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Preface

Throughout the 1970s and 1980s the impact of lifestyle and medical advances on

longevity and the impact of AIDS on mortality brought to the fore the need for

the insurance industry constantly to monitor mortality trends. Given the long term

nature of life insurance contracts, early detection of moves in mortality is important

if the industry is to avoid selling a lot of bad business or even making significant

losses due to anti-selection. Life insurers need to keep an eye out for any area of life

from where a significant shift of their mortality or morbidity experience could arise.

Human genetics is one such area. Advances in genetic knowledge have been

largely funded on the promise of discoveries that will improve prevention and treat-

ment of diseases. The prevention of diseases is largely underpinned by genetically

determined knowledge of increased risk of the disease. Possible misuse of this predic-

tive function (real or perceived) of genetic knowledge to the disadvantage of insurers

is a central aspect of the current genetics and insurance debate. It is clear that the

decision on the use or non-use of genetics in insurance underwriting will not be made

by the insurance industry, at least not on its own. It is actually the fact that the

insurance industry has to prove how it would be significantly disadvantaged by any

misuse of genetic information.
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To contribute information for the debate this thesis aims to assess the costs of

insurance that are likely to arise under situations where use of genetic information

in underwriting is allowed, and when it is not. We focus on genetic information

related to breast cancer and ovarian cancer and to coronary heart disease and stroke.

For breast cancer and ovarian cancer genes called BRCA1 and BRCA2 have been

identified as associated with the risk of these two disorders. Significant research

on these genes has been published which allows us to make a relatively detailed

assessment on how insurance costs differ if use of this genetic information is allowed

or disallowed for underwriting purposes.

We await more advances on the genetics of coronary heart disease and stroke.

In the thesis we produce a model for use in calculating insurance costs associated

with these two disorders. We use the model to assess how genetic knowledge may

change these costs.
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Abstract

The aim of this work is to investigate the impact that the use of, or inability to

use, genetic information can have on the insurance against critical illness. First, we

aim to assess the effect of known gene mutations, BRCA1 and BRCA2, associated

with breast cancer and ovarian cancer on critical illness insurance underwriting. In

particular we aim to quantify the cost of any adverse selection that may arise from

insurers being disallowed the use of BRCA1 and BRCA2 status in underwriting

for critical illness insurance. Second, we investigate how mutations that may be

associated with heart disease and stroke and their risk factors can influence the

costs of critical illness insurance.

We present a Markov model for the onset of breast cancer or ovarian cancer. The

transition intensities are derived, using mainly U.K. population data, separately for

BRCA1 and BRCA2 mutation carriers, and for non-mutation carriers. This model

is used for an insurance applicant and her female relatives to derive a family history

model for breast cancer and ovarian cancer. From the family history model we

estimate the probabilities that women presenting specified family histories carry

mutations at BRCA1 or BRCA2. A model for events leading to claims under a

critical illness insurance policy is used to calculate the insurance costs depending on

mutation status, complete family history, or summarised family history. It is shown

that adverse selection can be controlled by limiting the sums assured that can be

obtained without disclosing genetic test. The results depend strongly on mutation

frequencies and penetrance estimates.

We also present a model for the onset of coronary heart disease, stroke and other

critical illness claim causes. The models explicitly include the pathways through dia-

betes, hypertension and hypercholesterolaemia and has transition intensities derived

xxi



separately for males and females, smokers and non-smokers and different body mass

index categories. The insurance costs under the effect of hypothetical mutations on

the transition intensities are calculated. It is shown that mutations that increase the

effects of the risk factors only would result in moderate changes to insurance costs.

However if mutations were to influence directly the risk of coronary heart disease

and stroke then this would lead to significant increases in the costs of insurance.
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Introduction

The 1990’s saw major advances in the science of human genetics. For the disorders

for which responsible genes were identified, this presented new ways of assessing the

risk of these disorders in individuals. This also presented a potential for advances in

the treatment of these disorders. The accelerated rate of linking specific genes with

diseases led to an expectation that for most diseases genes would soon be identified

which are responsible. This expectation is still largely unrealised.

These advances led to challenges and problems for various groups associated

with life and health insurance. These groups include the government, consumers

and the insurance industry. Central to the problems was the anxiety about how an

individual’s genetic information would be used. The government and some interest

groups were concerned that the insurance industry would use genetic information in

such a way that a class of people with poor genetic profiles would find it impossible to

get insurance. The insurance industry was worried about the prospect of individuals

using knowledge of their genetic profile to purchase insurance at lower costs than

would otherwise be possible. In December 1996 the U.K. government established

the Human Genetics Advisory Commission (H.G.A.C.) with the task of advising

the government on the ‘issues arising from developments in human genetics that

have wider social, ethical and/or economic consequences’. The H.G.A.C. set the

subject of the implications of genetic testing on insurance as a priority area for its

consideration. The U.K. insurance industry’s representative body, the Association of

British Insurers (A.B.I.) set up its own genetics committee to advise the association

and set about achieving the goal of retaining the use of genetic information where

it was considered necessary and convincing all concerned that the industry could do

that in a responsible manner.
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In the second section of Chapter 1, we discuss the context of genetics and insur-

ance in which bodies like the H.G.A.C. and the A.B.I. genetics committee present

their findings and recommendations. This falls within the wider context of assessing

risk for life and health insurance which we also discuss in Chapter 1.

In Chapters 2 and 3, we produce a model for Critical Illness (CI) insurance in the

presence of genetic information in respect of the genes predisposing to breast and

ovarian cancer (BCOC). We have chosen stand-alone CI as the insurance product

to model because in its simplest form, which we use, the onset of any of the covered

dreaded diseases triggers the final insurance payment and the expiry of the policy.

This makes CI easier to model than other forms of life and health insurance policies.

The genetics of BCOC is chosen for the model for the following reasons:

(a) The risk of BCOC is related to family history much more than any other factor,

which may indicate that genetics play a big role in familial BCOC.

(b) A lot of relevant information on the genetics of BCOC has already been pub-

lished, putting BCOC among the most comprehensively studied disorders, in

terms of genetics, to date.

(c) BCOC affect a significant proportion of the population at ages relevant for

insurance.

In Chapters 4 and 5 we produce a model for CI insurance in the presence of specific

information of risk factors for cardiovascular disorders. This model should enable

the assessment of the impact of genetic information on cardiovascular disorders as

it becomes available. We chose to model cardiovascular disorders for the following

reasons:

(a) The genetics of cardiovascular disorders is still largely unknown and there is

a need continuously to monitor the impact on insurance of the advances of

appropriate genetics as they become available.

(b) The risk of cardiovascular disorders is related to a lot of risk factors apart

from family history which may point to genetics playing a moderate role in

cardiovascular disorders.

(c) A large proportion of lives are affected by cardiovascular disorders at ages rele-

vant for insurance.
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In the rest of Chapter 1, we discuss the Markov models which we will use to

develop the models in Chapters 2 to 5. We also discuss the epidemiological statistics

relevant to the parameterisation of our models.
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Chapter 1

Background

1.1 Risk and life underwriting

Insurance products which provide payments on the occurrence of illness or death

are priced using some morbidity or mortality basis. Such a basis can be a sickness

table like the Manchester Unity Sickness Experience 1893–97 or a mortality table

like the English Life Table No:15. In most cases insurance companies make some

adjustments to such tables to derive a suitable basis.

The basis used for the pricing may assume that the population to be insured is

homogeneous in some respects like sex, age or smoking status. The basis usually

takes into account factors like expected future changes, the target market for the

policies and expected future withdrawals which may have an effect on the morbidity

or mortality rates. The basis represents the expected morbidity or mortality ex-

perience in a population which is still heterogeneous in many aspects. Differences

in race, geographical location, marital status, occupation, blood pressure levels or

alcohol consumption are a few examples of possible sources of this heterogeneity.

The risk to an insurance company is that the population it insures under a policy

has a morbidity or mortality experience which is significantly different from that

represented by the basis. This arises when the morbidity or mortality basis of the

policy can be statistically excluded from the host of experiences that may underlie

the experience of the insured population. This difference between the policy basis

assumptions and the insured lives experience may be due to features which fall into
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one of two groups: random or systematic errors. An insurance company can assume

correctly that the mortality or morbidity underlying the insured population can be

adequately represented by the mortality or morbidity basis used for the policies.

The differences that are then observed between the expected mortality or morbidity

(according to the basis) and the actual experience are random errors. However if the

company’s assumption is incorrect, the differences subsequently observed between

the actual experience and the expected experience are systematic errors as well as

random errors.

When a life presents an application for insurance it is important to establish if

the subpopulation to which the applicant belongs, as determined by some factors,

has an expected morbidity or mortality experience outside that encompassed by the

basis for pricing the policy. The process of assessment and deciding the appropriate

recommendation on the application is called underwriting. This aims to prevent

systematic deviations of the mortality or morbidity experience from that expected.

Underwriting is not aimed at preventing random errors.

1.1.1 Risk classification

Homogeneity of the lives insured at the same rate of premium is desirable because

it helps to maintain the solvency of the company. If the group of lives that are

insured is very heterogeneous then the lives who perceive themselves to be at low

risk may feel the uniform price they are paying for the cover is too high. In the

absence of compulsory insurance, these members may withdraw from the scheme

and the remaining members will be a worse risk to the company. An extrapolation

of this leads to a point where the solvency of the company is threatened. Cummins

et al. (1983) quote a moving story by John. H. Magee on how this happened in

early assessment companies. If the insured groups are heterogeneous in terms of the

risk, the level cost of insurance to all may be unaffordable to the low-risk subgroups

which would otherwise afford the insurance if it were priced based on their risk

subgroup alone. This is due in part to the differences in the level of risk and also

to the uncertainty associated with specifying the risk model for the heterogeneous

groups.
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Facing a heterogeneous population to be insured the level of heterogeneity re-

tained in, or homogeneity that can be assumed by, a basis is mainly a result of

balancing many requirements, some of them conflicting. We discuss, below, some of

the issues raised by Cummins et al. (1983).

Heterogeneity due to some sources may be disregarded for underwriting pur-

poses. There are mainly two reasons why this may happen. Firstly, the level of

heterogeneity in the population may not be sufficiently great to have a significant

financial impact. Secondly, a source of heterogeneity may be one perceived not to

influence the insurance buying behaviour of people. As an example of the second

type of source, heterogeneity due to sex in a population has a significant impact

on risks like morbidity or mortality but, given modest differences in perception of

risk between males and females, it is not perceived to influence someone buying or

lapsing insurance.

It may be felt that there is sufficient heterogeneity in the population to warrant

refining it into risk classes. This aims to split the original population into sub-

populations which are more homogeneous. In addition to, and closely related to,

the economic benefits of homogeneous groups, classifying the population may be

perceived to be equitable to the risk classes in that classes with higher expected

mortality or morbidity experiences are charged higher rates while classes with lower

expected mortality or morbidity experiences are charged lower rates. Classes with

similar expected experiences are charged similar rates. The following are a number

of problems associated with classifying populations:

(a) The subgroups resulting from classification will each generate less data and

therefore statistical estimates based upon them may not be very reliable. Large

populations are better for statistical estimation while homogeneous populations

are also better for statistical estimation. How the reliability of the estimates

from smaller homogeneous subpopulations compares with that of the estimates

based on the larger heterogeneous population depends on the balance of these

two effects.

(b) Another problem associated with risk classification in life insurance is that the

risk factors used for classification may not be proved to be causal of the event
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giving rise to the claim. Most of the risk factors just have associations with the

end point. In some cases the risk factors are used because they are proxies for

the real underlying cause of the endpoint.

(c) There is also the problem that while it will be fair to the classes of populations

with these risk factors, it may be unfair to some individuals if they have some

risk factors which are used as proxies for an underlying cause that they do not

have.

Another way of dealing with the problem of heterogeneity is by voluntary or reg-

ulatory elimination of classification by the source of heterogeneity. In cases where

society has felt that, although there may be enough statistical justification to war-

rant stratification by some factor, doing so would be unacceptable for ethical, social

or political reasons, the classification has not been used for underwriting. This has

been done for characteristics like race in such a way that the whole insurance in-

dustry does not use race in risk classification. Cummins et al. (1983) note that

the U.S Supreme Court judgement of 1978 (City of Los Angeles versus Manhart),

which ruled in favour of unisex rates for annuities, aimed to prevent discrimination

in conditions of employment because of sex. A consequence of the whole insurance

industry not using some classification factor for underwriting is that lives that feel

that they are at lower risk than the combined population have to buy the insurance

at the combined premium or go without insurance. Another result of this deliber-

ate action is that there is cross subsidy between subgroups within the population.

However, with uniform pricing the insurers may end up not collecting any infor-

mation concerning the various subgroups of people (since they will not be able to

use it for pricing), or they may not be allowed to collect such information. This in

turn will make it difficult to study effects of uniform pricing, like the cross subsidies

mentioned above.

Classification by genetic profile

The development of genetic science has revealed further stratification in the popula-

tion based on the nature of a genetic profile (genotype). An individual’s genotype is
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a characteristic like sex, diabetes status or occupation, which is used for underwrit-

ing risk classification. Individuals cannot alter their genotype, which they can do

with some characteristics. Innate factors of an individual may be partly or wholly

determined by the genotype. Genotype can also be considered as a risk factor for

disease endpoints. However it is rather more significant than other risk factors be-

cause, in some cases it has been found to be causal of, and not just correlated with,

the disease endpoints. We feel genetics brings to the forefront of underwriting the

issues previously encountered with other risk classification factors, but now at a

more important level.

(a) The most contentious issue concerns possible discrimination against people with

particular ‘adverse’ genotypes. It is argued that individuals whose genotype

puts them at high risk may be unable to get insurance when they may need it

most. This is argued very strongly in cases where insurance is vital for access

to services like healthcare.

(b) It may also be felt that the difference in risk for different genotypes may be

very high to warrant classification in order to avoid adverse selection. Points of

contention are on whether any differences in risk by genotype can be medically

and statistically proved, and on whether there is proof that this difference will

lead to adverse selection and whether any such adverse selection will pose a

significant financial threat to the insurance industry.

(c) There are also medical issues like the fear that requiring results of previous

genetic tests to be declared at time of application for insurance may dissuade

people from undergoing genetic tests that would otherwise be beneficial to them.

Our hope is that in the end a balance will be reached as to the level of this

stratification by genotype that is acceptable to society.

Macdonald (1997) reports on work aimed at providing quantitative measures to

help in the discussion on genetics and underwriting. The paper considered a general

model of insurance buying in the presence or absence of genetic information. He

noted that at that stage it was not possible to use any more complex models or less

speculative assumptions. Using that broad framework we intend to look at more

detailed models (with reference to specific disease endpoints and policy types) and
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more specific assumptions with respect to the risk due to given genotypes. In Section

1.2 we discuss the basic genetic theory we will use in this work but before that we

conclude this section with a discussion of some underwriting principles.

1.1.2 Underwriting

One of the main aims of underwriting is to help maintain the solvency of the company

by preventing anti-selection. This is achieved by ensuring that those accepted for

insurance under a policy do not have risk characteristics which are consistent with

a subpopulation whose expected morbidity or mortality experience is unacceptably

different from the experience expected according to the basis.

When a life applies for insurance the basic source of information for the under-

writer is the proposal form. This is filled out by the applicant. Insurance policies

which have a large protection component like whole of life insurance, critical illness

insurance, income protection and long term care will have forms requiring a signifi-

cant amount of information. Questions asked in these cases typically include some

on age, sex, occupation, weight, height, medical questions on previous illnesses, HIV

related aspects, family history of illness and smoking. The family history informa-

tion required normally relates to natural parents and siblings in relation mainly to

the occurrence of heart disease, stroke, cancer, hypertension and kidney disease. It

is usual to request the age at onset of disease for any affected relative and age at

death for those who died without any such illness. While the nature of the ques-

tions asked with respect to different types of insurance policies is generally the same,

more details tend to be required in cases of critical illness insurance than for term

assurance and whole life insurance. The proposal form used for term assurance is

normally the same as that for whole life insurance. Therefore similar information is

requested from the applicant in the first instance. Income protection policies often

require a lot of details related to the applicant’s occupation. The following are some

of the reasons that may explain the differences in the requested information:

(a) The value of detailed responses on medical history is less when predicting the

future lifetime of an individual than for predicting the future critical illness free

lifetime.
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(b) The nature of one’s occupation has a lot more relevance to the underwriter’s

assessment for income protection policies than it has for life insurance purposes.

(c) There may be a higher likelihood of applicants being dishonest in order to get

CI cover than for life cover. Detailed responses to medical questions may reveal

inconsistencies in the applicant’s responses.

In the case of annuities and policies with a high savings content like endowments

there is generally less information required on the proposal form than for protection

policies. Leigh (1990) discusses how in the early 1980’s there was considerable

pressure to shorten forms for endowment assurances written in association with

mortgages and that some short proposal forms did not even have a medical question.

Leigh (1990) notes that companies which offered policies without a medical question

were faced with many death claims even on policies which had only been in force

a matter of weeks. This lead to to revision of proposal forms to reinstate medical

questions.

Using the information on the proposal form the underwriter may be able to

recommend that the applicant be insured on the standard terms. Otherwise the

underwriter may require more information. They can ask for a General Practitioner’s

Report (GPR) or for a Medical Examination Report (MER). These are obtained at

a cost (£29.35 and £41.65 respectively in 1999) and are normally requested if the

sum assured applied for exceeds some set limits. These limits are referred to as the

medical limits. Table 1.1 shows typical medical limits for life insurance given by

Macdonald (1997). Due to the stricter underwriting requirements of critical illness

policies, it is expected that they would have medical limits lower than those in Table

1.1.

The structure of the GPR is such that it is used if there is disclosure about,

or expectation of, a history of a particular illness. In this way it differs from the

proposal form and also in the fact that the answers should be based on the medical

records. No examination is conducted and the practitioner is asked about what is in

the records concerning the queried illness, other medical details and previous illnesses

including information about family history. Concerning previous illnesses, like the

proposal form, the GPR requests details of the nature, duration and treatment of the
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Table 1.1: Typical medical limits for underwriting.

General Medical
Practitioner’s Examination

report report
Age next birthday £ £

up to 40 120 000 300 000
41-50 100 000 200 000
51-55 75 000 125 000
56-60 40 000 75 000
61-65 15 000 25 000
66-75 All All

illness but goes further than the proposal form by requesting details of the outcome

of the treatment. The MER is a more detailed document than both the proposal

form and the GPR. It typically contains a section in which questions are put to the

applicant by the medical practitioner and another section in which the examiner

answers questions based on a medical examination. It therefore does not rely much

on medical records. The questions answered on the basis of the examination cover

a wide range of possible abnormalities of body systems. One feature of the medical

examination report is that it asks for the examiner’s opinion on the insurability of

the applicant.

Based on these reports, or the proposal form for sums assured below the medical

limits, the underwriter can recommend that the applicant be accepted for insurance

on standard terms, on non–standard terms or be declined insurance.

Accepting a life for insurance at non–standard rates can take a number of forms.

The underwriter may retain the sum assured and extent of cover as requested and

quote a premium higher than the standard premium. The higher premium is derived

mainly using a numerical rating system. Any risk factor for the endpoint is rated

in terms of the percentage extra morbidity or mortality that it presents over that

assumed by the basis. For pure protection policies this would mean a percentage

increase in the premium very close to the percentage extra morbidity or mortality.

Proportionally smaller increases are made to the premium as the savings component

of the policy increases. It is noted here that the numerical rating is defined such
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that if the premium payable by the higher risk group is, say 135% of the standard

premium, then the higher premium is expressed as a rating of +35. A rating is

only interpreted in terms of the standard (or basis) premium used to derive it. The

underwriter may also rate the policy by retaining the standard premium and extent

of cover but putting a restriction on the sum assured. The form of the restriction

on the sum assured will reflect the nature of the risk factor. If the risk factor is

temporary then a decreasing debt may be applied to the sum assured such that any

claims made after a given time will receive the standard sum assured. A third way

of rating the policy is to restrict the extent of cover by excluding claims triggered

by some specified causes.

The underwriting philosophy may aim to accept at standard rates about 75% of

the applicants with approximately 20% being accepted at non standard rates. The

remaining 5% are likely to be declined. These stated proportions are in respect of

applications for critical illness insurance (see Pokorski (1999)) and the corresponding

values for income protection insurance could be similar. For life insurance, approx-

imately 90% to 97% percent of applicants are accepted at standard rates, about

2% are accepted at non-standard rates and the remainder are declined, deferred or

reassured (Leigh (1990)).

Applicants accepted at standard rates typically include those whose premium

ratings are below +25. However we note that, from their definition, these ratings

are influenced by the definition of the standard premiums. A high standard premium

leads to a higher proportion of applicants being accepted on standard terms.

1.2 Genetics

1.2.1 Cells, chromosomes and DNA

The nucleus of each cell in the human body normally contains 23 pairs of chromo-

somes. All the cells in the body originate from one cell. The nucleus of this first cell

consists of 23 single chromosomes provided by the sperm cell and 23 single chromo-

somes provided by the egg cell from the parents. The rest of the body’s cells are

then obtained from this first one by successive cell division.
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The chromosomes are numbered 1 to 23, numbered from the longest to the short-

est, but with chromosome 21 being shorter than chromosome 22. Those numbered

1 to 22 are called the autosomes and the 23rd is the sex chromosome. Chromosomes

are made up of DNA. Each chromosome consists of a sequence of genes, as well as

some zones which perform regulatory functions and also some other material. Sud-

bery (1998) defines a gene as a sequence of DNA that contributes to the phenotype

in a way that depends on its sequence. The term genotype refers to the physical

nature of the chromosomes in relation to the whole 23 pairs of chromosomes or to

some specific region (gene locus) or combinations of loci. The phenotype is the

expression (as an example disease status or hair colour) associated with some geno-

type. However any such expression may also be associated with another genotype

in which case it is called a phenocopy.

Apart from the DNA in the nucleus, the cell also contains DNA in the mitochon-

dria that are in the cytoplasm. This DNA is called mitochondrial DNA (mtDNA).

mtDNA is inherited from the mother and although it has not been implicated in

BCOC, CHD and stroke, it will be relevant in diseases resulting from abnormalities

in how the cell produces energy for metabolism, growth and movement from storage

molecules, and how that energy is produced for those ends.

DNA is made up of four bases: adenine (A), cytosine (C), guanine (G) and

thymine (T). The structure of genetic information is in the sequence of the bases.

The two antiparallel strands (called the ‘sense’ and the ‘antisense’ strands) are

paired such that an adenine base is always complementary to a thymine base, and

guanine is always complementary to cytosine. When two bases are joined they form

a nucleotide base pair. DNA serves a number of functions, chiefly:

(a) storing genetic information in its structured sequence,

(b) duplicating genetic information to enable it to be used for protein synthesis,

and

(c) duplicating genetic information for creating new cells.
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1.2.2 Duplicating genetic information for protein synthesis

Gene expression is the term associated with the duplication of genetic material and

its use for protein synthesis. The sequence of the DNA codes the amino acid sequence

for protein synthesis. However protein synthesis takes place outside the nucleus and

therefore the information contained in the DNA sequence has to be transferred to

the cytoplasm for use in the protein synthesis. This is done by producing from the

DNA in the nucleus, a replica in the form of RNA. This RNA is then transported

to the cytoplasm where the information is ‘decoded’ in the protein synthesis. The

process of producing the RNA from the DNA in the nucleus is called transcription

and the process of producing the protein molecules from the RNA in the cytoplasm

is called translation. Both the transcription and translation processes have risks of

mistakes in the transfer of information. We note that the main advantage in having

the RNA carry the genetic information from the nucleus to the cytoplasm instead

of having the DNA do the transfer itself is that DNA can pass on information to

many RNA copies and therefore amplify the protein synthesis process.

1.2.3 Duplicating genetic information for creating new cells

New cells are required for body growth and for passing on genetic information to the

next generation through reproduction. Mitosis is a process in which a cell divides

into two identical cells. This involves the DNA in the nucleus being duplicated

so that a second identical nucleus is created. For producing sex cells (egg and

sperm cells) another process, called meiosis, allows the production of cells with

half the genetic information contained in non-sex cells. In each parent, the meiosis

process includes a ‘crossover’ stage when the genes from the homologous pair of one

chromosome are shuffled such that the chromosome passed on to the offspring is

not identical to any of the two chromosomes of the parent. This is important for

enhancing variation.

