC mutations, and that the Finnish Cancer Registry also found the

risk of CRC by age 85 is 5% in the general population. Therefore Lu et al. (2007) assumed

that the population frequency of HNPCC is about 1/1000. MLH1 and MSH2 mutations

account for 90% of all HNPCC cases (Lynch & de la Chapelle, 2003). They assumed that

the two mutations have roughly equal frequencies and the other minor MMR mutations

have similar prognoses to those of MLH1 and MSH2 mutations. The penetrance of CRC in

respect of MLH1 and MSH2 mutation carriers is estimated at about 65% and 70% by age

75 years in Lu et al. (2007), therefore Lu et al. (2007) took the population frequencies of

MLH1 and MSH2 mutations to be 0.0005 / 0.65 = 0.000769 and 0.0005 / 0.7 = 0.000714

respectively.

The Onset Rate of a Family History

In the case of diseases with purely genetic causes, e.g. APKD, EOAD, HD and MD,

because the lifetime penetrance is close to 100%, persons at risks of single-disorders are

assumed to have a family history at outset, which is taken to mean an affected parent.

However, in the case of HNPCC and BC & OC, this is not the case, i.e. a family history

might arise by chance in any family.

Under the family history underwriting, we need to estimate the conditional probability

that a person aged x has a given genotype g say, given their family history at that age:

P [genotype gi | healthy at age x and with family history] ,

In the case of CRC which have both hereditary and sporadic causes, this probability

is difficult to estimate, because it can depend on other family members, i.e. on family

structure, and the definition of family history. A family history relevant to CRC has been
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defined in underwriting practice. Lu et al. (2007) considered three scenarios that might

represent underwriting criteria:

(a) Scenario 1: at least one first degree relative (FDR) develops CRC before age 60;

(b) Scenario 2: at least two FDRs develop CRC before age 60;

(c) Scenario 3: at least one FDR develops CRC before age 60 and at least one FDR

develops EC before age 60.

This suggests that, given an explicit definition of a family history, we can model its appear-

ance as an event, or a transition between two states. We use one example to demonstrate

this idea. Suppose we use scenario 2 as the relevant threshold for underwriting. If at age

x− 1 a woman had one affected parent but by age x she had one affected parent and one

affected sister, then this woman crossed that threshold between age x− 1 and age x. We

can see from this example that the onset rate of a family history partly depends on the

structure of a family, which needs to be modeled separately. A representative distribution

of the number of siblings can be found in Macdonald, Waters & Wekwete (2003a) (see

Table 3.1).

Table 3.1: The distribution of the number of siblings. Source: Macdonald, Waters &

Wekete (2003a).

No. of siblings k 0 1 2 3 4 5 ≥ 6

Probability P [k] 0.2311 0.5006 0.1973 0.0541 0.0124 0.0034 0.0011

Based on this information, we can then calculate the onset rate of a family history

numerically. In this thesis, for simplicity, we choose to use only scenario 2 as the definition
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of a family history relevant to CRC. Taking scenario 2 as an example, we briefly introduce

the methodology of production of the onset rate of a family history as follows:

1. Sub-populations

The entire population is partitioned into five sub-populations according to a person’s

own genotype and the presence of a mutation in their family as follows:

(a) Sub-population 1: not carriers of any MMR gene mutation and have no MMR

gene mutation carriers within their family;

(b) Sub-population 2: MLH1 mutation carriers and have MLH1 mutation carriers

within their family;

(c) Sub-population 3: not MLH1 mutation carriers but in an MLH1 mutation

carrier family;

(d) Sub-population 4: MSH2 mutation carriers and have MSH2 mutation carriers

within their family;

(e) Sub-population 5: not MSH2 mutation carriers but in an MSH2 mutation

carrier family;

Every one is at risk of CRC (either hereditary or sporadic) no matter which sub-

population (s)he is in. The proportion of the population in sub-population 2 and 4

are the frequencies of the MMR mutations among the general population, which were

taken to be 0.000769 and 0.000714, respectively. A new-born baby of a mutation

carrier has probability 1/2, at birth, of being a carrier. Hence the proportion in Sub-

populations 3 and 5 are the same as those in sub-populations 2 and 4, respectively.

2. The Model

We use a Markov model in Figure (3.20) to describe the life history of a person at

risk of CRC, EC and OECC and incorporate the feature of onset of family history.
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Figure 3.20: A life history model of a person at risk of CRC, EC and OECC, incorporating

the development of a family history, in sub-population i.

The onset rate of a family history is intensity µi06
x in Figure (3.20). We also assume

that for each person in sub-population i, since their mutation status is known, the

onset rates of CRC, EC and OECC are fully defined in Section 3.4.2, which are

unaffected by the presence of absence of a family history (Lu et al., 2007). Let OP i6
x

be the probability of being State i06 at age x for a person in sub-population i. We

have:

P [genotype gi | healthy at age x and with family history] =
OP i6

x∑5
j=1 OP j6

x

. (3.7)

3. Assumptions

In the calculation of the onset rate of a family history, we made the following

assumptions (Lu et al., 2007):
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(a) The parents are 30 years older than the applicant and any siblings are all the

same age as the applicant.

(b) The distribution of the number of children is given in Table 3.1.

(c) Siblings could be male or female with equal probability.

(d) The siblings in a mutation carrier family (i.e. sub-populations 2 to 5) have

equal probability of being a carrier or a non-carrier. The probability that such

people develop cancer is an average over that for carriers and non-carriers.

(e) Only one parent is a mutation carrier, but the other one not. We neglect the

possibility that both parents are mutation carriers.

4. Calculation

We adopted the notation system from Lu et al. (2007). Let iP 0P
x , iP 1P

x and iP 2P
x

denote the probabilities that neither of their parents, one of their parent or both of

their parents, respectively, suffer onset of CRC by age x + 30. Let iP 0S
x , iP 1S

x and

iP 2S
x denote the probabilities that they have none, one or two siblings, respectively,

suffering onset of CRC by age x. Given a person in sub-population i, we can estimate

the probability that they have a family history by age x, denoted as iF fh
x , under

scenario 2, which is:

iF fh
x = iP 0P

x × (1− iP 0S
x − iP 1S

x ) + iP 1P
x × (1− iP 0S

x ) + iP 2P
x . (3.8)

By numerical differentiation, we can then obtain the intensity µi06
x in Figure (3.20),

the rate of onset of a family history. For more calculation details, please see Lu et

al. (2007).

5. Some features
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There is a downward jump at age 30, because the parents then reach age 60 and

can no longer contribute to a family history. The rate of ‘onset’ for MLH1 mutation

carriers jumps at about 20, because the rate of onset of CRC for MLH1 mutation

carriers is assumed to be zero before age 22 (Lu, 2006).

Figure 3.21 shows the onset rates of a family history for non-mutation, MLH1 muta-

tion and MSH2 mutation families under scenario 2.
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Figure 3.21: The onset rates of a family history for non-mutation, mutation MLH1 and

mutation MSH2 families.
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3.5 Breast Cancer and Ovarian Cancer

3.5.1 Introduction to Breast Cancer and Ovarian Cancer

Among women worldwide, breast cancer is the most common cancer. Breast cancer (BC)

refers to a malignant tumor that has developed from cells in the breast. Several factors are

recognized as contributing to an increased risk of developing BC, including age, region,

breast density and family history. The possibility may increase four- to six-fold if the

woman has two First Degree Relatives diagnosed with the disease (Claus et al., 1996).

So this leads epidemiologists to classify BC cases into two categories: sporadic forms and

hereditary forms.

In the case of hereditary forms, mutations in two genes, BRCA1 and BRCA2, have

been identified that predispose individuals to BC. Mutations in the BRCA1 and BRCA2

genes confer very high risk of breast cancer (BC) but only account for about 25% of the

observed familial clustering of BC. Antoniou et al. (2001) proposed a model that included

the BRCA1 and BRCA2 genes, and a polygenic component that acted multiplicatively

on the rate of onset of BC.

Ovarian cancer (OC) is a disease in which malignant or cancerous cells are found in

the ovary. OC is the second most common malignancy in women (after BC). There are

several types of OC. The most common type is epithelial OC, which begins on the surface

of the ovary, making up 90% of all OC cases. In a process called shedding, OC cells can

break away from the ovary and spread to other tissues and organs. Shedding may make

a woman feel bloated, or make her abdomen look swollen. However, these symptoms are

easily missed because they can all be caused by a number of other diseases. This makes it

difficult to diagnose OC by symptoms alone. At this moment, there is no reliable method

of screening for OC. In clinical practice, both CA125 blood test and vaginal ultrasound

are currently being applied as possible approaches of screening women for OC. Several
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factors may increase developing the chance of developing OC, including age, genetics,

family history, and fertility drugs.

Surgery is the preferred treatment and is frequently necessary for differential diag-

nosis. The type of surgery depends upon how widespread the cancer is when diagnosed,

as well as the type and grade of cancer. The surgeon may remove one ovary (unilateral

oophorectomy) or both ovaries (bilateral oophorectomy). For some very early tumors,

only the involved ovary and fallopian tube will be removed (called a “unilateral salpingo-

oophorectomy”), especially in young females who wish to preserve their fertility. In ad-

vanced disease as much tumor as possible is removed (debulking surgery). In cases where

this type of surgery is successful, the prognosis is improved compared to patients where

large tumor masses (more than 1 cm in diameter) are left behind. Chemotherapy is used

after surgery to treat any residual disease, if appropriate.

3.5.2 Epidemiology of BC & OC

Onset Rates

For incidence rates of BC and OC associated with BRCA1 and BRCA2 mutations, a

recent meta-analysis by Antoniou et al. (2001) pooled pedigree data from 22 studies

including 8,139 index cases. Age-specific cumulative risks were estimated by Kaplan-Meier

methods, and approximate piecewise constant rates were obtained. Gui et al. (2006) fitted

truncated Gamma functions to the piecewise constant onset rates, using unweighted least

squares. Please see Appendix C.5 for the fitted truncated Gamma functions. Figure

3.22 shows the fitted onset rates of BC (top) and OC (bottom) for BRCA1 and BRCA2

mutation carriers.

122



0 10 20 30 40 50 60 70 80 90

0
0.

01
0.

02
0.

03
0.

04

Age

On
se

t R
at

e

BRCA1
BRCA2

0 10 20 30 40 50 60 70 80 90

0
0.

01
0.

02
0.

03
0.

04

Age

On
se

t R
at

e

BRCA1
BRCA2

Figure 3.22: Fitted onset rates of BC (top) and fitted onset rates of OC (bottom) for

BRCA1 and BRCA2 mutation carriers. Source: Gui et al. (2006).
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As to the population onset rate of BC and OC, Wekwete (2002) estimated these using

O.N.S. data from years 1984–1988. The crude rates µ̇BC,POP
x and µ̇OC,POP

x were calculated

as:

µ̇BC,POP
x =

θBC,POP
x

cEBC,POP
x

, (3.9)

and:

µ̇OC,POP
x =

θOC,POP
x

cEOC,POP
x

, (3.10)

where θBC,POP
x and θOC,POP

x are the numbers of cases of BC and OC respectively, and

cEBC,POP
x and cEOC,POP

x are the corresponding exposed to risk. The crude rates were

then fitted using unweighted least squares. In order to differentiate the crude rates from

the fitted rates, we denote the fitted rates µBC,POP
x and µOC,POP

x for BC and OC re-

spectively. Please see Appendix C.5 for the mathematical expressions of µBC,POP
x and

µOC,POP
x . Figure 3.23 shows the fitted population onset rates for BC and OC. It can be

observed that the BC incidence rates are unusual at age 50–64. This is because of the

introduction of systematic BC screening in the UK in women bebetween the ages of 50

and 64.

Post-Onset Mortality Rate

Gui et al. (2006) studied the mortality rates after the onset of BC or OC. Please see

Appendix C.5 for technical details. Figure 3.24 shows the mortality rates after the onset

of BC (top) and OC (bottom) as a function of duration since onset.
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Figure 3.23: Fitted population onset rates of BC and OC. The unusual BC incidence

rates at age 50–64 is because the introduction of systematic BC screening in the UK in

women between the ages of 50 to 64. Source: Wekwete (2002).
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Figure 3.24: Fitted mortality rates after onset of BC (top) and OC (bottom) for all

durations since onset. Source: Gui et al. (2006).
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Mortality Excluding Death Caused by BC and OC

Wekwete (2002) calculated the ratios (rBCOC
x ) of the numbers of deaths caused by BC

and OC during 1990–1992 to the total numbers of deaths during 1990–1992, for each age

x using O.N.S. data. The force of mortality excluding deaths caused by BC and OC is

calculated as µStandard
x × (1 − rBCOC

x ), where the population mortality µStandard
x is that

of ELT15. Figure 3.25 (top) shows the curve fitted to the ratio rBCOC
x of the number of

deaths cause by BC and OC to the number of deaths in the population during 1992–1992

for females. Figure 3.25 (bottom) shows the corresponding adjusted mortality intensity

µStandard
x × (1− rBCOC

x ).

Prevalence Rate and the Distribution of Mutations

Antoniou et al. (2001) estimated allelic mutation frequencies of BRCA1 and BRCA2

mutations to be 0.0005829 and 0.000676 respectively.

The Onset Rate of a Family History

As in the case of HNPCC, a family history relevant to BC & OC can occur in any family.

Therefore, we need to model the onset of a family history by making the appearance

of a family history as a precisely defined event. Gui et al. (2006) chose the following

underwriting threshold for a family history: two first-degree relatives suffer onset of BC

or OC before age 50. Hence if by age x − 1 a woman has one sister suffering BC before

age 50 and by age x she has two, then this woman crosses the threshold between age x−1

and x. The distribution of the number of the applicant’s sisters is modeled in Macdonald,

Waters & Wekwete (2003a). Hence the onset rate of a family history can be calculated

straightforwardly. Please refer to Gui et al. (2006) for more detailed information. Figure

3.26 shows the onset rates of a family history for non-mutation, mutation BRCA1 and

mutation BRCA2 families.
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Figure 3.25: The curve fitted to the ratio of the number of deaths cause by BC and OC to

the number of deaths in the UK population during 1992–1992 (top) and the corresponding

mortality intensity adjusted to exclude the deaths caused by BC & OC (bottom). Source:

Gui et al. (2006).
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Figure 3.26: The onset rates of a family history for non-mutation, mutation BRCA1 and

BRCA2 families. The family history is defined as two first-degree relatives suffering onset

of BC or OC before age 50. Source: Gui et al. (2006).
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Chapter 4

Overall Impact of Genetic

Information - “Bottom-Up”

Approach

In this chapter, we will look at the overall impact of genetic information, so as to come

closer to completing the “bottom-up” approach. In individual studies, when we talk about

the impact of genetic information, we look at two questions: the insurability of insurance

applicants, and the cost of adverse selection. The first question has been fully answered

in each individual study (see Section 1.2.5 for the list of individual studies). Here, we

consider the second question, the cost of adverse selection.

4.1 Critical Illness Insurance Market Models

In Chapter 2, we studied the cost of adverse selection relating to MD in the CI insurance

and life insurance markets. This individual study of MD exemplified the methodology to

quantify the cost of adverse selection by modelling the whole insurance market using a
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Figure 4.1: A Markov model of family history, genetic testing, insurance purchase and CI

insurance events for a person in the ith risk subpopulation (FH = family history present).

Markov or semi-Markov model. This market model includes several factors, e.g. insur-

ance applicants’ insurance-purchasing behavior, genetic testing, development of a family

history, and more. Figure 4.1 shows a CI insurance market model, which we used to

quantify the overall impact of genetic information.

In this thesis, we choose six genetic disorders, taken to have significant impact on

the insurance industry (see Chapter 1 for details). Each of these genetic disorders may

be caused by one or more mutations. Depending on whether a person carries a mutation
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and/or a family history, we divide the whole population into the following sub-populations:

(a) sub-population 1: not mutation carriers, not having family history

(b) sub-population 2: carrying mutation APKD1, with family history

(c) sub-population 3: not carrying mutation APKD1, but with family history

(d) sub-population 4: carrying mutation APKD2, with family history

(e) sub-population 5: not carrying mutation APKD2, but with family history

(f) sub-population 6: carrying mutation PSEN-1, with family history

(g) sub-population 7: not carrying mutation PSEN-1, but with family history

(h) sub-population 8: carrying mutation CAG, with family history

(i) sub-population 9: not carrying mutation CAG, but with family history

(j) sub-population 10: carrying mutation CTG repeat 250+, with family history

(k) sub-population 11: not carrying mutation CTG repeat 250+, but with family history

(l) sub-population 12: carrying mutation CTG repeat 250–, with family history

(m) sub-population 13: not carrying mutation CTG repeat 250–, but with family history

(n) sub-population 14: carrying mutation MLH1, with family members being mutation

carriers

(o) sub-population 15: not carrying mutation MLH1, with family members being mu-

tation carriers

(p) sub-population 16: carrying mutation MSH2, with family members being mutation

carriers
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(q) sub-population 17: not carrying mutation MSH2, with family members being mta-

tion carriers

(r) sub-population 18: carrying mutation BRCA1, with family members being mutation

carriers

(s) sub-population 19: not carrying mutation BRCA1, with family member being mu-

tation carriers

(t) sub-population 20: carrying mutation BRCA2, with family members being mutation

carriers

(u) sub-population 21: not carrying mutation BRCA2, with family members being mu-

tation carriers.

Some features of this model follow:

(a) The purpose of this model is to estimate the cost of adverse selection arising from

a CI insurance market. We assume the CI insurance market operates between ages

20 and 60.

(b) Comparing with the market model in Figure 2.6, the new market model has two

extra states: State 0, “uninsured, not tested, no FH”, and State 1, “insured, not

tested, no FH”. The purpose is to consolidate the market model for diseases with no

cause except mutations in single genes and single gene subsets of common disorders

for the ease of completing the “bottom-up” program. Sub-populations 2–13 refer

to the diseases with no cause except mutation in a single gene. Because of high

penetrance, persons in these groups are assumed to have a family history, consisting

of an affected parent. So the starting state for these populations is state 2, “No

Insurance, with family history (FH)”. Sub-populations 1 and 14–21 refer to single
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gene subsets of common disorders. Persons in these groups start in State 0, “No

Insurance, without family history (FH)”.

(c) The proportion of the population in each mutation-carrying sub-population is given

by the prevalence of the mutations, as stated in Chapter 3. The proportion in the

corresponding sub-population of non-mutation carriers will be the same, since a

mutation will be inherited from the affected parent with probability 1/2.

(d) Family history is an important underwriting factor in practice. In this model, for

sub-populations 2–13, a family history is present from outset, so µi02
x is irrelevant,

but for sub-populations 14–21, a family history may emerge later, so µi02
x > 0, in

general. A separate model was deployed to calculate this intensity numerically.

Please refer to Sections 3.4.2 and 3.5.2 for more detailed information.

(e) A genetic test result is a source of asymmetric information between the insured and

insurer. The intensity µi24
x represents the rate of uptake of testing. In this paper,

the baseline rate of testing is 0.014 per annum between ages 20 and 40, meaning

about that about 10% would be tested after 8 years, and the other two scenarios

are 0.014 per annum between ages 20 and 60, and 0.035 per annum between ages

20 and 40.

(f) Persons in state i0, i2 and i4 have not purchased any insurance yet, while persons in

state i1, i3 and i5 have purchased insurance. The intensities µi01
x , µi23

x and µi45
x are

the annualized purchase rates. The meaning of the purchase rate is two-fold. Firstly,

it represents the size of the market. A purchase rate of 0.05 per annum represents

what we call a large market. A purchase rate of 0.01 per annum represents what

we call a small market. These are assumed to apply in sub-population 1, in which

no question of genetic information arises. We call these the ‘normal’ purchase rates.

In sub-populations 2–21, persons who do not have a family history and genetic test
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result, buy insurance at the normal rate in all circumstances, because these persons

do not have a family history, meaning they will be treated by insurance companies

as standard risks. In a large market, persons who have a family history are assumed

to have three choices of their purchasing behaviours: normal rate, half of normal

rate, or nil, meaning they do not purchase insurance at all. In a small market, these

persons are assumed not to purchase insurance at all. Persons who have a family

history but have had an adverse test result, are assumed to buy insurance at the

normal rate.

(g) A moratorium may be imposed to prevent an insurance company from using ge-

netic information in underwriting. Three types of moratoria are considered here:

moratorium on using all genetic test results, moratorium on using adverse genetic

test results, and moratorium on using both family history and genetic test results.

The effect of a moratorium is to partition the population into different underwriting

classes. Persons in each underwriting class are assumed, by the insurers, to carry

the same level of risk and will be charged the same rate of premium. The first

and second moratoria will partition the population into two underwriting classes,

namely family history class and non-family history class. The third moratorium will

put all the population into a single underwriting class.

(h) Adverse selection is represented by increasing the insurance purchasing rate of per-

sons with adverse genetic information when a moratorium on all genetic test results

or adverse genetic test results is imposed. Moderate adverse selection is represented

by a purchasing rate double the normal rate (0.10 per annum in a large market and

0.02 per annum in a small market), and severe adverse selection is represented by

a purchasing rate of 0.25 per annum in both large and small markets. A morato-

rium on genetic test results and family history causes premiums to increase in two

different ways.
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(a) Persons in the higher-risk sub-population now could purchase the normal amount

of insurance premium at ordinary prmeium rates. A new underwriting class

forms, comprising persons in all sub-populations. This will increase the pre-

mium rate. But this is arguably not adverse selection if their behavior is just

the same as that of person in the low-risk sub-populations.

(b) Further, insurance buyers may increase their purchase rate in reaction to the in-

formation they have and the relatively lower premiums they have been charged.

In this way, adverse selection arises.

Adverse selection could also be represented by increasing the sum assured. It is easy

to see that in this case, the premium increases are proportionate to the multiple of

the average sum assured taken out by ‘adverse selectors’, so for brevity we omit the

results (Gutiérrez & Macdonald, 2004).

(i) This model is deceptively simple. All states in the dashed box have access to States

i6 and i7. Persons transferring from uninsured states into state i6 and i7 before

they buy insurance become uninsurable. The states, “Onset of relevant diseases”,

“Other CI events”, and “CI payment” made after onset in the cases of MD and

HD (See Chapter 2 for details) are concealed in the state “CI”. This is for ease of

demonstration. Taking the case of MD as an example, we draw a detailed expanded

CI market model in Figure B.1 in Appendix B, in contrast to the simplified version

in Figure 2.6. Please see Table 4.1 for more detailed information about each relevant

disease.

(j) In this market model, insurance applicants can purchase insurance at any age (all

policies assumed to expire at age 60), therefore a level premium would be dependent

on both entry age and policy term. That is, level premiums are not adapted to the

Markov model with age as the time parameter. We need to calculate premium rates
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Table 4.1: A table listing the six genetic disorders, the causal mutations and relevant

references

Genetic Disorders Mutations Section Reference

in this thesis

APKD APKD1 and APKD2 Section 3.1 Gutiérrez & Macdonald (2003, 2007)

EOAD PSEN-1 Section 3.2 Gui & Macdonald (2002)

Espinosa & Macdonald (2007)

HD Huntingtin gene (HTT) Section 3.3 Gutiérrez & Macdonald (2004)

MD DMPK gene Chapter 2 Chapter 2

HNPCC MLH1 & MSH2 Section 3.4 Lu et al. (2007)

BC & OC BRCA1 & BRCA2 Section 3.5 Wekwete (2002), Gui et al. (2006)

that obey the equivalence principle, but that depend only on age x. The premium

rate for underwriting class C is:

ρCx+t =

∑
ij∈C

pi tp
i0j
x µij6

x+t

∑
ij∈C

pi tp
i0j
x

, (4.1)

where pi is the proportion who start in State i0 at age x (State i2 for sub-populations

2–13), and label ij stands for the state j in the CI market model for sub-population

i, has this property and satisfies the equivalence principle.

(k) Using these premium rates, we apply Thiele’s equations to calculate the expected

insurance loss conditional on being in any state. The premium rates are calculated

assuming that there is no adverse selection, in which case the total insurance loss

is zero, i.e. EPV of loss without adverse selection = 0, because the equivalence
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principle is correctly applied. However, if there is adverse selection, the expected

insurance loss will be non-zero. This is the cost of adverse selection. To cover

the cost, insurance companies will need to increase all rates of insurance premium

uniformly by the proportion:

EPV of loss with adverse selection− EPV of loss without adverse selection

EPV of premiums payable with adverse selection
.

(4.2)

We take this increase in the premium as our measure of the cost of adverse selection.

4.2 The Cost of Adverse Selection in the Overall

Model of the Critical Illness Insurance Market

4.2.1 Moratoria on Using Genetic Test Results

When moratoria on genetic test results are imposed, either on all test results or on negative

test results, there are two underwriting classes (UC), that we call UC-I and UC-II. In

UC-I, persons will be charged standard premiums and in UC-II, persons will be charged

extra premiums because they have family histories. Table 4.2 displays the cost of adverse

selection following a moratorium on the use of genetic test results, with family history

underwriting allowed, in a CI insurance market operating between ages 20 and 60. We

set the genetic testing rate at 0.014 per annum between ages 20 and 40 as our baseline,

and compare it with another two scenarios, 0.014 per annum between ages 20 and 60, and

0.035 per annum between age 20 and 40. Table 4.3 shows the results of severe adverse

selection, assuming the moratorium is imposed on using genetic test results but not on

using family history, and the CI market operates between ages 20 to 60. In this case,

we only assume the genetic testing rate to be 0.035 per annum between age 20 and 40.
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Generally, the increases are all very small, even with severe adverse selection, although

these increases are certainly larger than that caused by any single genetic disorders on its

own. We can observe the following features:

(a) In Table 4.2, the costs of adverse selection are generally not substantial, if we take

0.1% as the threshold. Only in a small market and when the adverse selection is

extreme, does the cost reach as high as 0.3%–0.4%.

(b) The costs are more substantial in the smaller market and when there is extreme

adverse selection. In Table 4.3, we can see that in a small market insurers might

have to increase their premium rates generally by 1% in order to recover the loss.

(c) Premium increases are lower if the moratorium applies only to adverse test results,

this is because tested persons who are not mutation carriers will be “exonerated”

and charged standard premiums. These persons are removed from the underwriting

class rated for family history, which then contains a higher proportion of mutation

carriers, so the premium charged in respect of this class is higher.

(d) Longer period of genetic testing has little effect on the cost of adverse selection.

This is because of high penetrance of all these mutations. Only very few applicants

carrying any of these mutations will remain healthy after age 40.

(e) The cost of adverse selection is greater for females than for males. This is because

females are at more risk of cancers than males in the case of HNPCC, and males

are not at risk of BC and OC at all.
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Table 4.2: Percentage increases in CI insurance premium rates arising from moderate

adverse selection. Moratoria on the use of genetic test results, family history underwriting

still allowed. CI market operating between ages 20 and 60.

Insurance

Purchase Age Moratorium on Using

Size of of At-Risk Rate of Range of All test results Adverse test results

Market Individuals Testing Testing Females Males Females Males

% % % %

Large Normal 0.014 20–40 0.01301 0.01242 0.01210 0.01155

Half 0.014 20–40 0.03182 0.03037 0.01396 0.01332

Nil 0.014 20–40 0.15143 0.14531 0.04368 0.04176

Small Nil 0.014 20–40 0.17318 0.16273 0.07778 0.07304

Large Normal 0.014 20–60 0.01443 0.01376 0.01339 0.01277

Half 0.014 20–60 0.03629 0.03455 0.01618 0.01542

Nil 0.014 20–60 0.17390 0.16715 0.05255 0.05038

Small Nil 0.014 20–60 0.19230 0.18089 0.08689 0.08170

Large Normal 0.035 20–40 0.02785 0.02659 0.02311 0.02206

Half 0.035 20–40 0.06756 0.06441 0.02397 0.02287

Nil 0.035 20–40 0.32112 0.30797 0.09134 0.08725

Small Nil 0.035 20–40 0.37104 0.34851 0.16621 0.15603
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Table 4.3: Percentage increases in CI insurance premium rates arising from severe adverse

selection. Moratoria on the use of genetic test results, family history underwriting still

allowed. CI market operating between ages 20 and 60.

Insurance

Purchase Age Moratorium on Using

Size of of At-Risk Rate of Range of All test results Adverse test results

Market Individuals Testing Testing Females Males Females Males

% % % %

Large Normal 0.035 20–40 0.04835 0.04623 0.03979 0.03805

Half 0.035 20–40 0.09299 0.08877 0.04139 0.03955

Nil 0.035 20–40 0.39975 0.38243 0.16993 0.16168

Small Nil 0.035 20–40 1.23750 1.15633 1.03234 0.96352
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4.2.2 Moratoria on Using Genetic Test Results and Family His-

tory

A moratorium on genetic test results and family history causes premiums to increase in

two different ways.

(a) Persons in the higher-risk sub-populations now could purchase normal amounts of

insurance cover at ordinary rates. A new underwriting class forms, comprising

persons in all sub-populations. This will increase the premium rate. But this is

arguably not adverse selection if their behaviour is just the same as that of persons

in the low-risk sub-populations.

(b) Further, insurance buyers may increase their purchase rate in reaction to the infor-

mation they have and the relatively lower premiums they have been charged. In

this way, adverse selection arises.

Table 4.4 shows the increases in standard premium rates arising from the creation

of the new underwriting class, and also those arising from moderate or severe adverse

selection when a moratorium on the use of all genetic test results and family history is

imposed, assuming the CI market operates between ages 20 and 60. The rate of genetic

testing is 0.014 per annum with moderate adverse selection, and 0.035 per annum with

severe adverse selection between ages 20 and 40. We can observe that the highest cost

of adverse selection (premium increases of over 2%) appears in a small market and when

there is severe adverse selection, and in a large market, the cost of adverse selection is

much smaller than the case in a small market.
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Table 4.4: Percentage increases in standard premium rates for CI insurance arising from

new underwriting classes, and in all premiums arising from moderate or severe adverse

selection, following a moratorium on the use of all genetic test results and family history.

CI market operating between ages 20 and 60.

OR Premium Increase Premium Increase Premium Increase

Arising From New Arising From Arising From

Size of Underwriting Classes Moderate Adverse Selection Severe Adverse Selection

Market Females Males Females Males Females Males

% % % % % %

Large 0.76114 0.73181 0.18087 0.17420 0.30023 0.28954

Small 0.71512 0.67144 0.42624 0.39955 2.13984 2.01271

4.3 The Cost of Adverse Selection in the Overall

Model of the Life Insurance Market

In the previous section, we discussed the overall impact of genetic information on a CI

insurance market. In this section, we concentrate on a life insurance market. Figure 4.2

shows a life insurance market model, which we used to quantify the impact of genetic

information.

As in the CI insurance market model, we partition the population into 21 risk sub-

populations depending on whether they are mutation carriers, have family histories, or

have family members carrying mutations. Please see Section 4.1 for details. This model

is very similar to the CI insurance model, except for the following:

(a) The state i6 i7 and i8, “Onset of Relevant Diseases”, stands for the onset of all

diseases we discussed, including APKD, EOAD, HD, MD, HNPCC and BC & OC.
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Figure 4.2: A semi-Markov model of family history, genetic testing, insurance purchase

and life insurance events for a person in the ith risk sub-population (FH = family history

present).
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Please refer to Part II for more information about the onset rates of these diseases.

(b) All states in the dashed box have the access into state i9, “Dead or Relevant Dis-

eases”. Persons transferring from uninsured states into state i9 before they buy

insurance become uninsurable.

(c) The intensity of entry into state i9 from the uninsured state is the sum of the

relevant onset rates and the rate of mortality. The intensities of entry into “Onset

of Relevant Diseases” states from the insured states are the relevant onset rates.

The intensities of entry into state i9 after onset of relevant diseases are the post-

onset mortality rates. Bear in mind that the post-onset mortality rates depend on

both age and duration, so this model is semi-Markov.

(d) As in CI insurance market, we need to charge a premium which depends only on age

x according to the equivalent principle. The premium rate for underwriting class C
is:

ρCx+t =

∑
ij∈C

pi

(
tp

i0j
x µij9

x+t +

∫ t

0
t,zp

i0j
x µij9

x+t,zdz

)

∑
ij∈C

pi

(
tp

i0j
x +

∫ t

0
t,zp

i0j
x dz

) , (4.3)

where label ij stands for state j shown in Figure 4.2 for sub-population i.

(e) We use the trick we introduced in Part I to bring the semi-Markov model to a

Markov model regime, by ‘paying’ to (a reinsurer, presumably) a premium equal to

the policy value on entering an “Onset of Relevant Diseases” state from an insured

state.

Other features of this model, e.g. the purchase rates, genetic test rates, the onset

rates of a family history, the various moratoria, adverse selection, and the measure of
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the cost of adverse selection, were all fully introduced in the context of the CI insurance

market model. Please see Section 4.1 for more details.

4.3.1 Moratoria on Genetic Test Results

Table 4.5 shows the costs of adverse selection in a life insurance market, assuming a

moratorium is imposed on using genetic test results but not on family history, and the

life insurance market operates between ages 20 to 60. We set the genetic testing rate at

0.014 per annum between ages 20 and 40 as our baseline, and compare it with another two

scenarios, 0.014 per annum between ages 20 and 60, and 0.035 per annum between age 20

and 40. Table 4.6 shows the results of severe adverse selection, assuming a moratorium

is imposed on using genetic test results but not on family history, and the life insurance

market operates between ages 20 to 60. In Table 4.6, we only assume the genetic testing

rate to be 0.035 per annum. Generally, the increases in life insurance premiums are small,

even with severe adverse selection. We can observe the following features:

(a) In Table 4.5, the costs of adverse selection are generally not substantial, if we take

0.1% as the threshold. Only in the small market could the cost be high, e.g. between

0.1% and 0.16%.

(b) The costs of adverse selection are more substantial in the smaller market and when

there is extreme adverse selection. In Table 4.6, we can see that in a small market

insurers have to increase their premium rates generally by nearly 1% in order to

recover the loss, which cannot be treated as negligible.

(c) Premium increases are lower if the moratorium applies only to adverse test results,

this is because tested persons who are not mutation carriers will be “exonerated”

and charged standard premiums. These people are therefore removed from the

146



underwriting class rated for family history, which then contains a higher proportion

of mutation carriers, so the premium charged in respect of this class is higher.

(d) Longer periods of genetic testing have little effect on the cost of adverse selection.

This is because of high penetrance of genetic disorders. Only very few applicants

carrying mutations will remain healthy after age 40.

(e) The cost of adverse selection is greater in females than in males. This is because

females are at more risks of cancers than males in the case of HNPCC, and especially

males are not at risk of BC and OC at all.

(f) Noticing that CI insurance and life insurance are both protection type, the magni-

tude of the cost of adverse selection largely depends on the difference between the

premium rates for UC-I and UC-II. In the case of MD, we can see that the extra

premium expressed as percentages of standard risk is higher in respect of CI insur-

ance than that in respect of life insurance. Therefore the cost of adverse selection

is lighter in a life insurance market than in a CI insurance market.
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Table 4.5: Percentage increases in life insurance premium rates arising from moderate

adverse selection. Moratoria on the use of genetic test results, family history underwriting

still allowed. Life insurance market operating between ages 20 and 60.

Insurance

Purchase Age Moratorium on Using

Size of of At-Risk Rate of Range of All test results Adverse test results

Market Individuals Testing Testing Females Males Females Males

% % % %

Large Normal 0.014 20–40 0.01281 0.00832 0.01274 0.00830

Half 0.014 20–40 0.02895 0.01900 0.01534 0.01001

Nil 0.014 20–40 0.07217 0.05170 0.02217 0.01568

Small Nil 0.014 20–40 0.07712 0.05633 0.03499 0.02549

Large Normal 0.014 20–60 0.01348 0.00883 0.01341 0.00809

Half 0.014 20–60 0.03103 0.02056 0.01658 0.01095

Nil 0.014 20–60 0.07968 0.05754 0.02518 0.01801

Small Nil 0.014 20–60 0.08327 0.06121 0.03793 0.02782

Large Normal 0.035 20–40 0.02800 0.01816 0.02764 0.01803

Half 0.035 20–40 0.06272 0.04106 0.03274 0.02141

Nil 0.035 20–40 0.15418 0.11039 0.04680 0.03310

Small Nil 0.035 20–40 0.16631 0.12138 0.07529 0.05481
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Table 4.6: Percentage increases in life insurance premium rates arising from severe adverse

selection. Moratoria on the use of genetic test results, family history underwriting still

allowed. Life insurancce market operating between ages 20 and 60.

Insurance

Purchase Age Moratorium on Using

Size of of At-Risk Rate of Range of All test results Adverse test results

Market Individuals Testing Testing Females Males Females Males

% % % %

Large Normal 0.035 20–40 0.05564 0.03553 0.05490 0.03523

Half 0.035 20–40 0.09622 0.06213 0.06558 0.04218

Nil 0.035 20–40 0.19926 0.01420 0.09186 0.06472

Small Nil 0.035 20–40 0.60482 0.43511 0.51366 0.36842

149



4.3.2 Moratoria on Using Genetic Test Results and Family His-

tory

As introduced in Section 4.2.2, premium rates increase for two reasons when a moratorium

is imposed on using genetic test results and family history. Table 4.7 shows the increases

in standard premium rates arising from new underwriting classes and also in all premium

arising from moderate or severe adverse selection, when a moratorium on the use of all

genetic test results and family history is imposed, assuming the life insurance market

operates between ages 20 and 60. The rate of genetic testing is 0.014 per annum with

moderate adverse selection, and 0.035 per annum with severe adverse selection between

ages 20 and 40. We can observe that:

(a) The highest cost of adverse selection, over 1% of premium, appears in a small market

and when there is severe adverse selection. In a large market, the cost of adverse

selection, although not negligible, is still much smaller than the case in a small

market.

(b) The cost of adverse selection in a life insurance market is lighter that the corre-

sponding case in a CI market.

4.4 Conclusions

In Chapters 2 and 3, we reviewed the epidemiology of our selected genetic disorders. In

this chapter, we brought all these together and constructed a semi-Markov model to assess

the impact of genetic information relating to all these diseases on the CI or life insurance

market. Based on the quantitative results presented in Sections 4.2 and 4.3, we summarise

as follows:
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Table 4.7: Percentage increases in standard premium rates for CI insurance arising from

new underwriting classes, and in all premiums arising from moderate or severe adverse

selection, following a moratorium on the use of all genetic test results and family history.

Life insurance market operating between ages 20 and 60.

OR Premium Increase Premium Increase Premium Increase

Arising From New Arising From Arising From

Size of Underwriting Classes Moderate Adverse Selection Severe Adverse Selection

Market Females Males Females Males Females Males

% % % % % %

Large 0.82454 0.51648 0.11460 0.06955 0.20705 0.12547

Small 0.72673 0.44995 0.21477 0.13170 1.26950 0.77738

(a) Under a moratorium on using genetic testing results, with moderate adverse selec-

tion, the cost of adverse selection is not substantial, if we take 0.1% of total premium

as the threshold, with few exceptions which appear in the case of the small market.

With severe adverse selection, the costs of adverse selection become more noticeable

in the small market.

(b) A moratorium on using both genetic test results and family history will increase the

premium in two ways: consolidation of underwriting classes and adverse selection.

The premium increases due to the former are noticeable in both large and small

markets. The premium increases arising from the latter are also noticeable. The

highest premium increases are about 2% in the CI insurance market and 1% in the

life insurance market, in both cases for small markets and extreme adverse selection

with a high rate of genetic testing (0.035 per annum).

(c) In both the CI insurance market and the life insurance market, insurers’ concerns
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have been that the premium increases could lead to market collapse. This is specula-

tive and an economic model for insurance demand would be needed to study whether

such an ‘adverse selection spiral’ (see Section 1.2.3) would result, or whether the

market would reach a new equilibrium. Macdonald & Tapadar (2010) looked at

this question and concluded that ‘no convincing evidence that adverse selection is

a serious insurance risk, even if information about multifactorial genetic disorders

remains private’. Therefore, we shall believe that an ‘adverse selection spiral’ is

speculative and should not cause significant costs for the insurance companies.

(d) In the “bottom-up” approach, we selected six genetic disorders to study. These dis-

orders are chosen because of their representative impact on the insurance industry.

We should ask a question: whether more genetic disorders should be included in the

“bottom-up” approach? We answer this question as follows:

(1) In Section 1.2.5, we mentioned that ABI made a list of eight genetic disorders.

We took the ABI list as our starting point, and with some adjustments, even-

tually ended with our selection of six genetic disorders. Please see Section 1.2.5

for detail of these selection.

(2) Among these six genetic disorders, we chose 4 typical autosomal dominant

single-gene disorders, namely APKD, EOAD, HD and MD, generally with age-

at-onset between age 20 and 60, so that people at risk of these disorders have

significant impact on insurance. We also chose two common disorders, namely

HNPCC and BC & OC, which could be either hereditary or sporadic. These

two disorders are among the most common diseases in the world: CRC is the

third most common form of cancer and second leading cause of cancer-related

death; BC is the most common cancer and OC is the second common cancer in

women. Therefore, we believe that our selection has considered most genetic

disorders which potentially have significant impact on the insurance industry.
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(3) As mentioned in Section 1.2.5, several genetic disorders have not been mod-

elled mathematically, e.g. MEN and FAP, because these diseases are typical

examples of cancer for which genetic testing and early treatment should lead to

substantially better outcomes. Inclusion of these genetic disorders will result

in lighter cost of adverse selection.

Therefore, we shall trust that our selection of genetic disorders is adequate and our

results are robust.

(e) We constructed Markov or semi-Markov models in this chapter to assess the impact

of genetic information on the insurance industry, applying the epidemiology relating

to each disease. The onset rates of these diseases, because of the retrospective

ascertainment scheme, are generally over-estimated, which results in overestimated

potential cost of adverse selection. However, we find in Sections 4.2 and 4.3 that in

most cases the cost of adverse selection is not noticeable, generally because of the

low prevalence of genetic disorders.

(f) Quantification of the impact of genetic information on the insurance industry has

been approached from different perspectives, including the “top-down” and “bottom-

up” approaches. The purposes of these approaches are not to pinpoint the exact

cost of genetic risk, which is very hard, but to set a bound for genetic risk, so that

we shall know the magnitude of genetic risk to insurers. Macdonald (2003b) con-

cluded that the increase in life insurance premium rates should be under 10% with

a moratorium on using both genetic testing results and family history. That pa-

per used the “top-down” approach with very broad assumptions about the genetic

morbidity. In this thesis, we narrowed down this range further to 1% in respect of

life insurance. Therefore, we conclude that our results are consistent with previous

results and should be a reliable upper bound for measuring the genetic risk.
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(g) As in (b), we concluded that the genetic risk might give rise to a potential cost

of adverse selection: 2% in the CI insurance market and 1% in the life insurance

market. However, the genetic risk has been overwhelmed by the development of

health care and general improvement of life expectancy. We shall see in the next

Chapter the positive effect of CRC Screening Programs on life insurance premium

rates.
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Chapter 5

Colorectal Cancer (CRC) and CRC

Screening Programs

Colorectal cancer (CRC) is the third most common form of cancer and the second leading

cause of cancer-related death in the western world. In Section 3.4, we detailed some

features of CRC. CRC can take many years to develop and early detection of CRC greatly

improves the chance of survival. Therefore, screening for the disease is recommended for

individuals who have been identified as being at risk of CRC. In this chapter, we discuss

the impact of a CRC screening program on the onset rate of CRC, mortality caused by

CRC, and life insurance premiums.

We will describe examples of two types of screening programs. In one, the entire

population is screened. A pilot study for such a program has been undertaken in the UK,

called the Bowel Screening Program (BCSP). We describe this, and supporting studies,

in Sections 5.1 and 5.2. In the other, members of families known to be at risk of HNPCC

are screened. An example, that we will use in our application, is the CRC Surveillance

Program in Finland. We describe this, and related work, in Section 5.3 and 5.4.
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5.1 The Bowel Screening Program in the UK

The development of the BCSP started with the UK Colorectal Cancer Screening Pilot

(‘the Pilot’), in order to determine the feasibility of screening for CRC in the UK pop-

ulation using faecal occult blood (FOB) testing. A key task of the Pilot has been to

determine whether outcomes achieved in the trial settings can be repeated in population-

based programmes. The Pilot commissioned two sites (one in central England, the other

in Scotland). Screening began at the Scottish site on March 31, 2000 and at the English

site on September 6, 2000. Up to February 2003, 486,355 people had been offered screen-

ing at the two sites. The age range of the sampled population is 50 to 70 for both males

and females. The final report on the UK Pilot (‘the report’) was made available online at

http://www.cancerscreening.nhs.uk/bowel/finalreport.pdf. Some important con-

clusions were drawn in the report as follows:

(a) The Pilot achieved uptake of the FOB test of close to the target of 60%. However

some sub-groups in the population showed lower uptake, including men, younger

people, those from deprived areas and individuals of ethnic origin. Uptake was

slight less in Scotland than in England.

(b) Staging distribution data indicated a stage-shift towards less advanced cancer, which

proved that the screening program helps to detect CRC at an early stage.

The report concluded that benefits had been observed in the Pilot, including CRC-

specific mortality reductions, and it should be extended nationally, as the NHS Bowel

Screening Program (BCSP). On the official website of the NHS BCSP, we can find the

following features:

(a) The BCSP offers routine screening every one or two years to all men and women

aged 60–69.
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(b) In a faceal occult blood (FOB) test, a small sample of faeces is smeared onto a piece

of card. A chemical test detects if any blood is present, at a much lower level than

would be evident to the subjects.

(c) Around 98 in 100 people will receive a normal result and will be returned to routine

screening. Around 2 in 100 people will receive an abnormal result. They will be

referred for further investigation and usually offered a colonoscopy.

(d) A colonoscopy is an investigation that involves looking directly at the lining of the

large bowel, using a thin, flexible tube and a tiny camera. If polyps are found,

most can be removed painlessly, using a wire loop passed down the colonoscope

tube. These tissue samples are then checked for any abnormal cells that might be

cancerous. Around 5 in 10 people who have a colonoscopy will have a normal result.

About 4 in 10 will be found to have a polyp, which if removed may prevent cancer

developing. About 1 in 10 people will be found to have cancer when they have a

colonoscopy.

5.2 Additional Evidence for the Effect of Bowel Screen-

ing Programs

The final report on the UK Pilot study concluded that it had reduced the mortality caused

by CRC. We review briefly other papers which have studied this question.

(a) Mandel et al. (1993)

In this study, 46,551 participants aged 50 to 80 years were randomly assigned to

screening for CRC once a year, to screening every two years, or to a control group.

Participants who tested positive underwent a diagnostic evaluation that included

colonoscopy. There was 13 years of follow-up, and causes of death were determined
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by a committee. The 13-year cumulative mortality from CRC was 5.88 per 1000

in the annually screened group, 8.33 in the biennially screened group, and 8.83 in

the control group. The paper concluded that the mortaliy in the annually screened

group, but not the biennially screened group, was significantly lower than in the

control group.

(b) Hardcastle et al. (1996)

This study recruited 152,850 participants aged 45–74 years who lived in the Not-

tingham area of the UK between February 1981 and January 1991. The participants

were randomly allocated to FOB screening (study group; 76,466) or no screening

(control group; 76,384). 2,599 of the participants could not be traced or had em-

igrated and were excluded from the analysis, leaving 75,253 participants in the

screening group and 74,998 in the control group. Control group participants were

not told about the study and received no intervention. Study group participants

were sent a FOB test kit with instructions from their family doctors. Individuals

tested negative were retested every 2 years after the first test. Individuals tested

positive were offered colonoscopy. All participants were followed up until June 1995.

The median follow-up time was 7.8 years. During the study, 236 cases of CRC were

detected in the study group, and 856 in the control group. The distribution of

stages of CRC favored the study group, that is, the proportion of CRC cases in

early stage was higher in the study group than that in the control group. 360 peo-

ple died from CRC in the study group compared with 420 in the control group – a

15% reduction in CRC mortality in the study group. The paper concluded that the

FOB test should be introduced through a national programme, in order to reduce

CRC mortality in the general population.

(c) Kronborg et al. (1996)
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This study recruited 137,485 people, aged 45–75 years, living in Funen, Denmark,

in August 1985, of which, 3 per 14 were randomly allocated to the screening group

(study group; 30,967), another 3 per 14 to the non-screening group (control group;

30,966), and the others were not enrolled. The study group participants were

screened every 2 years, resulting in 5 rounds of screening during a 10-year follow-up.

Participants tested positive were offered full examination and colonoscopy if neces-

sary. In the study group, 481 people had a diagnosis of CRC and 483 in the control

group. There were 205 deaths caused by CRC in the study group, compared with

249 in the control group – a 18% reduction in CRC mortality. It was concluded in

the study that biennial screening by FOB tests can reduce CRC mortality.

A recent meta-analysis, Hewitson et al. (2007), identified 9 articles (including all the

above studies), totalling 320,000 participants with follow-up ranging from 8 to 18 years.

Some important conclusions are listed as follows:

(a) Combined results show that participants allocated to screening had a 16% reduction

in the relative risk (RR) of CRC mortality (RR 0.84, CI: 0.78-0.90).

(b) In 3 studies that used biennial screening, there was a 15% relative risk reduction

(RR 0.85, CI: 0.78-0.92) in CRC mortality.

(c) The ages of the sampled population in the above studies range from 45 onwards.

These results are more reliable than each individual study included, because of the

much larger sample. Therefore, we will use these results in our study of the effect of

reduced CRC mortality on life insurance.
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5.3 The CRC Surveillance Program

The CRC Surveillance Program specifically concentrates on persons at risk of HNPCC in

Finland. Järvinen (2006) gave a good introduction.We summarise it as follows:

(a) The CRC Surveillance Program begins with ascertainment of HNPCC families by

careful inquiry about the family history of cancers in new patients (index patients)

with colorectal cancer (CRC) or endometrial cancer (EC). The Amsterdam Criteria,

or other rules, might be used to ascertain the HNPCC families. Definite diagnosis

of HNPCC requires identification of mutations in one of the mismatch repair genes

(see Section 3.4 for details). If found, genetic testing of the first-degree relatives

(FDRs) of the index patients will help identify mutation-positive persons predis-

posed to cancers. Then the detected mutation carriers will go through a cancer

prevention program, in order to find and treat colorectal adenomas by colonoscopy

before cancers develop.

(b) For ascertained HNPCC family members, the optimal surveillance interval lies be-

tween 1 to 3 years beginning from the age of 25. Bliss & Schroy (2004) also men-

tioned that mutation carriers should undergo surveillance every 1 to 2 years at age

20 years and then annually after age 40.

(c) The CRC Surveillance Program greatly reduces the risk of cancers for mutation

carriers. Other papers, e.g. Renkonen-Sinisalo et al. (2000), Bliss & Schroy (2004),

Vasen et al. (1993) and de Vos tot Nederveen Cappel et al. (2002), also drew the

same conclusion.
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5.4 The Effect of CRC Surveillance Program on the

Onset Rate of CRC

A series of papers has been published, in order to test the hypothesis that the CRC

Surveillance Program can reduce the onset rate of CRC in persons at risk of HNPCC. We

review these briefly.

(a) Vasen et al. (1993)

In this paper, the authors reviewed the surveillance procedure, the age at diagnosis

of CRC, and the occurrence of CRC. A total of 165 families were sampled from 9

centres in Denmark, Finland, Italy, Japan, the Netherlands, Switzerland and the

United States. The authors found that half of the centres advise colonoscopy as the

only procedure, the interval between the consecutive examinations varying from 1

year to 3 years. A total of 682 high-risk individuals were followed up for 10 years.