Meiosis or mitosis can also result in some errors. There are about 3000 million

base pairs in 23 single chromosomes in each cell (Sudbery (1998)) involved in cell

division. With approximately 1027 mitotic cell divisions occurring in an average

human lifetime (Strachan and Read (1999)) it is clear that the chances of errors
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in the new genetic material are large. Most of the errors that actually occur are

rectified by DNA repair mechanisms but some remain. Any such mutations that

occur in the cells not involved with reproduction will be confined to that individual

but errors in the sex cells may be passed on to the offspring.

1.2.4 Mutations and disorders

The main distinction in types of errors is that some errors occur at chromosome

level while some occur at the nucleotide base level. Strachan and Read (1999) note

a number of chromosomal abnormalities, and the main ones are:

(a) the cell gaining or losing a complete chromosome,

(b) parts of chromosomes which break being re-joined to the wrong position on the

chromosome or to a different chromosome, and

(c) deletion of parts of some chromosomes.

Such abnormalities are usually so severe as to be incompatible with life or they

present a phenotype (like Down Syndrome) which may be distinct from birth. At the

nucleotide level the three main mutations are substitutions, insertions, and deletions

of single or clustered bases in the gene or chromosome.

Monogenic disorders are due to a defect in a single gene. They are classified

in three groups. Monogenic disorders are autosomal recessive if they require the

inheritance of mutations at a gene in both homologous chromosomes. Monogenic

disorders are autosomal dominant if they require the inheritance of a mutation at

a gene in only one of the homologous pair of chromosomes. In some disorders the

one mutation inherited may not cause onset but a second somatic (not inherited)

mutation at the homologous chromosome gene, or some other locus, will trigger the

onset. This is referred to as the ‘two hit’ hypothesis. Such a disorder will have

a pedigree similar to that of an autosomal dominant disorder. The third type of

single gene disorders are called X-linked because they are due to defects on the

X sex chromosome. We refer the reader to Sudbery (1998) for a fuller discussion

on the issues which make the study of single gene disorders complex. However we

point out four of them here. Firstly, the penetrance of a disorder gives a measure

of the proportion of lives who have the mutation who actually develop the disease.
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Complete penetrance means all lives with a mutation will develop the disease and

penetrance of, say, 50% by age 60 means that half of lives born with the mutation

are expected to develop the disease before age 60. The incomplete penetrance of

some monogenic disorders will result in pedigrees that deviate from the classical

autosomal dominant or recessive pedigrees. Secondly, expressivity means that the

severity of a disorder can be different in people with similar mutations. Therefore

a monogenic disorder whose severity in one individual is so low that the disease is

not noticed will lead to a distortion of the disease pedigree. Thirdly, phenocopies

may result if environmental factors can give rise to the same disease expression as

the gene mutation. This will also distort the disease pedigrees. Fourthly, genetic

heterogeneity occurs when alleles at more than one locus can individually cause

disease onset. Examples of genetic heterogeneity include breast cancer which can

be caused by mutations at the gene loci BRCA1 or BRCA2 and adult polycystic

kidney disease which can be due to mutations at APKD1 or APKD2.

Multifactorial disorders are due to both genetic mutations and environmental

factors. Monogenic disorders with incomplete penetrance may be considered as

complex disorders. More usually the term complex or multifactorial disorders is

used in cases where there is expectation of simultaneous action of two or more genes

with or without environmental interaction. There is no clear relationship between

genotype and phenotype and multifactorial disorders do not form clear inheritance

patterns.

1.2.5 Genetic testing and insurance

The availability of genetic testing allows mutations at given loci to be investigated

in lives that do not yet have the disease. In general this will only reveal mutations

which are inherited. There are three cases of concern which we consider in turn

below.

There are disorders which are monogenic, with neither genetic heterogeneity nor

phenocopies. Lives that do not inherit the mutations will not get the disease while

lives that do so may get the disease at sometime during their lifetime, should they

live long enough. The likelihood of mutation carriers developing the disease depends
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on the penetrance of the mutations. If the penetrance is such that the disease has

late onset, then at ages of insurance purchase, the life may not have developed

symptoms of the disease. Huntington’s disease is an example of such a disorder. We

will not consider such disorders in this work.

Most disorders are not of the type discussed above. Some monogenic disorders can

be caused by inherited mutations at two or more different loci. The disease endpoints

can also be caused by somatic mutations or by non-genetic causes. Therefore both

lives that inherit mutations and those that do not are at risk of disease. Typically

the risk is much higher for the former.

The third case for concern is that of multifactorial disorders. Lives presenting

for insurance may have genotypes associated with the disease, through pathways

yet unknown, or genotypes associated with known risk factors for the disease. The

lives, in addition, may or may not have known risk factors, possibly environmental,

which interact with the genotype.

The problem for underwriting is how to deal with any heterogeneity in the pop-

ulation introduced by the genetic information. This has to be done with particular

attention to a number of issues discussed below.

(a) The impact of heterogeneity given the type of insurance product concerned.

The heterogeneity may be more significant for critical illness products than,

say, whole life insurance products. The impact may be less on predominantly

savings products than on protection policies. Of particular importance are any

possible relations of this impact to policy conditions like the term of policy, the

sum assured, any freedom of the policyholder to increase or reduce the benefits,

and whether the purchase of insurance cover is compulsory or not.

(b) The impact of heterogeneity given the use of traditional risk classification, the

point being the adequacy of traditional ‘non-genetic’ risk classification factors

for correctly stratifying the population. Family history, usually in some limited

form, is currently used alongside a lot of medical and non-medical factors in risk

classification.

(c) Concerns of society given the impact of heterogeneity. We have seen before

how society may choose to use or not to use some classification factor. In
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this case, careful attention may need to be paid to the arguments both for

and against genetic based risk classification. These arguments would take into

account factors like the following:

1. The consumer requirement for the insurance. Concern is more likely about

risk classification which makes health insurance in North America, say,

unaffordable to high risk groups than when CI cover is unaffordable to the

same high risk groups. Currently in the UK, it seems there is no life or

health insurance product which is viewed as vital in the same way as health

insurance in North America.

2. The proportion of the population who may be adversely affected by ge-

netic based risk classification. Most of the monogenic disorders are rare

while multifactorial disorders are common. Relatively small proportions of

society may be adversely affected by genetic risk classification for mono-

genic disorders. This may result in the rest of society being indifferent to

their fate or their small proportion making it affordable for all to absorb

the costs of insuring these high risk groups. The situation may be differ-

ent for common disorders. The proportion of the population affected may

be sufficiently large that the remainder may not be willing to subsidize

the costs. However, it may not be desirable that such a big proportion of

society is left to meet their own higher costs of insurance.

Within this context, the A.B.I. genetics committee in December 1997 published

the industry’s voluntary code of practice (A.B.I. (1997)). The code detailed proce-

dures to be followed by insurance companies on the use of, and handling of, genetic

information. Among the principles set out in the code is that the insurers would

only use genetic test results that the applicant already had, and therefore would not

ask for tests to be done specifically for assessing the insurance application. In the

case where these test results were available, their use in the assessment for insur-

ance was restricted to cases where ‘their reliability and relevance to insurance’ was

established. They also set that applicants should not be offered lower than standard
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premiums on the basis of negative genetic test results. The H.G.A.C. also pub-

lished a report in December 1997 on the implications of genetic testing for insurance

(H.G.A.C. (1997)). The report also recommended that for a genetic test to be used

for assessment of insurance applications, a quantifiable association between the test

results and insurance costs should be established. They further recommended that

the government should set up an independent body to assess evidence for associa-

tions between various genetic tests and insurance costs. The Genetics and Insurance

Committee (G.A.I.C.) was set up for this purpose and the A.B.I. set out to submit

evidence for tests for mutations associated with seven disorders to be accepted as

reliable and relevant by the G.A.I.C. The A.B.I. set out to submit evidence in re-

lation to the disorders Huntington’s disease, myotonic distrophy, familial polyposis,

multiple endocrine neoplasia, early-onset Alzheimer’s disease, hereditary breast and

ovarian cancer and hereditary motor and sensory neuropathy. In 2000 G.A.I.C. ap-

proved the use of the genetic test results for Huntington’s disease with respect to life

insurance. In November 2000 the Human Genetics Commission (H.G.C.), a body

which advises government, launched a discussion document on the storage protec-

tion and use of personal genetic information titled ‘Whose hands on your genes’.

The document invited from the general public responses to questions on whether

insurers should be able to ask for genetic test results for underwriting and if so

whether there should be controls on the way the information is used. Views were

also invited on whether the type of insurance, type of genetic condition or level of

sum assured should affect the decision to use genetic information. In March 2001

the House of Commons Science and Technology select committee issued a report

in which they criticised the insurance industry’s lack of consistency with respect

to interpretation of, and compliance with, the voluntary code of conduct. The se-

lect committee report said that it was wrong for insurance companies to be using

genetic test results for underwriting when their relevance had not been verified by

the G.A.I.C. In response to the select committee report, and to some extent the re-

sponses to its discussion document, in May 2001 the H.G.C. published a document

suggesting that a moratorium of no less than three years be put in place on the use
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of genetic tests information by insurance companies. Shortly after, the A.B.I. an-

nounced an agreement it reached with the government to effect a 5 year moratorium

on the use of genetic test results except in the cases of very high sum assured and

in those cases using only the tests approved by G.A.I.C.

This work seeks to contribute to the task of assessing the relevance of genetic

test results to insurance costs. For the monogenic disorders of breast cancer and

ovarian cancer we aim to quantify the effect of heterogeneity due to mutations at two

gene loci, BRCA1 and BRCA2, with respect to CI policies. For the multifactorial

cardiovascular disorders, this work aims to contribute by producing a model that

can be used to quantify the effect of heterogeneity due to mutations that may be

identified in future. The difficulty of proceeding beyond a general model to assess

the implications of specific loci is due to the lack of comprehensive genetics on

cardiovascular disorders to date. On this problem, the H.G.A.C. wrote the following

in their 1997 report (H.G.A.C. (1997)),

“We conclude that it is unlikely that actuarially important genetic predictions of

common causes of adult death will be available and validated, for some time to come.

This is because the information linking genetics and multifactorial disease is at too

early a stage to make sound assessment of added risk.”

To quantify the impact of genetic test results on insurance costs, Macdonald

(1997) suggested the use of multiple state Markov models which capture levels of

genetic testing in the population, the insurance purchase behaviour of lives with

different genotypes, and the underwriting decisions for types of insurance policies.

Markov models and the model of heterogeneity are discussed next, in Section 1.3.

1.3 Continuous time Markov models

We will use various multiple state models in continuous time. In a multiple state

model, we can completely specify a model by the states and the transition intensities

between the states. We refer the reader to Waters (1984) who gives a good discus-

sion of multiple state models and the advantages of specifying a model in terms of

transition intensities.
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Norberg (1995) specifies an insurance model in terms of states and transition

intensities between the states. He defines payment functions on movement between

states or during sojourn in a state and shows that the moments of the present

value of the insurance payments can be obtained by solving a system of differential

equations.

In Norberg’s notation, for time t, we define

(a) bjk
t , a deterministic function specifying payments on movement from state j to

state k,

(b) Njk
t , a counting process for the number of transitions from state j to state k in

the time interval (0, t],

(c) bj
t , specifying the rate of payment, payable continuously while in state j and

(d) Ij
t , an indicator function which is 1 if the policy is in state j at time t and 0 if

not.

We then define the deterministic payment function Bj
t such that dBj

t = bj
tdt + ∆Bj

t

where ∆Bj
t is zero unless there is a lump sum payment at time t. A policy then

generates a payment function Bt such that

dBt =
∑

j

Ij
tdBj

t +
∑
j 6=k

dNjk
t bjk

t

We use the convention that payments made by the policyholder, premiums, are

positive while the payments made to the policyholder, the benefits, are negative. At

any time t ∈ [0, n], the present value of future benefits less future premiums is

1

vt

n∫
t

vτdBτ where vt = exp


−

t∫
0

δsds




for a deterministic force of interest δt. The qth conditional moment about zero V
(q)j
t

for a state j, of this present value is

V
(q)j
t = E





 1

vt

n∫
t

vτdBτ




q∣∣∣∣∣∣ Ij
t = 1


 .
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Norberg (1995) assumes that δt, bjk
t , bj

t , and the transition intensities µjk
t are piece-

wise continuous and by defining

µj·
t =

∑
k 6=j

µjk
t ,

shows that V
(q)j
t is a solution of the differential equation

d

dt
V

(q)j
t = (qδt + µj·

t )V
(q)j
t − qbj

tV
(q−1)j
t −

∑
k 6=j

µjk
t

q∑
r=0

(
q

r

)
(bjk

t )rV
(q−r)k
t (1.1)

with the boundary conditions V
(q)j
n = 0. A special case of the solution is that for

q = 1. The solution in this cases gives Thiele’s equations

d

dt
V

(1)j
t = δtV

(1)j
t − bj

t −
∑
k 6=j

(bjk
t + V

(1)k
t − V

(1)j
t )µjk

t . (1.2)

Macdonald (1997) proposes the use of Markov models which define insurance

products using the multiple state models as in Norberg (1995) but also including

the behaviour of insurance buying and insurance company underwriting behaviour

in the states and the transition intensities. Figure 1.1 shows the model used for

a homogeneous subpopulation by Macdonald (1997). We note that in figure 1.1

‘State 2’ (Not tested positive, Insured) includes lives that have tested negative and

subsequently bought insurance and those that have bought insurance without ever

taking a genetic test. By using similar models for different subpopulations (and

therefore different values of the intensities µjk
x+t), he was able to assess the relative

values of insurance costs between subpopulations.

Using the approach of Macdonald (1997) will enable us to calculate the moments

of present values of insurance products under various assumptions of

(a) heterogeneity in populations,

(b) various underwriting strategies to deal with this heterogeneity,

(c) levels of genetic testing and

(d) levels of adverse selection.
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Figure 1.1: Macdonald’s (1997) Markov model for insurance in the presence of
genetic testing, insurance buying and underwriting.

We note that the transition intensities between states are a very important part

of the model specification. We will use various actuarial, medical, genetic and epi-

demiological literature sources to derive the intensities for our models. We describe,

in the next section, the nature of measures available in the literature and how we

can derive transition intensities from them.

1.4 Epidemiological statistics

In this thesis we use results from a number of different medical, genetic and epidemi-

ological studies. We also do our own statistical analysis on some data sets collected

for medical and epidemiological purposes. Here we present the statistical theory of

the various measures we use from published studies as well as those we use to derive

our required measures from available data sets.

Epidemiological studies are mainly observational studies as opposed to experi-

mental studies. Experimental studies are investigations where the researcher has

some control over some factors in the study. Observational studies draw conclusions

from observation of the subjects of study without controlling factors. We do not dis-

cuss experimental studies any further since we do not use results from such studies.
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Observational studies fall into broad groups as follows:

(a) Longitudinal studies; also known as cohort studies. They observe a selected

population prospectively over some time period and monitor events of interest.

(b) Cross-sectional studies; such studies consider the characteristics of a selected

population at a fixed point in time.

(c) Case-control; in case-control studies, use is made of retrospective information

collected at a point in time.

1.4.1 Longitudinal studies

We consider two possible states for members of a population. These can be ‘healthy’

or ‘ill’, ‘alive’ or ‘dead’ or some other states. Of main interest are two types of

measures:

(a) the absolute rate of movement from one state to the other, and

(b) how such rates of movement compare in two related populations.

We consider these in turn.

Absolute intensities

The ‘alive’ or ‘dead’ states example can be represented by the simple two state

continuous time Markov model shown in Figure 1.2.

State A
Alive

State D
Dead

λx+t -

Figure 1.2: Representation of the two-state Markov model.

Being Markov, the rate λx+t depends on the current state occupied by the life at

age x + t (and not on any previous life history) and on the age x + t. λx is defined
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such that within a very short time interval, δt, of exact age x the probability of

dying is approximately proportional to δt × λx. Formally δtp
AD
x = δt × λx + o(δt)

where a function f(t) is o(t) if

lim
t→ 0+

f(t)

t
= 0.

λx+t is called the force of mortality. If the decrement was illness then λx+t would

be a force of morbidity. We refer to them as the transition intensities. Macdonald

(1996a) has shown that if we specify a model as above we can state

(a) the probability of remaining in State A, denoted tp
AA
x , is given by

tp
AA
x = exp


−

t∫
0

λx+sds


 ,

and

(b) the probability of moving from State A to State D between ages x and x + t is

tp
AD
x = 1− exp


−

t∫
0

λx+sds


 .

In general, expressions for probabilities of the type of tp
AA
x and tp

AD
x (called

occupancy probabilities), are obtained by considering the Kolmogorov differential

equations. The probability tp
AA
x given above is a solution to the Kolmogorov equa-

tion

d

dt
tp

AA
x = −tp

AA
x (λx+t)

which satisfies the boundary condition 0p
AA
x = 1. If we consider a general multiple

state model with transition intensities µgh
x+t of moving from state g to state h, the

Kolmogorov equations are given by

d

dt
tp

gh
x =

∑
j 6=h

(
tp

gj
x µjh

x+t − tp
gh
x µhj

x+t

)
for g 6= h.

If the transition intensities are known, the occupancy probabilities, tp
gh
x , can be eval-

uated by numerically solving the Kolmogorov equations subject to some boundary

conditions.
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Considering further our example of the two state model, Macdonald (1996a) shows

that for estimation if we assume that λx+t takes a constant value λ for 0 ≤ t < 1,

the maximum likelihood estimate of λ is

λ̂ =
d

v

where d and v are the observed values of a pair of random variables D (total number

of deaths or other decrements) and V (total waiting time) based on a sample drawn

from the distribution of (D, V). If we have N statistically independent and identical

lives, then

D =
N∑

i=1

Di and V =
N∑

i=1

Vi

where Di is the random variable denoting the number of transitions from the alive

state to the dead state for life i, and the random variable Vi denotes the waiting

time for that life. Observational plans can be devised to allow this estimate to be

computed. It requires evaluating the number of deaths for the sample and the central

exposed to risk. Estimates of intensities such as the one above can be derived for

any general multiple state Markov model and Macdonald (1996a) gives a discussion

of this.

If the central exposed to risk can not be calculated exactly as the sum of the

observed waiting times due to observational plan limitations the census method

approximation may be used. This uses numerical integration and the numbers of

lives observed at fixed points during the observation period (the census values) to

estimate the central exposed to risk.

Concerning measures of disease occurrence, Breslow and Day (1980) note that

the incidence rate is estimated by the number of occurrences during a specified time

interval divided by the total amount of observation time accumulated during that

interval. The time interval is normally one year and the incidence rate is expressed as

the incidence per 1000 person-years of observation. If an infinitesimal time interval

is assumed then the incidence rate is defined as the hazard rate. This is equivalent

to the transition intensity as given by λx+t.

A related measure often quoted in genetic studies is the lifetime or cumulative

risk. This is the probability of occurrence of an event within a lifetime (usually up
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to 70 or 80 years of age) starting from a given age. The lifetime risk of onset of a

disease by age x is therefore

= 1− exp


−

x∫
0

λsds




for starting age 0. The integral Λx =
x∫
0

λsds is the integrated hazard.

In the evaluation of the total time spent under observation (the exposed to risk),

studies based on national data use the estimated population in the country. How-

ever, only lives who are at risk should contribute to the total exposure. As an

example only women should contribute to the exposure for a disease like ovarian

cancer. As another example, Breslow and Day (1980) note that for countries with

high hysterectomy rates, one should adjust the population figures for women when

considering exposure for the purpose of estimating endometrial cancer incidence.

These are special examples of how the principle of correspondence should apply to

the lives contributing to the events and to those contributing to the waiting time.

Relative risk

Studies may be done with the aim of comparing how the incidence rate compares

between two populations which differ in respect of some covariate. This is important

in the search for causes and risk factors for disease. Relative risks are also useful in

determining the absolute incidence rates in subpopulations if we know the incidence

rate in the aggregate population.

Suppose we have two identical populations P1 and P2 except that lives in P1

have a risk factor which is not present in lives of P2. The relative risk (RR)x+t of

the disease for P1 in relation to P2 is defined as the ratio,

RRx+t =
λ

(P1)
x+t

λ
(P2)
x+t

of the transition intensities. The relative risk can therefore be calculated from

the forces estimated in the manner discussed before. In most practical cases the

populations under study are not identical in respect of risk factors that influence the

transitions intensities. The Cox proportional hazards model is one of several possible
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models used in prospective studies to estimate the relative risk in the presence of

many covariates. A discussion of the Cox model and model fitting is given by

Macdonald (1996b). The relative risk obtained from the simultaneous modelling of

many covariates is often referred to as the adjusted relative risk. This indicates that

the relative risk is adjusted for differences in the risk of disease due the differences

in the other risk factors which are not under consideration.

If we further suppose we know the absolute intensity λx+t for an aggregate pop-

ulation in which lives from P1 form a proportion px+t and the rest is made up of

lives from P2, we can write

λx+t = px+t × λ
(P1)
x+t + (1− px+t)× λ

(P2)
x+t

and therefore

λ
(P1)
x+t =

RRx+t × λx+t

1 + px+t ×RRx+t − px+t

and λ
(P2)
x+t =

λx+t

1 + px+t ×RRx+t − px+t

using the relative risk RRx+t.

The proportion px+t, and even the relative risk RRx+t are often assumed to be

constants over the whole age range or over some parts of it.

Odds ratio

Another measure used in the medical literature to represent the relationship between

the intensities between different populations is the odds ratio. It is defined in terms

of probabilities of the event in a fixed period of time. Using the two populations P1

and P2 as before, we define p(P1) and p(P2) as the probability of an event occurring

in populations P1 and P2, respectively, in one time interval. The odds for the event

happening in P1 and P2 are p(P1)

1−p(P1) and p(P2)

1−p(P2) respectively. The odds ratio (OR)

for P1 in relation to P2 is

OR =

p(P1)

1−p(P1)

p(P2)

1−p(P2)

.
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If we consider a short investigation period δt, then p(P1) and p(P2) are both very

small compared to 1. As a result

OR ≈ p(P1)

p(P2)
=

1− exp(−λ(P1) × δt)

1− exp(−λ(P2) × δt)
≈ 1− (1− λ(P1) × δt)

1− (1− λ(P2) × δt)
=

λ(P1))

λ(P2)
= RR.

Therefore the odds ratio approximates the relative risk if the time interval is

small and if the intensities are reasonably small.

1.4.2 Retrospective case-control studies

A prospective study is the preferred study design for the estimation of relative risk.

There are practical advantages, mainly time and cost, for a retrospective case-control

study to be used. A case control study considers a group of lives who have already

developed the disease and also establishes a group of controls who match the cases

but without the disease. Past information on these samples is collected and analysed

with respect to the disease.

The odds ratio is the measure that can be estimated from a case-control study.

The relative risk measure is affected by the number of controls chosen. We note that

a case-control study does not give any information on the actual levels of incidence

of disease in either the cases or the controls. The study samples are ascertained on

the basis of disease presence or absence. Therefore disease outcome is not random.

The past information on particular covariates is then recalled for both controls and

cases from the people themselves or other sources. The probabilities that can be

calculated from the study sample are

P (life has covariate |life has disease) and P (life has no covariate |life has disease).

These are ‘exposure’ probabilities. However the odds ratio is defined in terms of

‘disease’ probabilities such as

P (life has disease |life has covariate) and P (life has disease |life has no covariate).

It can be shown, using Bayes’ Theorem, that the odds ratio derived using the ‘expo-

sure’ probabilities is equal to the odds ratio derived using the ‘disease’ probabilities.

Breslow and Day (1980) note that this is the fact which makes it possible to estimate

the relative risk, using the odds ratio, in a case control study.
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In a study with many covariates, regression models like the logistic regression or

Poisson model are used to estimate the odds ratio. The simultaneous consideration

of covariates enables the odds ratio for a particular covariate to be adjusted for all

the other covariates in the same model. Otherwise samples will need to be stratified

to levels where no confounding covariates are present. Breslow and Day (1980) give

a discussion of these regression methods.