Only six cases of CRC were encountered, and these were detected at an early stage.

This suggested that the surveillance procedures were effective.

(b) Renkonen-Sinisalo et al. (2000)

A total of 150 CRC cases detected in 57 HNPCC families over the last 15 years

were assigned either to a surveillance group (35) or a non-surveillance group (115).

During the follow-up, the stage distribution of the tumours in the surveillance group

(Dukes’s A, 50%; B, 35%; C, 16%; D, 0%) was significantly more favorable than that

in the non-surveillance group (Dukes’ A, 17%; B, 50%; C, 16%; D, 17%). This paper

concluded that colonoscopic surveillance enables early detection of CRC. However,

participants did not take genetic tests to confirm their mutation-carrying status.

(c) de Vos tot Nederveen Cappel et al. (2002)
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A total of 114 families registered in the Dutch HNPCC registry, which had a mis-

match repair (MMR) gene defect and/or met the clinical criteria for HNPCC, were

included in this study. These participants were categorized into three groups, namely

group I, II and III. Group I was the surveillance group including all unaffected par-

ticipants. Group II was the “partially resected colon group”. Group III was the

“total colectomy group”. In all three groups, genetic tests were carried out to ascer-

tain mutation carriers. The cumulative risk of developing CRC for proven mutation

carriers in 10 years was 10.5% and 15.7% for groups I and II respectively. The

results showed that regular HNPCC surveillance can reduce the onset rate of CRC.

Another two important papers are Järvinen, Mecklin & Sistonen (1995) and Järvinen

et al. (2000). In Järvinen, Mecklin & Sistonen (1995), 251 asymptomatic individuals,

aged 20–66 years, belonging to 22 HNPCC families, were ascertained according to the

Amsterdam criteria. The observation on these participants (with one individual added

later) continued to the publication of the subsequent paper Järvinen et al. (2000). The

studies both aimed to evaluate the efficacy of long-term surveillance program by means

of colonoscopy and polypectomies. Of the 252 (251 + 1) participants, 133 chose to

take colonic examination between 1982 and 1986 (study group), whereas the 119 control

participants either declined screening (78) or could not be traced (41). Genetic tests for

the mutation segregating in each particular family was offered for 205 individuals and

performed in 193 between 1996 and 1998: 116 in the study group and 77 in the controls.

Another 9 participants were classified as mutation-positive carriers without a genetic test.

In total, there were 44 mutation-positive and 74 mutation-negative individuals in the study

group compared with 46 positive and 38 negative in the controls. The examination was

repeated at 3-year intervals, and the use of colonoscopy reached nearly 100%. Järvinen et

al. (2000) concluded that in mutation-positive subjects alone, the onset rate of CRC was

reduced by 56%. Unlike the BCSP, which starts from age above 45, the CRC Surveillance
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Figure 5.1: A Markov model of life history, differentiating mortality caused by CRC and

other mortality.

Program starts from age 20. Therefore, we assume the reduced CRC onset rate takes

effect from age 20. Compared with the other three papers listed above, Järvinen et al.

(2000) included more patients in the study, had longer follow-up and carried out genetic

tests to differentiate mutation carriers. Therefore, we choose to use the results presented

in Järvinen et al. (2000) to evaluate the effect of a surveillance program on life insurance.

5.5 The Effect of a Bowel Screening Program on Life

Insurance

We present a Markov model for pricing a life insurance policy in Figure 5.1, in order to

evaluate the effect of a Bowel Screening Program on life insurance.

This model splits the total population force of mortality into the force of mortality

caused by CRC, ν01
x , and that by other causes ν02

x . We suppose that ELT15 represents

the population mortality. Hence

µELT15
x = ν01

x + ν02
x (5.1)
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ELT15 was produced using O.N.S. data during 1990–1992 (O.N.S., 1997 & 1999).

We also use O.N.S. (1997 & 1999) to estimate the intensity ν01
x . Assume that θELT15

x

and EELT15
x are the numbers of deaths and the number exposed to risk at age x during

1990–1992. We can split the total number of deaths θELT15
x into the numbers of deaths

caused by CRC, denoted θELT15,CRC
x , and by all other causes, denoted θELT15,Other

x . Hence

the crude rate of the mortality caused by CRC, denoted ν̇01
x , can be estimated as:

ν̇01
x =

θELT15,CRC
x

EELT15
x

. (5.2)

The crude rate ν̇01
x is then graduated to give our smoothed estimate ν01

x . The total

number of deaths caused by CRC, θELT15,CRC
x , was found from O.N.S. (1999), a CD-

ROM containing the coded death records for the UK during year 1971–1997. We used

polynomial functions to fit the crude estimates as follows:

for males:

ν01
x = 5.943× 10−5 − 2.188× 10−5x + 2.404× 10−6x2

−9.798× 10−8x3 + 1.576× 10−9x4 − 7.078× 10−12x5, (5.3)

and for females:

ν01
x = −1.108592× 10−5 + 5.639× 10−6x− 2.152× 10−7x2

−7.249× 10−9x3 + 3.589× 10−10x4 − 2.026× 10−12x5. (5.4)

The crude estimates and fitted functions are displayed in Figure 5.2.

Then the intensity ν02
x is easily derived by subtracting the intensity ν01

x from µELT15
x .

Based on Hewitson et al. (2007), we assume that the intensity ν01
x is reduced by about

15% if people go through either annual or biennial screening, and the reduction takes effect
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from age 45 onward. We treat the persons who choose not to take part in a screening

program as standard risk.

In this model, insured applicants pay premiums continuously while remaining in State

0, and the claim is paid when they enter State 1 or 2. We assume a constant force of

interest δ = 0.05. We calculate the net level rate of premium P for a unit sum assured as

follows.

P ×
∫ x+n

x

e−δt
tp

00
x dt =

∫ x+n

x

e−δt
tp

00
x (ν01

x+t + ν02
x+t)dt. (5.5)

We calculate the premium rates for different entry ages and terms for both males and

females. Table 5.1 shows the level net life insurance premium rate per unit sum assured

for persons not taking part in a screening program, taking part in an annual or biennial

screening program. Table 5.1 shows the premium rates as a percentage of the premium
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rates for a standard risk.

We can see some features as follows:

(a) There is a fall of 1–2% in premium rates in full term policies expiring at age 60,

because CRC risk is greater at high ages than at low ages. In the case of entry age

50 and policy term 10 year, for males, we observe a 2% reduction in premium rates.

(b) The reduction seems greater for males than for females, probably because male CRC

mortality is greater than female before screening program, especially at high ages

(see Figure 5.2).

5.6 The Effect of a CRC Surveillance Program on

Life Insurance

A semi-Markov model for HNPCC in life insurance is presented in Figure 5.3, for a sub-

population labelled i defined by genotype.

We stratify the whole population into the following three sub-populations:

(a) sub-population 1: non-mutation carriers;

(b) sub-population 2: mutation MLH1 carriers;

(c) sub-population 3: mutation MSH2 carriers;

We take non-mutation carriers not going through CRC Surveillance Program as stan-

dard risks. The onset intensities of CRC, EC (females only) and OECC associated with

HNPCC and the post-onset mortalities were introduced in Section 3.4. The onset rates

of CRC for mutation carriers going through CRC Surveillance Program will be reduced

by 56% (see Section 5.5).
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In this model, insured applicants pay premiums continuously while remaining in states

i0, i1, i2 or i3, and the claim is paid when they enter state i4. We calculate the net level

premium for a unit sum assured. We assume constant force of interest δ = 0.05. The

expressions for the EPVs of a unit of premium and a unit of benefit follow, assuming the

entry age is x and policy term is n:

EPV[Premium] =

∫ n

0

e−δt · itp00
x dt+

∑
j=1,2,3

∫ n

0

e−δt · itp00
x · iµ0j

x+t

∫ n−t

0

e−δs · ispjj
x+t ds dt (5.6)

EPV[Benefit] =

∫ n

0

e−δt·itp00
x ·iµ04

x+tdt+
∑

j=1,2,3

∫ n

0

e−δt·itp00
x ·iµ0j

x+t

∫ n−t

0

e−δs·ispjj
x+t·iµj4

x+t+s,s ds dt

(5.7)

Then the net level premium for a unit of benefit payable continuously should be

EPV[Benefit]/EPV[Premium]. Table 5.2 and Table 5.3 show, respectively, the level net

premium rates per unit sum assured, and the same as a percentage of standard risk,

respectively; for MLH1 and MSH2 mutation carriers not taking part in a CRC Surveillance

Program and taking part in a CRC Surveillance Program.

We can see some features from the above two tables.

(a) For persons who choose not to take part in a CRC Surveillance Program, mutation-

carrying applicants are uninsurable in most cases, except for a few cases at high

ages. For persons who choose to take part in a CRC Surveillance Program, we can

see substantial decreases in premium, and most cases become insurable at increased

premium rates. However, premium rates for female mutation MSH2 carriers are

generally above 300% of the premium rates for standard risks. Therefore they are

still probably uninsurable.

(b) Female mutation carriers are more likely to be declined than male mutation carriers,

because females are also at risk of EC, which is not screened for.
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(c) Table 5.2 and Table 5.3 are based on known genetic test results. However, under-

writing based on genetic test results is banned in the UK, while family history (FH)

underwriting is more realistic. In this case, the net level premium will be the ratio

of the EPV of 1 unit of benefit to the EPV of 1 unit of premium each weighted by

the probability

P [genotype gi | healthy at age x and with family history] ,

for sub-population i. We should expect that more weight would be given to the non-

mutation carrier sub-population. As in (a), Table 5.3 shows that most cases going

through the CRC Surveillance Program are insurable at increased premium rates

with their genetic testing result known to insurers. Because of ‘averaging-out’ effect,

we expect all applicants with a family history taking part in a CRC Surveillance

Program to be accepted by life insurers at increased premium rates (or even at an

ordinary rate at high ages).

5.7 Conclusions

We give short conclusions as follows:

(a) CRC Screening Programs have been proved to reduce the CRC related risk by early

detection and effective treatment. In this chapter, we described two types of CRC

Screening Program, one for the entire population, called BCSP in the UK, and

the other for HNPCC families, called CRC Surveillance Program, implemented in

Finland. In the case of the BCSP, Hewitson et al. (2007), a meta-analysis, concluded

that participants allocated to screening had a 16% reduction in the relative risk of

CRC mortality, whereas in the case of the CRC Surveillance Program, Järvinen et
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al. (2000) concluded that the onset rate of CRC for mutation carriers was reduced

by 56%.

(b) We calculated life insurance premium rates for persons taking part in the BCSP

and not taking part in the BCSP. We found that the BCSP may reduce the life

insurance premium rates by about 1% (for females aged 50 seeking 10-year policy

the reduction in life insurance premium rate is about 2%).

(c) We evaluted life insurance premium rates for persons taking part in the CRC Surveil-

lance Program and those not doing so. We found that the CRC Surveillance Pro-

gram made mutation MLH1 and MSH2 carriers insurable at increased life insurance

premium rates with genetic testing results known to insurers. Hence, under family

history underwriting, persons carrying HNPCC family history would also be more

likely to be insurable.

(d) We concluded in Chapter 4 that in order to recoup the cost of genetic risk the

insurers need to increase the insurance premium rates by about 1% under very

extreme circumstances, e.g. severe adverse selection and moratorium on using both

genetic testing rests and family history. It is very interesting to see that the BCSP

actually appears to negate the genetic risk by about the same magnitude, without

even considering the general trend of mortality improvement.
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Chapter 6

Income Protection Insurance and

Ovarian Cancer

6.1 Income Protection Insurance

An income protection insurance (IPI) policy (formerly known as permanent health insur-

ance) pays the policyholder an income in the event of sickness or disability which prevents

them from working. To eliminate trivial or fraudulent claims, there is usually a ‘deferred

period’ (DP) that must elapse after onset or diagnosis of the illness before the claim com-

mences. Usually, the DP is 1, 4, 13, 26 or 52 weeks. The benefit is payable until the

earlier of expiry of the policy (usually at age 60 or 65), the policyholder’s return to work,

or death. Mackay (1993) mentioned some features of IPI policies in the UK.

(a) Unlike life insurance, of which the underwriting is based on mortality risks, the

underwriting of IPI considers applicants’ morbidity risks.

(b) An IPI policy is non-cancellable by the insurance company. The insurance company

does not have the option to cancel the policy, irrespective of the number of claims.
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(c) Occupation is a much more important risk factor than for life insurance.

(d) The insurer wishes the insured to have an incentive to return to work. Therefore,

most providers limit the maximum that can be insured to 50–60% of gross income.

(e) In general terms, a policyholder receives benefit when the period of disability is

longer than the deferred period (DP), and pays premiums when (s)he is healthy

or when the period of disability is shorter than the DP. A DP of 52 weeks is not

common in the IPI market. Therefore, in this thesis, we consider only DPs of 1, 4,

13 and 26 weeks.

(f) An IPI policy normally expires at age 60 or 65. Note that the current normal

retirement age (NRA) is 65 for males, 60 for females. However, NRAs are being

equalised in the UK as in some other countries, and it is planned that the NRA for

females will rise to 65 or over. In this thesis, we take the age of expiry to be age 65.

Disability is a key definition in an IPI policy. Three main definitions are used in the

UK (Mackay, 1993) as follows:

(a) ‘Totally unable through sickness or accident to follow one’s own occupation and not

following any other for profit or reward’

(b) ‘Totally unable through sickness or accident to follow one’s own occupation or any

other to which reasonably suited and not following any other for profit or reward’

(c) During the first two years of disability: ‘totally unable through sickness or accident

to follow one’s own occupation and not following any other for profit or reward’.

For disability lasting beyond two years: ‘totally unable through sickness or accident

to follow any other reasonably suitable occupation and not following any other for

profit or reward’.
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Despite the slight differences between the above three definitions, they all emphasize

that the claimant must be unable to earn income as a result of disability caused by either

accident or sickness. However, the definitions are far from exact. The interpretation is

left to the claim manager and the policyholder’s personal physician. Not surprisingly,

disputes can emerge at claim stages.

Varying types of IPI policies have been developed in the UK as follows (Sanders &

Silby, 1988):

(a) Individual Conventional Policies

This is a traditional type of IPI policy, providing a regular income during disability.

The fundamental feature of the product is that the benefits and premiums are fixed

at the start of the policy.

(b) Increasing Benefit Policies

This policy provides some protection against inflation for the policyholders. Other

features are similar to those of a conventional policy.

(c) Unit-Linked Policies

The mechanism of a unit-linked IPI policy is very similar to other types of unit-

linked policy. The policyholder’s premiums after deduction for expenses are invested

in unit-linked funds and units are regularly cancelled by the office to pay IPI risk

premiums.

In this chapter, our purpose is to investigate the financial impact of genetics on an

IPI market. Therefore, for simplicity, we consider only individual conventional policies

with level benefits.
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6.2 Actuarial Models of IPI

The traditional method that was formerly used in the UK to develop IPI premium rates is

known as the Manchester Unity method. In CMIR No.12 (1991), a new method to model

an individual IPI policy was proposed and is now widely used. This model, as shown in

Figure 6.1, is semi-Markov. The policyholder starts in state ‘Healthy’ after taking out

an IPI policy and may either fall sick or die at any later time, governed by intensities,

σx and µx respectively, where x is age. Once sick, the policyholder may recover or die,

governed by intensities ρx,z and νx,z, respectively, where x is age and z is the duration

of sickness. The intensities ρx,z and νx,z depend on the policyholder’s current age x and

the disease duration z. In CMIR No.12 (1991), these intensities were graduated based

on policy data collected between 1975–1978 and in the later CMIR No.20 (2001), these

values were updated using 1995–1998 data.

State 0 State 1

State 2

Healthy Sick

Dead

-
�

? ?- �

σx

ρx,z

µx νx,z

Figure 6.1: The CMIB’s three-state semi-Markov model for sickness.

We can use this model, as parametrised by the CMI to calculate the premium rates

for standard risk. However, in this study, our purpose is to calculate IPI premium rates

for women at risk of ovarian cancer (OC). Unlike models of CI insurance, which need
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only to consider onset, or life insurance, which need only to consider survival after onset

in addition, we must model onset, progression of the illness and its treatment, recovery,

return to work and then possible further episodes. Therefore, we need a model with the

following features:

(a) It can can distinguish OC from other sicknesses;

(b) It can differentiate OC diagnosed at different stages;

(c) It can represent treatments of OC depending on the stage;

(d) It includes recoveries following treatment;

(e) It includes recurrence of OC; further treatment and recoveries; and death.

Chapters 6 and 7 follow the same line as Lu, Macdonald & Waters (2008) and Lu et

al. (2008), which reviewed the epidemiology of BC and constructed semi-Markov models

to study the impact of genetic information related to BC in the IPI market. Therefore

we next outline the essential features of OC, and then specify a life history model that

represents them.

6.3 Ovarian Cancer

In this chapter, our purpose is to model IPI products, which involves the diagnosis of

OC at different stages, treatment, recovery and recurrence. Therefore, we give a detailed

introduction to the epidemiology of these aspects of OC.

6.3.1 An Introduction to Ovarian Cancer

OC is a malignant tumour on or within an ovary. OC is the fifth leading cause of cancer

deaths in women, the leading cause of death from gynaecological malignancy, and the
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second most commonly diagnosed gynaecological malignancy among North American and

northern European women (DeVita, Hellman & Rosenberg, 1997). Approximately 140,000

new cases of ovarian cancer occur worldwide each year. The highest incidence rates are

observed in eastern and northern Europe, North America (range 7.0 – 15.1 per 100,000).

The lowest incidence rates occur in northern and western Africa, and Asia, including

Japan (range 0.7 – 6.7 per 100,000) (Morrison, Hodgson & Haites, 2002). In the United

States, an estimated 22,220 new cases of OC are diagnosed each year and about 16,210

deaths occur annually as a result of OC. The lifetime probability of developing OC in the

North American female population is approximately 1.4% (DiSaia & Creasman, 2007).

In the UK, almost 7,000 new cases and about 4,500 OC-caused deaths were reported in

1999. The lifetime risk of OC for women in the UK is about 2% (Reznek, 2007).

6.3.2 Classification of Ovarian Cancer

OC can be classified into newly-diagnosed OC and recurrent OC. We briefly introduce

these two classes of OC as follows:

Newly-Diagnosed OC

On the basis of distinct clinical and pathologic features, ovarian carcinomas can be sepa-

rated into three major entities (Auranen & Iselius, 1998):

(a) epithelial carcinomas

(b) germ cell tumours

(c) stromal carcinomas.

The vast majority (85 – 90%) are epithelial in origin. Epithelial ovarian cancer is

thought to be derived from the ovarian surface epithelium or from ectopic endometrial or
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fallopian tube (tubal) tissue. OC could also form in the egg cells, resulting in a germ cell

tumour. These are normally benign and only occur in young women. Stromal carcinomas

are a group of tumours of sex cord-derived tissues of the ovary and testis. This group

accounts for 8% of OC (Kristensen & Tropé, 1997).

Recurrent OC

Normally the first-line chemotherapy (first-line treatment is for the patients who contract

OC for the first time) will be platinum-based. Recurrence of OC happens quite often

after first-line treatment. According to whether OC patients respond to the first-line

treatment, and the progression-free interval since the finish of the first-line chemotherapy,

the recurrence of OC could be classified as: refractory recurrent OC, platinum-resistant

recurrent OC and platinum-sensitive recurrent OC (Amos & Struewing, 1993).

Refractory OC means that the patients do not response to the first-line treatment at

all. The recurrent OC develops very shortly after the finish of the first-line treatment, or

even during the treatment. Platinum-resistant OC means that the patients develop the

recurrent OC less than six months after the end of the first-line treatment. Platinum-

sensitive OC means that the patients response to the first-line treatment well, and recur-

rence occurs more than 6 months after finishing the first-line treatment. The difference

between refractory OC and platinum-resistant OC is not clear in some epidemiological

and medical studies (DiSaia & Creasman, 2007).

6.3.3 Risk Factors

Past studies classified risk factors into three categories: personal characteristics, repro-

ductive factors and environmental factors (Banks, Beral & Reeves, 1997).

(a) Personal Characteristics

180



Personal characteristics include age, body mass index (BMI) and genetic/familial

factors. Age, as a risk factor, is commonly used in insurance underwriting. OC

(other than the usually-benign germcell OC) is rare among young women and its

incidence increases dramatically with age (Adami et al., 1990). A family history is

the single most important risk factor . However, most OCs are sporadic in nature.

Less than 5% of cases can be defined as hereditary OC (at least two first degree

relatives with OC) in which predisposition for the disease follows a classic pattern

of autosomal dominant transmission (Jacobs & Lancaster, 1996). Women with a

family history of OC are three to four times more likely to develop OC than those

without such a history (Lynch et al., 1978). BRCA1/2 mutations are confirmed to

associate with inherited breast cancer and inherited OC (Gayther et al., 1997).

(b) Reproductive Factors

Pregnancy decreases the risk and multiple pregnancies have an increasingly pro-

tective effect (Beral, Fraser & Chilvers, 1978). Infertility increases the risk of OC.

Drugs that stimulate ovulation such as clomiphene have also been shown to increase

risk two- to three-fold when overdosed in infertile women. Users of oral contracep-

tive pills have a decreased risk (Booth, Beral & Smith, 1989). In a large study by

the World Health Organization (WHO), the relative risk for women who ever used

oral contraceptives, compared with those who had not, was 0.75 (WHO, 1989). In

a study examining the relationship between duration of oral contraceptive use and

incidence of epithelial OC, it was demonstrated that 5 years of oral contraceptive use

reduced the risk in nulliparous women to the same level as parous women or women

who were nonusers (Franceschi et al., 1991). These epidemiologically derived asso-

ciations between hormonal factors and risk of OC support the “incessant ovulation

hypothesis”, namely that the risk of OC is the direct function of the number of ovu-

latory cycles in a woman’s life span. The exact nature of the relationship between
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menarche, menopause, and OC is not clear (Risch, Marrett & Howe, 1994). The

evidence regarding the effect of breast feeding on OC is also inconclusive (Booth,

Beral & Smith, 1989).

(c) Environmental Factors

Environmental factors have also been identified to have an influence on the inci-

dence of OC. Industrialised countries, with the exception of Japan, have the highest

incidences of ovarian cancer. These observations led to epidemiological studies ex-

amining the association between diet and industrial exposure to carcinogens and the

subsequent development of OC. However, this is not very conclusive yet (Wehner,

1994). Similarly, coffee and tobacco usage have not been associated with OC al-

though there may be a slight increased risk with alcohol use (Mori, et al., 1988).

6.3.4 Staging of Ovarian Cancer

There are different staging systems in use for OC. A commonly used staging system is

the International Federation of Gynaecology and Obstetrics (FIGO) staging system as

follows (FIGO, 2000):

(a) In stage I, cancer is found in one or both of the ovaries and has not spread. Stage

I is divided into stages IA, IB and IC.

Stage IA: Cancer is found in a single ovary.

Stage IB: Cancer is found in both ovaries.

Stage IC: Cancer is found in one or both ovaries and one of the following is true:

Cancer is found on the surface of one or both ovaries; or the capsule (outer covering)

of the tumour has ruptured; or cancer cells are found in the fluid of the peritoneal

cavity or in washings of the peritoneum.
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(b) In stage II, cancer is found in one or both ovaries and has spread into other areas

of the pelvis. Stage II is divided into stages IIA, IIB and IIC.

Stage IIA: cancer has spread to the uterus and/or the fallopian tubes.

Stage IIB: cancer has spread to other tissue within the pelvis.

Stage IIC: cancer has spread to the uterus and/or fallopian tubes and/or other tissue

within the pelvis and cancer cells are found in the fluid of the peritoneal cavity or

in washings of the peritoneum.

(c) In stage III, cancer is found in one or both ovaries and has spread to other parts of

the abdomen. Stage III is divided into stages IIIA, IIIB and IIIC.

Stage IIIA: the tumor is found only in the pelvis, but cancer cells have spread to

the surface of the peritoneum.

Stage IIIB: cancer has spread to the peritoneum but is 2 centimeters or smaller in

diameter.

Stage IIIC: cancer has spread to the peritoneum and is larger than 2 centimeters in

diameter and/or has spread to lymph nodes in the abdomen.

(d) In stage IV, cancer is found in one or both ovaries and has metastasised beyond the

abdomen to other parts of the body. Cancer is found in the tissues of the liver.

For details of other similar systems, see Högberg, Glimelius & Nygren (2001).

6.3.5 Grading of Cancer

In pathology, grading is a measure of the progress of tumours and other neoplasms. Some

pathology grading systems apply only to malignant neoplasms (cancer); others apply also

to benign neoplasms. Pathology grading systems are used to classify neoplasms in terms

of how abnormal the cells appear microscopically and what may be the outcome in terms
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of rate of growth, invasiveness, and dissemination. Cancer is a disorder of excessive cell

growth, hence cancer cells often are poorly differentiated. The grade reflects the degree

of cellular differentiation and refers to how much the tumor cells resemble or differ from

the normal cells of the same tissue type. Grade is a marker of how differentiated a cell is.

Grade is rated numerically (Grade 1–4) or descriptively (e.g. “high grade” or“low grade”).

The higher the numeric grade, the more “poorly differentiated” is the cell, and it is called

“high grade”. A low grade cancer has a low number and is “well-differentiated”. The

following is an example of the grading categories (Benedet, 2000).

(a) GX: Grade cannot be assessed

(b) G1: Well differentiated (Low grade)

(c) G2: Moderately differentiated (Intermediate grade)

(d) G3: Poorly differentiated (High grade)

(e) G4: Undifferentiated (High grade)

The tumor grade, along with the staging, is used to develop an individual treatment

plan and to predict the patient’s prognosis (Shepherd, 1989).

6.3.6 Diagnosis

Epithelial cancers of the ovary have been described as a “silent killer” because the over-

whelming majority of patients present with disease that has spread outside of the ovary

and indeed outside of the pelvis at the time of initial presentation. Approximately 70% of

patients with epithelial cancers of the ovary present with stage III or IV disease. Abdomi-

nal discomfort and bloating are the most common symptoms experienced by women with

epithelial ovarian cancer, followed by vaginal bleeding, gastrointestinal symptoms, and

184



urinary tract symptoms. Patients presenting with non-specific lower abdominal discom-

fort or bloating require a prompt and careful pelvic examination. The failure to perform

routine rectovaginal pelvic examinations may result in women with relatively early-stage

ovarian cancer having a delay in diagnosis (Disaia & Creasman, 2007).

6.3.7 Prognosis

Generally, important prognostic factors include staging, grading, peritoneal fluid cytology,

etc. Staging is a powerful prognostic predictor in ovarian cancer, and most other putative

prognostic factors are of little importance in comparison to staging (Zanetta et al., 1998).

Peritoneal fluid cytology is for substaging purpose, e.g. stage IA, IB, etc.

For early stage OC, other factors, e.g. grading, rupture before and during surgery

and DNA ploidy might also be very important (Vergote et al., 1993 and 2001). Vergote

& Trimbos (2003) concluded that DNA ploidy is the second most important prognostic

factor, but this has not been widely accepted. We will omit this from our model.

For late stage OC, chemotherapy, extent of residual disease, and response to platinum-

based chemotherapy (see Section 6.3.2 and 6.3.8) are also strong prognostic factors. Sham-

sunder et al. (2000) found that overall survival for patients receiving chemotherapy was

significantly higher compared to those who did not. The prognosis is better for pa-

tients responding to the first-line platinum-based treatment than those who did not. For

platinum-resistant OC patients, prognosis is normally worse after subsequent treatments.

6.3.8 A Brief Introduction to Treatments for OC Patients

Treatment option is an important factor in the outcome of OC. We are interested in the

following aspects of treatments:

(a) What are the standard treatments for OC, including newly-diagnosed OC and re-

current OC?
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(b) What recovery rates are associated with treatments?

(c) What recurrence rates are associated with recovery after treatment?

Standard treatments for OC are surgery and chemotherapy. Other treatments, e.g.

radiotherapy and hormonal therapy, might also be available (Herzog, Holloway & Stuart,

2003).

Surgery

Different types of surgery for OC are as follows:

(a) Total hysterectomy: remove uterus and cervix.

(b) Unilateral salpingo-oophorectomy: remove one ovary and one fallopian tube.

(c) Bilateral salpingo-oophorectomy: remove both ovaries and fallopian tubes.

For OC patients at early stages, the choice of surgery usually depends on whether

a women plans to have children. For women who plan to have children, surgery is ei-

ther unilateral salpingo-oophorectomy or partial oophorectomy (Colombo et al. (1994),

Morice et al., 2001, Schilder et al., 2002 and Zanetta et al., 1997). To prevent recur-

rence of disease, most doctors recommend surgery to remove the remaining ovarian tissue

when a woman no longer plans to have children. Treatment for late stage ovarian low-

malignant potential-tumor may be hysterectomy or bilateral salpingo-oophorectomy. A

lymph node dissection may also be performed. For recurrent ovarian cancer, surgery is

always necessary before chemotherapy starts (Fader & Rose, 2007).

Chemotherapy

Chemotherapy is a treatment that uses drugs to stop the growth of cancer cells, either

by killing the cells or by stopping them from dividing. IV chemotherapy, meaning drugs
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entering the bloodstream by mouth or by injection, is the standard procedure for OC

patients. Chemotherapy can cause unpleasant side effects, but any that occur can often

be well controlled with medicines (Covens et al., 2002).

The length of chemotherapy varies between 9 – 24 weeks. Chemotherapy is given

to OC patients in cycles. Each cycle normally is 3 – 4 weeks. How many cycles of

chemotherapy is optimal was compared in some studies. Bell et al. (2006) compared

the efficacy of 3 cycles and 6 cycles of treatment. Of the 427 eligible early stage OC

patients sampled, 213 patients were given 3 cycles of chemotherapy (study group) and

214 patients were given 6 cycles of chemotherapy (control group). The authors observed

that the recurrence rate for 6 cycles was 24% lower (95% confidence interval: 0.51 – 1.13),

and the overall mortality rate was similar for two groups (95% confidence interval: 0.662

– 1.57). This paper concluded that 6 cycles of chemotherapy do not have a significantly

better recurrence rate than 3 cycles of chemotherapy, and the former is associated with

more toxicity. For late stage OC, 8 cycles of chemotherapy might be applied occasionally

(Dizon et al., 2006).

Radiotherapy

Some studies, e.g. Thomas (1994) and Vergote & Trimbos (2003), found radiotherapy to

be an effective treatment. However, it is rarely used in treating OC patients because of

its strong side effects, especially bowel obstruction. Radiotherapy is normally given to

recurrent OC patients when other treatment options are no longer appropriate. It is also

known as palliative radiotherapy (Thomas, 1994).

Hormonal Therapy

Hormonal therapy is still in testing currently. Zhang et al. (2007) introduced this new

therapy for OC. Hormonal therapy is commonly called Proverar. It is a man-made drug
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that is similar to the female hormone progesterone. They act as chemical messengers and

help to control the activity of cells and organs.

6.3.9 Standard Treatment for Ovarian Cancer Patients

Overall the treatment options for OC are quite standardised, i.e. surgery and/or chemother-

apy according to the brief introduction in Section 6.3.8. The standard treatments can be

summarised as follows:

(a) Newly-diagnosed OC

For OC diagnosed at stage IA and IB, chemotherapy would not provide further

benefits after the surgery (Högberg, Carstensen & Simonsen, 1993 and FIGO, 2000).

Therefore, surgery not followed by chemotherapy is recommended.

For OC diagnosed at late stages, surgery followed by chemotherapy is normally

recommended. Platinum-based drugs, e.g. carboplatin, together with paclitaxel, is

normally recommended.

(b) Recurrent OC

For recurrent OC, surgery followed by chemotherapy is recommended. Different

chemotherapy agents from first-line treatment are normally used. Palliative treat-

ment might follow after these treatments are no longer working.

6.3.10 A Life History Model of a Woman at Risk of OC

Sections 6.3.1 to 6.3.9 introduced some important features which we need to incorporate

into our model. We extended the CMIB model in Figure 6.1, and present the new model

in Figure 6.2. We adapt this model from Lu, Macdonald & Waters (2008), which simi-

larly modelled the life history of a woman at risk of BC. However, we should notice the
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significant difference between OC and BC, e.g. BCs are more easily spotted at earlier

stage, whereas OCs are more likely to be diagnosed at late stage.
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We summarise some important features of the model in Figure 6.2 as follows:

(a) This model is semi-Markov, because some intensities, e.g. iµ1,0
x+t,z and iµ7,6

x+t,z, depend

on both age and duration, and some others, e.g. iµ2,6
z and iµ3,6

z , depend on duration

z only. All states have the access to the ‘Dead’ state.

(b) The genotype i indicates that the women is either a non-mutation carrier or a

BRCA1/2 mutation carrier.

(c) New ovarian cancer patients can be diagnosed at different stages. Since the treat-

ment for OC at stage IA and IB is different from that for OC at other stages, we

therefore divide the diagnosis of OC into four different states as shown in Figure

6.2, where SI stands for stage IA and IB, SII for stage IC and II, SIII for stage III,

and SIV for stage IV. See Section 6.3.9 for details.

(d) In the model, PS OC Recurrence stands for the platinum-sensitive recurrent ovarian

cancer, and PR OC Recurrence stands for the platinum-resistant recurrent ovarian

cancer (See Section 6.3.2).

(e) A healthy policyholder, without any previous medical history of OC, might be di-

agnosed at different stages, known as the initial diagnosis of OC. After recovering

from the initial diagnosis of OC, the policyholder is still at risk of PS OC Recurrence

or PR OC Recurrence, known as the first cycle of recurrence of OC. Afterwards,

second, third, . . . , cycle of recurrence could follow. In this model, for simplicity

and mathematical consideration, we assume all the policyholders can have at most

two cycles of recurrence. In reality, the second cycle of recurrence could also be

either PS OC or PR OC Recurrence. In this model, we simply assume the policy-

holder, contracting the second recurrence, falls into a terminal state, the ‘Distant

Recurrence’ state, which does not differentiate PS OC or PR OC Recurrence.
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6.4 The Tumor Detection Model

In Section 6.3, we introduced some features of OC and presented a life history model for

women at risk of OC. From this section onwards, we will parameterise the model in Figure

6.2. We assume that ovarian cancer can be detected at four different states, namely SI,

SII, SIII and SIV (see Section 6.3.10 (c)). Adopting the method from Lu, Macdonald &

Waters (2008), we used the SEER Program to calculate the tumour detection rates iµ0,2
x+t,

iµ0,3
x+t,

iµ0,4
x+t and iµ0,5

x+t.

(a) We used the SEER data registered between 1973 and 2002. We only consider the

first matching record for each person, so that recurrent OC cases are removed. Table

6.1 shows the rate of detection for OC at each stage, in which: (a) the ‘Unstaged’

column refers to records without this information or that are hard to classify; and

(b) the ‘rates’ are based on the central exposure method. Here, to make use of the

majority of the data, we assume that the ‘Unstaged’ column is distributed across the

other four column pro rata. Table 6.2 shows the modified detection rates of OC at

each stage for the general population. Figure 6.3 shows the modified detection rates

of OC at each stage. These crude rates are fitted to truncated Gamma functions

displayed as follows:

POP µ0,2
x+t =

0.005818

Γ(4.681)
· 0.050874.681 · exp(−0.05087x) · x3.681 (6.1)

POP µ0,3
x+t =

7.713× 10−10

Γ(6.237395)
· 0.053346.237 · exp(−0.05334x) · x5.237 (6.2)

POP µ0,4
x+t =

0.006533

Γ(12.96)
· 0.150912.96 · exp(−0.1509x) · x11.96 (6.3)
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POP µ0,5
x+t =

0.01010

Γ(12.49)
· 0.127212.49 · exp(−0.1272x) · x11.49. (6.4)

(b) For BRCA1/2 mutation carriers, the detection rates of specific types of OC were

not reported in the medical literatures. However, the overall onset rates of OC for

mutation carriers were reported by Antoniou et al. (2001) and fitted to truncated

Gamma functions in Gui et al. (2006). Therefore, taking these onset rates to rep-

resent the detection of all types of OC, we assume overall onset rates are composed

of the same proportion of each type of OC as their age-matched counterparts in the

general population. For example, for BRCA1 mutation carriers, the detection rate

of SI OC is:

BRCA1µ0,2
x+t = µBC,BRCA1

x+t ×
POP µ0,2

x+t

POP µ0,2
x+t + POP µ0,3

x+t + POP µ0,4
x+t + POP µ0,5

x+t

. (6.5)
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Figure 6.3: Crude estimates and fitted truncated Gamma functions of the detection rates

for OC at each stage based on Table 6.2. Source: SEER Reg Public-use database (1973

– 2002)
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Table 6.1: The detection rates of OC at each stage, based on the SEER Reg Public-use

database. COUNT is the number of OC cases detected during the age interval and TE is

the total exposure to risk. Rates are per 100,000 women years.

SI OC SII OC SIII OC SIV OC Unstaged

Age COUNT Rate COUNT Rate COUNT Rate COUNT Rate COUNT Rate TE

00 1 0 0 0 0 0 0 0 0 0 5706482

01–04 2 0 1 0 0 0 0 0 0 0 22234214

05–09 13 0 2 0 5 0 1 0 0 0 27876958

10–14 56 0.2 9 0 17 0.1 10 0 7 0 28664877

15–19 219 0.7 16 0.1 41 0.1 15 0.1 8 0 29088143

20–24 284 0.9 32 0.1 56 0.2 24 0.1 10 0 29983883

25–29 449 1.4 45 0.1 85 0.3 49 0.2 35 0.1 31630904

30–34 647 2 73 0.2 155 0.5 65 0.2 31 0.1 31863438

35–39 856 2.8 113 0.4 277 0.9 175 0.6 63 0.2 29720429

40–44 1057 3.9 160 0.6 468 1.7 298 1.1 59 0.2 27360320

45–49 1176 4.8 281 1.2 820 3.4 539 2.2 90 0.4 24273203

50–54 1125 5.1 281 1.3 948 4.4 709 3.3 111 0.5 21705304

55–59 941 5 265 1.4 1067 5.7 913 4.8 105 0.6 18883553

60–64 823 5.1 253 1.5 1175 7.2 1098 6.7 163 1 16381303

65–69 792 5.5 298 2 1225 8.4 1311 9 213 1.5 14588298

70–74 740 5.9 264 2.1 1296 10.3 1337 10.7 277 2.2 12534262

75–79 545 5.3 253 2.5 1124 10.9 1263 12.3 318 3.1 10268158

80–84 367 5.1 183 2.5 787 10.8 868 11.9 348 4.8 7315136

85+ 266 4 124 1.9 435 6.5 707 10.6 643 9.6 6673631
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Table 6.2: The modified detection rates of OC at each stage, with unstaged cased being

redistributed pro-rata, based on the SEER Reg Public-use database. COUNT is the

number of OC cases detected during the age interval and TE is the total exposure to risk.

Rates are per 100,000 women years.

SI OC SII OC SIII OC SIV OC

Age COUNT Rate COUNT Rate COUNT Rate COUNT Rate TE

00 1 0 0 0 0 0 0 0 5706482

01–04 2 0 1 0 0 0 0 0 22234214

05–09 13 0 2 0 5 0 1 0 27876958

10–14 60 0.2 10 0 18 0.1 11 0 28664877

15–19 225 0.7 16 0.1 42 0.1 15 0.1 29088143

20–24 291 0.9 33 0.1 57 0.2 25 0.1 29983883

25–29 474 1.5 48 0.1 90 0.3 52 0.2 31630904

30–34 668 2.1 75 0.2 160 0.5 67 0.2 31863438

35–39 894 2.9 118 0.4 289 0.9 183 0.6 29720429

40–44 1088 4 165 0.6 482 1.7 307 1.1 27360320

45–49 1214 5 290 1.2 846 3.5 556 2.3 24273203

50–54 1166 5.3 291 1.3 982 4.6 735 3.4 21705304

55–59 972 5.2 274 1.4 1102 5.9 943 5 18883553

60–64 863 5.3 265 1.6 1232 7.6 1151 7 16381303

65–69 839 5.8 316 2.1 1297 8.9 1388 9.5 14588298

70–74 796 6.3 284 2.3 1395 11.1 1439 11.5 12534262

75–79 599 5.8 278 2.7 1236 12 1389 13.5 10268158

80–84 425 5.9 212 2.9 911 12.5 1005 13.8 7315136

85+ 378 5.7 176 2.7 618 9.2 1004 15 6673631
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6.5 Rates of Recovery Based on Treatment Options

Usually, patients will receive treatment immediately after the diagnosis of OC and, after

primary treatment followed by some rest period, they may return to work. However, OC

can recur in several forms and hence there is no real ‘recovery’. Here, to be consistent

with the current IPI literature, ‘recovery’ is claim termination. It means that the woman’s

physical condition improves to allow her to work and she stops receiving IPI benefit, but

she is still at risk of OC recurrence.

In medical studies, aiming to test the efficacy of different chemotherapies, as we will

see in the subsequent sections, ‘recovered’ patients were randomly assigned to different

testing groups, so that their cancer experience and survival experience could be compared

statistically. In these medical studies, ‘recovery’ stands for patients having their tumours

removed by surgery, but not completing the subsequent chemotherapy. However, we will

define ‘recovery’ as being cancer-free and having completed treatment, including surgery

and chemotherapy. Our definition is consistent with the definition in the context of IPI.

In the model in Figure 6.2, the recovery rate rates are functions of the sickness

duration z only, because treatment procedures are highly standardized as introduced in

Section 6.3.8 and 6.3.9. Therefore, we show the recovery rate from OC as follows, based

on treatment options:

(a) For OC patients diagnosed at stage IA and IB, who only require surgery not followed

by chemotherapy, the average period of disability is 2 – 4 weeks. We assume that

patients are normally given 1 – 2 weeks rest period both before and after operation

(Lu, Macdonald & Waters, 2008). We also assume that patients return to work

evenly between the 2nd week and 4th week after the treatment, which implies a

uniform distribution of the sickness duration z between 2nd week and 4th week.

Hence the recovery rate iµ2,6
z could be expressed as:
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µRecovery, Surgery
z =





13
1−13z

2/52 ≤ z ≤ 4/52

0 otherwise.

(6.6)

(b) For OC patients who require surgery followed by chemotherapy, including both

newly-diagnosed cases and recurrent cases, the average period of disability is 11 –

28 weeks. We assume that patients are normally given 1 – 2 weeks rest period both

before and after the treatment, chemotherapy starts immediately after the surgery,

and the chemotherapy normally lasts for 9 – 24 weeks. The recovery rates, iµ3,6
z ,

iµ4,8
z , iµ10,14

z and iµ12,16
z , are:

µRecovery, Chemotherapy
z =





13
7−13z

11/52 ≤ z ≤ 28/52

0 otherwise.

(6.7)

6.6 Recurrence Rates

After OC patients recover, they are still at risk of recurrent OC. As shown in the model

in Figure 6.2, we assume only two cycles of recurrent OC after recovering from first-line

treatment. In the first cycle, the recurrent OC could either be platinum-sensitive recurrent

OC (PS OC Recurrence), or platinum-resistant recurrent OC (PR OC Recurrence). The

life history of an OC patient recovering from early stage OC (stage I and II) is different

from that of one recovering from late stage OC (stage III and IV). The former case is

studied in Section 6.6.1, and the latter in Section 6.6.2. In the second cycle, we assume

all OC patients will contract distant recurrence, which does not differentiate PS from PR.

The corresponding recurrence rate is studied in Section 6.6.3.
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6.6.1 Recurrence Rate for Early Stage Ovarian Cancer Patients

Here ‘early stage’ OC stands for stage I and II OC. We review three important prospective

studies: ICON (2003), Trimbos et al. (2003) and ICON1 & EORTC–ACTION (2003).

ICON1 & EORTC–ACTION (2003) was the combination of the two earlier similar studies.

ICON1 & EORTC–ACTION (2003) contained the largest number of sampled patients in

the study. Therefore, we choose to use the results presented in this paper. Some important

features of this paper are as follows:

(a) The total number of patients included was 925 (477 in ICON (2003) and 448 in

Trimbos et al., (2003)).

(b) Patients sampled were randomly assigned to receive either chemotherapy immedi-

ately after surgery (study group; total number 465) or no chemotherapy (control

group; total number 460).

(c) For all patients, all tumours were removed through surgery before randomization.

The study group received 6 cycles of chemotherapy at intervals of 3 weeks.

(d) The median ages of both the study group and control group were 55 years, and the

median follow-up was around 50 months.

We are interested in the Kaplan-Meier estimate of the disease-free survival probabil-

ity in ICON1 & EORTC–ACTION (2003). When using this estimate, we need to pay

attention to the following points:

(a) For our IPI model in Figure 6.2, ‘recovery’ is defined as patients completing treat-

ment after surgery. However, observation in ICON1 & EORTC–ACTION (2003)

does not start from the recovery as so defined, but from randomization just after

surgery. Therefore, we are only interested in the Kaplan-Meier estimates for the
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period between completion of chemotherapy and the end of observation. Based

on the Kaplan-Meier estimates of the disease-free survival probability in ICON1 &

EORTC–ACTION (2003), we observe that the probability of being cancer-free and

alive during the period of chemotherapy is 0.98696. Therefore, we need to scale up

the Kaplan-Meier estimate of interest by the reciprocal of this probability. We de-

note the adjusted disease-free survival probability as S
Early, Recurrence
z . In Figure 6.4

(top), we show the adjusted Kaplan-Meier estimate and fitted Gamma function for

the disease-free survival probability. We fit the Gamma function using unweighted

least squares as follows:

SEarly, Recurrence
z = 1−

∫ z

0

0.020580.6599 · t(0.6599−1) · e−0.02058tdt (6.8)

(b) We assume the recurrence experience is the same for patients recovering from the

‘SI OC’ or ‘SII OC’ states as shown in Figure 6.2.

(c) In this study, the events of interest are recurrent OC or death from any cause. We

denote the recurrence rate as µ
Early, Recurrence
z , and the duration dependent mortality

rate before recurrence arises as µ
Early, Pop
z , then we have:

SEarly, Recurrence
z = exp

(
−

∫ z

0

(µ
Early, Recurrence
t + µ

Early, Pop
t )dt

)
. (6.9)

The intensity µ
Early, Recurrence
z can be solved once we know µ

Early, Pop
z .

(d) The intensity µ
Early, Pop
z is hard to estimate without accessing the original data.

Here we assume the mortality experience of the sampled patients before recurrence

occurs is close to that of a normal population, because excessive mortality is ac-

counted for by the later recurrence event. This assumption is consistent with the

mortality assumption (see Chapter 7). We do not know the exact age and length of
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follow-up of each patient, but the study disclosed that the median age of the study

group is 55 and median follow-up is around 50 months (approximately 4.17 years).

The age-dependent population mortality is that of ELT15, denoted as µStandard
x .

Therefore we assume

µEarly, Pop
z =

∫ 4.17

0
µStandard

55+t dt

4.17
. (6.10)

It means that µ
Early, Pop
z is treated as an average mortality rate for the sampled pa-

tients during the follow-up before recurrence occurs. Here µ
Early, Pop
z as calculated as

0.00542374. Figure 6.4 (bottom) shows the recurrence rate after the adjustment for

mortality. Hence we can estimate µ
Early, Recurrence
z , where z stands for the duration

of being in the ‘Able To Work’ state.
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Figure 6.4: Adjusted Kaplan-Meier estimate and fitted Gamma function for the disease-

free survival probability for patients recovered from early OC cancers (top), and the

derived recurrence rate before adjusting for mortality (bottom). Data source: ICON1 &

EORTC–ACTION (2003)
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When recurrence occurs, a person, who recovered from early stage OC, will either

enter the ‘PS OC Recurrence’ or the ‘PR OC Recurrence’ state. We have defined in

Section 6.3.2 that the threshold between PS OC Recurrence and PR OC Recurrence is 6

months (0.5 year). Therefore we have:

iµ6,10
z = µEarly, Recurrence

z × Iz≥0.5, (6.11)

iµ6,11
z = µEarly, Recurrence

z × Iz<0.5, (6.12)

where I is such an indicator function for the threshold.

6.6.2 Recurrence Rate for Late Stage Ovarian Cancer Patients

Stage IV OC patients are assumed to remain in the ‘OCSIV’ state in Figure 6.2 until

death. Therefore, we do not consider the recurrence rate for patients recovering from

stage IV OC. In order to estimate the recurrence rate after recovering from stage III

OC, denoted as µ
Recurrence, Late
z , we located Dizon et al. (2006). This study sampled

122 stage III OC patients who had tumours removed by surgery. These patients were

randomly assigned to receive 6 cycles (n = 64) or 8 cycles (n = 38) of carboplatin and

paclitaxel as adjuvant treatment. The disease-free survival probabilities were calculated

for both 6 cycles and 8 cycles groups using Kaplan-Meier methods. The observation starts

from randomization. We choose to use the Kaplan-Meier estimate of disease-free survival

probability for patients receiving 6 cycles of chemotherapy. As in Section 6.6.1, we should

pay attention to the following:

(a) Observation in Dizon et al. (2006) does not start from the recovery as so defined,

but from randomization just after surgery. Based on the Kaplan-Meier estimates of

the disease-free survival probability, we observe that the probability of being cancer-

free and alive during the period of chemotherapy is 0.97645. Therefore, we need to
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adjust the observed Kaplan-Meier estimate by this probability. See Section 6.6.1 for

details. We denote the adjusted disease-free survival probability as S
Late, Recurrence
z .

In Figure 6.5 (top), we show the adjusted Kaplan-Meier estimate and fitted Gamma

function for the disease-free survival probability. We fit the Kaplan-Meier estimate

with a Gamma function using unweighted least squares as follows:

SLate, Recurrence
z = 1−

∫ z

0

0.44150.7989 · t(0.7989− 1) · e−0.4415·tdt (6.13)

(b) In this study, the events of interest are recurrent OC or death from any cause. If we

denote the recurrence rate as µ
Late, Recurrence
z , and the duration dependent mortality

rate before recurrence occurs as µ
Late, Pop
z , then we have:

SLate, Recurrence
z = exp

(
−

∫ z

0

(µ
Late, Recurrence
t + µ

Late, Pop
t )dt

)
(6.14)

The intensity µ
Late, Recurrence
z can be solved for once we know µ

Late, Pop
z .

(c) The intensity µ
Late, Pop
z is hard to estimate without accessing the original data. We

use the same assumption about mortality as in Section 6.6.1. The study disclosed

that the median age of the study group is 60.2 and median follow-up is around 13

months (approximately 1.08 years). The age-dependent population mortality is that

of ELT15, denoted as µStandard
x . Therefore we assume

µLate, Pop
z =

∫ 1.08

0
µStandard

60.2+t dt

1.08
. (6.15)

It means that µ
Late, Pop
z is treated as an average mortality rate for the sampled pa-

tients during the follow-up before occurrence occurs. We calculate that µ
Late, Pop
z =

0.00833. Hence we can estimate µ
Late, Recurrence
z , where z stands for the duration of
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being in the ‘Able To Work’ state. Figure 6.5 (bottom) shows the recurrence rate

after adjustment for mortality.
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Figure 6.5: Adjusted Kaplan-Meier estimate and fitted Gamma function for the disease-

free survival probability for patients recovered from late OC (top), and the derived recur-

rence rate adjusted for mortality (bottom). Data source: Dizon et al. (2006)
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When recurrence occurs, a person, who recovered from late stage OC, will either

enter into the ‘PS OC Recurrence’ or the ‘PR OC Recurrence’ state. We have defined in

Section 6.3.2 that the threshold between PS OC Recurrence and PR OC Recurrence is 6

months (0.5 year). Therefore we have:

iµ8,12
z = µLate, Recurrence

z × Iz≥0.5, (6.16)

iµ8,13
z = µLate, Recurrence

z × Iz<0.5, (6.17)

where I is an indicator function for the threshold.