1.4.3 Cross-sectional studies

Cross-sectional studies give a snapshot picture of the covariates and disease profile of

a surveyed population. The data collected from such a study are ideal for estimating

the point prevalence of a disease. The point prevalence is the proportion of the

population who have the disease at the point of investigation. The point prevalence

or proportion described above can be used in estimating absolute incidence rates in

subpopulations given the aggregated population incidence rates and the RR.

It is important, in the use of prevalence estimates from cross-sectional studies,

to ensure that the sample on which the estimates are based is representative (in

respect of the relevant attributes) of the population to which they may be applied.

The proportion, the relative risk or the odds ratio, can vary by factors like age and

sex which may be of interest. Some large studies will give these measures estimated

for the different levels of the factors. However many studies may report only an

aggregate value of any particular measure.

1.5 Critical illness insurance

Critical Illness (CI) or Dread Disease cover is insurance in which a claim is triggered

by the diagnosis of some specified disease or the performance of some specified

medical procedure. In the United Kingdom, most CI policies cover the illnesses

listed below.

(a) cancer,

(b) heart attack,

(c) stroke,
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(d) coronary artery bypass,

(e) major organ transplant,

(f) chronic kidney failure,

(g) multiple sclerosis, and

(h) total permanent disability.

In addition there are more than 30 other conditions covered under CI insurance

policies by different insurance companies. There is consumer need for insurance

policies that give some benefit related to the onset of these illnesses. This is due

to the fact that the illnesses may require treatment which can be very expensive or

take a long period of time so as to cause the patient loss of income. Benefits may

be needed to pay for treatment, pay for nursing care, pay off a mortgage, or just

to make the difficult time of illness more bearable. CI policies partly meet these

requirements by paying a lump sum on diagnosis. The nature of benefits differ with

the type of CI policy and these types fall into three main groups.

(a) Stand-alone CI Insurance Policies: The full sum assured is paid out on proof of

diagnosis of any of the covered diseases. Stand-alone policies constituted about

14% of all new CI insurance policies sold in the UK in 1998 and about 15% of

all CI insurance policies in force at end of 1998 (see Dinani et al. (2000)). The

insured has to survive a period of between 14 and 90 days after diagnosis for the

claim to be paid out. The typical survival period is 28 days as used by Dinani

et al. (2000). The policies normally have a three month waiting period in which

claims can not be made.

(b) Accelerated Benefit: In this type of CI insurance policy the benefit is paid as an

acceleration of another benefit (like a death benefit) on the diagnosis of a covered

disease. This acceleration will be 100% if it pays out the whole sum assured on

diagnosis. Otherwise it will be a partial acceleration. For a 100% acceleration,

if the policyholder gets the sum assured on diagnosis of a disease, the policy is

no longer in force and on death they will not get any more payment. In the case

of partial acceleration, the death of the policyholder means the balance of the

sum assured will be paid to the beneficiary. Accelerated benefit CI insurance

policies formed 86% of all new CI insurance policies sold in the UK in 1998 and
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85% of all CI insurance policies in force at the end of 1998 (see Dinani et al.

(2000)). We note that this type of CI insurance policy may not need to have a

survival period requirement between diagnosis and payment of claim.

(c) Buy-back Benefit: This is a recent development which extends the accelerated

benefit type and allows the reinstatement of all or part of a death benefit on

survival of the dread disease that triggered a CI claim. The survival period is

usually between 1 and 4 years.

In 1990 Dash and Grimshaw (1990) presented a model for pricing stand alone and

accelerated CI insurance policies. The incidence rates of CI insurance claim events

were based on the U.K. population incidence of cancer, heart attack and stroke; these

being derived from the Morbidity Statistics from General Practice national survey

of 1981–82 and the Office of National Statistics cancer registration statistics. The

population incidence rates were adjusted for an insured population by multiplying

them by the ratio of insured lives mortality to the population mortality.

To derive the cost of accelerated CI insurance policies, they assumed that the

mortality, in lives with critical illnesses, due to other causes (non CI insurance claim

causes) is the same as the mortality of the lives without CI insurance claim causes.

The extra cost for CI over the mortality costs was given as

ix − kxqx

where

ix is the CI incidence rate,

kx is the proportion of all deaths in the population that are due to CI insurance

claim causes, and

qx is the population mortality rate.

They note that provision for other CI claim causes like kidney failure, major

organ transplants, paralysis, etc. can be handled by margins in the pricing. The

model is not developed separately for smokers and non-smokers and they suggest

that an adjustment for smoking can be achieved by rating premiums for smokers.

Dinani et al. (2000) published a base table, CIBT93, for use as a benchmark

for pricing and valuation bases for CI insurance policies. They also gave results
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of the CI insurance claims experience investigations for the period 1991 to 1997.

The base table gives the incidence rates for a stand alone CI policy as a sum of

the incidence rates of cancer, heart attack, stroke, coronary artery bypass grafting,

multiple sclerosis, kidney failure, multiple organ transplant and total permanent

disability. The incidence rates for various illnesses are derived from U.K. population

data like the O.N.S. cancer registrations, Morbidity Statistics from General Practice

1991–92 survey, the Oxford Community Stroke Project and others. The population

incidence rates were adjusted as follows:

(a) First-ever adjustment; to remove influence of recurrent episodes of illnesses.

(b) Sudden death adjustment; to include the influence of cases that will be unre-

ported due to sudden death.

(c) Overlap with other CI; to remove double counting that may occur due to dif-

ferent illness occurring to the same individual.

(d) Prevalence adjustment; to reduce the influence of the fact that the denominator

used in calculation the incidence rates is the total population of the U.K. when

it should be the disease free population.

(e) 28–day survival adjustment; to remove the proportion of lives who develop CI

but do not survive the 28 days required for a claim to be valid.

Provision is made for the incidence of other CI insurance claim causes like Parkin-

son’s disease, angioplasty, terminal illness and others. Their incidence rate is ex-

pressed as a percentage of the incidence rate of the base table. The total percentage

of these ‘other causes’ ranges from 5% for males (3.5% for females) at ages 20 to 24

to 25% for males (35% for females) at ages 75 to 80.

For accelerated policies the incidence rates were based on the Dash and Grimshaw

(1990) model. The proportion kx was derived from the O.P.C.S. ‘Mortality by Cause’

publications.
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Chapter 2

Genetic and family history models

for breast and ovarian cancer

2.1 Breast cancer

Breast cancer (BC) forms one of the biggest proportions of cancers suffered by

women. Of about 280,000 new cases of cancers recorded in females in the U.K.

between 1990 and 1992, approximately 92,000 were BC cases (O.N.S. (1999)). This

represents about a third of all new cancer cases. Souhami and Tobias (1998) note

that the prevalence is such that about one-half of all live female cancer patients are

suffering from BC.

The diagnosis of BC is mainly made by the withdrawal of fluid from the body for

examination (aspiration), the withdrawal of tissue (biopsy) or by an X-ray exami-

nation called a mammogram. Various treatment regimes are used at present. These

include surgery, radiotherapy, hormonal manipulation and chemotherapy. Souhami

and Tobias (1998) note that part of the investigation that is done before treatment is

started is aimed at excluding patients whose cancer has spread so much that they are

unlikely to benefit from treatment. To aid in such an assessment there are staging

systems to grade the cancers. The Manchester staging system given in Table 2.2 is

one such staging criterion. We note that such staging is only to distinguish cancers

by advancement at time of diagnosis. They do not represent different cancers.
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Table 2.2: Manchester staging system given in Souhami and Tobias (1998).

Stage Description

Stage I Breast alone involved with or without overlying skin.
Stage II Breast as for stage I and axillary nodes involved,

but mobile.
Stage III Skin invaded, fixed or ulcerated, or tumour

fixed to underlying muscle or pectoral fascia.
Stage IV Fixed axillary lymphadenopathy, superclavicular

involvement and/or distant metastases.

In all cases one of three prognoses is possible for patients under treatment. A

patient can survive the particular episode, after treatment, without recurrence of

BC. They can also survive the particular episode but with a recurrence of BC at a

later time or at some later time the patient dies, before recovering from this episode,

from BC (or other causes). Those who survive are also still at risk of developing

other cancers, alongside any other illness.

In the U.S.A. an average of 85.1% of patients diagnosed with BC between 1990

and 1992 survived for five years after diagnosis (Ries et al. (2000)). In the U.K

72% of women whose BC was diagnosed between 1986 and 1990 survived for five

years after diagnosis (Coleman et al. (1999)). Survival chances are higher for those

whose tumours are discovered before they spread. According to Souhami and Tobias

(1998), five-year survival times for Stage I diagnoses are about three times those of

Stage II diagnoses. This underlies the efforts to achieve early diagnosis of BC. The

UK introduced systematic BC screening in 1988 for all women aged 50 to 64 with

three–year intervals between screenings.

BC is a major cause of death in women. Of the deaths registered between 1990

and 1992 in England and Wales, BC was the cause of 5% of them in women between

the ages of 50 and 90 (O.P.C.S. (1991b), O.P.C.S. (1993b) and O.P.C.S. (1993c)).

There are a number of factors which are established to be associated with in-

creased risk of BC. The following are given by Spicer and Pike (1999);

(a) increasing age,

(b) early menarche,
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(c) late menopause,

(d) proliferative breast disease,

(e) family history of early onset, bilateral disease, or multiple first degree relatives

affected,

(f) BRCA1 or BRCA2 mutations,

(g) postmenopausal obesity,

(h) late first term pregnancy or nulliparity,

(i) race, North American or Western European,

(j) mammographic pattern of greater density, and

(k) ionizing radiation exposure.

For diseases affecting women only, first degree relatives refer to the mother and

full sisters (otherwise it includes the father and full brothers as well). Spicer and

Pike (1999) discuss these risk factors in greater detail and we will consider some of

them in later sections. However it is important to note that even though there are

many risk factors, Etkind and Sparano (1999) state that almost one half of all BC

patients have no identifiable risk factor.

The underwriting for CI policies will be considered. We will discuss the current

underwriting in terms of BC risk factors to enable us to assess the impact of genetic

risk factors. The BC genetic risk factors, BRCA1 and BRCA2, are also risk factors

for ovarian cancer (OC) and so we will consider breast cancer and ovarian cancer

(BCOC) together in our modelling. The next section discusses the characteristics

of OC.

2.2 Ovarian cancer

In the U.K, between 1990 and 1992 there were about 15,800 new cases of OC (O.N.S.

(1999)), which is 5.6% of all new cancer cases in women. The symptoms associated

with OC include gross swelling of the abdomen, vomiting, change in bowel function

and urinary frequency. A number of tests are used for diagnosis of OC. These include

physical examination, computerised tomography and magnetic resonance imaging,

X-rays, intravenous pyelogram, transvaginal sonography, serum CA 125 checks and
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cytologic examinations. Chi and Hoskins (1996) note that there are differences in

the sensitivity ( getting positive test results in people with the disease ) and the

specificity ( getting negative test results in people without the disease ) and discuss

the situations in which they should be applied. However, as Souhami and Tobias

(1998) discuss, early ovarian cancer is largely asymptomatic and the early symptoms

are usually vague and non-specific. This means that most OC diagnoses are made

when the tumour has spread. The treatment methods used for OC patients include

surgery, radiotherapy and chemotherapy.

An average of 51% of OC patients in the USA, diagnosed between 1990 and 1992,

survived for at least five years after diagnosis (Ries et al. (2000)). In the U.K. of

those OC patients diagnosed between 1986 and 1990, 29% survived for five years

after diagnosis (Coleman et al. (1999)). Survival times depend a lot on the extent

of the disease spread at the time of diagnosis.

U.K mortality by cause statistics, O.P.C.S. (1991b), O.P.C.S. (1993b) and

O.P.C.S. (1993c), show that between 1990 and 1992 11,705 deaths due to OC were

recorded in England and Wales. This is about 1.4% of all deaths recorded in women

in the same period.

Methods and completeness of registrations of cancers in countries have significant

influence on incidence and survival rates and the results of any comparisons made

between countries.

Factors associated with an increased risk of ovarian cancer include;

(a) increasing age,

(b) nulliparity,

(c) infertility,

(d) late age at menopause,

(e) history of breast cancer,

(f) mutations at BRCA1, BRCA2, MSH2, MLH1, PMS1, and PMS2 genes, and

(g) a family history of breast and/or ovarian cancer.

Parazzini et al. (1991) and Gajewski and Legare (1998) discuss these and other

factors. We will discuss the genetic risk factors as well as family history later in the

chapter.
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2.3 BCOC underwriting

Factors related to BC risk currently used in underwriting of CI policies are

(a) history of breast disease,

(b) family history of BC, and

(c) age.

Underwriting considers a history of lumpy breasts or discrete lumps. For an

applicant with a history of lumpy breasts, rating depends on whether a biopsy has

been done or not and if it has, what the results are. The biopsy report may give no

details of cancerous cells or may show that the cells are cancerous. The underwriter

makes a decision based on the report. For an applicant with a history of discrete

lumps, proof that the lumps are not cancerous is usually required for the application

not to be declined. If the applicant has never had a biopsy, then the assessment of

the application is postponed until such a report is available. Apart from a biopsy,

evidence from a mammogram is also used in assessing the applicants. Any applicant

who has had a previous BC episode is declined CI cover.

Family history is considered in terms of

(a) the number of first degree relatives affected,

(b) ages at onset of disease in the relatives, and

(c) the age of the applicant.

Higher ratings apply generally to younger lives with more first degree relatives

who have had onset of breast cancer at younger ages. The scale of ratings will differ

between companies. Table 2.3 compares the rating of BC family history based on

three guidelines used by companies in the U.K. Cases that are referred to the Chief

Medical Officer (C.M.O.) will be considered in more detail before the C.M.O. makes

an underwriting decision.

The literature we have reviewed does not suggest a relationship between the

presence of cysts on the ovaries with higher risk of ovarian cancer. However the

presence of cysts is often investigated and considered in the underwriting process.

The assessment depends on the results of any biopsy done on the cysts.
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Table 2.3: Examples of critical illness underwriting of breast cancer family history.

Applicant’s Number of Age at Company Company Company
Age Affected Diagnosis A’s Rating B’s Rating C’s Rating

Relatives or death
≤ 40 1 < 50 +150 +100 +0

50− 64 +50 +0 +0
> 65 +0 +0 +0

2 < 50 Decline Decline +50
50− 65 +150 +50 +0
> 65 +150 +0 +0

>2 < 50 Decline Decline CMO
50− 65 +150 +50 +50
> 65 +150 +0 +50

41− 50 1 < 50 +100 +100 +0
50− 64 +0 +0 +0
> 65 +0 +0 +0

2 < 50 Decline Decline +50
50− 65 +100 +50 +0
> 65 +100 +0 +0

>2 < 50 Decline Decline CMO
50− 65 +100 +50 +50
> 65 +100 +0 +50

> 50 1 < 50 +0 +100 +0
50− 64 +0 +0 +0
> 65 +0 +0 +0

2 < 50 +0 Decline +50
50− 65 +0 +50 +0
> 65 +0 +0 +0

>2 < 50 +0 Decline CMO
50− 65 +0 +50 +50
> 65 +0 +0 +50

CMO=refer to Chief Medical Officer
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Table 2.4: Examples of critical illness underwriting of ovarian cancer family history.

Applicant’s Number of Age at Company Company
Age Affected Diagnosis A’s Rating B’s Rating

Relatives or death
≤ 40 1 < 50 +100 +150

50− 64 +50 +50
> 65 +0 +0

> 2 < 50 +150 Decline
50− 65 +75 +150
> 65 +25 +150

41− 50 1 < 50 +100 +100
50− 64 +50 +0
> 65 +0 +0

> 2 < 50 +150 Decline
50− 65 +75 +0
> 65 +25 +0

> 50 Any Any +0 +0

Table 2.4 shows examples of CI policy underwriting in the presence of OC family

history.

The ratings used by particular companies will reflect the morbidity bases under-

lying the policies they are selling. The ratings are therefore bound to be different

especially as the morbidity basis used by a company may be based, to some ex-

tent, on the company’s own morbidity experience. However a common factor in CI

underwriting based on family history of BC is that it does not routinely take into

account

(a) the total number of first degree relatives,

(b) ages of first degree relatives not affected by BC,

(c) the actual nature of the relationship between the applicant and the first degree

relatives who have had BC or OC, and

(d) information on other (second degree) female relatives, like maternal and paternal

aunts.

The information for (a) , (b) and (c) is usually collected on the proposal form

completed by the applicant while information on other relatives is not normally

collected.
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2.4 Genetics of breast cancer and ovarian cancer

2.4.1 BRCA1 and BRCA2 susceptibility genes

Analysis of the occurrence of breast cancer in some large families showed that the

number of cancer cases in the families were much higher than what could be at-

tributed to chance or other known risk factors. This led to studies aimed at estab-

lishing the hereditary link between the cancers in these families. Claus et al. (1991)

observed that the risk of BC was much higher in women with two or more first

degree relatives with BC than women with fewer than two relatives with BC. This

supported the hypothesis that the distribution of BC in the general population in-

cluded a small number of genetic cases combined with a larger number of non-genetic

cases. Most studies found that the transmission of BC in families was explained best

by a genetic model in which a locus has an autosomal dominant mode of inheritance

(Claus et al. (1991)). The Cancer and Steroid Hormone (C.A.S.H.) study, reported

by Claus et al. (1991), is one of the most important of these studies. It is based on

a case-control study of 4,703 BC cases and its main results are summarised below.

(a) The transmission of BC is best fitted by the existence of a diallelic locus with

an autosomal dominant mode of transmission.

(b) The frequency of the high risk allele is 0.0033.

(c) If the age at onset of BC is represented by a step function, then the cumulative

probability of BC by genotype is as given in Table 2.5.

Table 2.5: Cumulative probabilities of BC under the C.A.S.H. model. (Source:
Claus et al. (1991).)

Cumulative probability of BC by age;
Genotype 20–29 30–39 40–49 50–59 60–69 70–79 80+
Aa/AA 0.0167 0.1444 0.3758 0.5477 0.6743 0.9452 1

aa 0.0002 0.0027 0.0138 0.0275 0.0497 0.0798 0.1254
Ratio 83.5 53.5 27.2 19.9 13.6 11.8 8.0

(d) The ratio of the hazard function for individuals with different genotypes is not

constant but depends on age.
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Table 2.6: Cumulative probabilities of BC for a woman with one first degree relative
with BC (under the C.A.S.H. model). (Source: Claus et al. (1994).)

Age of Age at onset of BC in relative
woman 20–29 30–39 40–49 50–59 60–69 70–79

29 0.007 0.005 0.003 0.002 0.002 0.001
39 0.025 0.017 0.012 0.008 0.006 0.005
49 0.062 0.044 0.032 0.023 0.018 0.015
59 0.116 0.086 0.064 0.049 0.040 0.035
69 0.171 0.130 0.101 0.082 0.070 0.062
79 0.211 0.165 0.132 0.110 0.096 0.088

Claus et al. (1994) produced tables for use in risk prediction for women with a

family history of BC. These were based on the C.A.S.H. model and Table 2.6 shows

one of these tables relating to a family history of one first-degree relative with BC.

They gave other tables which consider a family history of two first degree relatives

with BC, by various ages at onset, and also family histories including second degree

relatives (maternal and paternal aunts).

In 1990 the search for the location of the gene predisposing to BC (which had

been named BRCA1) was boosted by the publication by Dr M-C King and col-

leagues confining the locus to region q21 on chromosome 21 (Hall et al. (1990)).

The gene was cloned in 1994 followed in 1995 by the cloning of another BC and OC

predisposing locus, named BRCA2, on chromosome 13q12-13.

Gayther et al. (1998) state that BRCA1 consists of 5592 base pairs and

is predicted to produce a protein of 1863 amino acids. They also note

that the evidence points to BRCA1 being involved in transcription regula-

tion, being a secreted protein or being involved in sensing and/or repair of

DNA damage. In February 2002 the Human Gene Mutation Database website

(http://archive.uwcm.ac.uk/uwcm/mg/hgmd0.html) listed 318 types of BRCA1 mu-

tations with nucleotide (missense and nonsense) substitutions and small deletions

comprising 74% of these.

Early studies estimate high penetrance of BC in lives with mutations at BRCA1.

These studies were based on families selected for their strong family history of BC.

Estimation of penetrance using observations from lives selected not on the basis of
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Table 2.7: BC and OC penetrance of BRCA1 by age 70.

Source Study population Penetrance (95% confidence
interval in parenthesis)

BC OC
Easton et al. (1995) 33 families each with 0.850 0.633

at least four cases in
total of OC (any age)
or BC (under 60)

Narod et al. (1995) 145 families with at least 0.71 0.42
and three cases of BC (under 60) (0.53−0.82)
Ford et al. (1998) or OC (1 or more cases)

Struewing et al. (1997) Ashkenazi Jewish 0.56 0.16
(0.40−0.73) (0.06−0.28)

Antoniou et al. (2000) Families of 12 0.447 0.655
mutation carriers (0.22−0.76) (0.36−0.92)

Table 2.8: Penetrance of BRCA1. (Source: Ford et al. (1998).)

Age Penetrance (95% confidence interval in parenthesis)
BC or OC BC only

30 0.036 (0.00−0.14) 0.036 (0−0.14)
40 0.18 (0.00−0.36) 0.18 (0.00−0.35)
50 0.57 (0.33−0.73) 0.49 (0.28−0.64)
60 0.75 (0.53−0.87) 0.64 (0.43−0.77)
70 0.83 (0.65−0.92) 0.71 (0.53−0.82)

strong family history or lives selected from a general population has not produced

similar estimates. In Table 2.7 we show the BC penetrance of BRCA1 by age 70 in

a number of studies.

Ford et al. (1998) give the estimated penetrance of BC and BC or OC in BRCA1

mutation carriers based on work in Narod et al. (1995). These estimates are derived

from the C.A.S.H. model and are given in Table 2.8.

Ford et al. (1998) give the penetrance of BRCA2 as shown in Table 2.9.

Table 2.10 shows the estimated frequencies of BRCA1 and BRCA2 mutations

from various studies.
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Table 2.9: Penetrance of BRCA2. (Source: Ford et al. (1998).)

(95% confidence interval in parenthesis)
BC only OC only

Age Incidence Cumulative Risk Incidence Cumulative Risk
20-29 0.000633 0.006 (0.0−0.019) 0 0
30-39 0.0118 0.12 (0.0−0.24) 0 0
40-49 0.0210 0.28 (0.090−0.44) 0.000425 0.004 (0.00−0.011)
50-59 0.0318 0.48 (0.22−0.65) 0.00722 0.074 (0.0−0.15)
60-69 0.118 0.84 (0.43−0.95) 0.0236 0.27 (0.0−0.47)

Table 2.10: Estimated frequencies of BRCA1 and BRCA2 mutations.

Source Study Frequencies. (95% confidence
population interval in parenthesis)

BRCA1 BRCA2
Claus et al. (1994) C.A.S.H 0.0033
Parmigiani et al. (1998)(a) 0.0006 0.00022
Parmigiani et al. (1998)(b) 0.0008 0.0003
Parmigiani et al. (1998)(c) 0.00045 0.000165
Peto et al. (1999) Population 0.00055 0.0006

based
BC patients

Antoniou et al. (2000) 0.00064 0.00086
(0.00040−0.0009) (0.0006−0.001101)
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We note that frequencies given in Table 2.10 relate to the frequencies of the alleles

with a mutation. It should be taken into account that every woman has two alleles

each at BRCA1 and BRCA2 when calculating the distribution of the genotype. As

an example, the frequency estimates (a) by Parmigiani et al. (1998), given in Table

2.10, give the probability of a woman having one BRCA1 mutation and no BRCA2

mutation as 2× 0.0006× (1− 0.0006)× (1− 0.00022)2 = 0.001199.

For brevity we denote the frequency estimates (b) by Parmigiani et al. (1998),

that is a BRCA1 frequency of 0.0008 and BRCA2 frequency of 0.0003 as ‘high’

mutation frequencies. We also denote frequency estimates (c) by Parmigiani et al.