6.6.3 Distance Recurrence Rate for Relapsed Ovarian Cancer

Patients

Patients who have recovered from early stage OC might suffer PS OC Recurrence or PR

OC Recurrence. In the case of the PR OC Recurrence, we assume patients will remain

in the ‘PR OC Recurrence’ state until death, because patients become more platinum-

resistant to the subsequent treatments. In the case of the PS OC Recurrence, we assume

patients are still at risk of recurrent OC (called ‘distant recurrence’ in Figure 6.2) after

recovery. Therefore, we only consider the recurrence rate after recovering from PS OC

Recurrence, i.e. iµ14,18
z . Ideally, we should sample the patients, who have firstly recovered

from early stage OC and then PS OC Recurrence, in order to estimate intensity iµ14,18
z .

In Section 6.3, we mentioned that OC patients are less likely to be detected at an early

stage, hence it is also hard to sample eligible OC patients, who satisfy the above criteria.

Actually, we can not locate any paper on this topic. Therefore, we decide to use the

recurrence rate after recovering from stage III, i.e. µ
Recurrence,Late
z to represent intensity

iµ14,18
z . In Section 6.6.2, we have estimated the intensity µ

Recurrence,Late
z . Therefore we

assume that iµ14,18
z = µ

Recurrence, Late
z .
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Patients who have recovered from late stage OC might also suffer PS OC Recurrence

or PR OC Recurrence. We also assume that patients in the ‘PR OC Recurrence’ state will

remain in this state until death. Hence only the recurrence rate µ
Recurrence, Distant
z = iµ16,19

z

needs to be estimated. We chose to use the result reported in Pfisterer et al. (2006). In

this intergroup trial, 356 platinum-sensitive recurrent patients were randomly assigned

to receive either gemcitabine plus carboplatin (group A, n = 178) or carboplatin alone

(group B, n = 178). Six cycles of chemotherapy were given to the patients at intervals

of 21 days. 80% of all patients had an initial diagnosis of late stage OC. Disease-free

survival curves were calculated using Kaplan-Meier methods. The median follow-up was

8.5 months and 6 months for group A and B, respectively. As in Section 6.6.1 and 6.6.2,

we should pay attention to the following:

(a) Observation in Pfisterer et al. (2006) does not start from the recovery as so defined,

but from randomization just after surgery. Based on the Kaplan-Meier estimates

of the disease-free survival probability, we observe that the probability of being

cancer-free and alive during the period of chemotherapy is 0.95413. Therefore,

we need to adjust the observed Kaplan-Meier estimate by this probability. See

Section 6.6.1 for details. We denote the adjusted disease-free survival probability as

S
Distant, Recurrence
z . In Figure 6.6 (top), we show the adjusted Kaplan-Meier estimate

and fitted Gamma function for the disease-free survival probability. We fit the

Kaplan-Meier estimate with a Gamma function using unweighted least squares as

follows:

SDistant, Recurrence
z = 1−

∫ z

0

3.4222.710 · t(2.710−1) · e−3.422·tdt (6.18)

(b) In this study, the events of interest are recurrent OC or death from any causes.

If we denote the recurrence rate as µ
Distant, Recurrence
z , and the duration dependent

mortality rate before recurrence occurs as µ
Distant, Pop
z , then we have:
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SDistant, Recurrence
z = exp

(
−

∫ z

0

(µ
Distant, Recurrence
t + µ

Distant, Pop
t )dt

)
(6.19)

The intensity µ
Distant, Recurrence
z can be solved for once we know µ

Distant, Pop
z .

(c) The intensity µ
Distant, Pop
z is hard to estimate without accessing the original data.

We use the same assumption about mortality as in Section 6.6.1 and 6.6.2. The

study disclosed that the median age of the study group is 59 and median follow-up

is 8.6 months (approximately 0.717 year). The age-dependent population mortality

is that of ELT15, denoted as µStandard
x . Therefore we assume

µDistant, Pop
z =

∫ 0.717

0
µStandard

59+t dt

0.717
. (6.20)

It means that µ
Distant, Pop
z is treated as an average mortality rate for the sam-

pled patients during the follow-up before occurrence occurs. We calculate that

µ
Distant, Pop
z = 0.00743. Hence we can estimate µ

Distant, Recurrence
z , where z stands

for the duration of being in the ‘Able To Work’ state. Figure 6.6 (bottom) shows

the recurrence rate after adjustment for mortality.
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from PS OC Recurrence (top), and the derived recurrence rate adjusted for mortality

(bottom). Data source: Pfisterer et al. (2006).
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Chapter 7

Application of the Life History

Model to Income Protection

Insurance

In Chapter 6, we constructed a life history model of a woman at risk of OC, incorporating

some important features of OC, e.g. diagnosis, progression, treatment, recurrence, etc.

In this chapter, we use this model to calculate the premium rates based on genetic test

results or on a family history of OC. We then expand the model to an IPI market by

including insurance purchasing behaviours and calculate the potential cost of adverse

selection under various moratoria on the use of genetic information.
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7.1 Other Intensities

7.1.1 Intensities for Sickness Other Than Ovarian Cancer

The Onset Rate of Other Sickness

CMIR 12 (1991) showed the graduated sickness inception intensities for four deferred

periods (DPs):

σR12
x =





exp(−1.796 + 8.803× 10−2x

−2.686× 10−3x2 + 2.498× 10−5x3) for DP 1 week

exp(−4.256 + 2.392× 10−1x

−6.498× 10−3x2 + 5.476× 10−5x3) for DP 4 weeks

exp(−2.722 + 1.290× 10−1x

−4.240× 10−3x2 + 3.888× 10−5x3) for DP 13 weeks

exp(−0.482− 8.434× 10−1x

9.749× 10−4x2) for DP 26 weeks

(7.1)

The intensity σR12
x is the rate of onset at age x of all sicknesses which could result

in an IPI claim (CMIR 12, 1991). These estimates were based on data collected between

1975 and 1978. In this thesis we intend to use more recent experience. CMIR 20 (2001)

studied the IPI data between 1995 and 1998 and reported the modifying factors of claim

inception rates, M inception, as in Table 7.1. The factor M inception is the ratio of the actual

IPI claim inceptions between 1995 and 1998 to those expected using the sickness inception

intensities parameterised using the data between 1975 and 1978 in CMIR 12.

We should notice the distinction between sickness inception and claim inception.

Firstly the former happen before the latter and secondly the former might not trigger

the latter. Therefore what we are looking for is a different modifying factor, denoted as

M sick, which is the ratio of sickness inception intensity based on CMIR 20 (2001) to that
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Table 7.1: The modifying factor M inception of claim inception rates based on the standard

female experience for 1995–1998. Source: CMIR 20 (2001).

DP 1 week DP 4 weeks DP 13 weeks DP 26 weeks

1.260 1.031 1.614 3.420

based on CMIR 12 (1991), so that the sickness inception rate based on CMIR 20 (2001),

denoted as σR20
x , can be represented explicitly as:

σR20
x = M sick × σR12

x . (7.2)

Policyholders making a valid IPI claim should experience the following stages:

(1) Contract sickness;

(2) Remain sick over the DP specified in the IPI policy;

(3) Make a claim.

Lu et al. (2008) estimated the modifying factor M sick by considering the above stages.

We summarise the procedure as follows:

(a) Let d be the DP in years, and w = 52 be the number of weeks in a year. Let σ̃R12
x

and σ̃R20
x be the age-dependent claim inception rates based on CMIR 12 and CMIR

20, respectively. Let πR12
y,d be the probability that an individual who falls sick at age

y, will remain sick for at least the deferred period d of the policy, based on CMIR

12, and let πR20
y,d be the corresponding value based on CMIR 20. Let rd(y + d) be

the proportion of potential claims actually reported at age y + d for policies with

deferred period d. Denote quantities based on CMIR 12 and CMIR 20 as rR12
d (y+d)
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and rR20
d (y + d), respectively. So that the claim inception rate based on CMIR 12

can be expressed as:

σ̃R12
y+d = σyR12 · πR12

y,d · rR12
d (y + d), (7.3)

and we can write out the corresponding equation for the claim inception rate based

on CMIR 20.

(b) The modifying factor M inception is the ratio of σ̃R20
x to σ̃R12

x and the modifying factor

M sick is the ratio of σR20
x to σR12

x . Therefore we have:

σ̃R20
y+d

σ̃R12
y+d

=
σR20

y · πR20
y,d · rR20

d (y + d)

σR12
y · πR12

y,d · rR12
d (y + d)

, (7.4)

that is:

M inception = M sick × πR20
y,d · rR20

d (y + d)

πR12
y,d · rR12

d (y + d)
, (7.5)

and hence:

M sick = M inception × πR12
y,d · rR12

d (y + d)

πR20
y,d · rR20

d (y + d)
. (7.6)

(c) The definition of πy,d is as follows:

πy,d = exp

(
−

∫ d

0

(ρy+s,s + νy+s,s

)
. (7.7)

This is a general equation which can be easily modified for the corresponding values

based on CMIR 12 and CMIR 20. We should notice that πy,d = dp
SS
y,0 in the standard

actuarial notation system.
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(d) The proportion rd(y) was introduced in CMIR 13 (1993) to make some allowance

when comparing actual claim inceptions with those expected according to the model

in CMIR 12. In CMIR 12, it was observed that the recovery rates for DP 4, 13 and

26 weeks were considerably lower than those for DP 1 week during the four weeks

immediately following the end of the DP. This was explained by the possibility that

some policyholders whose sickness lasts only a little beyond the end of the DP do

not bother to claim benefit, called ‘non-reported claims’. Following the notation

in CMIR 13, we define the function pSSd(y, z1, z2) = z2−z1p
SS
y+z1,z1

for DP d, that is

the probability that a life who became sick at age y and is still sick at duration z1

remains sick until duration z2. Then we have:

rd(y + d) =
pSS1(y, d, d + 4/w)

pSSd(y, d, d + 4/w)
, (7.8)

and z2−z1p
SS
y+z1,z1 can be calculated using Equation (7.7). We should notice that

equation (7.8) implies that ‘a little beyond the end of the DP’ mentioned above is

4 weeks in CMIR 13.

(e) Note that women diagnosed with OC usually have sickness periods much longer

than typical DPs and it is reasonable to assume they will claim at the end of the

DP. Therefore, in respect of them we would assume πy,d = rd(y) = 1.

We calculate the proportion rd(y) for different DPs and show results in Figure 7.1.

In our model in Figure 6.2, we distinguish OC from other sicknesses. So the intensity

of contracting ‘other sickness’, denoted as µothersick
x , is represented by deducting the onset

rate of OC from the intensity for females σR20
x .

µothersick
x = σR20

x − µOC
x

= M sick × σR12
x − µOC

x . (7.9)
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Figure 7.1: Proportion rd(y) for different DPs, based on the standard female experience

for 1995–1998.

Figure 7.2 shows the resulting intensities of other sickness for different DPs, based on

CMIR 20.

The Rates of Claim Recovery From Other Sicknesses

The claim recovery rates depend on the current age x + t and sickness duration z. Let

ρR12
y+z,z and ρR20

y+z,z be the claim recovery rates based on CMIR 12 and CMIR 20, respectively.

CMIR 12 introduced graduations of recovery rates based on 1975–1978 data for males as

follows:

ρR12
y+z,z = r · {51.057− 2.687(1 + 1.419 ·max(4− wz, 0))

·
√

Z · (Y − 50)} · e−4.914
√

Z , (7.10)
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Figure 7.2: Onset rates of sickness other than OC for different DPs, based on the standard

female experience for 1995–1998.

where:

y = the exact age at the time of falling sick;

z = the sickness duration in years;

wz = the sickness duration in weeks;

Y =





y z ≤ 5

y + z − 5 otherwise
(7.11)

Z =





z z ≤ 1

1 + 0.363(z − 1) 1 < z ≤ 5

2.450 otherwise

(7.12)
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r =





min(0.205 + 0.199(wz −DP ), 1) DP = 4, 13, 26 weeks only

1 otherwise.
(7.13)

Similar to the treatment given to the sickness inception rate in Section 7.1.1, CMIR

20 introduced the modifying factors M recovery for females in 1995 – 1998 shown in Table

7.2, implying that the resulting recovery rates for females based on CMIR 20 are

ρR20
y+z,z = M recovery × ρR12

y+z,z (7.14)

Table 7.2: The modifying factor M recovery of claim recovery rates based on the standard

female experience for 1995–1998. Source: CMIR 20 (2001).

DP 1 DP 4 DP 13 DP 26

DP/w ≤ z < (DP + 4)/w 0.59 0.53 0.45 0.45

Otherwise 0.59 0.59 0.59 0.59

7.1.2 Mortality

Recall that in Section 6.3.10 all states, (except the state ‘Dead’) in the model in Figure

6.2 have the access to the ‘Dead’ state. For simplicity, we call these states the death entry

states. The mortality rates from these death entry states entering into the state ‘Dead’

should modelled. However, these mortality rates are modelled differently depending on

the natures of the death entry states. We split the death entry states into three parts as

follows:

(1) Part I: The ‘Normal’ state or the ‘Able to Work’ states, i.e. State i0, i6, i8, i14 and

i16.

218



Generally the persons in these death entry states are in better health status than

persons in others. We model the corresponding mortality rates in Section 7.1.2.

(2) Part II: First diagnosis of OC, i.e. State i2 to i5, and Recurrence of OC, i.e. State

i10 to i13 and State i18 to i19.

After contracting OC, either first diagnosis or recurrence, the persons in these death

entry states are at greater risk of death depending on the severity of OC. We model

the corresponding mortality rates in Section 7.1.2.

(3) Part III: The ‘Other Sickness’ states, i.e. States i1, i7, i9, i15 and i17.

The corresponding mortality rates were modelled in CMIR 12 (1991) and CMIR 20

(2001). We introduce these in Section 7.1.2.

Baseline Mortality

The basic mortality used in this study is that of English Life Tables No. 15 (ELT15),

denoted as µstandard
x . Women in the ‘Able to Work’ states or ‘Normal’ state are just

recovering from OC treatment or before any episode of OC, so these person are generally

in better health status than persons in other states. Therefore the basic mortality should

be applied to these persons, i.e. µstandard
x . However, any extra mortality caused by OC

should be accounted for by later OC events, so we should remove deaths caused by OC.

In Section 3.4.2, we calculated the mortality excluding death caused by BC and OC

by multiplying the basis mortality µstandard
x by (1 − rBCOC

x ), where rBCOC
x is the ratio of

the number of deaths caused by BC and OC to the total population numbers of deaths

(see Wekwete (2002) for details). We used the same method and calculated the ratio φx,

which is the number of the number of deaths from OC to the total number of deaths.

The ratio φx was graduated based on UK population data in 1990–1992 (O.P.C.S., 1991,

1993; O.N.S., 1999):
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φx =





2.028
Γ(11.86)

· (0.2120)11.86 · exp(−0.2120x) · x10.86 x ≤ 55

0.4289− 0.01137x + 9.897× 10−5x2 − 2.814× 10−7x3 x > 65
(7.15)

with linear interpolation between age 55 and 65. Hence the adjusted mortality is µstandard×
(1− φx), shown in Figure 7.3. The adjusted mortality is applied to the intensities iµ0,20

x ,

iµ6,20
x , iµ8,20

x , iµ14,20
x and iµ16,20

x .
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Figure 7.3: Crude and graduated proportions of total deaths that are due to OC, for

females.

Mortality since Diagnosis of Ovarian Cancer

We used the SEER*Stat version 6.4.4 to calculate the mortality for women diagnosed

with OC based on the SEER 9 Regs Public-use (1973–2002) database. The SEER*Stat

version 6.4.4, instead of calculating the absolute mortality rates directly, has the function

to calculate the relative survival rates (RSR), which is defined as follows.
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Let tp
cancer
x,z be the t-year survival probability for an OC patient at age x with duration

z since diagnosis and let µcancer
x,z be the corresponding force of mortality; define tp

standard
x

and µstandard
t to be the corresponding values for the standard population. Here we assume:

µcancer
x,z = µstandard

x + µextra
z , (7.16)

where µextra
z is additional mortality for women diagnosed with OC, which we assume

depends only on sickness duration z. Then the relative survival rates (RSR) for women

suffering OC are defined as follows:

RSR =
tp

cancer
x,z

tpstandard
x

=
exp

(
− ∫ t

0
(µstandard

x+s + µextra
s )ds

)

exp
(
− ∫ t

0
µstandard

x+s ds
) = exp

(
−

∫ t

0

µextra
s ds

)
. (7.17)

We produced the RSRs for women suffering each type of OC, and fitted them using

smooth functions of the duration since diagnosis, z, as shown in Figures 7.4, 7.5 and 7.6.

Here, the standard population is the US Standard Population in 2000 and we assume

similar mortality trends in respect of women at risk of OC in the US and in the UK.

Therefore, the extra mortality, µextra
z , can be deduced from the fitted functions of RSRs

for each stage of OC:

µextra
z =





0.03740− 0.01086z + 0.002012z2

−1.865× 10−4z3 + 7.906× 10−6z4 − 1.220× 10−7z5 for Early Stage OC

0.1555− 0.03756z + 0.003610z2

−1.438× 10−4z3 + 1.428× 10−6z4 + 2.375× 10−8z5 for Stage III OC

0.4508− 0.09978z + 0.008329z2

−3.091× 10−4z3 + 4.297× 10−6z4 − 6.810× 10−10z5 for Stage IV OC.

(7.18)

The early stage OC is represented by the State i2 and i3, the Stage III OC is repre-

sented by the State i4, and the Stage IV OC is represented by the State i5 in Figure 6.2.
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Figure 7.4: Relative survival rate for women who develop early ovarian cancer.

For women contracting recurrent OC, instead of modelling the corresponding mortality

rates separately, we separated these states into three groups based on the severity of OC

as follows:

(a) low-level risk group: being diagnosed at early stage of OC, i.e. State i2 and i3;

(b) medium-level risk group: being diagnosed at stage III of OC, i.e. State i4, or

contracting PS OC Recurrence, State i10 and i12; so we used the mortality rates

for women contracting Stage III OC to represent this group.

(c) advanced-level risk group: being in terminal states, i.e. States i5, i11, i13, i18 and

i19; so we used the mortality rates for women contracting Stage IV OC to represent

this group.
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Figure 7.5: Relative survival rate for women who develop Stage III ovarian cancer

Mortality after Onset of Other Sickness

The graduated and aggregate mortality νR12
y+z,z was reported in CMIR 12:

νR12
y+z,z = {(0.2379− 4.819× 10−3Y + 9.587× 10−5Y 2)

·exp(−0.8747/(Z + 0.3574)1.6139)

(Z + 0.3574)2.6139)
+ 7.221× 10−3 · e0.02435(Y +Z)}, (7.19)

where y, z and Y have the same definitions as in Equation 7.10,

Z =





z z ≤ 5

5 z > 5
(7.20)

Following the same treatments given to the sickness inception rate σR20
x (see Section

7.1.1) and recovery rate ρR20
y+z,z (see Section 7.1.1), CMIR 20 reported the modifying factor
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Figure 7.6: Relative survival rate for women who develop Stage IV ovarian cancer

M sickmort, so that the corresponding mortality νR20
y+z,z could be derived based on νR12

y+z,z as

follows:

νR20
y+z,z = M sickmort × νR12

y+z,z, (7.21)

and M sickmort is given in Table 7.3.

Table 7.3: The modifying factor M sickmort of mortality rates after onset of sickness other

than OC based on the standard female experience for 1995–1998. Source: CMIR 20

(2001).

DP 1 week DP 4 weeks DP 13 weeks DP 26 weeks

0.15 0.34 0.33 0.26
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7.1.3 The Onset Rate of a Family History Relevant to OC

In Section 3.5, we briefly introduced the onset rate of a family history relevant to BC &

OC. The methodology is detailed in Gui et al. (2006). In Gui et al. (2006), the definition

of family history was two first degree relatives with BC or OC before age 50, this is

because mutations BRCA1 and BRCA2 carriers are at increased risks of both BC and

OC. This means that family members contracting BC before age 50 indicates that other

healthy family members are not only at higher risks of BC, but OC as well. In Lu et al.

(2008), the authors defined the family history as two first degree relatives with BC only

before age 50. In this chapter, as an extension of Lu, Macdonald & Waters (2008) and

Lu et al. (2008), we ignore BC and define a family history as two first degree relatives

(FDRs) with OC before age 50. This implies that we used an underestimated onset rate

of family history in this thesis. A separate research work should be carried out to study

the effect of genetic information relevant to both BC and OC in a combined model, in

which a family history relevant to BC and OC should be used. As in Gui et al. (2006),

depending on whether a person carries a mutation and/or a family history, we partition

the entire population into 5 sub-populations as follows:

(1) sub-population 1: not mutation carriers, not having family history

(2) sub-population 2: carrying mutation BRCA1, with family members being mutation

carriers

(3) sub-population 3: not carrying mutation BRCA1, with family member being muta-

tion carriers

(4) sub-population 4: carrying mutation BRCA2, with family members being mutation

carriers

225



(5) sub-population 5: not carrying mutation BRCA2, with family members being mu-

tation carriers.

The mutation frequencies of these sub-populations were given as in Section 3.5. The

onset rates of a family history relevant to OC for each sub-populations are shown in Figure

7.7.
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Figure 7.7: Rates of onset of family history of OC in risk sub-populations.
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7.2 Application of the Life History Model to IPI Busi-

ness

7.2.1 Numerical Procedures

Following the notation in Lu et al. (2008), we define H to be the set of all healthy

states, including ‘Normal’ and ‘Able to Work’ states, S to be the set ‘Other Sickness’

states, and O to be the set of OC states (including recurrences). Suppose an applicant

in subpopulation i, insured at age x, starting in state i0, is in state ij at age x + t and

has been in that state for duration z. A continuous premium at annual rate aij
x+t would

be paid if ij ∈ H or ij ∈ S ∪O with z ≤ d; and a continuous benefit at rate bij
x+t will be

claimed if ij ∈ S ∪O with z > d.

In Chapter 2, we already introduced an idea to bring a semi-Markov model back to a

Markov model regime by assuming that on entry into a state from which the probability

of exit is duration-dependent future premiums cease and a sum assured of 0,t
iV j

x is paid,

where z,t
iV j

x is the prospective reserve for a life in state ij at age x+t with duration z since

entry into the state. When we apply this technique to the model in Figure 6.2, it requires

more work because duration-dependent decrements occur not only into terminal states,

but throughout the whole model. So we need to calculate 0,t
iV j

x for each transition into

a duration-dependent state, starting from terminal states and progressing backward until

all dependence on duration is eliminated. Ultimately, all expected prospective payments

will be represented as the propective reserves 0,0
iV 0

x in the starting states i0 at time 0.

This is equivalent to to insurers immediately reinsuring the policy just after issuing it.

This method is called the ‘backward integration method’, adopted from Lu et al. (2008).

For each state ij, let Iij be the set of states into which there is a transition from state

ij. These are called inferior states of ij; and ij is called a superior state to states in Iij.
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Then the reserves can be calculated as follows:

(a) If ij ∈ O,

0,t
iV j

x =

∫ TE

d

e−δs · s
ipjj

x+t,0 · bij
x+t+sds−

∫ d

0

e−δs · s
ipjj

x+t,0 · aij
x+t+sds

+
∑

ik∈Iij

∫ TE

0

e−δs · s
ipjj

x+t,0 · iµj,k
x+t+s,s · 0,t+s

iV k
x ds, (7.22)

where:

(1) d represents the DP in years, and TE denotes the time to policy expiry, that

is:

TE = min(Policy Term− t, 65− x− t)

and;

(2) t
ipjj

x,z is the probability that a person in state ij at age x with duration z will

remain in state ij for time t, at which time the duration must be z + t, and:

i
tp

jj
x,z = exp

(
−

∫ t

0

∑

ik∈Iij

iµj,k
x+s,z+sds

)
. (7.23)

(b) If ij ∈ H,
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0,t
iV j

x =

∫ TE

0

e−δs ·
∑

ik∈Iij∩S

(
s
ipjk

x+t,0 − d,s
ipjk

x+t,0

)
· bik

x+t+s · rd(x + t + s)ds

−
∫ TE

0

e−δs ·
∑

ik∈Iij∩S

(
s
ipjk

x+t,0 − d,s
ipjk

x+t,0

)
· aik

x+t+s · (1− rd(x + t + s)) ds

−
∫ TE

0

e−δs · i
sp

jj
x+t,0 · aij

x+t+sds

−
∫ TE

0

e−δs ·
∑

ik∈Iij∩S

(
d,s

ipjk
x+t,0 · aik

x+t+s

)
ds

+
∑

ik∈Iij∩O

∫ TE

0

e−δs · s
ipjj

x+t,0 · iµj,k
x+t+s,s · 0,t+s

iV k
x ds, (7.24)

where w,t
ipjk

x,z is the probability that a person in state ij at age x with duration

z will be in state ik at age x + t, with duration z + t ≤ w (note that when w ≥
z + t, w,t

ipjk
x,z = t

ipjk
x,z). It can be shown that t

ipjk
x,z and w,t

ipjk
x,z satisfy the following

differential equations:

∂

∂t
i
tp

jj
x,z =

∫ t

0

i
sp

jj
x,z ·

∑

ik∈I∩S

(
iµj,k

x+s,z+s · t−s
ipkk

x+s,0 · iµk,j
x+t,t−s

)
ds

−i
tp

jj
x,z ·

∑

ik∈Iij

iµj,k
x+t,z+t (7.25)

∂

∂t
w,t

ipjk
x,z =





t−w
ipjj

x,z ·
∑

ik∈Iij

(
iµj,k

x+t−w · i
wpkk

x+t−w,0

)
w < t

0 w ≥ t.

(7.26)

We have the following comments:

(a) iµj,k
x,z can be written iµj,k

x or iµj,k
z if it depends only on current age x or duration z

in the current state, respectively.
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(b) Equations (7.22) and (7.24) are recursive and for each state ij, 0,t
iV j

x can be calcu-

lated once 0,t+s
iV k

x has been obtained for all its inferior states for any further time

beyond x + t. The terminal state is ‘Dead’ and has no inferior states.

(c) Equations (7.22) – (7.24) are solved by numerical integration using Simpson’s rule

with stepsize 1/156 years (implying three steps in one week) and δ = 0.05; Equations

(7.25) and (7.26) are solved by a fourth-order Runge-Kutta method with step-size

0.0005 years and initial conditions 0
ipjj

x,z = 1 and 0,t
ipjk

x,z = 0, for all t. Please see

Appendix D for technical details about fourth-order Runge-Kutta method.

(d) In Equation (7.24), for each state ij ∈ H, by defining the probabilities t
ipjj

x,z and

w,t
ipjk

x,z, we can discount all prospective cashflows in every state ik ∈ Iij ∩ S back to

the time of entering state ij. In this way, healthy states and their corresponding

‘Other Sickness’ states are treated as a unit and hence the periodic transitions

between them are eliminated.

(e) We should notice that the use of rd(x+t+s) in Equation (7.24) is an approximation,

which arises in the following way. It is impractical to compute the EPV of benefit

cashflows by integrating over the joint density of the times of transition, because

repeated transitions mean that the number of transitions is not bounded. That is,

we would require an infinite-dimentional multiple integral (although truncation at

some point would presumably give satisfactory accuracy). Therefore we write the

EPV as a single integral over the probability of the ‘status’ — ill for longer than the

DP d year — that causes the benefit to be paid. However, inspection of Equation

(7.8) shows that the function rd(x + t + s) is, in fact, a function of the age at which

a claim (equivalently, spell of illness) commences, although the notation suppresses

that fact. Therefore the present value of benefit payable at time x + t + s should be

integrated over the density of the duration of the claim at that time. From CMIB 13
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(1993), the claim ratios are not very dependent on age, so we avoid this additional

complexity by using the claim ratio at age x + t + s and ignoring current duration.

7.2.2 Premium Ratings for the General Population

The EPV of the unit benefit can be obtained using the equations in Section 7.2.1 with the

premium rate set to zero. In Table 7.4, we show the EPVs of a unit benefit of IPI cover

of £1 per annum for various DPs and various scenarios. In Table 7.5, we show the EPVs

of an annuity of £1 per annum payable continuously while healthy or sick with duration

less than the DP. In Table 7.6, we show the net continuous premium required. We can

observe that for the same starting age and policy term, as the DPs increase, the EPVs

of the benefit and level net premium decrease whereas the EPVs of the annuity increase.

This is simply because shorter DPs imply earlier benefit claims.
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Table 7.4: Expected present values of the IPI claim annuity of £1 per annum payable

continuously while sick with duration exceeding the DP, according to the standard female

experience for 1995–1998 and based on the model in Figure 6.2.

Deferred Period

Age Term DP1 DP4 DP13 DP26

20 10 0.1608 0.0183 0.0115 0.0086

20 0.4171 0.0629 0.0423 0.0333

30 0.7327 0.1347 0.0937 0.0806

45 1.2279 0.3069 0.2317 0.2383

30 10 0.2728 0.0472 0.0288 0.0211

20 0.7429 0.1552 0.1048 0.0911

35 1.7125 0.4761 0.3518 0.3834

40 10 0.4622 0.1029 0.0669 0.0613

25 1.9421 0.5940 0.4433 0.5156

50 15 1.7213 0.5823 0.4345 0.5359
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Table 7.5: Expected present values of the IPI premium annuity of £1 per annum payable

continuously while healthy or sick with duration less than the DP, according to the stan-

dard female experience for 1995–1998 and based on the model in Figure 6.2.

Deferred Period

Age Term DP1 DP4 DP13 DP26

20 10 7.6769 7.8446 7.8503 7.8532

20 12.0729 12.5361 12.5580 12.5682

30 14.5049 15.2999 15.3435 15.3584

45 15.4689 16.8741 17.0294 16.9262

30 10 7.5460 7.8123 7.8288 7.8363

20 11.6690 12.4025 12.4521 12.4638

35 14.1712 15.7072 15.8234 15.7780

40 10 7.3147 7.7299 7.7609 7.7634

25 11.7055 13.3022 13.4298 13.3312

50 15 8.3684 9.6592 9.7750 9.6478
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Table 7.6: Level net premium for an IPI benefit of £1 per annum, according to the

standard female experience for 1995–1998 and based on the model in Figure 6.2.

Deferred Period

Age Term DP1 DP4 DP13 DP26

20 10 0.0209 0.0023 0.0015 0.0011

20 0.0346 0.0050 0.0034 0.0026

30 0.0505 0.0088 0.0061 0.0052

45 0.0794 0.0182 0.0136 0.0141

30 10 0.0362 0.0060 0.0037 0.0027

20 0.0637 0.0125 0.0084 0.0073

35 0.1208 0.0303 0.0222 0.0243

40 10 0.0632 0.0133 0.0086 0.0079

25 0.1659 0.0447 0.0330 0.0387

50 15 0.2057 0.0603 0.0444 0.0555

234



7.2.3 Premium Ratings for Mutation Carriers

In Table 7.7 we show level premium rates both as absolute values and as a percentage

of the standard rates, for women with a known BRCA1/2 mutation, and we make the

following comments:

(a) A BRCA1 mutation is much more severe than a BRCA2 mutation. Extra premiums

for all BRCA2 cases are less than 50%, which is much smaller than the corresponding

BRCA1 case.

(b) Insurability for BRCA1 mutation carriers varies between different DPs. Most Cases

with DP 1 week are insurable. For cases with DP 4 and 13 weeks, all BRCA1 muta-

tion carriers should be insurable at extra premium rates. However for cases with DP

26 weeks, BRCA1 mutation carriers at low ages (20 or 30 year old) buying shorter

term IPI (10 or 20 years) are generally declined; other cases might be insurable but

at extra premium rates

(c) All premium increases for BRCA2 mutation carriers are below 50%, within the limit

for insurability of about 250% of the standard rates. Therefore, in all cases BRCA2

mutation carriers should be insurable.
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Table 7.7: Expected present values of an IPI benefit of £1 per annum payable continuously

while sick with duration exceeding the DP for mutation BRCA1 and BRCA2 carriers,

according to the standard female experience for 1995–1998 and based on the model in

Figure 6.2.

Gene Deferred Period

Mutation Age Term DP1 DP4 DP13 DP26

BRCA1 20 10 0.0289 (138%) 0.0057 (245%) 0.0041 (279%) 0.0037 (336%)

20 0.0460 (133%) 0.0104 (207%) 0.0075 (223%) 0.0069 (259%)

30 0.0630 (125%) 0.0154 (174%) 0.0112 (184%) 0.0104 (199%)

45 0.0819 (103%) 0.0202 (111%) 0.0152 (112%) 0.0154 (109%)

30 10 0.0548 (151%) 0.0146 (241%) 0.0103 (281%) 0.0095 (355%)

20 0.0814 (128%) 0.0221 (177%) 0.0160 (190%) 0.0150 (206%)

35 0.1225 (101%) 0.0329 (108%) 0.0243 (109%) 0.0257 (106%)

40 10 0.0869 (138%) 0.0263 (198%) 0.0188 (218%) 0.0181 (230%)

25 0.1672 (101%) 0.0480 (107%) 0.0357 (108%) 0.0402 (104%)

50 15 0.2082 (101%) 0.0647 (107%) 0.0479 (108%) 0.0574 (103%)

BRCA2 20 10 0.0209 (100%) 0.0023 (100%) 0.0015 (100%) 0.0011 (100%)

20 0.0346 (100%) 0.0050 (100%) 0.0034 (100%) 0.0027 (101%)

30 0.0513 (102%) 0.0093 (106%) 0.0065 (106%) 0.0056 (107%)

45 0.0796 (100%) 0.0184 (101%) 0.0138 (101%) 0.0142 (101%)

30 10 0.0363 (100%) 0.0061 (101%) 0.0037 (101%) 0.0027 (102%)

20 0.0652 (102%) 0.0135 (108%) 0.0092 (109%) 0.0081 (110%)

35 0.1209 (100%) 0.0307 (101%) 0.0226 (102%) 0.0245 (101%)

40 10 0.0674 (107%) 0.0157 (118%) 0.0105 (122%) 0.0098 (124%)

25 0.1662 (100%) 0.0455 (102%) 0.0337 (102%) 0.0390 (101%)

50 15 0.2065 (100%) 0.0618 (103%) 0.0456 (103%) 0.0562 (101%)
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7.2.4 Premium Ratings for Women With a Family History

When genetic test results are known to insurers, the underwriting is fairly straightforward

as shown in Section 7.2.3. However, genetic test results are not allowed to be used for

underwriting in most countries. Therefore, family history is probably the most important

information that may be used in the underwriting. We calculated the onset rate of a family

history relevant to OC in Section 7.1.3. Given a family history, a level premium rate is

derived, in which the EPVs of benefit and payment are both weighted by the probability

of a person aged x with a family history being in each of the sub-populations (see Section

7.1.3). The level premium rate for a woman without a family history is calculated in the

same way, but the weights are changed to the probability of a person aged x without a

family history being in each sub-population. Table 7.8 shows the premium rates for women

with and without a family history of OC both as absolute values and as a percentage of

those for standard risks. We can observe that:

(a) The premium rates for women without family histories are very close to those for

non-mutation carriers. In the calculation, the weight assigned to the non-mutation

carrier sub-population is very high due to the nearly zero onset rate of a family

history in that sub-population.

(b) The premium increases are smaller than in the corresponding cases in Table 7.7

as expected, because of the averaging-out effect between non-mutation carriers and

mutation BRCA1/2 carriers.

(c) For women with family histories, the premium increases are lower than 50% in all

cases. Therefore, all women with a family history of OC should be insurable if we

assume that 250% of the standard rate is the threshold. Especially, in the case of

DP 1 week, the premium increases are lower than 10%. This might imply that they

could even buy IPI at standard rates.
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Table 7.8: Level net premium for an IPI benefit of £1 per annum payable continuously

while sick with duration exceeding the DP for women with and without a family history

of BC, respectively (FH = family history present), according to the standard female

experience for 1995–1998 and based on the model in Figure 6.2.

Deferred Period

No FH Age Term DP1 DP4 DP13 DP26

20 10 0.0210 (100%) 0.0023 (100%) 0.0015 (100%) 0.0011 (100%)

20 0.0346 (100%) 0.0050 (100%) 0.0034 (100%) 0.0027 (100%)

30 0.0505 (100%) 0.0088 (100%) 0.0061 (100%) 0.0053 (100%)

45 0.0794 (100%) 0.0182 (100%) 0.0136 (100%) 0.0141 (100%)

30 10 0.0362 (100%) 0.0061 (100%) 0.0037 (100%) 0.0027 (100%)

20 0.0637 (100%) 0.0125 (100%) 0.0084 (100%) 0.0073 (100%)

35 0.1208 (100%) 0.0303 (100%) 0.0222 (100%) 0.0243 (100%)

40 10 0.0632 (100%) 0.0133 (100%) 0.0086 (100%) 0.0079 (100%)

25 0.1659 (100%) 0.0447 (100%) 0.0330 (100%) 0.0387 (100%)

50 15 0.2057 (100%) 0.0603 (100%) 0.0445 (100%) 0.0555 (100%)

FH 20 10 0.0221 (106%) 0.0029 (122%) 0.0019 (127%) 0.0015 (136%)

20 0.0363 (105%) 0.0058 (117%) 0.0040 (119%) 0.0033 (125%)

30 0.0525 (104%) 0.0099 (112%) 0.0069 (113%) 0.0061 (116%)

45 0.0798 (100%) 0.0185 (102%) 0.0139 (102%) 0.0143 (101%)

30 10 0.0397 (110%) 0.0077 (127%) 0.0049 (135%) 0.0040 (149%)

20 0.0671 (105%) 0.0144 (115%) 0.0099 (117%) 0.0088 (120%)

35 0.1211 (100%) 0.0308 (101%) 0.0226 (102%) 0.0245 (101%)

40 10 0.0673 (106%) 0.0156 (117%) 0.0104 (121%) 0.0097 (123%)

25 0.1661 (100%) 0.0452 (101%) 0.0334 (101%) 0.0389 (101%)

50 15 0.2059 (100%) 0.0607 (101%) 0.0448 (101%) 0.0557 (100%)
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7.2.5 The Effect of Reduced Onset Rates

In the model in Figure 6.2, the detection rates of OC at various stages for BRCA1/2 muta-

tion carriers are based on the study by Antoniou et al. (2001). Therefore, the potential for

ascertainment bias is still present, and we allow for possible bias by considering incidence

rates of OC for BRCA1/2 mutation carriers 50% of those based directly on Antoniou et

al. (2001). Tables 7.9 and 7.10 show level net premiums expressed as a percentage of the

standard rates for mutation carriers and for women with a family history, respectively,

with incidence rates of BC for mutation carriers reduced 50% of those estimated from

Antoniou et al. (2001). We note that:

(a) With the OC incidence rate reduced by 50%, it is not surprising to see that the

corresponding premium rates are reduced as well. This would make all women

with mutation BRCA1 insurable, especially those with longer DPs. Women with

mutation BRCA2 are all insurable even before the incidence rate is reduced, so they

are more clearly insurable. The reduced rate of onset will allow more women with

mutation BRCA2 to be covered at the standard rate.

(b) Premium rates are also reduced for women with a family history. In most cases,

except for policies with shorter terms or longer DPs, the premium increases are

lower than 10%. These cases might be offered stardard rates.
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Table 7.9: Expected present values of an IPI benefit of £1 per annum payable continuously

while sick with duration exceeding the DP for mutations BRCA1 and BRCA2 carriers,

according to the standard female experience for 1995–1998 and based on the model in

Figure 6.2. Excess OC indidence rates are 50% of those observed.

Gene Deferred Period

Mutation Age Term DP1 DP4 DP13 DP26

BRCA1 20 10 0.0250 (119%) 0.0041 (175%) 0.0028 (192%) 0.0024 (221%)

20 0.0405 (117%) 0.0078 (156%) 0.0055 (165%) 0.0049 (183%)

30 0.0569 (113%) 0.0122 (139%) 0.0088 (144%) 0.0080 (152%)

45 0.0795 (100%) 0.0188 (103%) 0.0140 (103%) 0.0143 (101%)

30 10 0.0461 (128%) 0.0106 (176%) 0.0073 (198%) 0.0064 (237%)

20 0.0733 (115%) 0.0177 (142%) 0.0125 (149%) 0.0115 (157%)

35 0.1201 (100%) 0.0310 (102%) 0.0228 (103%) 0.0244 (100%)

40 10 0.0763 (121%) 0.0205 (154%) 0.0143 (165%) 0.0135 (172%)

25 0.1656 (100%) 0.0459 (103%) 0.0340 (103%) 0.0390 (101%)

50 15 0.2074 (101%) 0.0626 (104%) 0.0463 (104%) 0.0567 (102%)

BRCA2 20 10 0.0209 (100%) 0.0023 (100%) 0.0015 (100%) 0.0011 (100%)

20 0.0346 (100%) 0.0050 (100%) 0.0034 (100%) 0.0027 (100%)

30 0.0509 (101%) 0.0090 (103%) 0.0063 (103%) 0.0054 (103%)

45 0.0793 (100%) 0.0182 (100%) 0.0136 (100%) 0.0140 (100%)

30 10 0.0362 (100%) 0.0061 (100%) 0.0037 (100%) 0.0027 (100%)

20 0.0644 (101%) 0.0130 (104%) 0.0088 (104%) 0.0077 (105%)

35 0.1205 (100%) 0.0303 (100%) 0.0223 (100%) 0.0242 (100%)

40 10 0.0652 (103%) 0.0145 (109%) 0.0095 (111%) 0.0088 (111%)

25 0.1658 (100%) 0.0449 (101%) 0.0332 (101%) 0.0387 (100%)

50 15 0.2062 (100%) 0.0610 (101%) 0.0450 (101%) 0.0559 (101%)
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Table 7.10: Level net premium for an IPI benefit of £1 per annum payable continuously

while sick with duration exceeding the DP for women with and without a family history

of BC, respectively (FH = family history persent), according to the standard female

experience for 1995–1998 and based on the model in Figure 6.2. Excess OC incidence

rates are 50% of those observed.

Deferred Period

No FH Age Term DP1 DP4 DP13 DP26

20 10 0.0210 (100%) 0.0023 (100%) 0.0015 (100%) 0.0011 (100%)

20 0.0346 (100%) 0.0050 (100%) 0.0034 (100%) 0.0027 (100%)

30 0.0505 (100%) 0.0088 (100%) 0.0061 (100%) 0.0053 (100%)

45 0.0794 (100%) 0.0182 (100%) 0.0136 (100%) 0.0141 (100%)

30 10 0.0362 (100%) 0.0060 (100%) 0.0037 (100%) 0.0027 (100%)

20 0.0637 (100%) 0.0125 (100%) 0.0084 (100%) 0.0073 (100%)

35 0.1208 (100%) 0.0303 (100%) 0.0222 (100%) 0.0243 (100%)

40 10 0.0632 (100%) 0.0133 (100%) 0.0086 (100%) 0.0079 (100%)

25 0.1659 (100%) 0.0447 (100%) 0.0330 (100%) 0.0387 (100%)

50 15 0.2057 (100%) 0.0603 (100%) 0.0444 (100%) 0.0555 (100%)

FH 20 10 0.0215 (103%) 0.0026 (111%) 0.0017 (113%) 0.0013 (118%)

20 0.0354 (103%) 0.0054 (108%) 0.0037 (110%) 0.0030 (112%)

30 0.0515 (102%) 0.0093 (106%) 0.0065 (107%) 0.0057 (108%)

45 0.0794 (100%) 0.0183 (100%) 0.0137 (100%) 0.0141 (100%)

30 10 0.0379 (105%) 0.0069 (113%) 0.0043 (117%) 0.0033 (124%)

20 0.0654 (103%) 0.0134 (107%) 0.0092 (109%) 0.0081 (110%)

35 0.1207 (100%) 0.0304 (100%) 0.0223 (100%) 0.0243 (100%)

40 10 0.0653 (103%) 0.0145 (109%) 0.0095 (110%) 0.0088 (111%)

25 0.1659 (100%) 0.0448 (100%) 0.0332 (100%) 0.0387 (100%)

50 15 0.2059 (100%) 0.0605 (100%) 0.0446 (100%) 0.0557 (100%)
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7.3 The Cost of Adverse Selection in an IPI Market

7.3.1 The Life History Model of a Women at Risk of Breast

Cancer in an IPI Market

As in Chapters 2 and 4, we use CI and life insurance market models to depict the appli-

cants’ purchasing behaviour, and calculate the cost of adverse selection. In this section, we

introduce an IPI market model as shown in Figure 7.8, which incorporates the insurance-

purchasing behaviour of applicants at various levels of risk.
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Figure 7.8: A semi-Markov model of family history, genetic testing, and IPI purchase for

a person in the ith risk subpopulation (FH = family history present).
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Please see Lu et al. (2008) for model features, parameterization and numerical pro-

cedures. We briefly describe some important features as follows:

(a) Depending on whether a person carries a mutation and/or has a family history, we

partition the entire population into 5 sub-populations as follows:

(1) sub-population 1: not mutation carriers, not having a family history

(2) sub-population 2: carrying mutation BRCA1, with family members being mu-

tation carriers

(3) sub-population 3: not carrying mutation BRCA1, with family member being

mutation carriers

(4) sub-population 4: carrying mutation BRCA2, with family members being mu-

tation carriers

(5) sub-population 5: not carrying mutation BRCA2, with family members being

mutation carriers.

The frequencies of these sub-populations were introduced in Section 3.5.

(b) The purpose of this model is to calculate the cost of adverse selection arising in an

IPI market.

(c) We assume that an individual may fall sick or die independently of buying an IPI

policy. All states in the dashed box, e.g. State i0, i2 and i4, have access to States

i6 and i7. If persons in States i0, i2 and i4 enter into State i7 before they buy

insurance, i.e. entering into State i1, i3 and i5, they become uninsurable. After

buying an IPI policy, a woman will follow the life history model in Figure 6.2.

(d) In the model in Figure 6.2, the intensities iµsick
x+t ,

iµrecover
x+t and iµ6,7

x+t,z correspond to

intensities in the basic IPI model in Figure 6.1. However, we should note that these
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events occur before the individual becomes insured. Since direct estimates have not

been reported yet, we use the estimates described in Section 7.1 with DP 1 week,

assuming no significant difference would be expected.

(e) Intensity iµ0,2
x+t represents the onset rate of developing a family history in sub-

population i. These intensities were introduced in Section 3.5. Intensity iµ2,4
x+t

represents the genetic testing rate. In this thesis, we take genetic testing rate to

be 0.014 per annum between ages 20 and 40 as our baseline, implying about 10%

of people will be tested in 8 years. We compare this baseline with another two

scenarios, namely 0.014 per annum between ages 20 and 60, and 0.035 per annum

between ages 20 and 40.

(f) Persons in States i0, i2 and i4 have not purchased any insurance yet, while persons in

States i1, i3 and i5 have purchased insurance. The intensities iµ0,1
x+t,

iµ2,3
x+t and iµ4,5

x+t

are the annualized purchase rates. The meaning of the purchase rate is two-fold.

Firstly, it represents the size of the IPI market. A purchase rate of 0.05 per annum

represents what we call a large market. A purchase rate of 0.01 per annum represents

what we call a small market. These are assumed to apply in sub-population 1. We

call these purchase rates the ‘normal’ purchase rates. In sub-populations 2 – 5,

persons in State i0 buy insurance at the normal rate in all circumstances, because

these persons will be treated by insurance companies as standard risk. In the large

market, persons, who have a family history are assumed to have three choices of

their purchasing behaviour: normal rate, half of normal rate, or nil, meaning they

do not purchase insurance at all. In a small market, these persons are assumed not

to purchase insurance at all.

(g) A moratorium forbids insurance companies to use genetic test results in underwrit-

ing. Three types of moratoria are considered here, moratoria on using all genetic
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test results, moratoria on using adverse genetic test results, and moratoria on both

family history and genetic test results. Normally only insurance applicants with

similar level of risks will be pooled into the same underwriting class, and people in

the same underwriting class should be charged the same rate of premium. However,

a moratorium may force underwriters to pool very different risks into the same un-

derwriting class. A moratorium on genetic testing results alone will partition the

population into two underwriting classes; family history class and non-family his-

tory class. A moratorium on genetic testing results and family history will put the

entire population into a single underwriting class.

(h) Adverse selection is represented by increasing the insurance purchasing rate of per-

sons with adverse genetic information when a moratorium on genetic test results is

imposed. Moderate adverse selection is represented by a purchasing rate double the

normal rate (the normal rates are 0.05 per annum in a large market and 0.01 per an-

num in a small market), and severe adverse selection is represented by a purchasing

rate of 0.25 per annum in both large and small markets.

A moratorium on genetic testing results and family history causes premiums to

increase in two different ways:

(a) A new underwriting class forms, comprising persons in all sub-populations.

Persons in the higher-risk sub-populations now can purchase normal amounts

of insurance at ordinary rates. This will increase the premium rate. But this

is not adverse selection if their behaviour is just the same as that of persons in

the low-risk subpopulations.

(b) Further, insurance applicants may increase their purchase rate in reaction to

the information they have and the lower premiums they have been charged. In

this way, adverse selection arises.
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(i) In the model in Figure 6.2, an underwriting class C is represented by a set of insured

states. Let iP be the proportion of women in state i0 at age 20. Within each

underwriting class, the same premium rate ρC20+t as shown in Equation (7.27) should

be charged to cover the average risk using the Principal of Equivalence.

ρC20+t =

∑
j=1,3,5

(∑
ij∈C

iP

∫ t

0

i
sp

0,(j−1)
20 · iµ

(j−1),j
20+s · t−s

ipjj
20+s · iPj

20+s:45−s
ds

)

∑
j=1,3,5

(∑
ij∈C

iP

∫ t

0

i
sp

0,(j−1)
20 · iµ

(j−1),j
20+s · t−s

ipjj
20+sds

) (7.27)

In Equation (7.27), let i
tp

jj
x be the probability that a person in state ij at age x will

be in the same state at age x + t; and i
tp

jj
x be the probability that a person in state

ij at age x will remain in state ij for time t. We define iPj
x:n as the annual net rate

of premium for unit benefit for policyholders in state ij who bought insurance at

age x, with policy term n. iPj
20+s:45−s

is calculated according to the model in Figure

(6.2). We explain the computation of the probabilities i
tp

jj
x and i

tp
k,(j−1)
x as follows:

(a) The probability i
tp

jj
x is computed using equations analogous to Equation (7.23).

(b) If j = 1, the probability i
tp

0,(j−1)
x is computed using equations analogous to

Equation (7.24).

(c) If j = 3, the probability i
tp

0,(j−1)
x is computed as:

i
tp

0,2
x =

∫ t

0

i
sp

0,0
x · iµ0,2

20+s · t−s
ip22

20+sds. (7.28)

(d) If j = 5, the probability i
tp

0,(j−1)
x is computed as:

t
ip0,4

x =

∫ t

0

i
sp

0,2
x · iµ2,4

20+s · t−s
ip44

20+sds. (7.29)
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(j) With these rates of premium, policy values conditional on being in any state are

obtained using the ‘backward integration method’ as in Equation (7.22) and (7.24).