(1998), for which BRCA1 frequency is 0.00045 and BRCA2 frequency is 0.000165

as ‘low’ mutation frequencies. We will use this notation subsequently but note that

compared with the later BRCA2 frequency estimates (see Peto et al. (1999) and

Antoniou et al. (2000)) the BRCA2 frequency values used in our ‘high’ and ‘low’

frequency scenarios are lower.

BC or OC onset is assumed to be due to the presence of two mutations (the ‘two

hit hypothesis’). This can happen in one of three ways:

(a) A woman inherits mutations at both alleles of the BRCA1 or BRCA2 locus.

The gene function is lost in every cell of the woman’s body and is presumed to

be associated with an extremely high risk of cancer.

(b) A woman can inherit a mutation at a BRCA1 or BRCA2 allele and hence in all

cells in the body one allele at the locus is mutant and the other is normal (wild

type). The woman can then have a mutation at the wild type allele of the same

locus or at another gene locus. This new mutation is a somatic mutation and it

will be confined to the cell in which the mutation has taken place but the cells

that are derived from the mutant cell by cell division will have two mutations.

This scenario presents a high risk of cancer.

(c) A woman can be born with both alleles normal and then suffer a somatic muta-

tion at one allele in a cell. If that cell or any cells derived from it by cell division

further has a mutation at the wild type allele, then both alleles will be mutant.

The cells affected become potentially cancerous.
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Cancer due to process (a) or (b) above is called hereditary cancer while that due

to process (c) is called sporadic cancer. Claus et al. (1996) estimate that about 7%

of BC and about 10% of OC cases in the general population are hereditary. Familial

cancer includes some sporadic cases.

2.4.2 BCOC genetics in clinical practice

In a clinical setting genetic testing for the presence of mutations is done if the

family history presented is associated with a very high probability that the woman

has a mutation. The results like those given by Claus et al. (1994) are meant to

help clinicians make this assessment of risk. Since the discovery of BRCA1 and

BRCA2, models to help in assessing carrier probabilities using the penetrance and

frequencies of these two genes have been devised. Parmigiani et al. (1998) give

one such model which is an improvement of the C.A.S.H. model since it includes

more relatives, unaffected relatives, BRCA1, BRCA2 and more information in its

modelling of the risk. The information normally required for the purpose of such

clinical risk estimation includes

(a) the number of blood relatives who have had BC and/or OC,

(b) their precise relationship to the woman whose risk is being assessed ( usually

called the proband),

(c) the ages at which they contracted cancer, and

(d) the clinical facts about their illness.

The amount of information actually used depends on the sophistication of the

model being used. This will also have an impact on the accuracy of the results. The

accuracy of the facts used is very important and medical records of relatives may

have to be checked to validate the given information. However a significant amount

of the information may have to be based on memory and thus compromise the results.

The output from using the models in risk assessment is usually the probability that

the woman carries BRCA1 or BRCA2 mutations. Based on that information, if it is

necessary, and following the required social and ethical procedures (like counselling),

a genetic test can be done. Aspects like counselling are very important parts of

genetic testing procedures and regulations. This is because the results will have
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implications for other blood relatives as well as medical implications for the woman

tested, whether the test result is positive or not. A positive result will mean the

need for preventative measures and monitoring. A negative result does not mean

the woman cannot develop BC or OC. There is a need for careful analysis of the

results which takes into account the following factors.

(a) Little is known about the function of the proteins encoded by BRCA1 or

BRCA2.

(b) Most of the hundreds of known mutations have only been observed in one family.

This means that the risks of BC or OC in lives with the rare mutations may

be very different from the published estimates whose calculation was based on

lives with the common mutations.

(c) The genetic test used may not test for all known mutations or test the whole

gene. This is due to the high costs of the extensive tests.

(d) The test can not search for unknown mutations and there are, most likely,

mutations in BRCA1 or BRCA2 still unknown.

(e) There are other oncogenes affecting tumour formation, such as P53 and TPEN.

(f) There are almost certainly other breast and ovarian cancer genes as yet undis-

covered.

2.4.3 BCOC genetics applied to investigations into the im-

pact of BCOC on insurance

We note at this stage that other work that has been done to assess the impact of BC

and OC on insurance were based on family history models. Lemaire et al. (2000)

constructed the double decrement model shown in Figure 2.3 such that each age

and possible family history are represented by one such model. The probabilities of

developing BC (or OC) were derived from the risks of BC (or OC) for lives with a

particular family history as given in Claus et al. (1994).

Based on this model, in order to investigate the costs of adverse selection the

authors needed to make assumptions about the probability of a positive genetic test

result for a life with a specified family history (see Subramanian et al. (1999)). We
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Dead, from causes
other than BC

Dead, affected
with BC

Alive without BC Alive with BC-

? ?

Figure 2.3: Double decrement model for BC used by Lemaire et al. (2000).

will approach the modelling slightly differently. We need to develop models which

are based on the genotype of the applicant rather than on the family history. For

BRCA1 and BRCA2, assuming that genotypes are distinguished just by presence or

absence of mutations, this leads to a small number of possible genotypes (and hence

a small number of separate models). In a model based on genotypes we can state

precisely the result that would be obtained in a genetic test (save for inefficiencies

of the testing methods). Therefore we develop our model to evaluate the carrier

probabilities associated with given family histories.

2.5 Determining carrier probabilities

As it is with medical practitioners, we aim to establish the probabilities that a woman

presenting a given family history of disease has a mutation at BRCA1, BRCA2 or

at both loci. We also need to assess how the use of summarised family history,

like giving just the total number of relatives affected, compares with a much fuller

history in determining these carrier probabilities. This is motivated by the fact that

the family history used for underwriting currently is almost always summarised or

incomplete, at least in the way it does not consider the unaffected relatives and

the total family size. The models and results in this section and those in Chapter

3 have been presented in two papers co-authored by Angus Macdonald, Howard

Waters and myself which have been accepted for publication in the Scandinavian

Actuarial Journal (Macdonald et al. (2003a) and Macdonald et al. (2003b)). The

notation used here will follow that of these papers.
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We consider an applicant at age x. The family history they can present consists

of details of relatives affected with BC or OC prior to the time of application. For

each relative this means the life history of BC or OC from birth to their age when

the applicant applies for insurance. We are not primarily interested in the BC or

OC history of the applicant before they apply for insurance. The underwriting

requirements for CI policies are such that a life with a history of BC or OC is not

insurable. For the relatives we are only interested in the life history of BC and OC.

Any other previous illness does not contribute to family history in this regard.

2.5.1 Definitions

Family structure

Our starting point is the birth of the potential applicant for insurance. The smallest

possible family is the applicant and her mother. The applicant can also have sisters

and aunts. We define ‘family size’ as the number of female relatives including the

applicant, her mother, her sisters and her aunts, and denote it M . The family size

is at least 2. Both maternal and paternal aunts are included, but we omit cousins,

females of the grandparents’ generation and beyond, and all male relatives.

For simplicity, we assume that all the applicant’s sisters are the same age as she

is, and the mother and all aunts are 30 years older. A family structure specifies, in

addition to the applicant and her mother, which of the remaining M − 2 relatives

are sisters and which ones are aunts. The number of possible family structures, in

a family of size M , is then M − 1.

We label the family members i = 1, 2, . . . , M , and adopt the convention that the

applicant is always the first family member, and her mother the second. In a family

of size M , we denote the age of the ith member at the birth of the applicant xi

(x1 = 0 and x2 = 30 always and each xi for i > 2 is either 0 or 30), so the family

structure is represented by M and the vector:

X = (x1, x2, . . . , xM) (2.3)

or the pair (M,X). The omission of male relatives means that we ignore male breast

cancers.
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Table 2.11: The population frequencies of the four genotypes (0, 0), (0, 1), (1, 0) and
(1, 1), given the low and high estimates of mutation frequencies from Parmigiani
et al. (1998).

.
Allele Mutation Population Frequency of Genotype

Frequencies (0,0) (1,0) (0,1) (1,1)
Low 0.998770525 0.000899501 0.000329675 0.000000299
High 0.997801689 0.001598401 0.000598951 0.000000959

The genotypes of family members

Given a family structure, we assume known the BRCA1 and BRCA2 genotypes of

all its members. Each relative may have 0, 1 or 2 mutated copies of either gene.

There are nine possible genotypes, so in a family of size M there may be up to

9M combinations of genotypes. Genotypes like those in which the mother has no

mutation and the applicant has two mutations, are not feasible and will reduce

slightly the total number of combinations of genotypes. This reduction will have

little effect on any calculations and results.

We express the genotype by either the presence or absence of mutations, such that

having one mutated copy or having two mutated copies will not be distinguished.

Inheriting two BRCA1 or BRCA2 mutations is extremely rare (0.00082 for BRCA1

mutation using ‘high’ mutation frequencies). However should it happen, a mutation

will definitely be passed on to the offspring and as we noted before under the two hit

hypothesis, having two mutations is associated with very high disease risk. By not

distinguishing between heterozygous and homozygous mutation carriers we reduce

the possible genotype combinations to only 4M bringing the computations within

the reach of a fast computer. This approach is also necessitated by the fact that

BCOC penetrance of BRCA1 and BRCA2 (Tables 2.7 to 2.9) is given for mutation

carriers without distinguishing between homozygous and heterozygous carriers.

We denote the four genotypes (0, 0), (0, 1), (1, 0) and (1, 1) where ‘1’ in the first

place indicates a BRCA1 mutation, and in the second place a BRCA2 mutation. Ta-

ble 2.11 shows the frequencies of these genotypes given the ‘low’ and ‘high’ mutation

frequencies of Parmigiani et al. (1998) ((c) and (b) respectively in Table 2.10).
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Note that this simple model does not attempt to represent the heterogeneity

observed in BRCA1 and BRCA2; either a woman has a mutated gene, or she has

not, and if she has, the effect does not depend on the precise mutation.

We denote the genotype of the ith family member gi, so the familial genotype is

represented by the vector:

G = (g1, g2, . . . , gM). (2.4)
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Figure 2.4: A Markov model for the ith relative (i = 2, 3, . . . , M) of the insured
woman, with genotype gi. Relative No.1 is the woman herself.

Six BC/OC events can befall each relative as shown in the model in Figure 2.4.

The onset of BC before age 50 is modelled as a distinct event. Other possible events

are onset of BC between ages 50 and 65, onset of BC at ages higher than 65, onset

of OC before age 50, onset of OC between ages 50 and 65 and onset of OC at ages
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above 65. Hence the life history of the ith relative at time t can be defined by

the number ci(t) = 0, 1, . . . , 6, where ci(t) = 0 means that BC/OC did not occur

(including the event of death from another cause). In a family of size M , the family

history is then the vector function of time C(t) = (c2(t), . . . , cM(t)), or equivalently

the vector function of the applicant’s age x, C(x) = (c2(x), . . . , cM(x)), since t = 0

is always the applicant’s date of birth.

Flow chart for calculating carrier probabilities

?

?

Stage 1
Fix family structure
and familial genotype

Stage 2
Conditional Distribution

of Family History

Stage 3
Conditional Distribution
of Applicant’s Genotype

¾ • Genotype specific family history models.

• Occupancy probability calculations.

¾ • Bayes’ Theorem.

• Conditional distribution of familial genotype.

Figure 2.5: Flow chart of the method used to determine carrier probabilities.

The calculation of carrier probabilities will be in stages as shown in Figure 2.5.

Stage 1 represents a fixed family structure (M and X) with a fixed genotype (G). We

are assuming here that we know everything about the applicant’s family in terms

of the number of sisters and aunts, their ages, the mother’s age, the applicant’s

genotype and the genotypes of all these relatives. We need to determine the family

history that can develop before the applicant presents for insurance application.

For this we need to have genotype specific models of family history from which

we can calculate probabilities of having a given history. Stage 2 represents the

distribution of family history, conditional on the familial genotype. This is denoted

P[C(t)|M,X,G]. Finally we use Bayes’ theorem to evaluate the distribution of the

applicant’s genotype given family history represented by Stage 3. To perform the

Bayes’ Theorem calculation we use the conditional probabilities P[G|M,X] defined
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as the probability that the familial genotype is G, given the family size M and the

ages X, i.e. given family structure (M,X), as will be shown later in Section 2.5.3.

Determining the family history given the familial genotype involves the develop-

ment and parameterisation of a genotype specific family history model. To improve

the flow of the discussion, this development and parameterisation will be discussed

first (in Section 2.5.2) before using the results with the rest of the flow chart to

determine carrier probabilities.

As it stands the approach detailed in the last two paragraphs should achieve the

first aim set out in Section 2.5; that of estimating carrier probabilities given family

history. However the second aim is to assess the value of summarised, incomplete

family history. We will extend the process shown in the flow chart as follows: instead

of fixing the family structure, we use the distribution of family structures. Using

this distribution of family structure, we can calculate carrier probabilities given

family history, using various summaries of family history. This extension requires

the estimation of the distribution of family structures, P[M,X]. This will be done

in Section 2.5.5.

2.5.2 Model for relative’s BCOC history

Model representation

In Figure 2.4 we presented an eight-state Markov model to represent the life of any

of the applicant’s relatives. As shown, a life starts in State 0, the healthy state. The

model represents movements due to BC, OC or death only and therefore a relative

remains in the healthy state until the first of these three events happens. It means

that the ‘Healthy’ state will include lives who have had illnesses like cancers other

than BC or OC, heart attacks or strokes.

From the healthy state a life can develop BC. In our modelling, as is the case

in the clinical setting, the age at onset of any affected relative is of interest. For

the model to capture the age at onset and also the age of the relative at the time

of presentation by the applicant, it has to capture the duration of the disease since

onset. This can be handled by a semi-Markov model, but with considerable difficulty

in terms of tractability. For the model to be Markov, a life which develops BC moves
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into a state which incorporates the information about age at onset. The BC states,

States 1 to 3, reflect the broad groups into which ages at onset have been assigned

by underwriters, as shown in Tables 2.3 and 2.4. A life can also develop OC and

the state they move to similarly depends on the age at onset. Once a relative

develops BC or OC then we are not interested in their future life history. A life

which dies before developing BC or OC moves to the ‘Dead’ state. At the point

of death their complete life history is fixed as ‘unaffected’ relatives at the age of

death. This is in contrast to lives who die after contracting BC or OC, whose death

adds nothing to their life history. This is so because events after onset of BC or

OC will not give information about the probability of getting BC or OC. However,

although information about events after onset is currently neither collected nor

used for underwriting, it may be relevant in models of life insurance rather than CI

insurance.

We assume that there are M relatives (including the applicant) and the ith rel-

ative has genotype gi. We use the convention that the first relative (i = 1) is the

applicant herself. Each of the M−1 relatives of the applicant have their life histories

represented by a model such as Figure 2.4. We denote the 8 states of the model by

j = 0, 1, 2, . . . , 7 and the transition intensities between state 0 and state j (j 6= 0)

by giν0j
x . The notation giν0j

x reflects the fact that the transition intensities depend

on the genotype of the individual. Should this not have been so, then we would not

reflect the heterogeneity in BC and OC risk due to genotype.

If we further define giνx =
∑j=7

j=1
giν0j

x , then the probability that the ith relative

is in state j at age x + t, given that she was healthy at age x, will be denoted gip0j
x,t

and we have:

gip00
x,t = exp


−

t∫
0

giνx+sds


 , (2.5)

gip0j
x,t =

t∫
0

gip00
x,s

giν0j
x+sds (j = 1, . . . , 7). (2.6)
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Equations (2.5) and (2.6) are occupancy probabilities within a multiple state

model as described in Waters (1984) and Macdonald (1996a). The fact that all

states apart from state 0 in Figure 2.4 are absorbing states make these equations

straight forward to write out.

Estimating the transition intensities of the model

To complete the specification of the model in Figure 2.4 we need to specify the

transition intensities in the model. These intensities fall into three groups.

(a) The intensities of BC and OC in lives without any mutation at BRCA1 or

BRCA2. These are assumed to be adequately represented by the intensities of

BC and OC in the general population.

(b) The intensities of BC and OC in lives with mutations at either BRCA1, BRCA2

or both.

(c) The mortality of lives who have not had either BC or OC.

BC and OC incidence in non-mutation carriers

We assume a period of investigation of three years from 1 January 1990 to 31 De-

cember 1992. The CD ROM O.N.S. (1999) contains details of registrations by year,

age at registration, site of cancer, sex of patient among other characteristics for

all cancers diagnosed in the U.K from 1971 to 1992. We extracted details on the

breast cancer cases registered during our period of investigation. These were used

to determine the number of new BC cases by single year of age in the whole three

year period. We note that the publications O.N.S (1997b, 1998a, 1998b) give the

same data but grouped into five-year age bands. We grouped our results based on

O.N.S. (1999) and compared the data with that from O.N.S (1997b, 1998a, 1998b).

The two sets agreed satisfactorily.

We denote the number of new cases of BC in lives aged x, θx. The age is defined

as just age at diagnosis and we assume it refers to the age at the last birthday before

diagnosis. The exposed to risk (time for which lives are exposed to risk of BC) for

between ages x and x + 1 in the investigation period, Ec
x is
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Ec
x =

t=3∫
t=0

Px(t)dt (2.7)

where Px(t) is the number of lives age x last birthday alive t years after 1 January

1990. The population estimates are only available at the middle of each calen-

dar year. The publications O.P.C.S. (1990), O.P.C.S. (1991a), O.P.C.S. (1993a),

O.P.C.S. (1994), and O.P.C.S. (1996) give estimates of the population of women

aged between x and x+1 at 30 June in each of the years 1989, 1990, 1991, 1992 and

1993. We can therefore evaluate Equation (2.7) using the trapezium rule, so that

Ec
x =

t=3∫
t=0

Px(t)dt ≈ 0.25Px(−0.5)+0.75Px(0.5)+Px(1.5)+0.75Px(2.5)+0.25Px(3.5)

For each exact age x, Appendix A shows values of the cases and exposed to

risk. The estimate for the incidence rate is µ̇BC,POP
x = θx

Ec
x

while
√

θx

Ec
x

gives the

approximate standard deviation of the estimate. If we assume that birthdays are

uniformly distributed over the calendar year then on average µ̇BC,POP
x applies to

lives aged exactly x + 1
2
.

One possible adjustment in the exposed to risk would be to remove the proportion

of women who already had BC. This requires Px(t) to be replaced by Px(t)−Cx(t)

where Cx(t) is the number of women already with breast cancer at exact age x. We

made this adjustment using Cx(t) values based on prevalence rates of BC at age

x, supplied to us by the Office of National Statistics. Using the adjustment did

not result in significantly different incidence rates. Feuer et al. (1993) noted the

anomaly that incidence estimates were being calculated based on populations that

were not cancer free. They went on to revise the calculations of incidence rates by

using a multiple decrement approach in a hypothetical cohort of women. They note,

however, that this did not result in different risk estimates even to ages as high as

85. We therefore feel that adjusting the exposed to risk for the affected women can

be left out without loss of accuracy.

The period of investigation falls just after the introduction of systematic BC

screening in the U.K. in women between the ages of 50 and 64. The systematic
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screening programme was started in 1988 and all women in this age group are invited

for screening every three years. This resulted in a steep increase in incidence rates

for the screened ages compared to the other ages. This was noted by Quinn and

Allen (1995) in their paper which considered the influence of systematic screening

on the incidence of BC in England and Wales. There is a lag in the publication

of cancer incidence statistics and it may be a few years before the true level of the

incidence is established. Quinn and Allen (1995) state that the recorded incidence

from 1994 onwards is expected to return to the pre-screening levels except for the

50–52 age group. This age group is expected to continue with the high recorded

incidence rates because the first screening cycle for a cohort is expected to be in this

age group.

We considered the shape of the incidence curve before the systematic screen-

ing was started using data from O.N.S. (1999) for the years 1984 to 1988. This

assessment, together with the conclusion from Quinn and Allen (1995), led to the

conclusion that any function to represent the long term incidence of BC (as triggered

by diagnosis) should not follow the high rates for ages 53 to 64 found in the rates

from 1990 to 1992. However the function should reflect the elevated rates at ages

50 to 52.

The incidence of BC was modelled, by unweighted least squares, using two func-

tions as follows

µBC,POP
x =




1
Γ(8.7305)

0.07428.7305e−0.0742xx7.7305 for 0 ≤ x < 53

0.00012 + 0.00018(x− 35)− 0.000005(x− 35)2

+0.0000000529(x− 35)3 for x ≥ 53.

(2.8)

The observed rates and the fitted functions are shown in Figure 2.6. The function

for ages 53 and above was fitted using only data from ages 65 and above. We note

that the expression for ages below 53 can also be expressed as 6.0424 × 10−15 ×
e−0.0742xx7.7305. We will apply the form used in Equation 2.8 in subsequent expres-

sions.
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Figure 2.6: The observed and fitted incidence of breast cancer, in the general
population of England and Wales.

We used the same methods and sources of data to derive the number of cases of

OC and the corresponding exposed to risk. Since we were not making any adjust-

ment for lives already with BC or OC, the exposed to risk values are the same in

both cases. The data are shown in Appendix B. The crude rates

µ̇OC,POP
x =

θx

Ec
x

were fitted, using unweighted least squares, with the function

µOC,POP
x =




1
Γ(6.92)

(0.0356.92e−0.035xx5.92) for 0 ≤ x < 45

0.0001554 + 0.000029(x− 45)− 0.00000048(x− 45)2

for x ≥ 55.

(2.9)

58



In the age range 45 to 55, we blended the two functions linearly such that

µOC,POP
x = (5.5− 0.1x)

[
1

Γ(6.92)
(0.0356.92e−0.035xx5.92)

]
+(0.1x− 4.5)

[
0.0001554 + 0.000029(x− 45)− 0.00000048(x− 45)2

]
.

The crude rates and the fitted function are shown in Figure 2.7. We considered

fitting transformed OC incidence rates using a natural logarithm transformation.

This produces fitted rates which are closer to the observed rates for the ages from

late teenage years to late thirties. However the fitted rates tend to be less than

the observed rates for ages from about 40 to 80. The differences in the fitted rates

achieved by fitting the actual incidence rates compare to the transformed values is

small such that it is unlikely to cause significant differences in any results calculated.

Since we will be using this rates in analysis of CI insurance costs is it preferable

to overestimate the OC incidence at the ages relevant for insurance, rather than to

underestimate it. Therefore in this and subsequent fittings we graduate the incidence

rates rather than the transformed rates.

The cancer registration statistics on which the incidence rates shown in Figure

2.7 are a large and good quality data source such that the fall in incidence rates at

the older ages should be a real feature of the risk. A possible explanation for this

fall is that lives that survive to age, say 70, without suffering OC have some form

of protection from OC.

BC and OC incidence in BRCA1 mutation carriers

We consider the cumulative risk of BC only in BRCA1 mutation carriers shown

in Table 2.8. As we discussed in Section 1.4.1, the cumulative risk represents the

probability of disease assuming that the disease is the only cause of death. We

denote the cumulative risk by age x by CumRx(). For an age-dependent transition

intensity µBC,BRCA1
x , we have

CumR30(BC, BRCA1) = CumR20(BC, BRCA1)

+ (1− CumR20(BC, BRCA1))


1− exp


−

30∫
20

µBC,BRCA1
t dt






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Figure 2.7: The observed and fitted incidence of ovarian cancer, in the general
population of England and Wales.

This gives

exp


−

30∫
20

µBC,BRCA1
t dt


 =

1− CumR30(BC,BRCA1)

1− CumR20(BC,BRCA1)

Assuming that the incidence below age 20 is zero (that is CumR20(BC,BRCA1) =

0) and µBC,BRCA1
x is constant for 20 < x ≤ 30, then

exp


−

30∫
20

µBC,BRCA1dt


 =

1− 0.036

1
,

since from Table 2.8 CumR30(BC,BRCA1) = 0.036. Therefore µBC,BRCA1 =

0.00367. Similarly it can be shown that, assuming a constant µBC,BRCA1
x ,

exp


−

40∫
30

µBC,BRCA1dt


 =

1− CumR40(BC,BRCA1)

1− CumR30(BC,BRCA1)

=
1− 0.18

1− 0.036
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again using values from Table 2.8. This gives us µBC,BRCA1 = 0.01618. We repeat

the above with the rest of the age groups in the table to get the incidence rates

shown in Table 2.12.

Table 2.12: Incidence of BC and OC in BRCA1 mutation carriers.

Age Group
20–29 30–39 40–49 50–59 60–69

Breast Cancer 0.00367 0.01618 0.04749 0.03483 0.02162
Ovarian Cancer 0 0 0.01706 0.01947 0.01692

We fitted the truncated Gamma function

µBC,BRCA1
x =

1.25

Γ(22)
(0.4522e−0.45xx21) (2.10)

to the intensities. It was preferable to graduate the intensities , as opposed to the

cumulative risk, because our model is defined in terms of intensities. The fitted

function, extrapolated to age 90, and the crude rates are shown in Figure 2.8. In

choosing the truncated Gamma function we follow Parmigiani et al. (1998), although

they fitted the gamma cumulative distribution function to the cumulative rates.

To assess the fitted intensities we use Equation (2.10) to model the cumulative

risk of BC in BRCA1 mutation carriers which we compare with the values in Table

2.8. These results are shown in Table 2.13 and show that the modelled risk is within

the 95% confidence intervals given by Ford et al. (1998) (Table 2.8). The modelled

cumulative risk is calculated as

Cumulative risk at age x = 1− exp


−

x∫
0

1.25

Γ(22)
(0.4522e−0.45ss21)ds


 .

Surviving to age x free of BC or OC means surviving free of BC and independently

surviving free of OC. This assumption of additive BC and OC intensities in mutation

carriers is reasonable since the mutations are affecting different organs of the body.

Therefore

1−CumRx(BC or OC) = (1−CumRx(BC only))×(1−CumRx(OC only)). (2.11)
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Figure 2.8: The observed and fitted incidence of BC in BRCA1 mutation carriers.

such that

CumRx(OC only) =
CumRx(BC or OC)− CumRx(BC only)

1− CumRx(BC only)
.

The cumulative risk of OC only by age 40, using the values of Table 2.8 is zero,

and the risk by age 50 is given is

CumRx(OC only) =
0.57− 0.49

1− 0.49
= 0.157.

Similarly the cumulative risks by ages 60 and 70 can be calculated and the results

are shown in Table 2.14.

To derive the incidence rates from the cumulative risk we apply the same methods

we used to derive BC incidence rates from the cumulative risk of BC. The incidence

rates of OC in BRCA1 mutation carriers based on the cumulative risks in Table 2.14

are shown in the last row of Table 2.12. These rates were modelled by the function
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Table 2.13: Modelled cumulative risks of breast cancer, and breast or ovarian cancer
in BRCA1 mutation carriers compared with observed rates and 95% confidence
intervals in Table 2.8.

Breast Cancer Breast Cancer or Ovarian Cancer
Observed Modelled Observed Modelled

Cumulative Confidence Cumulative Cumulative Confidence Cumulative
Age x Risk Interval Risk Risk Interval Risk

30 0.036 0–0.14 0.0252 0.036 0–0.14 0.0282
40 0.18 0–0.35 0.2221 0.18 0–0.36 0.2562
50 0.49 0.28–0.64 0.5097 0.57 0.33–0.73 0.5930
60 0.64 0.43–0.77 0.6572 0.75 0.53–0.87 0.7650
70 0.71 0.53–0.82 0.7020 0.83 0.65–0.92 0.8218

Table 2.14: Cumulative risk of OC only in BRCA1 mutation carriers

Age 30 40 50 60 70
Cumulative Risk 0 0 0.1568 0.306 0.414

µOC,BRCA1
x =

0.60

Γ(21)
(0.3721e−0.37xx20). (2.12)

and Figure 2.9 shows the function together with the incidence rates.

By rearranging Equation (2.11), and substituting the fitted functions µBC,BRCA1
x

and µOC,BRCA1
x the cumulative risk of BC or OC in BRCA1 mutation carriers can

be modelled by

CumRx(BC or OC) = 1− exp


−

x∫
0

(
µBC,BRCA1

s + µOC,BRCA1
s

)
ds


 .

In Table 2.13 we show that these modelled rates all fall within the 95% confidence

intervals for the rates given by Ford et al. (1998) which we presented in Table 2.8.

BC and OC incidence in BRCA2 mutation carriers

We showed in Table 2.9 the incidence of BC and OC in BRCA2 mutation carriers

given by Ford et al. (1998). Confidence intervals for risk estimates were only given
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Figure 2.9: The observed and fitted incidence of OC in BRCA1 mutation carriers.

for the cumulative risk and not for the incidence. The incidence rates were modelled

with the functions

µBC,BRCA2
x =

3.60

Γ(30)
(0.4530e−0.45xx29) (2.13)

for BC and

µOC,BRCA2
x =

0.86

Γ(27)
(0.35527e−0.355xx26) (2.14)

for OC. The incidence rates and the fitted functions are shown in Figures 2.10 and

2.11.

The fitted function models well the cumulative risk such that the modelled risk

falls within the 95% confidence intervals of the estimated risk. This comparison

for BRCA2 mutation carriers is shown in Table 2.15. The adequacy of the fitted

functions is shown in Figure 2.12 which plots the modelled cumulative risks of BC

and OC in mutation carriers alongside the observed rates.
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Figure 2.10: The observed and fitted incidence of BC in BRCA2 mutation carriers.

Up to this stage we have not specified the exact definition of “mutation” carriers

with respect to BRCA1 and BRCA2, with which the risk estimates used so far

are associated. Using ‘high’ mutation frequencies, the probability that a woman

inherits two BRCA1 mutations is 6.4× 10−7 ( i.e. 0.00082) and the probability that

she inherits two BRCA2 mutations is 9.0 × 10−8 ( i.e. 0.00032). These are so rare

that is only logical to assume that lives on which the risk estimates are based inherit

only one mutation. Consequently the functions fitted for the incidence of BC or OC

in mutation carriers (formulae (2.10), (2.12), (2.13), and (2.14)) apply to lives who

inherit one mutation at the appropriate locus. We also assume that should a woman

inherit two mutations at one locus, then the risk of either BC or OC are the same

as that of a woman who inherits one mutation.

A woman can inherit mutations at both BRCA1 and BRCA2. The probability

of this happening is of the same order of magnitude as the probability of having two

mutations at one of the two loci. Cancer due to BRCA1 and cancer due to BRCA2

are independent events, as noted by Parmigiani et al. (1998), and we have assumed
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Figure 2.11: The observed and fitted incidence of OC in BRCA2 mutation carriers.

that the incidence rates for women with mutations at both loci are equal to the

sum of the individual incidence rates. This is different to the approach by Antoniou

et al. (2000) whereby they assume that BRCA1 dominates BRCA2, meaning that

for women with mutations at both loci, the incidence rates applicable to BRCA1

are used. Using either approach is likely to lead to similar results due to the rarity

of having mutations at both loci.

Figures 2.13 and 2.14 summarise all the intensities of BC or OC by all the possible

genotypes for use in our relatives model.

Mortality rates in respect of lives without BC and OC

The mortality transition in the model in Figure 2.4 is for lives who have not devel-

oped BC or OC. The life table ELT15F is based on all lives in England and Wales

(with or without BC or OC) between 1990 and 1992. We note that the crude force

of mortality is

µ̇ELT15F
x =

θELT15F
x

EELT15F
x
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Table 2.15: Modelled cumulative risks of breast cancer and ovarian cancer in BRCA2
mutation carriers compared with observed rates and 95% confidence intervals in
Table 2.9.

Breast Cancer Ovarian Cancer
Observed Modelled Observed Modelled

Cumulative Confidence Cumulative Cumulative Confidence Cumulative
Age x Risk Interval Risk Risk Interval Risk

30 0.006 0–0.019 0.0003 0 n/a < 0.0001
40 0.12 0–0.240 0.0212 0 n/a 0.0014
50 0.28 0.09–0.440 0.2359 0.004 0.00–0.011 0.0207
60 0.48 0.22–0.650 0.6683 0.074 0.00–0.150 0.1068
70 0.84 0.43–0.950 0.8962 0.27 0.00–0.470 0.2657

where θELT15F
x and EELT15F

x are the deaths and exposed to risk used for the ELT15F

estimation. We split both the deaths and exposure into two parts; one corresponding

to the population which is free of disease (θN
x and EN

x ) and another corresponding

to the population with BC or OC (θD
x and ED

x ). θELT15F
x = θN

x + θD
x and

EELT15F
x = EN

x + ED
x . We note that

µ̇ELT15F
x =

θELT15F
x

EELT15F
x

=
θN

x + θD
x

EN
x + ED

x

=
θN

x

EN
x + ED

x

+
θD

x

EN
x + ED

x

× θELT15F
x

θELT15F
x

=
θN

x

EN
x + ED

x

+
θD

x

θELT15F
x

× µ̇ELT15F
x ,

which gives

θN
x

EN
x + ED

x

= µ̇ELT15F
x

(
1− θD

x

θELT15F
x

)
. (2.15)

The left hand side of Equation (2.15) is approximately equal to the required µN
x = θN

x

EN
x

if ED
x is much smaller that EN

x . Based on data supplied to us by the O.N.S, the

age specific prevalence of BC in the population peaked at about 0.016 around ages

64 to 80. We feel it is reasonable to assume that the exposed to risk for mortality

estimation will be much smaller in BC patients than in the rest of the population.

Replacing µ̇ELT15F
x in Equation (2.15) with the graduated force of mortality µELT15F

x ,

we will represent the mortality of disease free lives by the expression
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Figure 2.12: The observed and modelled cumulative risk in mutation carriers.

µN
x = µELT15F

x (1− φx) (2.16)

where φx is a function representing a graduation of the factors θD
x

θELT15F
x

. Using O.N.S.

(1999) we calculated the number of deaths due to BC and OC by single years of age

for the years 1990 to 1992. The publications O.P.C.S. (1991b), O.P.C.S. (1993b)

and O.P.C.S. (1993c) give the same data but grouped into five year age groups. We

used this as a check on our data by single years of age, and they were satisfactory.

O.N.S. (1997a) gives values for the total number of deaths in women by single year

used in deriving the ELT15F table. We used this data, shown in Appendix C, to

calculate estimates of the adjustment factor θD
x

θELT15F
x

. Using unweighted least squares,

the adjustment factors are graduated with the function

φx =




8.63
Γ(14.05)

(0.02814.05e−0.028xx13.05) for 0 ≤ x < 54

1.30144− 0.02850194x + 0.0001588314x2 for x ≥ 65,

(2.17)

68



Age

Tr
an

sit
io

n 
In

ten
sit

y

0 20 40 60 80

0.
0

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

No mutation
BRCA1 mutations
BRCA2 mutations
BRCA1 and BRCA2 mutations

Figure 2.13: Modelled incidence rates of BC depending on the presence of BRCA1
and/or BRCA2 mutations.

with linear blending of the two functions between ages 54 and 65. The observed

factors and the smoothing function are shown in Figure 2.15.

2.5.3 Calculation of carrier probabilities

Conditional distributions of familial genotype

Conditional probabilities P[G|M,X] can be computed under the three assumptions

given below.

(a) We assume that the genotypes of each maternal and paternal grandparent are

mutually independent, with distributions given by the gene frequencies. A direct

consequence of this is that the paternal genotype and the maternal genotype are

mutually independent and also have distributions given by the gene frequencies.

(b) Each aunt is equally likely to be a maternal or a paternal aunt.

(c) The rules of Mendelian inheritance apply to each gene.

We consider, for example, the simplest possible family structure which has M=2.

There are 16 possible familial genotypes G = (g1, g2). To compute the probabilities
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Figure 2.14: Modelled incidence rates of OC depending on the presence of BRCA1
and/or BRCA2 mutations.

associated with each of the 16 familial genotypes, we could proceed by fixing the

mother’s genotype and calculating the conditional distribution of the daughter’s

genotype. Thus P[g1, g2] = P[g1|g2]P[g2]. Examples of probabilities P[g2] are shown

in Table 2.11 and these involve gene frequencies in their calculation. P[g1|g2] is

calculated by summing over the probabilities of all compatible genotypes of the

father (whose distribution is also determined by gene frequencies). The distribution

of familial genotypes for the family of size 2 is shown in the Table 2.16.

In practice with family sizes higher than 2, a computer program is required to gen-

erate all the possibilities and calculate the probabilities from first principles. The

calculations are computationally intensive and this determined the largest family

size with which we could work (M = 10). Computing complete tables of P[G|M,X]

for M ≤ 10, and for ‘high’ and ‘low’ estimates of mutation frequencies, took almost

a month of CPU time on the fastest computer available to us. The difficulty is en-

hanced by the fact that we do not distinguish between maternal and paternal aunts

in the family structure X, but must do so here by considering all possible combina-

tions, given the total number of aunts. However, the simpler family structure makes
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Figure 2.15: Crude and graduated proportion of total deaths that are due to BC
and OC, for females.

the calculation of other probabilities much faster.

The mutation frequencies enter the calculations only at this stage. Higher fre-

quencies increase the probabilities that the applicant has a mutation, given the

family history.

Conditional distributions of family history

The distribution of family history conditional on familial genotype, P[C(t)|M,X,G],

introduced in Section 2.5.1 is defined as the probability that at time t after the

applicant’s birth, the family history C(t) = (c2(t), . . . , cM(t)) has emerged, given

that the familial genotype is G = (g1, . . . , gM) for the family of size M and ages

X = (x1, . . . , xM).

We can construct this probability as a product of the life histories of the individual

members if the development of life histories are independent. Since the lives are

related, they are likely to share genes such that distributions of their genotypes are

not independent. However once the genotype of a life is determined, the life history

is only dependent on that genotype. This is the way in which the model in Figure
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Table 2.16: Distribution of familial genotypes for families of size 2. ‘Low’ estimates
of mutation frequencies.

Familial Genotype Probability Familial Genotype Probability
(0,0),(0,0) 0.99815635700 (0,0),(0,1) 0.00016472000
(0,1),(0,0) 0.00016472300 (0,1),(0,1) 0.00016480000
(1,0),(0,0) 0.00044937300 (1,0),(0,1) 0.00000007416
(1,1),(0,0) 0.00000007416 (1,1),(0,1) 0.00000007420
(0,0),(1,0) 0.00044937300 (0,0),(1,1) 0.00000007416
(0,1),(1,0) 0.00000007416 (0,1),(1,1) 0.00000007420
(1,0),(1,0) 0.00044998000 (1,0),(1,1) 0.00000007426
(1,1),(1,0) 0.00000007426 (1,1),(1,1) 0.00000007430

2.4 has been formulated. Formally if we define random variables Ti for i = 1, . . . ,M

such that Ti represents the future lifetimes, free of BC and OC, of relative i, then the

Ti’s are unlikely to be mutually unconditionally independent. Since we assume that

G is known, it means the genotype of each relative is given by G. The life histories

of the relatives, conditioned on the common G can be taken as independent.

It is also assumed that at the time the applicant is born, the mother is free of

BC or OC. The calculation of P[C(t)|M,X,G] will split into two cases; one in which

the life history of the mother has BC or OC and the other in which her history is

free of BC or OC (but including the possibility of death before BC or OC).

Using Equations (2.5) and (2.6), we note the following expressions.

(a) g2p00
0,30+t = g2p00

0,30 × g2p00
30,t and g2p07

0,30+t = g2p07
0,30 + g2p00

0,30 × g2p07
30,t

so that the probability that the mother is free of BC or OC, or is dead without

BC or OC, at time t years after age 30 (i.e c2(t) = 0) is given by

g2p00
30,t + g2p07

30,t =
g2p00

0,30+t + g2p07
0,30+t − g2p07

0,30

g2p00
0,30

.

(b) g2p
0c2(t)
0,30+t = g2p

0c2(t)
0,30 + g2p00

0,30 × g2p
0c2(t)
30,t

so that the probability that the mother has had BC or OC by time t years after

the birth of the applicant (i.e c2(t) > 0) is

g2p
0c2(t)
30,t =

g2p
0c2(t)
0,30+t − g2p

0c2(t)
0,30

g2p00
0,30

.

(c) For any other relative who is not the mother, including the applicant, the prob-

ability of not having BC or OC before time t after the applicant’s birth is
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gip00
0,xi+t + gip07

0,xi+t. The probability that the relative has BC or OC before the

applicant is aged t years is gip
0ci(t)
0,xi+t.

The probability P[C(t)|M,X,G] is therefore expressed in two parts as

P[C(t)|M, X, G] =
g2p00

0,30+t + g2p07
0,30+t − g2p07

0,30

g2p00
0,30

∏
i6=2

ci(t)=0

(gip00
0,xi+t + gip07

0,xi+t)
∏
i6=2

ci(t)>0

gip
0ci(t)
0,xi+t

(2.18)

if c2(t) = 0, and:

P[C(t)|M, X, G] =
g2p

0c2(t)
0,30+t − g2p

0c2(t)
0,30

g2p00
0,30

∏
i6=2

ci(t)=0

(gip00
0,xi+t + gip07

0,xi+t)
∏
i6=2

ci(t)>0

gip
0ci(t)
0,xi+t (2.19)

if c2(t) > 0. In each case, the first product is over those family members (including

the applicant) who have not had BC or OC, and the second product is over those

family members who have.

2.5.4 Carrier probabilities with known family structure

We can now compute the applicant’s carrier probabilities given the observed family

history if M , X, and C(x) are known. We define G to be the set of all familial

genotypes G = (g1, g2, . . . , gM) and G(g) to be the set of familial genotypes for

which g1 = g. Using Bayes’ Theorem, the probability that g1 = g, given a known

family structure is

P[g1 = g|M,X,C(x)] =

∑
G∈G(g)

P[M,X,C(x)|G]P[G]

∑
G∈G

P[M,X,C(x)|G]P[G]
=

∑
G∈G(g)

P[C(x),M,X,G]

∑
G∈G

P[C(x),M,X,G]

=

∑
G∈G(g)

P[C(x)|M,X,G]P[M,X,G]

∑
G∈G

P[C(x)|M,X,G]P[M,X,G]

=

∑
G∈G(g)

P[C(x)|M,X,G]P[G|M,X]

∑
G∈G

P[C(x)|M,X,G]P[G|M,X]
. (2.20)

The last equality is due to the fact that the family size and structure, M and

X, are known. Given that there are 7 states in Figure 2.4 which can represent the
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history for each of M relatives, there are 7M family histories. We will show some

examples which illustrate the important features.

Applicant with sisters but no aunts

We consider an applicant who is aged 30 and has up to 4 sisters. The mother

was aged 30 when the applicant was born and therefore disease onset at ages 65

or over can be ignored. Any history of onset between ages 50 and 65 can only be

due to illness of the mother. Tables 2.17 and 2.18 show the carrier probabilities

for the applicant, using high mutation frequencies. We recall at this point that the

high mutations frequencies are shown in Table 2.11 and are based on a BRCA1

mutation frequency of 0.0008 and a BRCA2 mutation frequency of 0.0003. We note

the following points from Tables 2.17 and 2.18.

(a) BC or OC before age 50 presents a significant risk of BRCA1. (Here and subse-

quently, ‘risk of BRCA1’ refers to the likelihood of having a mutation at BRCA1.

The same applies for BRCA2.) For a BC history, 1 relative presents a risk of

BRCA1 which is about 20 times that presented for history of no BC or OC. The

risk is about 230 times higher for 2 relatives, about 470 times for 3 relatives and

about 500 times for 4 or more relatives. A history of OC before 50 presents

a higher risk of BRCA1 than the corresponding BC history if there is a small

number of affected relatives. The risk of BRCA1 associated with one relative

having OC before 50 is about 40 times the risk of BRCA1 for a history of no

BC or OC, rising to about 250 times for 2 relatives, 470 times for 3 relatives

and about 500 times for 4 or more relatives.

We recall, as discussed in Section 2.4.1, that the observation of very high risk

of BC in lives with two or more relatives with BC compared to lives with a

less strong history was central to the hypothesis of a genetic cause for familial

breast cancer.

The carrier probabilities of BRCA2 are not monotonic. BC or OC before 50 in

1 relative and BC before 50 in 2 relatives are associated with elevated risks of

BRCA2. These risks are about 5 times those presented by a history of no BC

or OC before 50. However as the number of affected relatives increases the risk
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decreases. For 5 relatives with OC before 50 the risk of BRCA2 is about 0.75

times that associated with no history of BC or OC.

For determining both BRCA1 and BRCA2 risks, the number of relatives affected

is more significant than the number of relatives unaffected.

(b) Since the applicant is aged 30, BC over 50 can only be due to the mother.

Compared to BC before 50, BC above 50 is associated with a higher risk of

BRCA2 and a lower risk of BRCA1. The BRCA2 risk is so high as to be higher

than the risk of BRCA1. This is the only case in the examples we show for

which the risk of BRCA2 exceeds that of BRCA1.

Compared to the risks associated with OC below 50, OC above 50 has lower

risks for both BRCA1 and BRCA2.

(c) BRCA1 mutations are most associated a history of OC before 50 if a few relatives

are affected, and for more affected relatives, the mutations are most likely where

there is a history of BC before 50. BRCA2 is most associated with a history of

BC between 50 and 65.

Applicant with sisters and/or aunts

We next illustrate results for an applicant who has sisters or aunts or both. It should

be noted that since P [G|M,X], the conditional distribution of familial genotype, is

calculated in accordance to Mendelian rules of inheritance, the influence of aunts’

life histories on the carrier probabilities is different from that of sisters’ life histories.

The applicant is aged 30 and we use the ‘high’ mutation frequencies. Tables

2.19 to 2.21 show results for a family size of either 4 or 6 and all possible family

structures are considered. In Table 2.19 one relative has BC before 50, in Table 2.20

two relatives and in Table 2.21 two or more relatives have BC before 50. In all cases

it is not known which relatives are affected. A number of observations can be made.

(a) For all three family histories, the probability of carrying a BRCA1 mutation

is higher for lives with more sisters than those with fewer, for the same family

size. This means the more likely it is that BC below 50 occurred to a sister, the

more likely it is that the applicant has a BRCA1 mutation.
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Table 2.17: The effect of the number of sisters on probabilities of the applicant’s
genotype, given zero or one affected relatives. Applicant age 30. Uses ‘high’ muta-
tion frequencies.

Number of Relatives with
Number of BC BC OC OC Probability that Applicant’s Genotype is

Sisters Aunts < 50 50–65 < 50 50–65 (0,0) (1,0) (0,1) (1,1)
0 0 0 0 0 0 0.999 0.001 0.000 0.000
1 0 0 0 0 0 0.999 0.001 0.000 0.000
2 0 0 0 0 0 0.999 0.001 0.000 0.000
3 0 0 0 0 0 0.999 0.001 0.000 0.000
4 0 0 0 0 0 0.999 0.001 0.000 0.000
0 0 1 0 0 0 0.975 0.021 0.004 0.000
1 0 1 0 0 0 0.976 0.020 0.004 0.000
2 0 1 0 0 0 0.976 0.020 0.004 0.000
3 0 1 0 0 0 0.977 0.020 0.004 0.000
4 0 1 0 0 0 0.977 0.019 0.004 0.000
0 0 0 1 0 0 0.989 0.005 0.006 0.000
1 0 0 1 0 0 0.989 0.005 0.006 0.000
2 0 0 1 0 0 0.989 0.005 0.006 0.000
3 0 0 1 0 0 0.989 0.005 0.006 0.000
4 0 0 1 0 0 0.989 0.005 0.006 0.000
0 0 0 0 1 0 0.961 0.036 0.002 0.000
1 0 0 0 1 0 0.963 0.035 0.002 0.000
2 0 0 0 1 0 0.964 0.033 0.002 0.000
3 0 0 0 1 0 0.966 0.032 0.002 0.000
4 0 0 0 1 0 0.967 0.031 0.002 0.000
0 0 0 0 0 1 0.983 0.013 0.004 0.000
1 0 0 0 0 1 0.984 0.013 0.004 0.000
2 0 0 0 0 1 0.984 0.013 0.004 0.000
3 0 0 0 0 1 0.984 0.012 0.004 0.000
4 0 0 0 0 1 0.984 0.012 0.004 0.000
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Table 2.18: The effect of the number of sisters on probabilities of the applicant’s
genotype, given two or more affected relatives. Applicant age 30. Uses ‘high’ muta-
tion frequencies.