Then the expected loss in the entire market is the weighted average of these policy

values in each starting state, the weights being the corresponding proportions at

outset. If insurance is purchased exactly as assumed when calculating ρCx+t, there

is no adverse selection and the expected loss is zero. However, when there exists a

moratorium, adverse selection may occur, and more insurance might be purchased

than assumed. If we keep charging the premium rate ρCx+t, a loss emerges, which

is the cost of adverse selection. In order to recoup the loss, insurers would have to

increase all premiums by:

EPV of loss with adverse selection− EPV of loss without adverse selection

EPV of premiums payable with adverse selection
.

(7.30)

This quantity is our measure of the level of adverse selection.

7.3.2 Moratoria on Using Genetic Test Results

When there is a moratorium on genetic test results alone, either on all genetic test results

or adverse test results, it will partition the population into two underwriting classes: one

with persons not at risk, and being charged the ordinary rate, and another with family

history and being charged a higher premium rate. Tables 7.11 – 7.14 show the percentage

premium increases required to cover the cost of adverse selection, under moratoria on all

genetic test results or adverse test results respectively, with the baseline genetic test rate

(0.014 per annum between ages 20 to 40), for IPI markets with different DPs. The results

are fairly small, even negligible if we use 0.1% as the threshold, however we observe the

following:
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(a) Under the same circumstances, percentage premium increases are bigger with longer

DPs.

(b) The percentage premium increases are bigger in small market as expected.

(c) The costs of adverse selection are slightly higher under a moratorium on all genetic

test results than that under a moratorium on adverse genetic test results. This

is because tested persons who are not mutation carriers will be “exonerated” and

charged standard premiums.

(d) The impact on an IPI market is much smaller, compared with that on a life or CI

insurance market. The absolute losses caused by adverse selection in these three

markets are roughly of the same magnitude. However, the EPVs of the premiums

payable for unit benefit in an IPI market are far larger than the other two markets.

Table 7.15 and 7.16 show the percentage premium increases required to recoup the

cost of severe adverse selection, under moratoria on all genetic test results or adverse test

results, with a rate of genetic testing of 0.014 per annum between ages 20 to 60 or 0.035

per annum between ages 20 to 40, for an IPI market with different DPs. We observe

that if we extend the upper age limit of genetic testing from 40 to 60, the cost of adverse

selection will increase very slightly, while if we increase the genetic test rate from 0.014

per annum to 0.035 per annum, the cost of adverse selection will certainly increase as

well. However, none of these two scenarios cause substantial premium increases, even if

there is severe adverse selection.

7.3.3 A Moratorium on Using Family History and Genetic Test

Results

We already mentioned that a moratorium on family history and genetic test results will

lead to a single underwriting class, and this will cause the insurance premium to increase
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Table 7.11: Percentage increases in premium rates for IPI cover with DP 1 week, under

a moratorium on all genetic test results and adverse results respectively, for a market

operating between ages 20 and 65.

Deferred Adverse Market Rate of Purchase with Moratorium on using

Period Selection Size A Family History All test results Adverse selection

% %

Same as ‘normal’ 0.00000990 0.00000985

DP1 Severe Large Half as ‘normal’ 0.00001424 0.00001416

Nil 0.00007481 0.00007443

Small Nil 0.00042867 0.00041153

Same as ‘normal’ 0.00000397 0.00000393

DP1 Moderate Large Half as ‘normal’ 0.00000755 0.00000750

Nil 0.00004788 0.00004768

small Nil 0.00007646 0.00007494

in two different ways:

(a) A new underwriting class forms, comprising persons in all sub-populations. Persons

in the higher-risk sub-populations now can purchase normal amounts of insurance at

ordinary rates. This will increase the premium rate. But this is not adverse selection

if their behaviour is just the same as that of persons in the low-risk subpopulations.

(b) Further, insurance applicants may increase their purchase rate in reaction to the

information they have and the relatively lower premiums they have been charged.
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Table 7.12: Percentage increases in premium rates for IPI cover with DP 4 weeks, under

a moratorium on all genetic test results and adverse results respectively, for a market

operating between ages 20 and 65.

Deferred Adverse Market Rate of Purchase with Moratorium on using

Period Selection Size A Family History All test results Adverse selection

% %

Same as ‘normal’ 0.00001942 0.00001934

DP4 Severe Large Half as ‘normal’ 0.00002939 0.00002924

Nil 0.00012470 0.00012395

Small Nil 0.00070254 0.00067866

Same as ‘normal’ 0.00000836 0.00000828

DP4 Moderate Large Half as ‘normal’ 0.00001658 0.00001648

Nil 0.00008316 0.00008282

small Nil 0.00013465 0.00013238

In this way, adverse selection arises.

Table 7.17 shows the premium increases for different DPs. Note that since there

is only one underwriting class, the purchase rates in all sub-populations are the same

as normal rate (0.05 per annum in the large market and 0.01 per annum in the small

market). In all cases, we take the genetic testing rate to be 0.035 per annum between

ages 20 and 40. We observe the following:

(a) A new underwriting class causes much larger percentage premium increases than
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Table 7.13: Percentage increases in premium rates for IPI cover with DP 13 weeks, under

a moratorium on all genetic test results and adverse results respectively, for a market

operating between ages 20 and 65.

Deferred Adverse Market Rate of Purchase with Moratorium on using

Period Selection Size A Family History All test results Adverse selection

% %

Same as ‘normal’ 0.00002146 0.00002137

DP13 Severe Large Half as ‘normal’ 0.00003251 0.00003234

Nil 0.00013202 0.00013135

Small Nil 0.00074403 0.00071950

Same as ‘normal’ 0.00000927 0.00000922

DP13 Moderate Large Half as ‘normal’ 0.00001838 0.00001828

Nil 0.00008835 0.00008781

small Nil 0.00014346 0.00014120

adverse selection. The total effect of a moratorium on genetic test results and

family history certainly gives rise to much bigger costs of adverse selection than a

moratorium on genetic test results alone.

(b) In a small market, the cost of adverse selection is much bigger than the corresponding

case in a large market, although the absolute value is still very small.
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Table 7.14: Percentage increases in premium rates for IPI cover with DP 26 weeks, under

a moratorium on all genetic test results and adverse results respectively, for a market

operating between ages 20 and 65.

Deferred Adverse Market Rate of Purchase with Moratorium on using

Period Selection Size A Family History All test results Adverse selection

% %

Same as ‘normal’ 0.00002327 0.00002317

DP26 Severe Large Half as ‘normal’ 0.00003472 0.00003451

Nil 0.00014038 0.00013939

Small Nil 0.00078251 0.00075750

Same as ‘normal’ 0.00000990 0.00000985

DP26 Moderate Large Half as ‘normal’ 0.00001937 0.00001925

Nil 0.00009361 0.00009304

small Nil 0.00014972 0.00014496
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Table 7.15: Percentage increases in premium rates for IPI cover, under a moratorium on

all genetic test results and adverse results respectively, under severe adverse selection,

with genetic testing rate of 0.014 per annum, for a market operating between ages 20 and

65.

Deferred Market Rate of Purchase with Moratorium on using

Period Size A Family History All test results Adverse selection

Same as ‘normal’ 0.00000792 0.00000787

DP1 Large Half as ‘normal’ 0.00001127 0.00001121

Nil 0.00005611 0.00005577

Small Nil 0.00030027 0.00029105

Same as ‘normal’ 0.00001376 0.00001363

DP4 Large Half as ‘normal’ 0.00002058 0.00002045

Nil 0.00008579 0.00008544

Small Nil 0.00044579 0.00043208

Same as ‘normal’ 0.00001515 0.00001505

DP13 Large half as ‘normal’ 0.00002272 0.00002260

Nil 0.00009016 0.00008961

Small Nil 0.00046715 0.00046603

Same as ‘normal’ 0.00001697 0.00001686

DP26 Large Half as ‘normal’ 0.00002517 0.00002501

Nil 0.00009719 0.00009668

Small Nil 0.00049897 0.00049134
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Table 7.16: Percentage increases in premium rates for IPI cover, under a moratorium on

all genetic test results and adverse results respectively, under severe adverse selection,

with genetic testing rate of 0.035 per annum, for a market operating between ages 20 and

65.

Deferred Market Rate of Purchase with Moratorium on using

Period Size A Family History All test results Adverse selection

Same as ‘normal’ 0.00001879 0.00001869

DP1 Large Half as ‘normal’ 0.00002667 0.00002650

Nil 0.00013254 0.00013176

Small Nil 0.00071002 0.00069862

Same as ‘normal’ 0.00003264 0.00003244

DP4 Large Half as ‘normal’ 0.00004870 0.00004845

Nil 0.00020251 0.00020129

Small Nil 0.00105382 0.00103742

Same as ‘normal’ 0.00003593 0.00003571

DP13 Large half as ‘normal’ 0.00005374 0.00005341

Nil 0.00021281 0.00021153

Small Nil 0.00110519 0.00108869

Same as ‘normal’ 0.00004021 0.00004005

DP26 Large Half as ‘normal’ 0.00005939 0.00005903

Nil 0.00022935 0.00022797

Small Nil 0.00118127 0.00116005
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Table 7.17: Percentage increases in premium rates for IPI cover, under a moratorium on

all genetic test results and family history, with genetic testing rate of 0.035 per annum

between ages 20 and 40, for a market operating between ages 20 and 65.

Cost From Cost From Cost From

Deferred Market New Underwriting Severe Moderate

Adverse Adverse

Period Size Classes Selection Selection

% % %

DP1 Large 0.02780000 0.00053196 0.00022051

Small 0.02690000 0.00461888 0.00045369

DP4 Large 0.08667000 0.00095592 0.00044080

Small 0.08492000 0.00865876 0.00098525

DP13 Large 0.13498000 0.00103801 0.00048384

Small 0.13023000 0.00952810 0.00109825

DP26 Large 0.14052000 0.00120828 0.00056289

Small 0.13859000 0.01110835 0.00124785
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Chapter 8

Conclusions and Further Research

8.1 Conclusions

8.1.1 The Overall Impact of Genetic Information On the Insur-

ance Industry

In this thesis, our purpose is to assess the overall impact of genetic information on the

insurance industry using the “bottom-up” approach. This work started with detailed indi-

vidual studies of each genetic disorder of interest, and proceeded by aggregating all these

individual studies. We chose six genetic disorders, taken to have a significant impact on

insurance, including APKD, EOAD, HD, MD, HNPCC and BC & OC. All these disorders

have been studied before except MD. Our work therefore started with an individual study

of MD. We answered two questions: the insurability of insurance applicants, and the cost

of adverse selection. We concluded as follows:

(a) Underwriting based on genetic test results will render most insurance applicants car-

rying mutations uninsurable, with few exceptions. For mutation CTG250+ carriers,

with payment for MD arising at Stage II, all mutation carriers become uninsurable,
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while for mutation CTG250– carriers, they might be insured at a high age at an

increased premium rate. For both mutation CTG250+ and CTG250– carriers, with

payment for MD arising at stage III, they might be insurable at a high age and at

an increased premium rate. The premium rates for mutation CTG250+ carriers are

much higher than that for mutation CTG250– carriers, consistent with the higher

risks that mutation CTG250+ carries.

(b) Underwriting based on family history will still make most insurance applicants with

family histories uninsurable, with a few exceptions appearing at high ages.

(c) The costs of adverse selection are very small, chiefly because of the low prevalence

rate of mutations. In a small market the cost of adverse selection is higher than that

arising in a large market. But even in a small market, if family history underwriting

is still allowed, premium increases arising from adverse selection do not exceed

0.1% assuming a high rate of genetic testing and extreme adverse selection. A

moratorium on both genetic test results and family history will increase premiums

more noticeably, especially in a small market. However, in absolute terms, the

premium increases are still small.

(d) The conclusions we draw in respect of life insurance are very similar to those in

respect of CI insurance. However, under the same circumstances, the increase in

life insurance premium rates is lower than in CI insurance, and the potential costs

of adverse selection arising in a life insurance market are also lower than the same

case in a CI insurance market.

We then reviewed five other genetic disorders in Chapter 3. In Chapter 4, we con-

structed the Markov or semi-Markov model, applied the epidemiological information of

the relevant genetic disorders, and quantified the impact of genetic information relating

to all six genetic disorders on both a CI insurance market and a life insurance market.
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We then discussed the adequacy and efficacy of our model, in order to complete the

“bottom-up” approach.

In an insurance market, both insurance applicants and insurance companies are con-

cerned about genetic information. Therefore the impact of genetic information should

be assessed from both insurance applicants’ and insurance companies’ perspectives. For

the former, the question is about the insurability of insurance applicants, which has been

answered in each individual study, whereas for the latter, the question is about the cost

of adverse selection, which is answered in Chapter 4. We concluded as follows:

(a) Under the same circumstances, the cost of adverse selection is less in a life insur-

ance market than in a CI insurance market. The cost of adverse selection is more

noticeable in a small market than in a large market.

(b) Under a moratorium on genetic information, with moderate adverse selection, gen-

erally the cost of adverse selection is negligible (less than 0.1% of total premiums)

with few exceptions, which appears in the case of the small market. However, with

severe adverse selection, the costs of adverse selection become noticeable especially

in the small market.

(c) The cost of adverse selection under a moratorium on adverse genetic test infor-

mation causes a smaller premium increase than a moratorium on all genetic test

information. The reason is because tested persons who are not mutation carriers

will be “exonerated” and charged standard premiums. These people are therefore

removed from the underwriting class rated for family history, which then contains

a higher proportion of mutation carriers, so the premium charged in respect of this

class is higher.

(d) A moratorium on both genetic test results and family history will increase the

premium in two ways: consolidation of underwriting classes and adverse selection.
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The premium increases due to the former are noticeable in both large and small

markets. The premium increases arising from the latter are also noticeable. The

highest premium increases are about 2% in a CI insurance market and 1% in a life

insurance market both in the case of small market, extreme adverse selection and an

exceptionally high rate of genetic testing (0.035 per annum). Insurers’ chief concern

is that this increase in premium rates, especially in a small market, might drive

persons not at risk out of the market, cause premium rates to increase further, and

lead to the collapse of the entire market.

(e) As stated above, insurers’ concerns have been that the premium increases could lead

to market collapse, which is called an ‘adverse selection spiral’ (see Section 1.2.3).

Macdonald & Tapadar (2010) concluded that ‘no convincing evidence that adverse

selection is a serious insurance risk, even if information about multifactorial genetic

disorders remains private’. Therefore, we shall believe that our results are consistent

with this study and that that ‘adverse selection spiral’ is speculative and should not

incur significant costs for the insurance companies.

(f) In the “bottom-up” approach, we selected six genetic disorders to study in this the-

sis. These disorders are taken to have significant impact on the insurance industry.

We shall see that our selection is adequate. In terms of single-gene disorders, we

have included four typical autosomal dominant single-gene disorders. In terms of

single gene subsets of common disorders, we considered HNPCC, a hereditary type

of CRC, which is the third most common form of cancer and second leading cause of

cancer-related death; we also considered BC, the most common cancer, and OC, the

second most common cancer in women. Inclusion of more disorders does not nec-

essarily increase the cost of adverse selection, because diseases like FAP and MEN

are typical examples of cancer for which genetic testing and early treatment should

lead to substantially better outcomes. In many ways APKD is the least concerning
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disease to be included since the insured event (ESRD) is most often predicted by

ultrasound, not genetic test. Therefore, we shall trust that our selection of genetic

disorders is adequate and our results are robust. By including major example of

different types of single-gene disorders (the only ones for which adequate epidemi-

ology exist) we establish a credible order of magnitude for the financial impact of

all single-gene disorders, including the large number of extremely rare disorders

where epidemiology will never support a trivial modelling. In this sense, we have

completed the ‘bottom-up’ approach as far as we rationally can.

(g) In modelling the onset rates of these diseases, because of retrospective ascertainment

schemes, these rates are generally over estimated, which results in overestimated

premiums and potential cost of adverse selection. Even so, we find in Sections 4.2

and 4.3 that in most cases the cost of adverse selection is not noticeable, generally

because of the low prevalence of genetic disorders. Finding the exact answer to

the cost of adverse selection is not an easy job. We might reasonably take the

results presented in Chapter 4 as the upper bounds for measuring the cost of adverse

selection, so that we shall know the magnitude of genetic risk to insurers. Macdonald

(2003b) concluded that the increase in life insurance premium rates should be under

10% with a moratorium on using genetic testing results and family history, using

the “top-down” approach with very broad assumptions about the genetic morbidity.

In this thesis, we narrowed down this range to 1% in the life insurance market.

Therefore, we conclude that our results are consistent with other conclusions in

other studies and are reliable upper bounds for the cost of adverse selection.

(h) The genetic risk might cause concerns for insurers. However, we should not forget

the other factors, which life insurers benefit from, e.g. development of health care

and the general trend of mortality improvement. These benefits greatly overwhelm

the genetic risk. Therefore, in total, genetic risk should not have significant impact
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on the insurance industry.

(i) An interesting question to ask is that whether the marginal costs of genetic disorders

are sub-additive, additive or super-additive, as opposed to the overall cost of genetic

information. The question is hard to answer for the following reasons:

(a) The common assumption about the purchase rate is consistent in all individual

studies. However, various assumptions about genetic testing results were used

in the calculation. This has some justification from studies of genetic testing.

(b) An individual study of HNPCC in life insurance market has not been done yet.

Therefore it is hard to answer this question in life insurance market.

We summarise the cost of adverse selection for males and females from relevant

individual studies in Table 8.1 and compare the sum of these marginal effect with

the aggregate result presented in Chapter 4. The common assumptions for these

numerical results are: (1) large market; (2) normal insurance purchase rate for at-

risk persons; (3) severe adverse selection; (4) moratoria on using adverse test results.

The assumptions about the genetic testing rate varies and are listed in Table 8.1.

We can see some features in Table 8.1:

(a) Based on these results, we can see that the sum of marginal costs are 0.039%

and 0.035 for females and males respectively, whereas the aggregate results are

0.040% and 0.038% for females and males respectively.

(b) Although the sum of marginal costs are slightly lower than the aggregate cost,

the difference is small. This difference might be very sensitive to the changes

to genetic testing assumptions in the case of EOAD, HNPCC and BC & OC.

(c) Although we can not make definitive conclusion at this stage, we should expect

that the marginal costs should be almost additive, considering the fact that:
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Table 8.1: A table listing the marginal cost of adverse selection of six genetic disorders and

comparing the sum of marginal costs with the aggregate cost. The common assumptions

for these numerical results are: (1) large market; (2) normal insurance purchase rate for

at-risk persons; (3) severe adverse selection; (4) moratoria on using adverse test results.

Marginal Costs

of Adverse Selection

Genetic Disorders Genetic Testing Rate Females Males

% %

APKD 0.035 per annum between ages 20 and 40 0.018 0.017

EOAD 0.01 per annum between ages 20 and 60 0.004 0.004

HD 0.035 per annum between ages 20 and 40 0.010 0.010

MD 0.035 per annum between ages 20 and 40 0.005 0.004

HNPCC 0.1 per annum between ages 20 and 60 0.001 0.000

BC & OC 0.04 per annum between ages 20 and 60 0.001 0.000

Sum of the marginal costs 0.039 0.035

Overall Costs 0.035 per annum between ages 20 and 40 0.040 0.038

(1) it is very unlikely that one individual are at risk of more than one single-

gene disorders.

(2) it is rare that an individual at risk of single-gene disorders develops a family

history of multifactorial disorders, e.g. breast cancers, and selects against

insurers.

8.1.2 CRC and CRC Screening Program

In Chapter 5, we studied the reduction effect of CRC screening programs on the risks

associated with CRC, e.g. the onset rates and mortality caused by CRC, and consequently
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the effect on life insurance for both the general population and persons at risk of HNPCC.

We concluded as follows:

(a) The Bowel Screening Program has been proved to reduce mortality caused by CRC.

A meta-analysis, Hewitson et al. (2007), showed that participants allocated to

screening had a 16% reduction in the relative risk (RR) of CRC mortality (RR 0.84,

CI: 0.78-0.90).

(b) The CRC Surveillance Program also reduced significantly the onset rate of CRC

for persons at risk of HNPCC. Järvinen et al. (2000) concluded that in mutation-

positive subjects alone, the onset rate of CRC was reduced by 56%.

(c) Reduction in population mortality attributable to the Bowel Screening Program

leads to a decrease in life insurance premium rates as expected. The most significant

fall in premium rate (2%) appears in the case of males aged 50 seeking 10 years of

cover.

(d) With underwriting based on genetic test results, life insurance premium rates for

mutation carriers should be reduced if they choose to take part in a CRC Surveillance

Program. Most cases are insurable at increased premium rates, while female MSH2

mutation carriers are most likely to be declined with their premium rates being

between 300% – 400% times that for standard risks.

(e) Family history underwriting averages out the premium rates for mutation and non-

mutation carriers, and hence we can offer lower rates for persons carrying a family

history. Since most cases are insurable at increased premium rates with underwrit-

ing based on genetic test results, family history underwriting will make all cases

insurable at lower increased premiums.
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8.1.3 Ovarian Cancer and IPI

In Chapters 6 and 7, we studied the impact of genetic information relevant to OC on the

IPI market. We concluded as follows:

(a) The relative increase in premium rates for IPI are lower than those for life or CI

insurance with underwriting based on both genetic test results and family history.

Under the same circumstances, IPI applicants are more likely to be covered than

those seeking life and CI insurance.

(b) If underwriting is based on genetic test, most mutation BRCA1 carriers are insurable

at increased rates with DPs 1, 4 or 13 weeks. However, with DP 26 weeks, these

persons become insurable for low ages and short policy terms. For mutation BRCA2

carriers, all premium increases are below 50%, well within the typical limit for

insurability of 250% of the standard rates. Therefore, all cases for BRCA2 mutation

carriers would be insurable. Considering ascertainment bias, we reduce the detection

rates of OC by 50%. This leads to reduction of IPI premium rates for both mutation

BRCA1/2 carriers as expected. Most cases, including mutation BRCA1 carriers

seeking an IPI policy with DP 26 weeks, are insurable but at various levels of

increased rates.

(c) Under family history underwriting, because of the ‘averaging-out’ effect, the pre-

mium rates offered for persons with a family history are lower than those for known

mutation carriers. Most cases with a family history are insurable. Plausible reduc-

tion of detection rates of OC will allow more persons to be covered as standard

risk.

(d) Under a moratorium on genetic test results and family history, the costs of adverse

selection are all very small and negligible. Even in a small market with severe
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adverse selection and exceptionally high genetic testing rate (0.035 per annum), the

increase in premium is less than or slightly higher than 0.01%.

8.2 Further Research

We propose some suggestions for further research:

(a) Lu, Macdonald & Waters (2008) and Lu et al., (2008) studied the impact of genetic

information relevant to BC on the IPI market. Our work presented in Chapter 6

and 7 studied the similar topic relevant to OC. Following the methodology of the

“bottom-up” approach demonstrated in Chapter 4, in order to quantify the overall

impact on the IPI market, we also need to carry out more individual studies on

other genetic disorders of interest, e.g. HNPCC and FAP, before we proceed to the

overall impact of genetic information on the IPI market.

(b) In modeling insurance applicants’ purchasing behaviours in the insurance market, we

assume that in the case of moderate adverse selection, the purchase rate is doubled

and in the case of severe adverse selection, the purchase rate is 0.25 per annum.

These extreme assumption might be unrealistic, because consumers’ behaviours are

largely unknown, assuming that behaviour is governed by utility theory. Macdonald

& Tapadar (2010) is good start, but more research work needs to be carried in this

area.

(c) The causes of multifactorial disorders, e.g. heart disease and cancers, depend on

the interaction between genetics and environment. However, this interaction is still

not very clear to us. It will be very interesting to explore this area.

(d) Longevity risk has been an urgent issue for long-term annuity business. Apart from

looking for statistical evidence to analyse the trend of future mortality improvement,

266



the cause of death and longevity were explored from different perspectives, of which

genetics is one of them. The mechanism linking genetics and longevity is still largely

unknown and we would be interesting to see the interaction between genetics and

longevity.

(e) Modelling the impact of adverse selection in a economic framework has been dis-

cussed in Macdonald & Tapadar (2010) and Macdonald & McIvor (2009), especially

the speculative adverse selection spiral, which might lead to the market collapse.

Although we did not see any evidence of an adverse selection spiral in practice in

response to the increasing knowledge of genetics, we shall prove the impossibility of

adverse selection spiral in theory.

(f) In a broad sense, this thesis provides statistical evidence for underwriting insurance

applicants at risk of genetic disorders. Our work coincides with the direction of

‘evidence-based underwriting’. We have already seen that Sex Discrimination has

taken effect, which governs the insurance underwriting using gender as a risk factor.

Currently, the insurance industry has used many other risk factors in underwriting

practice, such as, age, smoking status, disability, life style, postcode, etc. Strong

evidences support the differentiation of market by gender and age. However, other

risk factors, e.g. life style and postcode, are less clear-cut. In addition, in consider-

ation of multifactorial genetic disorders, more statistical work should be carried out

in these areas in support of underwriting in practice.
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Appendix A

Intensity of Contracting Other

Critical Illness and Adjusted

Intensity of Death

The estimation of the intensities µ02
x and µ03

x has been provided by Gutiérrez & Macdonald

(2003). These intensities are used in Chapters 2, 3 and 4.

• Estimation of µ02
x

From (1), µ02
x is the sum of four intensities, µ02h

x , µ02c
x , µ02s

x and µ02o
x (Gutiérrez &

Macdonald, 2003).

1. For males:

µ02c
x = exp(−11.25 + 0.105x)(x < 51),

µ02c
x = 0.2591585− 0.01247354x + 0.0001916916x2

−8.952933× 10−7x3(x > 60),

with a blending by linear interpolation between ages 51 and 60.