Number of Relatives with
Number of BC BC OC OC Probability that Applicant’s Genotype is

Sisters Aunts < 50 50–65 < 50 50–65 (0,0) (1,0) (0,1) (1,1)
1 0 2 0 0 0 0.785 0.213 0.002 0.000
2 0 2 0 0 0 0.787 0.211 0.002 0.000
3 0 2 0 0 0 0.789 0.209 0.002 0.000
4 0 2 0 0 0 0.791 0.207 0.002 0.000
1 0 0 0 2 0 0.756 0.243 0.001 0.000
2 0 0 0 2 0 0.760 0.239 0.001 0.000
3 0 0 0 2 0 0.764 0.235 0.001 0.000
4 0 0 0 2 0 0.768 0.231 0.001 0.000
2 0 3 0 0 0 0.540 0.460 0.001 0.000
3 0 3 0 0 0 0.541 0.459 0.001 0.000
4 0 3 0 0 0 0.541 0.458 0.001 0.000
2 0 0 0 3 0 0.544 0.455 0.000 0.000
3 0 0 0 3 0 0.545 0.454 0.000 0.000
4 0 0 0 3 0 0.546 0.454 0.000 0.000
3 0 4 0 0 0 0.506 0.493 0.000 0.000
4 0 4 0 0 0 0.506 0.493 0.000 0.000
3 0 0 0 4 0 0.507 0.492 0.000 0.000
4 0 0 0 4 0 0.508 0.492 0.000 0.000
4 0 5 0 0 0 0.502 0.497 0.000 0.000
4 0 0 0 5 0 0.502 0.497 0.000 0.000

(b) The risk of BRCA2 generally follows the same pattern as BRCA1 in that more

sisters in the family makes it more likely that the applicant has a BRCA2

mutation. However in cases where the family history implies a definite case of

BC before 50 in a sister, such as that when two relatives of an applicant without

aunts are affected, then the evidence for the presence of a BRCA1 mutation is

so overwhelming that the BRCA2 probability collapses.

(c) The carrier probabilities for a BRCA1 mutation are approximately 4 times

higher in the small families with few sisters than in large families with more

aunts. The corresponding ratio for BRCA2 probabilities has an average of

about 5.6. Differences in the number of aunts is almost entirely responsible for

these differences. As an example, the carrier probability for a BRCA1 mutation

in applicants with one affected relative is 0.020020 if M = 4 and 0.019230 if

M = 6 for applicants with no aunts while similar probabilities in applicants

with no sisters are 0.008495 if M = 4 and 0.004974 if M = 6.
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(d) Knowing that two or more relatives are affected, rather than that exactly two

are affected, increases the probability of a gene mutation, but only a little.

Most of the information in the family history, it seems, is conveyed by the

first few cases. In Tables 2.17 and 2.18 the relatives affected beyond the first

two further increased the probabilities of mutations. However in Table 2.21

the carrier probabilities were weighted by the probability of the family history

P[C(t)|M,X,G] and therefore the tables are not inconsistent.

We note that in determining P [G|M,X], the conditional distribution of familial

genotype, we assumed that each aunt is equally likely to be maternal or paternal.

Knowledge of whether an affected aunt is maternal or paternal will influence the

carrier probabilities. This is due to the fact that the mother, who can also develop

BCOC, has half her genes in common with the maternal aunts and not the paternal

aunts, while the father can not exhibit BCOC. Therefore by assuming that aunts in

the family structure are equally likely to be maternal or paternal there is a loss of

information otherwise useful for determining carrier probabilities. This information

would be available to underwriters but we feel that allowing for all possibilities in

our calculations would greatly increase the time needed to run the programs.

Table 2.19: The applicant’s genotype probabilities, given one relative with BC before
age 50, for M = 4 or 6. Applicant age 30. ‘High’ estimates of mutation frequencies.

Number of Probability that Applicant’s Genotype is
M Sisters Aunts (0,0) (1,0) (0,1) (1,1)
4 2 0 0.976 0.020 0.004 0.000
4 1 1 0.986 0.012 0.002 0.000
4 0 2 0.990 0.008 0.002 0.000
6 4 0 0.977 0.019 0.004 0.000
6 3 1 0.986 0.011 0.002 0.000
6 2 2 0.990 0.008 0.002 0.000
6 1 3 0.992 0.006 0.001 0.000
6 0 4 0.994 0.005 0.001 0.000

Table 2.22 is the same as Table 2.20 except that the applicant is aged 50. The

family history is of BC before 50. Since sisters of the applicant could be aged 50,

implicit in the family history are probabilities of sisters surviving to 50 without BC.

Since the mother and aunts can be aged up to 80, there are also implicit probabilities
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Table 2.20: The applicant’s genotype probabilities, given two relatives with BC
before age 50, for M = 4 or 6. Applicant age 30. ‘High’ estimates of mutation
frequencies.

Number of Probability that Applicant’s Genotype is
M Sisters Aunts (0,0) (1,0) (0,1) (1,1)
4 2 0 0.787 0.211 0.002 0.000
4 1 1 0.869 0.119 0.012 0.000
4 0 2 0.910 0.081 0.009 0.000
6 4 0 0.791 0.207 0.002 0.000
6 3 1 0.869 0.121 0.010 0.000
6 2 2 0.910 0.082 0.009 0.000
6 1 3 0.933 0.061 0.007 0.000
6 0 4 0.947 0.047 0.006 0.000

Table 2.21: The applicant’s genotype probabilities, given two or more relatives with
BC before age 50, for M = 4 or 6. Applicant age 30. ‘High’ estimates of mutation
frequencies.

Number of Probability that Applicant’s Genotype is
M Sisters Aunts (0,0) (1,0) (0,1) (1,1)
4 2 0 0.782 0.217 0.002 0.000
4 1 1 0.865 0.123 0.012 0.000
4 0 2 0.903 0.087 0.009 0.000
6 4 0 0.784 0.214 0.002 0.000
6 3 1 0.863 0.127 0.010 0.000
6 2 2 0.902 0.089 0.009 0.000
6 1 3 0.924 0.069 0.007 0.000
6 0 4 0.938 0.056 0.006 0.000

of no BC or OC over 50. The probabilities of BRCA1 mutations in the applicant

are generally lower than those in Table 2.20. This reflects the fact that cancer

with later age at onset is more likely to be sporadic rather than hereditary when

compared to cancer at earlier ages of onset. However the probabilities fall by a much

bigger proportion in families with more sisters than the families with more aunts,

for a fixed family size. This is predominantly due to the fact that the more likely

it is that a sister has survived to 50 without BC, the less likely is the presence of

BRCA1. This is supported by the observation that for applicants with no sisters

the BRCA1 carrier probabilities in Table 2.22 are almost the same as those in Table

2.20, actually increasing for the small family where M = 4.
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For BRCA2, carrier probabilities are generally lower in Table 2.22 than in Table

2.20 but the effect of the family structure on the proportional differences is the

reverse of that of BRCA1. For fixed family size the higher the number of aunts,

the lower the proportional fall in the probabilities from Table 2.20 to Table 2.22.

This is not unexpected since for the aunt and mother the change in life histories is

expected at ages 50 and above and these ages have a higher influence on BRCA2

probabilities.

An interesting case corresponds to the points (b) discussed above. We had the

case where the implication that a sister had BC before 50 meant very low proba-

bilities of BRCA2. In Table 2.22, alongside that same implication, the event that

a sister survived BC before 50 greatly reduces the chance of BRCA1 and also the

event that there are two relatives affected points to either BRCA1 or BRCA2. The

result is a significant increase in the BRCA2 probabilities of about 8 times.

Table 2.22: The applicant’s genotype probabilities, given two relatives with BC
before age 50, for M = 4 or 6. Applicant age 50. ‘High’ estimates of mutation
frequencies.

Number of Probability that Applicant’s Genotype is
M Sisters Aunts (0,0) (1,0) (0,1) (1,1)
4 2 0 0.840 0.144 0.016 0.000
4 1 1 0.874 0.114 0.012 0.000
4 0 2 0.910 0.082 0.008 0.000
6 4 0 0.904 0.082 0.013 0.000
6 3 1 0.916 0.074 0.010 0.000
6 2 2 0.927 0.065 0.008 0.000
6 1 3 0.939 0.055 0.006 0.000
6 0 4 0.950 0.046 0.004 0.000

In Table 2.23 we show our first example of the effect of using ‘low’ mutation

estimates on carrier probabilities. We recall that the low mutations frequencies are

shown in Table 2.11 and are based on a BRCA1 mutation frequency of 0.000450 and

a BRCA2 mutation frequency of 0.000165. The case considered is the same as that

in Table 2.20 and the results show a significant fall in the carrier probabilities for

both BRCA1 and BRCA2. Any insurance risk assessment based on genotypes will

need to be based on good estimates of gene frequencies.
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Table 2.23: The applicant’s genotype probabilities, given two relatives with BC
before age 50, for M = 4 or 6. Applicant age 30. ‘Low’ estimates of mutation
frequencies.

Number of Probability that Applicant’s Genotype is
M Sisters Aunts (0,0) (1,0) (0,1) (1,1)
4 2 0 0.853 0.146 0.001 0.000
4 1 1 0.916 0.076 0.007 0.000
4 0 2 0.944 0.051 0.006 0.000
6 4 0 0.856 0.142 0.001 0.000
6 3 1 0.916 0.077 0.007 0.000
6 2 2 0.944 0.051 0.005 0.000
6 1 3 0.959 0.037 0.004 0.000
6 0 4 0.968 0.028 0.003 0.000

Table 2.24 considers the family history of two relatives with BC between ages 50

and 65. The applicant is aged 30. There is a risk of BRCA2 higher than that with

a history of BC before 50. This risk is higher in applicants with more sisters given

a fixed family size.

Table 2.24: The applicant’s genotype probabilities, given two relatives with BC
at ages 50–65, for M = 4 or 6. Applicant age 30. ‘High’ estimates of mutation
frequencies.

Number of Probability that Applicant’s Genotype is
M Sisters Aunts (0,0) (1,0) (0,1) (1,1)
4 2 0 n/a n/a n/a n/a
4 1 1 0.960 0.009 0.030 0.000
4 0 2 0.972 0.007 0.021 0.000
6 4 0 n/a n/a n/a n/a
6 3 1 0.960 0.009 0.030 0.000
6 2 2 0.973 0.006 0.021 0.000
6 1 3 0.979 0.005 0.016 0.000
6 0 4 0.984 0.004 0.012 0.000

2.5.5 Distribution of family structure

The last two sections considered the case in which the family structure is known.

The construction of Equations (2.18) and (2.19) depends on the independence of

individual life histories conditional on the familial genotype. We proceed by con-

sidering all possible family structures in order to evaluate carrier probabilities in
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cases where the family structure is unknown. The size M and ages X may both be

unknown or the size may be known while the ages are unknown. If the family struc-

ture is not known completely then the family history cannot be known completely.

Summary definitions of family history, as used in underwriting, may state

(a) the total number of relatives who have had BC or OC ever,

(b) total number of relatives with BC or OC with age-groups of onset.

(c) minimum number of relatives with BC or OC ever,

(d) minimum number of relatives with BC or OC with age-groups of onset.

The distribution of family structures is required in order to compute carrier prob-

abilities with unknown family structures. We define the random variables

Dm = Number of daughters borne by the applicant’s mother

Dmm = Number of daughters borne by the applicant’s maternal grandmother

Dfm = Number of daughters borne by the applicant’s paternal grandmother

Sfm = Number of sons borne by the applicant’s paternal grandmother.

Since the applicant always has a mother, finding the probability distribution of

the family structure is equivalent to establishing the probability that the applicant

has s sisters and a aunts, for all possible values of s and a. We note that

(a) for the applicant to have s sisters then Dm = s + 1,

(b) the applicant has a mother, therefore Dmm > 0, and

(c) the applicant has a father, therefore Sfm > 0.

The probability that the applicant has s sisters and a aunts is

P[Dm = s + 1|Dm > 0]P[Dmm + Dfm = a + 1|Dmm > 0, Sfm > 0]

We let am be the number of maternal aunts and af the number of paternal aunts.

Therefore a = am+af and the applicant will have am maternal aunts if Dmm = am+1

and have af paternal aunts if Dfm = af . Using these equations, and the fact that

Dmm and Dfm are conditionally independent given Dmm > 0 and Sfm > 0
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P[Dm = s + 1|Dm > 0]P[Dmm + Dfm = a + 1|Dmm > 0, Sfm > 0]

= P[Dm = s + 1|Dm > 0]

(
am=a∑
am=0

P[Dmm = am + 1, Dfm = a− am|Dmm > 0, Sfm > 0]

)

= P[Dm = s + 1|Dm > 0]

(
am=a∑
am=0

P[Dmm = am + 1|Dmm > 0, Sfm > 0]

×P[Dfm = a− am|Dmm > 0, Sfm > 0]
)

= P[Dm = s + 1|Dm > 0]

(
am=a∑
am=0

P[Dmm = am + 1|Dmm > 0]P[Dfm = a− am|Sfm > 0]

)

=
P[Dm = s + 1]

P[Dm > 0]

(
am=a∑
am=0

P[Dmm = am + 1]
P[Dmm > 0]

P[Dfm = a− am, Sfm > 0]
P[Sfm > 0]

)
. (2.21)

To establish the expressions in the equation we let D be the total number of

daughters and S the total number of sons born to a given woman, and C = D + S

the total number of her children. We assume that the probability that a child born

is male is 1.06/2.06 (Coleman and Salt (1992)). For a woman with c children the

probability that exactly d of them are daughters is(
c

d

)(
1

2.06

)d (
1.06

2.06

)c−d

.

Summing over all possible number of children, weighted by the probability dis-

tribution of the number of children, P (C = c), we get

P[D = d] =
c=∞∑
c=d

P[C = c]

(
c

d

) (
1

2.06

)d (
1.06

2.06

)c−d

. (2.22)

The probability that a woman has d daughters and at least one son is

P[D = d, S > 0] =
c=∞∑

c=d+1

P[C = c]

(
c

d

) (
1

2.06

)d (
1.06

2.06

)c−d

(2.23)

and the probability that she has at least one son is

P[S > 0] = 1−
c=∞∑
c=0

P[C = c]

(
1

2.06

)c

. (2.24)

In practice the number of children a women can have will be limited and there-

fore D and S will not be independent. Equations (2.22) to (2.24) are substituted in

Equation (2.21) to get P [M,X]. However we note that the distribution of number
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of children borne will not be the same for the applicant’s mother and of the grand-

mothers. Family sizes have changed significantly over time. Since our examples are

mostly for applicants aged 30, we should consider mothers born in about 1940 and

grandmothers born in about 1910. For the distribution of family size applicable to

the mother’s generation we will use results of interviews with women in the Gen-

eral Household Survey of 1987. These are given by Shaw (1990) and in Table 2.25

we give the values for women born between 1930 and 1944. For the 1940–44 birth

cohort, the values are based on expected final number of children since the women

were still of child bearing age at the time of the interviews.

Table 2.25: Distribution of final or expected numbers of children born to women
born in England and Wales in 1930–44. (Source: Shaw (1990).)

Number of children Average
Birth cohort 0 1 2 3 ≥ 4 Family Size

% % % % %
1930–34 13 13 29 22 23 2.49
1935–39 10 11 35 24 20 2.49
1940–44 9 13 40 20 18 2.38

The fertility report O.P.C.S. (1983) gives the distribution of family size for women

by year of marriage. Table 2.26 shows the distribution for women married in 1931

to 1935 and those married in 1961 to 1965. The distributions are based on data

from 1.17 million women (1931 to 1935) and 1.46 million women (1961 to 1965)

aged below 45.

Table 2.26: Distribution of numbers of children according to year of mother’s mar-
riage, England and Wales. (Source: O.P.C.S. (1983).)

Number of children
Year of Marriage 0 1 2 3 4 5 6 ≥ 7

% % % % % % % %
1931–35 17.5 27.0 26.6 14.3 7.0 3.50 1.80 2.30
1961–65 11.3 20.5 44.4 17.5 4.8 1.10 0.30 0.10

84



For the purposes of our calculations, the following points will apply with respect

to the values in Tables 2.25 and 2.26.

(a) Due to the way the data are given, we restrict C to C ≤ 7.

(b) We take the first line of Table 2.26 to represent the distribution of C in respect

of the applicant’s grandmothers.

(c) We take the third line of Table 2.25 to represent the distribution of C in respect

of the applicant’s mother. We note that even though these values are based

on a much smaller sample than those in Table 2.26, they are obtained 16 years

later. However we need to split the 18% of women with four or more children.

From Table 2.26, for women in the marriage years 1961–65, the 6.3% of women

with 4 or more children are in the ratios

1.000 : 0.2292 : 0.0625 : 0.0208

of having 4, 5, 6 and 7 or more children respectively. Applying these ratios to

the 18% of women, we get 13.7%, 3.14%, 0.86% and 0.29% of women with 4, 5,

6 and 7 children respectively.

Using these values of P[C = c], in Equations (2.22) to (2.24), Equation (2.21)

gives the distribution given in Table 2.27.
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Table 2.27: Distribution of the number of the applicant’s sisters and aunts.

Number of Number of Number of Number of
Sisters Aunts Probability Sisters Aunts Probability Sisters Aunts Probability Sisters Aunts Probability

0 0 0.12452712 2 0 0.02217054 4 0 0.00064970 6 0 0.00000599
0 1 0.17178831 2 1 0.03058482 4 1 0.00089628 6 1 0.00000827
0 2 0.12460245 2 2 0.02218395 4 2 0.00065010 6 2 0.00000600
0 3 0.06975886 2 3 0.01241972 4 3 0.00036396 6 3 0.00000336
0 4 0.03418573 2 4 0.00608635 4 4 0.00017836 6 4 0.00000165
0 5 0.01485461 2 5 0.00264468 4 5 0.00007750 6 5 0.00000071
0 6 0.00555446 2 6 0.00098890 4 6 0.00002898 6 6 0.00000027
0 7 0.00171508 2 7 0.00030535 4 7 0.00000895 6 7 0.00000008
0 8 0.00047017 2 8 0.00008371 4 8 0.00000245 6 8 0.00000002
0 9 0.00011468 2 9 0.00002042 4 9 0.00000060 6 9 0.00000001
0 10 0.00002303 2 10 0.00000410 4 10 0.00000012 6 10 0.00000000
0 11 0.00000328 2 11 0.00000058 4 11 0.00000002 6 11 0.00000000
0 12 0.00000024 2 12 0.00000004 4 12 0.00000000 6 12 0.00000000
1 0 0.07516976 3 0 0.00480188 5 0 0.00008109
1 1 0.10369858 3 1 0.00662432 5 1 0.00011186
1 2 0.07521523 3 2 0.00480479 5 2 0.00008114
1 3 0.04210935 3 3 0.00268997 5 3 0.00004543
1 4 0.02063593 3 4 0.00131823 5 4 0.00002226
1 5 0.00896686 3 5 0.00057281 5 5 0.00000967
1 6 0.00335290 3 6 0.00021418 5 6 0.00000362
1 7 0.00103530 3 7 0.00006614 5 7 0.00000112
1 8 0.00028382 3 8 0.00001813 5 8 0.00000031
1 9 0.00006922 3 9 0.00000442 5 9 0.00000007
1 10 0.00001390 3 10 0.00000089 5 10 0.00000001
1 11 0.00000198 3 11 0.00000013 5 11 0.00000000
1 12 0.00000015 3 12 0.00000001 5 12 0.00000000
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2.5.6 Carrier probabilities with unknown family structure

Having established P[M,X] it is now possible to calculate carrier probabilities when

the family structure is unknown. We suppose that we have some summarised family

history. We define C(M,X) to be the set of all family histories, in families of size

M and with structure X, in which this summarised family history has occurred. In

some cases, C(M,X) = ∅ and we define H = {(M,X) : C(M,X) 6= ∅}. Then the

probability that the applicant, age x, has genotype g is:

∑
(M,X)∈H




∑
G∈G(g)

( ∑
C(x)∈C(M,X)

P[C(x)|M,X,G]

)
P[G|M,X]

∑
G∈G

( ∑
C(x)∈C(M,X)

P[C(x)|M,X,G]

)
P[G|M,X]


 P[M,X|(M,X) ∈ H].

(2.25)

For computational reasons the maximum family size that will be considered is

M = 10, which corresponds to at most 8 sisters and aunts. Therefore it will be

necessary to truncate the distribution in Table 2.27. To assess the effect of maximum

family size, we consider the carrier probabilities for various maximum family sizes.

These probabilities are shown in Table 2.28 for an applicant aged 30 who has two

relatives with BC before age 50. We denote by M̂ the (truncated) maximum family

size and consider probabilities for M̂ between 3 and 10. In Table 2.28, P[M ≤ M̂ ]

is the proportion of the full probability contained in the truncated distribution.

P[M ≤ M̂, (M,X) ∈ H] is the proportion of the full probability of Table 2.27

included in the conditional truncated distributions P[M,X|(M,X) ∈ H] used in

Equation (2.25). Using a maximum family size of 10 will include family structures

that account for 99.86% of the distribution of family structures given in Table 2.27.

It also shows that about 12.6% of this probability relates to family structures for

which the family history is impossible. This gives a measure of how much limiting the

maximum family size would leave out those family structures which would contribute

to the family history in question. The table shows that due to the converging of

the carrier probabilities we do not expect any significant improvement or accuracy

if we use maximum family sizes greater than 10. Acceptable results would still be

obtained by using maximum family sizes of 9 or 8, but using smaller family sizes
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Table 2.28: The effect of the maximum family size, M̂ , on probabilities of the ap-
plicant’s genotype, given two relatives with BC before age 50 and unknown (M,X).
Applicant age 30. ‘High’ estimates of mutation frequencies.

Maximum
Family Probability that Applicant’s Genotype is
Size M̂ P[M ≤ M̂ ] P[M ≤ M̂, (M,X) ∈ H] (0,0) (1,0) (0,1) (1,1)

3 0.371 0.247 0.840 0.150 0.009 0.000
4 0.622 0.497 0.860 0.131 0.009 0.000
5 0.802 0.678 0.872 0.119 0.009 0.000
6 0.908 0.784 0.879 0.112 0.009 0.000
7 0.962 0.837 0.883 0.108 0.009 0.000
8 0.986 0.861 0.885 0.106 0.009 0.000
9 0.995 0.861 0.886 0.105 0.009 0.000
10 0.999 0.874 0.886 0.105 0.009 0.000

will overstate the carrier probabilities.

Our next example considers two summaries of family history of BC before 50

in relatives. One summary gives the exact number (between 1 and 5) of affected

relatives while the other just states that 2 or more relatives are affected. Table 2.29

gives the carrier probabilities for applicants aged 30 and 50 for these history sum-

maries. The maximum family sizes shown are 7, 8 and 9 and the carrier probabilities

are adequately convergent. We consider various aspects.

(a) The applicant’s age: If there is one affected relative, for an applicant aged 30,

the risk of BRCA1 or BRCA2 is significant. With one affected relative for an

applicant aged 50, the risk of both BRCA1 or BRCA2 falls since the applicant

has survived up to age 50. This is so since the affected relatives are more likely

to have sporadic disease. However once there is more than one affected relative,

then the evidence points more to genetic disease and the question then is on

which of BRCA1 or BRCA2 is responsible. For an applicant aged 30, BRCA1

is more likely. For an applicant who has survived to 50, the risk of BRCA1

decreases while that of BRCA2 increases.

(b) Unknown number of affected relatives: The carrier probabilities associated with

the summarised family history of 2 or more relatives affected are just slightly

more than those if exactly two relatives are affected. We note however that for

lives with between 2 and M − 1 relatives affected there is a wide variation in
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Table 2.29: The effect of the family history (BC before age 50 only) and maximum
family size, M̂ , on probabilities of the applicant’s genotype, unknown (M,X). ‘High’
estimates of mutation frequencies.