By linear interpolation, we mean interpolation between both functions at each
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age, for example

µ02c
55 =

[(60− 55)µ1
55 + (55− 51)µ2

55]

60− 51
.

For females:

µ02c
x = exp(−10.78 + 0.123x− 0.00033x2)(x < 53),

µ02c
x = exp(−0.01545632 + 0.0003805097x)(x > 53).

2. For males:

µ02h
x = exp(−13.2238 + 0.152568x)(x < 44),

µ02h
x = exp(−0.01245109 + 0.000315605x)(x > 49),

with a blending by linear interpolation between ages 44 and 49.

For females:

µ02h
x =

0.598694

Γ(15.6412)
× 0.1531715.6412 exp(−0.15317)x14.6412.

In practice, the onset of a heart attack will not result in an instant CI benefit

payment. The patient has to survive for another 28 days after onset to get the

payment. Let ph
x be the 28-day survival probability after the first-ever heart

attack. We take 28-day mortality rates following a heart attack (qh
x = 1− ph

x)

from Dinani et al. (2000). For females qh
x = 0.21 at ages 20 – 80. The rates

for males are given in Table 1.

3. For males:

µ02s
x = exp(−16.9524 + 0.294973x− 0.001904x3 + 0.00000159449x3).
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Table A.1: 28-day mortality rates (qh
x = 1− ph

x) for males following heart attack.

Age qh
x Age qh

x Age qh
x Age qh

x

20–39 0.15 47–52 0.18 58–59 0.21 65–74 0.24

40–42 0.16 53–56 0.19 60–61 0.22 75–79 0.25

43–46 0.17 57 0.20 62–64 0.23 80+ 0.26

For females:

µ02s
x = exp(−11.1477 + 0.08107x).

Following a stroke, the 28-day survival probabilities ps
x, are taken from Dinani

et al. (2000). For males and females ps
x = (0.9− 0.002x)/0.9.

4. Following Macdonald, Waters & Wekwete (2003b) and Dinani et al. (2000),

we suppose that other minor causes of CI insurance claims amount to 15% of

those arising from cancer, heart attack, and stroke. Therefore:

µ02o
x = 0.15(µ02c

x + ph
x × µ02h

x + ps
x × µ02s

x ).

By summing all four intensities, we have:

µ02
x = 1.15(µ02c

x + ph
x × µ02h

x + ps
x × µ02s

x ).

• Estimation of µ03
x

Mortality µ03
x is based on the English Life Tables No.15 (µELT15

x ) with mortality

from causes leading to CI claims removed. We added back the 28-days mortality

following heart attack and strokes as follows:

µ03
x = (1− θx)µ

ELT15
x + (1− ph

x)µ
02h
x + (1− ps

x)µ
02s
x ,
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where for males:

θx = 0.0185408 + 0.0655723x− 0.00667150x2

+0.000223974x3 − 0.00000228356x4(x < 30),

θx = −2.80056 + 0.149759x

−0.00203616x2 + 0.00000881081x3(x > 44),

with a linear blending between ages 30 and 44,

For females:

θx = −0.0261291 + 0.104641x− 0.0118145x2

+0.000467135x3 − 0.00000579010x4(x < 30),

θx = −1.34514 + 0.0897216x− 0.00119978x2

0.00000486785x3(x > 35),

with a linear blending between ages 30 and 35.
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Appendix B

An Expanded CI Insurance Market

Model of MD

Figure 2.6 shows the C.I. insurance market model adopted from Gutiérrez & Macdonald

(2004). This model is deceptively simple in the case of MD. A more detailed expanded

model for computation is shown in Figure B.1:
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Figure B.1: An expanded semi-Markov model of insurance purchase and critical illness

insurance events for a person in sub-population i.
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Appendix C

Technical Details of Epidemiologies

of Genetic Disorders

The Appendix C presents the technical details of genetic disorders we reviewed in Chapter

3.

C.1 Adult Polycystic Kidney Disease (APKD)

The Section C.1 correspondents with Section 3.1 in Chapter 3.

C.1.1 Onset Rates of ESRD for APKD1 and APKD2 Mutation

Carriers

We use q(x) to denote the penetrance at age x. As mentioned before, three studies have

published penetrance estimates of APKD1 and APKD2 mutations: Johnson & Gabow

(1997), Hateboer et al. (1999) and Ravine et al. (1992). These papers gave graphs of

Kaplan-Meier estimates of the ‘survival’ probability 1 − q(x). In these cases, the event

of interest was the first time to occur of ESRD, or death by any cause. That is, death
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was not treated as a type of censoring. The approach we adopt is to fit suitable curves

to each Kaplan-Meier estimate, which we take to be estimates of:

S(x) = exp(−
∫ x

0

(µESRD
t + µDEAD

t )dt),

where µESRD
x is the onset rate of ESRD and µDEAD

x is the force of mortality. Then

µESRD
x on its own can be found using a suitable population mortality table. In Gutiérrez

& Macdonald (2007), English Life Table No. 15 is used to adjust. The fitted survival

functions based on time to ESRD or death in Hateboer et al. (1999) is:

For APKD1:

S(x) = 1− exp(−9.08371 + 0.231087x− 0.00138536x2)(x < 40)

S(x) = 23.0056

(
0.34561515.1344 exp(−0.345615x)x14.1344

Γ(15.1344)

)
(x > 55),

with blending by sine curve between ages 40 and 55, and for APKD2:

S(x) = 1− exp(−11.8117 + 0.25559x− 0.00136435x2)(x < 58)

S(x) = 24.7781

(
0.36406721.278 exp(−0.364067x)x20.278

Γ(21.278)

)
(x > 70),

with blending by sine curve between ages 58 and 70. The numerical results are plotted in

Figure 3.1.
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C.1.2 Post-ESRD Mortality

The following are mathematical expressions of the Gamma functions fitted to Kaplan-

Meier estimates of survival probability functions for ESRD patients receiving treatment,

either dialysis or transplantation, based on which the intensity µAPKD,Mortality
x,z is derived.

The fitted cumulative survival probability is

1− S(z) =
ab

Γ(b)

∫ z

0

tb−1e−atdt,

with different choices of the parameters based on different age ranges. Variable z denotes

the length of time patients have been in ESRD. The numerical results are plotted in

Figures 3.2 and 3.3.

Table C.1: Parameterizations of Gamma function fitted to cumulative probability of

duration of death following onset of dialysis or kidney transplant.

Ages at Onset State a b

20-44 Dialysis 0.0442787 1.36159

20-44 Transplant 0.0746419 2.54771

45-59 Dialysis 0.0902674 1.61700

45-59 Transplant 0.0249060 1.26870
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C.2 Early-onset Alzheimer’s Disease (EOAD)

The Section C.2 correspondents with Section 3.2 in Chapter 3.

C.2.1 Onset Rates of EOAD for PSEN-1 Mutation Carriers

Espinosa-Castañeda (2006) produced empirical results for the onset rate of EOAD, which

does not have a mathematical expression. Please refer to Espinosa-Castañeda (2006) for

more details.

C.2.2 Post-onset Mortality Rate for PSEN-1 Mutation Carriers

The mathematical expression of post-onset mortality rate µEOAD,Mortality
z for PSEN-1

mutation carriers is:

µ(z) =
[
0.012250264z1.37601 exp

(−0.00168128z2.37601
)]

,

where variable z denotes the length of time people have been in the EOAD state. The

numerical results are plotted in Figure 3.7.
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C.3 Huntington’s Disease (HD)

The Section C.3 correspondents with Section 3.3 in Chapter 3.

C.3.1 Onset Rates of HD

Since we assume the age of onset, X to have a N(µ, σ) distribution, its density function

is:

fX(x) =
1

σ
√

2π
exp

{
−1

2

(
x− µ

σ

)2
}

.

Denote its cumulative distribution function FX(x). So the onset rate is:

µx(µ, σ) =
fX(x)

1− FX(x)

=

1
σ
√

2π
exp{−1

2
(x−µ

σ
)2}

1− Φ(x−µ
σ

)
,

where Φ(x) is the C.D.F of the unit normal distribution. In our case the estimated

parameters are µ = 45.038543 and σ = 14.516176 (MacCalman, 2009). We are mainly

interested in ages between 20 and 60. The numerical results are plotted in Figure 3.8.

C.3.2 Post-Onset Mortality of HD Mutation Carriers

In Gutiérrez & Macdonald (2004), the probability of surviving for z years since onset of

HD, S(z), is defined as follows.

For age at onset 20–34:

1− S(z) =
0.1742194.11789

Γ(4.11789)

∫ z

0

t3.11789e−0.174219tdt.

For age at onset 35–49:

1− S(z) =
0.1772254.35064

Γ(4.35064)

∫ z

0

t3.35046e−0.177225tdt.
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For age at onset 50 and over:

1− S(z) =
0.1833724.1465

Γ(4.1465)

∫ z

0

t3.1465e−0.183372tdt.

The numerical results are plotted in Figure 3.9.
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C.4 HNPCC

The Section C.4 correspondents with Section 3.4 in Chapter 3.

C.4.1 Estimation of Onset Rates in HNPCC

The following are the fitted cumulative onset probabilities of contracting CRC for muta-

tion MLH1 and MSH2 carriers, males and females (Lu et al., 2007).

F (x)CRC
MLH1.m = 0.3406− 0.039040x + 0.001294x2 − 0.000009611x3(22 ≤ x ≤ 70),

in which we assume F (x)CRC
MLH1.m = 0 below age 22.

F (x)CRC
MLH1.f = 0.2193− 0.02570x + 0.0008584x2 − 0.000006075x3(23 ≤ x ≤ 70),

in which we assume F (x)CRC
MLH1.f = 0 below age 23.

F (x)CRC
MSH2.m =

exp (−10.92 + 0.3512x− 0.002579x2)

1 + exp (−10.92 + 0.3512x− 0.002579x2)
(20 ≤ x ≤ 68).

F (x)CRC
MSH2.f =

exp (−12.36 + 0.3498x− 0.002421x2)

1 + exp (−12.36 + 0.3498x− 0.002421x2)
(20 ≤ x ≤ 70).

The following are the fitted cumulative onset probabilities of contracting EC for

mutation MLH1 and MSH2 carriers, females only (Lu et al., 2007).

F (x)EC
MLH1 =

exp(−17.78 + 0.4975x1 − 0.003655x2)

1 + exp(−17.78 + 0.4975x1 − 0.003655x2)
(20 ≤ x ≤ 65).

F (x)EC
MSH2 =

exp(−4.307− 0.1973x + 0.008763x2 − 7.432× 10−5x3)

1 + exp(−4.307− 0.1973x + 0.008763x2 − 7.432× 10−5x3)
(20 ≤ x ≤ 65).
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The following are the fitted cumulative onset probabilities of contracting OECC for

mutation MLH1 and MSH2 carriers, males and females. OECC stands for extracolonic

cancers, including the cancers of stomach, urinary tract, small bowel, ovary (female only)

and brain (Lu et al., 2007).

F (x)OECC
MLH1.m =

exp (−30.6539 + 0.8128x1 − 0.0058x2)

1 + exp (−30.6539 + 0.8128x1 − 0.0058x2)
(20 ≤ x ≤ 70).

F (x)OECC
MLH1.f =

exp (−18.76 + 0.4747x− 0.003334x2)

1 + exp (−18.76 + 0.4747x− 0.003334x2)
(20 ≤ x ≤ 70).

F (x)OECC
MSH2.m =

exp (−7.1635 + 0.10027x− 2.3206× 10−4x2)

1 + exp (−7.1635 + 0.10027x− 2.3206× 10−4x2)
(42 ≤ x ≤ 65),

in which below age 42, the intensity corresponding to F (x)OECC
MSH2.m is extrapolated linearly

to the origin.

F (x)OECC
MSH2.f =

exp (−10.45 + 0.2501x− 0.001618x2)

1 + exp (−10.45 + 0.2501x− 0.001618x2)
(20 ≤ x ≤ 70).

The following are the fitted onset rates of CRC for populations, both males and

females (Lu et al., 2007).

µCRC
pop.m(x) = 0.001401

Γ(10.196)

Γ(8.196)Γ(x)

(
80x

892

)7.196 (
1− 80x

892

)

µCRC
pop.f (x) = 0.001092

Γ(8.207)

Γ(6.742)Γ(1.465)

(
80x

892

)5.742 (
1− 80x

892

)0.465

The following are the fitted onset rates of EC for populations, females only (Lu et

al., 2007).
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µEC
pop(x) =





exp(−17.32− 0.09261x + 0.004273x2 − 5.200× 10−5x3) (20 ≤ x ≤ 54)

−4.665× 10−4 + 2.446× 10−5x− 1.555× 10−7x2 (57 ≤ x ≤ 89),

blended linearly between age 54 and 57.

C.4.2 Estimation of Post-onset Mortality in HNPCC

We surveyed the following papers, in order to estimate the post-onset mortality associated

with CRC.

1. Watson et al. (1998)

In this case-control study, the study group was the sampled HNPCC patients and the

control group was the sporadic CRC patients. In the study group, CRC cases were

selected from 98 HNPCC families in the registries at Roswell Park Cancer Institute

and Creighton University. Amsterdam criteria is used to ascertain the HNPCC

patients. In the control group, the sporadic CRC patients were selected from the

tumor registry (TR) of a single hospital affiliated with Creighton University. Every

patient was staged at the time of diagnosis based on TNM system. The diagnosis of

CRC was treated as the start of survival analysis. The observation ends either by

censoring because of death, or development of CRC, or 10 years after the analysis.

The Kaplan-Meier methods were used in the survival analysis. We obtained the

original data from Dr. Patrice Watson, the principal author of Watson et al. (1998).

2. Sankila et al. (1996)

Sankila et al. (1996) is a case-control study, where the sampled HNPCC patients

represent the study group and sampled sporadic CRC patients represent the study

group. In the study group, 175 HNPCC patients from 39 families were ascertained
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by using Amsterdam Criteria. Genetic testing was carried out in these families. One

similar germline mutation of MLH1 has been found in 17 of these families, another

mutation has been found in 4 families. Of the 175 patients, 120 were from the

families with germline mutation in MLH1 gene. From 1953 to 1993, 14,261 sporadic

CRC patients were reported to Finnish Cancer Registry. Of These people, 14,086

patients younger than 65 year old represent the control group. The follow-up will

stop either at the date of death or emigration or on the closing day of December 31,

1993, whichever occurred first. No patient was lost from the follow-up. Cumulative

relative survival rates (RSRs) were calculated by dividing the observed with the

expected survival rates. The expected survival rates were derived from the sex, age

and calendar period-specific life tables of the general Finnish population. The main

conclusion drawn from this paper is that survival rate of HNPCC patients is better

than sporadic CRC patients.

3. Lin et al. (1998)

Lin et al. (1998) is a case-control study. The study group was composed of mem-

bers from seven MLH1 germline mutation families and five MSH2 germline mutation

families diagnosed with colorectal cancer from 1945 to 1991 and registered at the

Hereditary Cancer Institute (Creighton University). Colorectal cancer patients from

1965 to 1996, totalling 1,189, registered with the Creighton University tumor reg-

istry, served as the general population cohort. Ten-year survival was calculated using

Kaplan-Meier methodology. The result is that combined MLH1 and MSH2 ten-year

survival was 68.7% compared with 47.8% for the general population. Therefore

HNPCC patients indeed have a better survival probability than the sporadic CRC

patients.

4. Tomoda, Baba & Akazawa (1999)
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The authors compared the survival between 46 HNPCC patients (study group)

and 1185 sporadic CRC patients registered at the National Kyushu Cancer Center

between 1972 and 1995 (control group). Five-year survival probabilities were 78.1%

and 62.2% for study group and control group respectively. The survival probabilities

were calculated using Kaplan-Meier methods. The main conclusion is that the

prognosis of HNPCC patients is better than that of sporadic CRC patients, and it

agreed with the conclusion drawn in Sankila et al. (1996).

5. Bertario et al. (1999)

The authors examined 2,340 colorectal-cancer patients: 144 HNPCC patients (Am-

sterdam Criteria), 161 FAP patients and 2,035 patients with sporadic cancer. Data

on hereditary-cancer patients treated between 1980 and 1995 was collected in a reg-

istry. The 2,035 sporadic colorectal-cancer patients (controls) included all new cases

treated in the Department of Gastrointestinal-Tract Surgery during the same pe-

riod. Observed survival was estimated using the Kaplan-Meier method. Cumulative

survival probability was estimated at 5 years within each group. All patients were

staged using the Dukes system. In the sporadic group, 51% were early-stage cancers

(Dukes A or B) vs. 48.4% and 52.1% in the FAP and HNPCC groups respectively.

In the HNPCC, FAP and sporadic-cancer groups, the 5-year cumulative survival

rates was 56.9%, 54.4% and 50.6% respectively. The survival rates were calculated

using the Kaplan-Meier methods. The conclusion is that FAP patients, especially

HNPCC patients appear to have a better prognosis than sporadic CRC patients.

6. Elsakov & Kurtinaitis (2006)

The authors aimed to evaluate survival rates in Lithuanian HNPCC patients and

compare them with survival rates of sporadic cases arising from the general popu-

lation. This is a case-control study. The study group consisted of 8 patients from
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6 HNPCC families, diagnosed between 1995 and 1999. HNPCC patients character-

istic (age and stage) were used to trace the records of the Cancer Registry at the

same period to identify the control cases corresponding the required criteria. 263

sporadic CRC patients were found - 106 at stage II and 157 at stage III. The result

is that the 10-year survival was 87.5% in the HNPCC study group compared with

only 44.8% in the control group. The 10-year survival probabilities were calculated

using Kaplan-Meier methodology. The conclusion is that HNPCC patients with

confirmed MSH2 or MLH1 mutations diagnosed with stages II and III CRC have a

good 10-year survival prognoses compared with those from the general population.

7. Percesepe et al. (1997)

This study evaluated the clinical outcome of HNPCC patients with respect to that of

patients with colorectal cancer recorded in a population-based cancer registry. The

authors assessed survival of 85 colorectal cancer patients from 24 unrelated families

defined as having HNPCC according to the criteria of the International Collaborative

Group and a 5-year follow-up (cancer diagnosis from 1980-1989) were available. 377

sporadic CRC patients, registered from 1984-1986, with a 5-year follow-up, were

used for comparison. Overall, Colorectal cancer-specific 5-year survival rates were

55.2% and 42.5% for HNPCC patients and sporadic CRC patients, respectively. The

patients were stage-stratified and compared in terms of 5-year survival probabilities.

Stage II HNPCC patients exhibited a better prognosis than the corresponding cases

in the sporadic CRC patients. Other stages were incomparable due to the small

number of HNPCC patients. The survival rates were calculated using Kaplan-Meier

methods. The conclusion is both overall and stage II HNPCC patients showed a

survival advantage in comparison with sporadic CRC patients.

We surveyed a series of papers, in order to estimate the post-onset mortality associ-

ated with OECC, including cancer of stomach, urinary tract, small bowel, ovarian (female
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only) and brain. However, only three papers were located, which related to stomach can-

cer, small bowel cancer and ovarian cancer. As to HNPCC-associated urinary tract cancer

and brain cancer, we can not locate any paper.

1. Ovarian Cancer: Crijnen et al. (2005)

The aim of this study was to compare the survival after contracting OC between

HNPCC patients (study group) and sporadic OC patients (control group). A total

of 26 HNPCC patients with OC, as study group, were identified from the Dutch

HNPCC Registry. A control group (52 cases) matched for age, stage and year

of diagnosis was derived from the population-based Eindhoven Cancer Registry.

Kaplan-Meier methods were used to calculate the survival probabilities. The authors

found the cumulative 5-year-survival rates were 64.2 and 58.1% respectively, and

concluded that the survival rates was not significantly different between HNPCC

patients with OC and the sporadic OC patients.

2. Gastric Cancer: Aarnio et al. (1997)

The authors gathered clinical data relating to patients recorded in the Finnish HN-

PCC registry, in order to identify characteristics of HNPCC-associated gastric can-

cer. This study is not a case-control study. The data included 51 families with a

characterized mutation and/or that met the Amsterdam criteria. Of 570 members

affected by malignancy, gastric cancer occurred in 62. The overall 5-year survival

rate was 15%. The 5-year survival rate was 48% in cases in whom radical surgery

had been undertaken. Kaplan-Meier methods were used to calculate the survival

rates. However, this paper did not include the information about the 5-year survival

rate for the sporadic gastric cancer.

3. Small bowel cancer: Schulmann et al. (2005)
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The authors aimed to study the risk of HNPCC-associate small bowel cancer (HNPCC-

SBC). In the study, the information of 32 HNPCC-SBC patients were retrieved from

the databased of the German HNPCC Consortium based on the Amsterdam and

Bethesda criteria. The overall 10-year survival rate was 87%. Kaplan-Meier meth-

ods were used to calculate the survival rate. However, this paper did not include

the information about the 5-year survival rate for the sporadic small bowel cancer.

C.5 BC & OC

The Section C.5 correspondents with Section 3.5 in Chapter 3.

C.5.1 Onset Rates of Breast Cancer and Ovarian Cancer

The following are the fitted onset rates of breast cancer and ovarian cancer for mutation

BRCA1 and BRCA2 carriers (Gui et al., 2006).

µBC,BRCA1
x = 1.1874× 10−16e−0.21xx11.2,

µBC,BRCA2
x = 8.3108× 10−13e−0.1xx7.37,

µOC,BRCA1
x = 1.3318× 10−9e−0.03xx4.48,

µOC,BRCA2
x = 3.5915× 10−79e1.00xx56.95.

The following are the fitted onset rates of breast cancer and ovarian cancer for non-

mutation carriers (Gui et al., 2006).
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µBC,POP
x =





6.0425× 10−15e−0.0742x7.7305 (0 ≤ x ≤ 53)

0.00012 + 0.00018(x− 35)− 0.00005(x− 35)2 + 0.0000000529(x− 35)3 (x ≥ 53),

µOC,POP
x =





1.3567× 10−13e−0.035xx5.92 (0 ≤ x ≤ 45)

0.0001554 + 0.000029(x− 45)− 0.00000048(x− 45)2 (x ≥ 55).

(C.1)

C.5.2 Post-onset Mortality Associated with Breast Cancer and

Ovarian Cancer

The following are the graduated post-onset mortality associated with breast cancer and

ovarian cancer for each duration separately up to 6 years, and then to 6 years and over

(Gui et al., 2006).

0 ≤ Duration ≤ 1

µBC
x,d = 2.00266− 0.1507811x + 0.004264272x2 − 5.27552× 10−5x3 + 2.456224× 10−7x4,

µOC
x,d = exp(−2.71394 + 0.023657x + 0.1960156× 10−3x2).

1 ≤ Duration ≤ 2

µBC
x,d = exp(0.6037712037− 0.01500175x + 0.1111315× 10−3x2)

×(0.0474102 + 0.307835× 10−3x + exp(3.06993− 0.284105x + 0.00266558x2)),

µOC
x,d = exp(−9.6097147 + 0.3634146x− 0.005149204x2 + 0.2471276× 10−4x3).

2 ≤ Duration ≤ 3

µBC
x,d = exp(0.4971436820− 0.01500175x + 0.1111315× 10−3x2)

×(0.0474102 + 0.307835× 10−3x + exp(3.06993− 0.284105x + 0.00266558x2)),

µOC
x,d = exp(−10.1965014 + 0.3634146x− 0.005149204x2 + 0.2471276× 10−4x3).
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3 ≤ Duration ≤ 4

µBC
x,d = exp(0.3905161603− 0.01500175x + 0.1111315× 10−3x2)

×(0.0474102 + 0.307835× 10−3x + exp(3.06993− 0.284105x + 0.00266558x2)),

µOC
x,d = exp(−13.4719011 + 0.52647732x− 0.008227498x2 + 0.4354431× 10−4x3).

4 ≤ Duration ≤ 5

µBC
x,d = exp(0.352482834− 0.003144911x)

×(0.02902753 + exp(−0.1624326x + 0.00164027x2)),

µOC
x,d = exp(−14.1632748 + 0.52647732x− 0.008227498x2 + 0.4354431× 10−4x3).

5 ≤ Duration ≤ 6

µBC
x,d = exp(0.082950962− 0.000880887x)

×(0.02902753 + exp(−0.1624326x + 0.00164027x2)),

µOC
x,d = exp(−14.8546485 + 0.5384382x− 0.008227498x2 + 0.4354431× 10−4x3).

6 ≤ Duration

µBC
x,d = exp(0.082950962− 0.000880887x)

×(0.02902753 + exp(−0.1624326x + 0.00164027x2)),

µOC
x,d = exp(−14.8546485 + 0.5384382x− 0.008227498x2 + 0.4354431× 10−4x3).

C.5.3 Mortality Rates Excluding the Death Caused by BC and

OC

For females, the fitted function for rBCOC
x is

rBCOC
x =





2.0785× 10−17e−0.28x13.05 (0 ≤ x ≤ 54)

1.30144− 0.02850194x + 0.0001588314x2 (x ≥ 65),
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with linear blending of the two functions between ages 54 and 65 (Gui et al., 2006).
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Appendix D

Fourth Order Runge-Kutta Method

Fourth Order Runge-Kutta methods are one of the most commonly used methods to solve

ODE. We give a short summary here. See Press et al. (1988) for details.

Let y′ = f(x, y) and the initial value is that y(x0) = y0. Suppose h is the stepsize,

we have the following recursive equations:

yn+1 = yn +
1

6
h(k1 + 2k2 + 2k3 + k4)

xn+1 = xn + h,

where yn+1 is the approximation of y(xn+1), and

k1 = f(xn, yn)

k2 = f(xn +
1

2
h, yn +

1

2
hk1)

k3 = f(xn +
1

2
h, yn +

1

2
hk2)

k4 = f(xn + h, yn + hk3)

The analogy is that the next value yn+1 is determined by the previous value yn plus
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the increment between xn and xn+1, which is the product of stepsize h and an estimated

slope 1
6
(k1 + 2k2 + 2k3 + k4).
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