Number of Maximum
Applicant’s Relatives with Family Probability that Applicant’s Genotype is

Age BC Before 50 Size M̂ (0,0) (1,0) (0,1) (1,1)
30 1 7 0.985 0.012 0.002 0.000
30 1 8 0.985 0.012 0.002 0.000
30 1 9 0.986 0.012 0.002 0.000
30 2 7 0.883 0.108 0.009 0.000
30 2 8 0.885 0.106 0.009 0.000
30 2 9 0.886 0.105 0.009 0.000
30 3 7 0.655 0.332 0.012 0.000
30 3 8 0.660 0.327 0.012 0.000
30 3 9 0.662 0.325 0.012 0.000
30 4 7 0.544 0.447 0.008 0.001
30 4 8 0.550 0.442 0.008 0.001
30 4 9 0.552 0.439 0.008 0.001
30 5 7 0.515 0.480 0.004 0.001
30 5 8 0.520 0.474 0.005 0.001
30 5 9 0.523 0.471 0.005 0.001
30 ≥ 2 7 0.880 0.111 0.009 0.000
30 ≥ 2 8 0.882 0.109 0.009 0.000
30 ≥ 2 9 0.883 0.109 0.009 0.000
50 1 7 0.988 0.010 0.002 0.000
50 1 8 0.988 0.010 0.002 0.000
50 1 9 0.988 0.010 0.002 0.000
50 2 7 0.892 0.097 0.010 0.000
50 2 8 0.894 0.096 0.010 0.000
50 2 9 0.895 0.095 0.010 0.000
50 3 7 0.658 0.323 0.018 0.000
50 3 8 0.663 0.319 0.018 0.000
50 3 9 0.666 0.316 0.018 0.000
50 4 7 0.542 0.444 0.014 0.001
50 4 8 0.545 0.440 0.014 0.001
50 4 9 0.547 0.439 0.013 0.001
50 5 7 0.513 0.477 0.009 0.001
50 5 8 0.517 0.474 0.009 0.001
50 5 9 0.519 0.472 0.009 0.001
50 ≥ 2 7 0.886 0.104 0.010 0.000
50 ≥ 2 8 0.888 0.102 0.010 0.000
50 ≥ 2 9 0.888 0.101 0.010 0.000
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Table 2.30: The proportions of carrier probabilities given known family structures
in Tables 2.19 and 2.20 to their representative values if family structure is assumed
unknown in Table 2.29.

BRCA1 BRCA2
M lowest highest lowest highest

1 relative with BC before 50 4 0.7 1.7 0.8 1.6
1 relative with BC before 50 6 0.4 1.6 0.5 1.5
2 relatives with BC before 50 4 0.7 2.0 0.2 1.4
2 relatives with BC before 50 6 0.4 2.0 0.2 1.2

carrier probabilities.

(c) Unknown family structure: To assess the effect of unknown family structure,

we recall that Tables 2.19 and 2.20 give carrier probabilities associated with 1

and 2 relatives with BC before 50, where the family structure is known. These

tables considered family sizes 4 and 6 for applicants aged 30. We calculated the

proportion of the lowest and the highest carrier probabilities in these tables to

the carrier probability of the corresponding history in Table 2.29. We recall that

the probabilities in Table 2.29 are averages over all possible family structures.

Table 2.30 shows that, for example, the BRCA1 carrier probability of 0.105292

associated with 2 relatives with BC before 50 (in Table 2.29) represents carrier

probabilities at least as varied as from 0.4 to 2.0 times its value in applicants

with family size M = 6. These values show that probabilities based on unknown

family sizes can be very different from the probabilities when family structure

is known.

In the examples that follow the calculations are based on a maximum family size

of M̂ = 9. Table 2.31 shows carrier probabilities for a history of relatives with BC

before 50. We consider the same cases as in Table 2.29 but we use the low estimates

of mutation frequencies. As would be expected the carrier probabilities are lower

in all cases than in those found using high mutation frequencies. It is interesting

however to note that the differences are less for cases with more relatives with BC

before 50. Carrier probabilities in histories with fewer relatives affected are more

sensitive to the mutation frequencies used. Comparing the values in Table 2.23 with

the corresponding values in Table 2.31 we note that the carrier probabilities which
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Table 2.31: The effect of the family history (BC before age 50) on probabilities of
the applicant’s genotype, unknown (M,X). Maximum family size M̂ = 9. ‘Low’
estimates of mutation frequencies.

Number of
Applicant’s Relatives with Probability that Applicant’s Genotype is

Age BC Before 50 (0,0) (1,0) (0,1) (1,1)
30 1 0.992 0.007 0.001 0.000
30 2 0.927 0.068 0.005 0.000
30 3 0.714 0.276 0.010 0.000
30 4 0.566 0.426 0.007 0.000
30 5 0.528 0.468 0.004 0.001
30 ≥ 2 0.924 0.070 0.005 0.000
50 1 0.993 0.006 0.001 0.000
50 2 0.933 0.060 0.006 0.000
50 3 0.721 0.264 0.014 0.000
50 4 0.563 0.425 0.012 0.000
50 5 0.523 0.469 0.008 0.001
50 ≥ 2 0.929 0.065 0.006 0.000

do not take into account family structure are representing a wide range of carrier

probabilities. The magnitude of variation is similar to that shown in Table 2.30.

In Tables 2.32 and 2.33 we consider the probabilities associated with BC history

in the ages 50–65. We recall from our discussion of Table 2.17 that BC in this age

range gives high probabilities of BRCA2, which are even higher than the BRCA1

probabilities. This feature is present in both Tables 2.32 and 2.33. The probabilities

are much higher when more relatives are affected. In a way similar to the history

of BC before 50, the mutation frequencies have more impact when fewer relatives

are affected. The effect of unknown family structure on the carrier probabilities is

seen when we compare values in Table 2.24 to corresponding values in Table 2.32.

Probabilities corresponding to a known family structure are significantly different

from those based on unknown family structures.

Tables 2.34 to 2.37 consider history of OC below age 50 and OC between ages

50 and 65. We note that OC before 50 very much points to the presence of BRCA1

mutations. As the number of relatives affected increases, the probabilities of BRCA1

increase significantly while the BRCA2 probabilities fall. For 4 or more relatives

affected, the BRCA2 probabilities fall below population frequencies. For cases where

OC is between 50 and 65 the carrier probabilities of BRCA1 are lower than for OC
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Table 2.32: The effect of the family history (BC at ages 50–65) on probabilities of
the applicant’s genotype, unknown (M,X). Maximum family size M̂ = 9. ‘High’
estimates of mutation frequencies.

Number of
Applicant’s Relatives with Probability that Applicant’s Genotype is

Age BC at 50–65 (0,0) (1,0) (0,1) (1,1)
30 1 0.994 0.003 0.003 0.000
30 2 0.970 0.007 0.023 0.000
30 3 0.882 0.013 0.105 0.000
30 4 0.712 0.013 0.275 0.000
30 5 0.597 0.008 0.394 0.001
30 ≥ 2 0.969 0.007 0.023 0.000
50 1 0.995 0.002 0.003 0.000
50 2 0.980 0.004 0.016 0.000
50 3 0.922 0.007 0.071 0.000
50 4 0.780 0.008 0.211 0.000
50 5 0.640 0.006 0.354 0.001
50 ≥ 2 0.979 0.004 0.016 0.000

Table 2.33: The effect of the family history (BC at ages 50–65) on probabilities of
the applicant’s genotype, unknown (M,X). Maximum family size M̂ = 9. ‘Low’
estimates of mutation frequencies.

Number of
Applicant’s Relatives with Probability that Applicant’s Genotype is

Age BC at 50–65 (0,0) (1,0) (0,1) (1,1)
30 1 0.996 0.002 0.002 0.000
30 2 0.983 0.004 0.013 0.000
30 3 0.925 0.008 0.066 0.000
30 4 0.772 0.010 0.217 0.000
30 5 0.624 0.007 0.369 0.000
30 ≥ 2 0.982 0.004 0.013 0.000
50 1 0.997 0.001 0.001 0.000
50 2 0.989 0.003 0.009 0.000
50 3 0.953 0.004 0.043 0.000
50 4 0.841 0.006 0.153 0.000
50 5 0.681 0.005 0.314 0.000
50 ≥ 2 0.988 0.003 0.009 0.000
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before 50 while BRCA2 probabilities are higher. The total probability of having

some mutation is lower for a history of OC between 50 and 65 than for OC before

50.

Table 2.34: The effect of the family history (OC before age 50) on probabilities of
the applicant’s genotype, unknown (M,X). Maximum family size M̂ = 9. ‘High’
estimates of mutation frequencies.

Number of
Applicant’s Relatives with Probability that Applicant’s Genotype is

Age OC Before 50 (0,0) (1,0) (0,1) (1,1)
30 1 0.978 0.020 0.001 0.000
30 2 0.804 0.193 0.002 0.000
30 3 0.584 0.415 0.001 0.000
30 4 0.531 0.468 0.001 0.000
30 5 0.515 0.484 0.000 0.000
30 ≥ 2 0.803 0.194 0.002 0.000
50 1 0.982 0.017 0.001 0.000
50 2 0.801 0.196 0.003 0.000
50 3 0.572 0.427 0.001 0.000
50 4 0.524 0.475 0.001 0.000
50 5 0.511 0.488 0.000 0.000
50 ≥ 2 0.798 0.199 0.003 0.000

2.5.7 Effect of lower BRCA1 and BRCA2 penetrance

In Table 2.7 we showed a number of estimates of the penetrance of BRCA1. It

shows that there has been wide variation in the estimates published. The confidence

intervals of the estimates are quite wide, so that these values can not be taken as very

reliable. These penetrance estimates were largely based on studies of women selected

for their particularly strong family history of BC or OC. We feel that these estimates

are more likely to overestimate than underestimate the penetrance. In Tables 2.38 to

2.40 we consider the effect that reducing penetrance has on the carrier probabilities.

We consider two scenarios in which we reduce the excess incidence rates of BC or OC

in mutation carriers over the population BC or OC incidence rates to 50% and 25% of

the values we have used so far. This means that we maintain the general shape of the

incidence rates in the parameterisation of Section 2.5.2. By considering reductions

in the excess incidence rates rather than the reduction in absolute incidence rates,

we ensure that the ordering of the incidence rates for sporadic, BRCA1 and BRCA2
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Table 2.35: The effect of the family history (OC before age 50) on probabilities of
the applicant’s genotype, unknown (M,X). Maximum family size M̂ = 9. ‘Low’
estimates of mutation frequencies.

Number of
Applicant’s Relatives with Probability that Applicant’s Genotype is

Age OC Before 50 (0,0) (1,0) (0,1) (1,1)
30 1 0.987 0.012 0.001 0.000
30 2 0.862 0.137 0.002 0.000
30 3 0.610 0.390 0.001 0.000
30 4 0.535 0.464 0.000 0.000
30 5 0.518 0.481 0.000 0.000
30 ≥ 2 0.861 0.138 0.002 0.000
50 1 0.989 0.010 0.001 0.000
50 2 0.858 0.140 0.002 0.000
50 3 0.595 0.404 0.001 0.000
50 4 0.527 0.473 0.000 0.000
50 5 0.513 0.486 0.000 0.000
50 ≥ 2 0.856 0.143 0.002 0.000

disease is maintained. Reducing the excess incidence rates to 50% and 25% will

correspond to a reduction in BRCA1 penetrance for BC at age 80 to about 60% and

40% respectively. These levels for the penetrance are in line with the penetrance

estimates obtained from recent studies like Antoniou et al. (2000) which gives a

penetrance for BC of 45% by age 70 ( see Table 2.7).

In Tables 2.38 and 2.39 we assume that the family structure is known with sizes

M = 4 and M = 6. The applicant is aged 30, and we consider the history of one

and two relatives with BC before age 50. In all cases the BRCA1 carrier probabil-

ities are significantly reduced. The reduction is more marked in the higher carrier

probabilities. This means there is more reduction in carrier probabilities given two

relatives affected than given one relative affected, and more reduction given more

sisters in the family structure than fewer sisters. For a reduction in excess risk to

50% of current values, the BRCA1 carrier probabilities fall by up to a factor of 2

while for a reduction to 25% of current excess risk values the probabilities fall by

up to a factor of 5.

The BRCA2 carrier probabilities fall significantly in most of the cases. However,

in the cases where there are no aunts, and two relatives with BC before 50, that is

the cases when it is implied that a sister has had BC before 50, the lowering of the
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Table 2.36: The effect of the family history (OC at ages 50–65) on probabilities of
the applicant’s genotype, unknown (M,X). Maximum family size M̂ = 9. ‘High’
estimates of mutation frequencies.

Number of
Applicant’s Relatives with Probability that Applicant’s Genotype is

Age OC at 50–65 (0,0) (1,0) (0,1) (1,1)
30 1 0.990 0.007 0.002 0.000
30 2 0.951 0.040 0.009 0.000
30 3 0.835 0.140 0.024 0.000
30 4 0.681 0.281 0.038 0.001
30 5 0.594 0.366 0.039 0.001
30 ≥ 2 0.951 0.040 0.009 0.000
50 1 0.993 0.005 0.002 0.000
50 2 0.970 0.023 0.007 0.000
50 3 0.901 0.079 0.019 0.000
50 4 0.775 0.187 0.039 0.000
50 5 0.658 0.290 0.051 0.001
50 ≥ 2 0.970 0.023 0.007 0.000

penetrance actually increased the carrier probabilities. For an applicant aged 30,

BC for a sister before that age of 30 should be more indicative of hereditary disease

when the disease is rarer.

When we assume that the family structure is not known then all BRCA1 and

BRCA2 carrier probabilities fall significantly as shown in Table 2.40. Because the

excess risk has a cumulative effect on life histories, we expect the reduction to be

greater for an applicant aged 50 than one aged 30. This is the case in Table 2.40.

2.5.8 Summary of model features

The following is a summary the main features of our model.

(a) The family structure has a significant impact on the carrier probabilities. If

sisters have BC or OC, the probabilities of BRCA1 or BRCA2 mutations are

very high.

(b) Probabilities estimated assuming unknown family structures represent widely

varying probabilities associated with the constituent family structures. It can

be very inaccurate to use these probabilities.

(c) History of two or more relatives affected with BC or OC before age 50 points

to hereditary disease, predominantly BRCA1 if the applicants are young. The
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Table 2.37: The effect of the family history (OC at ages 50–65) on probabilities of
the applicant’s genotype, unknown (M,X). Maximum family size M̂ = 9. ‘Low’
estimates of mutation frequencies.

Number of
Applicant’s Relatives with Probability that Applicant’s Genotype is

Age OC at 50–65 (0,0) (1,0) (0,1) (1,1)
30 1 0.995 0.004 0.001 0.000
30 2 0.971 0.024 0.005 0.000
30 3 0.888 0.096 0.016 0.000
30 4 0.733 0.236 0.031 0.000
30 5 0.616 0.347 0.036 0.001
30 ≥ 2 0.971 0.024 0.005 0.000
50 1 0.996 0.003 0.001 0.000
50 2 0.983 0.014 0.004 0.000
50 3 0.938 0.050 0.012 0.000
50 4 0.832 0.140 0.028 0.000
50 5 0.700 0.256 0.044 0.000
50 ≥ 2 0.983 0.014 0.004 0.000

probability of BRCA2 mutations becomes more likely if the applicants are older.

(d) History of BC or OC in two or more relatives at ages above 50 points to the

presence of BRCA2 mutation. The probabilities get smaller for older applicants

and older age at onset.

(e) The mutation frequencies used are very influential on the resulting probabilities

especially in cases where the family history is not very strong. The use of high

mutation frequencies allows for the effect of other, as yet unknown, BRCA genes

on other chromosomes.

(f) The penetrance estimates used also have a significant impact on the resulting

probabilities. Using higher penetrance leads to higher carrier probabilities.
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Table 2.38: The applicant’s genotype probabilities, given one relative with BC before
age 50, for M = 4 or 6. Applicant age 30. ‘High’ estimates of mutation frequencies.
BC and OC excess incidence rates of at-risk genotypes at 100%, 50% and 25% of
previous estimates.

BC/OC Excess
Incidence Rates as Number of Probability that Applicant’s Genotype is

% of Observed M Sisters Aunts (0,0) (1,0) (0,1) (1,1)
100% 4 2 0 0.976 0.020 0.004 0.000

4 1 1 0.986 0.012 0.002 0.000
4 0 2 0.990 0.008 0.002 0.000
6 4 0 0.977 0.019 0.004 0.000
6 3 1 0.986 0.012 0.002 0.000
6 2 2 0.990 0.008 0.002 0.000
6 1 3 0.992 0.006 0.002 0.000
6 0 4 0.994 0.005 0.001 0.000

50% 4 2 0 0.984 0.013 0.002 0.000
4 1 1 0.990 0.009 0.002 0.000
4 0 2 0.992 0.007 0.001 0.000
6 4 0 0.985 0.013 0.002 0.000
6 3 1 0.990 0.009 0.002 0.000
6 2 2 0.992 0.007 0.001 0.000
6 1 3 0.993 0.006 0.001 0.000
6 0 4 0.994 0.005 0.001 0.000

25% 4 2 0 0.990 0.008 0.002 0.000
4 1 1 0.993 0.006 0.001 0.000
4 0 2 0.994 0.005 0.001 0.000
6 4 0 0.991 0.008 0.001 0.000
6 3 1 0.993 0.006 0.001 0.000
6 2 2 0.994 0.005 0.001 0.000
6 1 3 0.995 0.004 0.001 0.000
6 0 4 0.995 0.004 0.001 0.000
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Table 2.39: The applicant’s genotype probabilities, given two relatives with BC
before age 50, for M = 4 or 6. Applicant age 30. ‘High’ estimates of mutation
frequencies. BC and OC excess incidence rates of at-risk genotypes at 100%, 50%
and 25% of previous estimates.

BC/OC Excess
Incidence Rates as Number of Probability that Applicant’s Genotype is

% of Observed M Sisters Aunts (0,0) (1,0) (0,1) (1,1)
100% 4 2 0 0.787 0.211 0.002 0.000

4 1 1 0.869 0.119 0.012 0.000
4 0 2 0.910 0.081 0.009 0.000
6 4 0 0.791 0.207 0.002 0.000
6 3 1 0.869 0.121 0.010 0.000
6 2 2 0.910 0.082 0.009 0.000
6 1 3 0.933 0.061 0.007 0.000
6 0 4 0.947 0.047 0.006 0.000

50% 4 2 0 0.897 0.101 0.002 0.000
4 1 1 0.935 0.059 0.006 0.000
4 0 2 0.952 0.043 0.005 0.000
6 4 0 0.899 0.099 0.002 0.000
6 3 1 0.935 0.060 0.005 0.000
6 2 2 0.952 0.044 0.004 0.000
6 1 3 0.962 0.034 0.004 0.000
6 0 4 0.969 0.028 0.003 0.000

25% 4 2 0 0.959 0.039 0.002 0.000
4 1 1 0.972 0.025 0.003 0.000
4 0 2 0.978 0.020 0.002 0.000
6 4 0 0.960 0.039 0.001 0.000
6 3 1 0.972 0.026 0.003 0.000
6 2 2 0.978 0.020 0.002 0.000
6 1 3 0.981 0.017 0.002 0.000
6 0 4 0.983 0.015 0.002 0.000
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Table 2.40: The effect of the family history (BC before age 50 only) and maximum
family size, M̂ , on probabilities of the applicant’s genotype, unknown (M,X). ‘High’
estimates of mutation frequencies. BC and OC excess incidence rates of at-risk
genotypes at 100%, 50% and 25% of previous estimates.

BC/OC Excess Number of
Incidence Rates as Applicant’s Relatives with Probability that Applicant’s Genotype is

% of Observed Age BC Before 50 (0,0) (1,0) (0,1) (1,1)
100% 30 1 0.986 0.012 0.002 0.000

30 2 0.886 0.105 0.009 0.000
30 3 0.662 0.325 0.012 0.000
30 4 0.552 0.439 0.008 0.001
30 5 0.523 0.471 0.005 0.001
30 ≥ 2 0.883 0.109 0.009 0.000

50% 30 1 0.990 0.009 0.002 0.000
30 2 0.943 0.053 0.004 0.000
30 3 0.795 0.197 0.007 0.000
30 4 0.627 0.366 0.007 0.001
30 5 0.551 0.443 0.004 0.001
30 ≥ 2 0.942 0.054 0.004 0.000

25% 30 1 0.993 0.006 0.001 0.000
30 2 0.975 0.023 0.002 0.000
30 3 0.920 0.076 0.004 0.000
30 4 0.806 0.189 0.005 0.000
30 5 0.672 0.323 0.004 0.001
30 ≥ 2 0.974 0.023 0.002 0.000

100% 50 1 0.988 0.010 0.002 0.000
50 2 0.895 0.095 0.010 0.000
50 3 0.666 0.316 0.018 0.000
50 4 0.547 0.439 0.013 0.001
50 5 0.519 0.472 0.008 0.001
50 ≥ 2 0.889 0.101 0.010 0.000

50% 50 1 0.994 0.005 0.001 0.000
50 2 0.962 0.034 0.004 0.000
50 3 0.852 0.139 0.009 0.000
50 4 0.711 0.279 0.010 0.000
50 5 0.645 0.347 0.007 0.001
50 ≥ 2 0.960 0.035 0.004 0.000

25% 50 1 0.995 0.004 0.001 0.000
50 2 0.979 0.019 0.002 0.000
50 3 0.930 0.066 0.004 0.000
50 4 0.826 0.167 0.007 0.000
50 5 0.704 0.288 0.007 0.000
50 ≥ 2 0.978 0.019 0.002 0.000
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Chapter 3

Application of the breast and

ovarian cancer model to Critical

Illness insurance

In Section 2.5 we were concerned with the family history which develops before a

woman applies for insurance. Of particular importance was determining the prob-

abilities that a woman had BRCA1 or BRCA2 mutations given her family history.

Once the woman has been accepted for insurance, we are only concerned with events

in the insured’s life, and not in the relatives’ lives. We are interested in the oc-

currence of the events that will trigger claims according to the policy conditions.

Therefore there is a need to develop a model for the applicant to capture the onset of

claim triggering events. The models for pricing CI insurance discussed in Section 1.5

(Dash and Grimshaw (1990) and Dinani et al. (2000)) model the CI claims events

incidence with respect to the age and sex of the applicant. BCOC incidence is not

considered separately in these models but is grouped together with other cancers

and none of these models consider the family history of the applicant. Further the

model we need should explicitly incorporate the genotype of the applicant.

In this section we consider a woman applying for the stand-alone type of CI

policy defined in Section 1.5. We use a 28-day survival period. This should have

a negligible effect on the incidence of cancers but not so for other critical illnesses,

especially heart attacks and strokes.
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Figure 3.16: A Markov model for an applicant with genotype g, before buying
Critical Illness insurance.

3.1 The applicant’s model

We consider a woman who has effected a CI policy. A claim may be paid if the

woman:

(a) contracts breast cancer,

(b) contracts ovarian cancer, or

(c) contracts another insured illness and survives for 28 days after onset.

Figure 3.16 presents a multiple state model representing the life of the insured

woman. Four transition intensities parameterise the model and we discuss them in

turn.

3.1.1 Incidence rates of breast cancer

The incidence rates of BC are represented by the parameterisation of Section 2.5.2.

The incidence of BC depends on the BRCA1 and BRCA2 genotype and gµ01
x is given

by the appropriate combination of formulae (2.8), (2.10) and (2.13).
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3.1.2 Incidence rates of ovarian cancer

The OC incidence, gµ02
x , also differs by genotype and the transition intensities are

given by the appropriate combination of formulae (2.9), (2.12) and (2.14).

3.1.3 Incidence of other critical illness and surviving 28 days

The incidence rate of other critical illness will be the sum of the four components

listed below.

(a) The incidence rate of cancers which are not any of BC, OC or skin cancer which

is not malignant melanoma, since the latter does not trigger a CI claim.

(b) The incidence rate of heart attack with 28-day survival from onset.

(c) The incidence rate of stroke with 28-day survival from onset.

(d) The incidence rate of all other CI claim causes which are not covered by items

(a) to (c) and which are neither BC nor OC.

We discuss the modelling of these four components in turn.

Incidence of other cancers

‘Other Cancers’ are defined to exclude BC, OC and all skin cancer which is not

malignant melanoma. Skin cancer which is not malignant melanoma is specifically

excluded from the definition of cancer for critical illness policies. We assume that

the incidence of ‘Other Cancers’ is the same for all BRCA1 and BRCA2 genotypes

and this incidence is equal to that of the general population.

In a way similar to the parameterisation of the incidence of BC and OC in the

population in Section 2.5.2, we consider 1 January 1990 to 31 December 1992 as the

period of investigation. Using data from O.N.S. (1999), we calculate the number of

new cases of ‘Other Cancer’ for lives aged x, θx, for individual ages. The exposed to

risk, Ec
x, is the same as was used in Section 2.5.2. Using these exposures means we

are not taking into account the women in the population who already have ‘Other

Cancers’. While we could safely ignore the lives with disease in the BC and OC

exposed to risk calculations in Section 2.5.2, the effect may not be negligible with

‘Other Cancers’. The effect of not subtracting the affected lives from the exposed to
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risk would be that the estimated incidence rates will be lower than they should be.

However the numbers of new cases of ‘Other Cancers’ calculated from O.N.S. (1999)

include cancers, which though they may be the first ever of its type, may not be the

first ever cancer in the individual. CI claims would normally be triggered by the

first to occur of all cancers. We expect the inclusion of subsequent cancers to result

in estimated incidence rates which are higher than they should be. Our assumption

is that these effects of lowering and increasing the incidence rates should cancel each

other out. The exposed to risk values and the numbers of cases which we use are

shown in Appendix D. Based on the crude estimates of the incidence rates

µ̇other
x =

θx

Ec
x

.

Using unweighted least squares, we fitted the function

µother
x = exp(−10.3995 + 0.08235x) for x < 40 (3.26)

µother
x = 0.00808− 0.00019x

+0.000016(x− 35)2 − 0.000000144(x− 35)3 for x > 64 (3.27)

to represent the smooth incidence of ‘Other Cancers’. Between ages 40 and 64 we

used a linear blending of the two functions. The fitted function together with the

crude estimates are shown in Figure 3.17.

In cancer it is difficult to establish the exact day of onset of the disease. The

diagnosis process may take time and we consider it reasonable to assume that all

lives who develop any cancer will survive the 28 days necessary for them to claim

a CI benefit. This assumption is supported by estimated 28-day cancer survival

factors supplied to us by Swiss Re, which are equal to one at all ages.

Incidence of heart attacks

We assume that the incidence rates of heart attacks are the same irrespective of

BRCA1 or BRAC2 genotype and these are equal to the population incidence rates.

To estimate the incidence of heart attacks in the population we use data from the

Morbidity Statistics from General Practice (M.S.G.P.) Survey conducted between

September 1991 and August 1992. The survey was carried out in 60 practices in

England and Wales and accumulated about 250,000 person-years of exposure for

females. Based on this survey a CD-ROM was published which contains anonymised
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Figure 3.17: The observed and fitted incidence of ‘Other Cancers’ in the general
population of England and Wales.

details of times spent in the study and General Practice consultations made during

the study year.

For CI purposes we define heart attack as the disease covered under International

Classification of Diseases (ICD) codes 410 and 414, and we only consider first-ever

cases. We are able to calculate, from the CD-ROM data, the exact exposed to risk,

Ec
x for various age groups and the number of first-ever cases of heart attack, θx.

These are shown in Table 3.41.

Using unweighted least squares, the crude incidence rates, µ̇heart
x were graduated

by the Gamma function

µheart
x = 0.58

(
0.1616.34 exp(−0.16x)x15.34

Γ(16.34)

)
. (3.28)

Figure 3.18 shows the crude incidence rates and the graduated function. The CI

Healthcare Study Group published a CI base table with estimated incidence of heart

attacks in females (Dinani et al. (2000)). They consider a number of adjustments

to their crude rates and give, among other rates, ‘smoothed adjusted crude rates’.
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Table 3.41: Exposed to risk, observed number of cases and crude incidence rates
of first-ever heart attack (ICD 410 and 414) amoung women. (Source: McCormick
et al. (1995).)

Age Ec
x θx µ̇heart

x Age Ec
x θx µ̇heart

x

0–29 97,198.27 1 0.0000103 65–69 11,042.57 46 0.0041657
30–44 51,726.74 6 0.0001160 70–74 10,047.81 48 0.0047772
45–49 14,994.75 7 0.0004668 75–79 8,348.98 66 0.0079052
50–54 11,852.14 12 0.0010125 80–84 6,268.98 49 0.0078163
55–59 11,129.62 24 0.0021564 85–89 3,483.31 31 0.0088996
60–64 11,126.07 31 0.0027862 90–94 1,292.34 9 0.0069641

These are not adjusted for the 28-day survival requirement. In Figure 3.19 we show

their ‘smoothed adjusted crude rates’ together with the rates given by our graduation

of Equation (3.28). Figure 3.19 shows a very good agreement between the two sets

of rates especially at ages below 70 which are of main interest to us.

Of those lives who develop heart attack a significant proportion will not survive

for 28 days after disease onset. Only those who survive will be eligible for a CI

payout. In a community study in Glasgow, Morrison et al. (1997) found an overall

28-day survival of 50%. The survival proportion decreases with age. There is no

consensus, in the studies, on whether sex is an independent factor in the survival

rate. There are differences in population age distribution, many other characteristics

and type of treatment after admission to hospital following a heart attack, between

males and females. These differences may contribute to the apparent lower survival

rate in women (Morrison et al. (1997)). In general the probability of survival depends

mainly on two factors:

(a) chance of reaching the hospital alive after an attack, and

(b) type of treatment after admission to hospital.

Morrison et al. (1997) find socioeconomic differences affecting the chance of get-

ting to hospital alive after an attack. This is thought to be due to factors like

difficulty of recognising symptoms which may be more common in less educated

people. Morrison et al. (1997) did not find socioeconomic differences affecting the

survival once admitted to hospital.
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Figure 3.18: The observed and fitted incidence of heart attacks in the M.S.G.P.
study population.

We expect that the 28-day survival after heart attack is significantly higher in

lives who have purchased CI policies than lives in the general population. We base

this on the following reasons.

(a) The insured lives have a socioeconomic profile more skewed to the higher so-

cial classes than the general population. Differences in the understanding of

symptoms, chances of getting to hospital alive after an attack, quality of care

in hospital, etc., would imply higher survival rates for insured lives.

(b) The cases of heart attack considered in insured lives are only the first-ever cases.

We expect recurrent heart attack events to have a higher fatality risk. The

population survival rates are based on cases combining first-ever and recurrent

heart attacks and therefore should have a higher fatality rate than the insured

experience.

Estimates of 28-day heart attack survival rates supplied to us by Swiss Re showed

a gradual decrease by age. These are based on insured lives and were not subdivided
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Figure 3.19: Comparison of heart attack incidence rates in our graduation with
those by the CI Healthcare Study Group. (Source: Dinani et al. (2000).)

by sex. We graduated the survival factors using unweighted least squares by the

quadratic function

pheart
x = 0.8983095− 0.00235911x− 0.00001359781x2. (3.29)

Figure 3.20 shows the population 28-day heart attack survival factors from the study

by Morrison et al. (1997) against the survival factors of insured lives as represented

by formula (3.29). It is not possible to determine neither the original source nor the

quality of the Swiss Re data. The large difference in the survival rates between the

Swiss Re values and those of Morrison et al. (1997) at the young ages is particularly

worrying. However in the absence of other insured lives data, we use the Swiss Re

rates.

From formulae (3.28) and (3.29), the incidence rate of heart attacks is therefore

reduced to

µheart
x pheart

x . (3.30)
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Figure 3.20: Population 28-day heart attack survival factors (Source: Morrison et al.
(1997).) and the insured lives survival factors.

Incidence of stroke

It is assumed that the incidence of stroke is not dependent on the BRCA1 or BRCA2

genotype. The incidence rates are assumed to be equal to those in the population.

To estimate the incidence of stroke in females in the population we use the results of

a prospective study based on a stroke register in a multi-ethnic community in South

London (Stewart et al. (1999)). Details were obtained from the stroke register

between 1 January 1985 and 31 December 1992. The total study population was

234,533 of which 121,896 were female. Table 3.42 shows the crude estimates of the

incidence of first-ever stroke in women.

We graduated the stroke incidence rates by the Gompertz function

µstroke
x = exp (−11.45 + 0.085x) . (3.31)

and Figure 3.21 show the incidence rates and the fitted function.
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Table 3.42: Incidence rates of first-ever stroke among women. (Source: Stewart
et al. (1999).)

Age Incidence Rate Age Incidence Rate
< 15 0.00000 55–64 0.00136
15–24 0.00005 65–74 0.00445
25–34 0.00009 75–84 0.00898
35–44 0.00034 ≥ 85 0.01887
45–54 0.00078
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Figure 3.21: The observed and fitted incidence of stroke.
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Table 3.43: Exposed to risk, cases and incidence rates of stroke from the M.S.G.P.
study ( Source: McCormick et al. (1995)) and incidence rates of stroke from the
O.C.S.P. ( Source: Bamford et al. (1988).)

M.S.G.P O.C.S.P
Age Ec

x θx µstroke,M.S.G.P
x µstroke,O.C.S.P

x

0–44 148,925.01 7 0.000047 0.000110
45–54 26,846.89 19 0.000708 0.000460
55–64 22,255.69 35 0.001573 0.002350
65–74 21,090.38 82 0.003888 0.005840
75–84 14,617.96 139 0.009509 0.013390
85–90 3,866.28 66 0.017071 0.020360

There are two other possible source of stroke incidence rates which we considered.

One of them is the M.S.G.P. survey ( McCormick et al. (1995)) and the other is the

Oxfordshire Community Stroke Project (O.C.S.P.) study of 1981 to 1986 (Bamford

et al. (1988)). From the M.S.G.P. CD-ROM we can calculate the number of cases

of first-ever stroke recorded during the study, as we did for heart attacks. From

these cases and using the exposed to risk values we can estimate the incidence of

first-ever stroke. In Table 3.43 we show the exposed to risk, number of cases and

the incidence of first ever stroke based on the M.S.G.P. study. We also show the

incidence rates given by the O.C.S.P. study.

In Figure 3.22 we show the rates from the two studies together with our graduated

function given by Equation (3.31). It shows a good agreement for the three sets of

rates. It is expected that the rates from the M.S.G.P. study would be lower than

other since they do not capture all events outside the General Practice system. We

feel that the rates from Stewart et al. (1999) are the most reasonable to use since

they are the most recent of the three.

We then compare our graduated function given by Equation (3.31) with the

incidence of stroke from the Dinani et al. (2000). Unlike heart attacks, we used

their ‘crude rate’ and not the ‘smoothed adjusted crude rate’. This is because the

latter is adjusted for overlap with other CI claim causes which is not comparable to

the rates from Stewart et al. (1999). This comparison is shown in Figure 3.23. The

points represent the Dinani et al. (2000) rates while the solid line is the graduated
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Figure 3.22: Incidence rates from M.S.G.P. and O.C.S.P. with the graduated func-
tion for stroke based on Stewart et al. (1999).

function. It shows remarkable agreement in the two sets of rates.

The 28-day stroke survival rates are somewhat higher than those of heart attack.

For reasons similar to those for heart attack survival factors, we expect the survival

factors for insured lives to be higher than those for the general population. Based on

the data supplied to us by Swiss Re we represent the 28-day stroke survival factors

in insured lives by the quadratic function

pstroke
x = 0.8718412 + 0.001566578x− 0.00003711161x2. (3.32)

We compare the survival factors given by Equation (3.32) with population esti-

mates based on a study by Vemmos et al. (1999) carried out in southern Greece.

The incidence rate of stroke in the study population is similar to the stroke incidence

given by Stewart et al. (1999), shown in Table 3.42. The 28-day stroke survival fac-

tors from Vemmos et al. (1999) are shown in Figure 3.24. Vemmos et al. (1999) only

consider first-ever cases of stroke and therefore the population rates are closer to

the insured lives rates than we would expect if recurrent cases had been considered
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Figure 3.23: Comparison of stroke incidence rates in our graduation with those by
the CI Healthcare Study Group. (Source: Dinani et al. (2000).)

also.

Based on formulae (3.31) and (3.32), the incidence rates of stroke for the CI

model are reduced to

µstroke
x pstroke

x . (3.33)

Incidence of ‘other CI claim causes’

CI claim causes which are not any of BC, OC, other cancers, heart attacks and stroke

still form a significant proportion of total CI claim causes. We classify these claim

causes as ‘minor’ causes and Table 3.44 shows the incidence rates of different causes

of CI claims for females, from a study of 1991–97 data by Dinani et al. (2000). We

note that ‘minor’ causes (causes not any of cancer, heart attack or stroke) account

for about 30% of claims below age 30 and about 15% of claims at other ages. We

make an allowance for the ‘minor’ claim causes by assuming that the incidence rate

of these causes is 15% of the sum of the incidence of cancer, heart attack and stroke
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Figure 3.24: Population 28-day stroke attack survival factors (Source: Vemmos et al.
(1999).) and the insured lives survival factors.

for the same age. We note that cancer is composed of BC, OC and other cancers

of which BC and OC have incidence rates which differ by genotype. Irrespective

of the genotype we use the incidence of BC and OC for lives without mutations

for the purposes of calculating the incidence of ‘minor’ causes. This is equivalent to

assuming that incidence of ‘minor’ causes does not differ by genotype. The incidence

of ‘minor’ causes is therefore given by

0.15
(
µother

x + µstroke
x pstroke

x + µheart
x pheart

x + 0µ01
x + 0µ02

x

)
. (3.34)

The total incidence of other critical illness, gµ03
x , is then given by

gµ03
x = 1.15

(
µother

x + µstroke
x pstroke

x + µheart
x pheart

x

)
+ 0.15

(
0µ01

x + 0µ02
x

)
(3.35)
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Table 3.44: Incidence rates (per 1,000) of CI claims by cause, for females in the U.K.
in 1991–97. (Source: Dinani et al. (2000).)

Incidence Rate per 1,000 at Age
Cause ≤ 30 31–40 41–50 51–60 ≥ 61
Cancer 0.215 0.434 0.962 1.199 7.774
Heart Attack 0.000 0.004 0.014 0.074 0.338
Stroke 0.024 0.028 0.072 0.166 0.169
Bypass Surgery 0.000 0.000 0.023 0.037 0.000
Multiple Sclerosis 0.049 0.043 0.072 0.000 1.521
Total Permanent Disability 0.034 0.021 0.099 0.184 0.000
Other 0.015 0.015 0.014 0.018 0.169
Total 0.337 0.545 1.255 1.678 9.971

3.1.4 Mortality

The mortality rate, gµ04
x , represents the rate from deaths falling in two categories.

(a) Deaths due to causes which are not CI claim triggers. These are mostly acciden-

tal deaths at younger ages. At older ages these deaths are due to illnesses that

are not covered under CI insurance policies like respiratory disorders, digestive

system disorders and mental disorders. Injury from falls and being struck by

motor vehicles also contribute to accidental deaths in the elderly.

(b) Deaths due to causes which are CI claim triggers but the life dies within 28-days

of onset.

We represent component (a) by the mortality of ELT15F adjusted downwards

for a range of causes of death representing CI claim causes. We use Equation (2.16)

where θD
x includes deaths due to cancer, heart attack, stroke, kidney failure, multiple

sclerosis, Alzheimer’s disease, Parkinson’s disease and benign brain tumour. From

O.N.S. (1999) we get the number of deaths due to cancer and from O.N.S. (1997a)

we get the total number of all deaths, θELT15F
x , both by single years of age. For the

remaining causes of death O.P.C.S. (1991b), O.P.C.S. (1993b) and O.P.C.S. (1993c)

give the number of deaths grouped in five year age groups. We aggregate the data

from O.N.S. (1999) and O.N.S. (1997a) into age groups corresponding to those of

O.P.C.S. (1991b), O.P.C.S. (1993b) and O.P.C.S. (1993c) and the values are shown

in Table 3.45.

The observed mortality adjustment factors
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Table 3.45: Mortality data for adjusting ELT15F for CI causes of death.

Age range Total deaths CI deaths Age range Total deaths CI deaths
x θELT15F

x θD
x x θELT15F

x θD
x

1–4 2.5 1,260 141 50–54 52 14,692 11,050
5–9 7 682 197 55–59 57 23,377 17,693

10–14 12 651 128 60–64 62 41,022 30,822
15–19 17 1,366 199 65–69 67 68,266 50,298
20–24 22 1,875 378 70–74 72 93,083 67,062
25–29 27 2,266 674 75–79 77 135,651 93,120
30–34 32 2,887 1,315 80–84 82 169,605 109,486
35–39 37 4,190 2,403 85–89 87 156,236 90,853
40–44 42 7,105 4,781 90–94 92 91,033 45,522
45–49 47 10,350 7,480

φ̇f
x =

θD
x

θELT15F
x

(3.36)

were smoothed using the function

φf
x =




−2.6129× 10−2 + 1.0464× 10−1 × x− 1.1814× 10−2 × x2 + 4.6714× 10−4 × x3

−5.7901× 10−6 × x4 for x ≤ 30

−1.3451 + 8.9722× 10−2 × x− 1.1998× 10−3 × x2 + 4.8678× 10−6 × x3

for x > 35.

(3.37)

Between the ages of 30 and 35, the two functions were linearly blended. The observed

mortality adjustment factors and the smoothed function are shown in Figure 3.25.

Recalling that we need to include the deaths within 28 days due to CI claim

causes, the mortality rate, gµ04
x , is given by

gµ04
x = µELT15F

x

(
1− φf

x

)
+

(
µstroke

x − µstroke
x pstroke

x

)
+

(
µheart

x − µheart
x pheart

x

)
= µELT15F

x

(
1− φf

x

)
+

(
1− pstroke

x

)
µstroke

x +
(
1− pheart

x

)
µheart

x . (3.38)
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Figure 3.25: Observed and graduated adjustment mortality adjustment factors for
the applicant’s model.

3.2 Cost of insurance

We consider the model in Figure 3.16 in the context of a continuous time Markov

model as described in Section 1.3. Using the solution of Equation (1.1), and given

the genotype and age of the applicant, we can calculate any moments of the present

values of

(a) the benefit payable on transition into any of the states in Figure 3.16; or

(b) a premium payable continuously while in the ‘healthy’ state in Figure 3.16.

The applicant’s model in Figure 3.16 is parameterised by genotype. That means

that for each of the four possible genotypes (0,0), (0,1), (1,0) and (1,1) we have

a separate parameterisation for the model. In this section we consider the cost of

insurance. We start by comparing the cost according to the four genotypes. After

that we consider the insurance costs associated with a given family history. For this

we will be weighting the genotype specific insurance costs by the carrier probabilities
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associated with the family history.

In this section we consider only the first moments and we use the solution to

Equation (1.2). Thiele’s equations were solved using the Runge-Kutta procedure

(Conte and de Boor (1980)) with step size of 0.0005 years and force of interest

δ = 0.05.

3.2.1 Insurance costs by genotype

In Table 3.46 we present the expected present values (EPV) of CI cover of £1 for

various genotypes, various starting ages and various terms. The values shown can be

interpreted as the pure single premium required to secure the CI cover of £1 under a

stand alone CI insurance policy. In the first four rows we assume a population of the

uniform genotype given and in the last two rows we assume a population subdivided

into the four genotypes by proportions which depend on the mutation frequencies

used. (see Table 2.11). As expected from the fact that the (0,0) genotype dominates

the population genotype distribution, the EPV of the benefit under both the ‘high’

and the ‘low’ mutation assumptions are close to the EPV for the (0,0) genotype.

The three genotypes with mutations are associated with increased EPV for CI cover

compared to the population EPV’s.

Table 3.46: Expected present value (EPV) of Critical Illness cover of £1, depend-
ing on BRCA1 and BRCA2 genotype, and based on ‘low’ and ‘high’ estimates of
mutation frequencies.

Age 30 at Entry Age 40 at Entry Age 50 at Entry
Term Term Term Term Term Term

Genotype 10 Yrs 20 Yrs 30 Yrs 10 Yrs 20 Yrs 10 Yrs
(0,0) 0.010734 0.028080 0.049894 0.029113 0.065726 0.063195
(1,0) 0.180706 0.350217 0.404920 0.369975 0.489364 0.370950
(0,1) 0.022549 0.131668 0.261716 0.186436 0.408625 0.493542
(1,1) 0.192506 0.401215 0.472231 0.465887 0.624401 0.643395
Low 0.011013 0.028657 0.050589 0.029752 0.066609 0.063945
High 0.010891 0.028404 0.050283 0.029472 0.066220 0.063614

Table 3.47 shows the EPV of an annuity of £1 per year paid continuously by

a life in the ‘healthy’ state in Figure 3.16. The values can be interpreted as the
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expected present value of the premiums (paid at a rate of £1 per year paid continu-

ously) payable until death, the onset of critical illness or the end of term indicated,

whichever is soonest. The quotient of the EPV of the benefit and the EPV of the

annuity gives us the level of the net continuous premium required for CI cover of £1.

The values of the net premium are shown in Table 3.48. We note that, as an exam-

ple, an applicant aged 30 with genotype (0,0) will, during a term of 30 years, pay

30×£0.003319=£0.09957 for CI cover of £1. The premiums in the first four rows

of Table 3.48 are the ones that would be charged under the following conditions.

(a) The applicant had a genetic test and the result is known.

(b) All the model assumptions we have used in calculating the EPV’s are correct.

We have assumed that having one or two mutations at BRCA1 confers similar

risk of BC or OC. We assumed the same for BRCA2 mutations. We also assumed

that the BRCA1 and BRCA2 risks are additive.

(c) The modelled intensities are appropriate for the particular applicant. We mod-

elled intensities based on observations in BRCA1 and BRCA2 families which

were chosen because of strong family histories of BC or OC. This may overstate

the risk of BC or OC in applicants from families without such intense family

histories.

Table 3.47: Expected present value (EPV) of an annuity of £1 per year payable
continuously while in the ‘healthy’ state of Figure 3.16, depending on BRCA1 and
BRCA2 genotype, and based on ‘low’ and ‘high’ estimates of mutation frequencies.

Age 30 at Entry Age 40 at Entry Age 50 at Entry
Term Term Term Term Term Term

Genotype 10 Yrs 20 Yrs 30 Yrs 10 Yrs 20 Yrs 10 Yrs
(0,0) 7.816785 12.424119 15.031754 7.733197 12.109708 7.554250
(1,0) 7.174821 9.964933 10.837420 6.089820 7.993992 5.916339
(0,1) 7.791133 11.992524 13.446906 7.178629 9.663459 5.519665
(1,1) 7.142860 9.690560 10.180530 5.687212 6.780872 4.439152
Low 7.815743 12.419927 15.024096 7.730236 12.101659 7.550410
High 7.816199 12.421764 15.027457 7.731535 12.105198 7.552105

Important features of Table 3.48 are as follows;

(a) There are significant differences in the premiums by genotype.

(b) Some of the premiums are very large. A 50 year old applicant with genotype
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Table 3.48: Level net premium for Critical Illness cover of £1, depending on BRCA1
and BRCA2 genotype, and based on ‘low’ and ‘high’ estimates of mutation frequen-
cies.

Age 30 at Entry Age 40 at Entry Age 50 at Entry
Term Term Term Term Term Term

Genotype 10 Yrs 20 Yrs 30 Yrs 10 Yrs 20 Yrs 10 Yrs
(0,0) 0.001373 0.002260 0.003319 0.003765 0.005428 0.008365
(1,0) 0.025186 0.035145 0.037363 0.060753 0.061216 0.062699
(0,1) 0.002883 0.010979 0.019463 0.025971 0.042286 0.089415
(1,1) 0.026951 0.041403 0.046386 0.081918 0.092083 0.144936
Low 0.001393 0.002287 0.003346 0.003812 0.005470 0.008423
High 0.001409 0.002307 0.003367 0.003849 0.005504 0.008469

Table 3.49: Level net premium for Critical Illness cover of £1, depending on BRCA1
and BRCA2 genotype, based on ‘high’ estimates of mutation frequencies, as a per-
centage of the aggregate premium.

Age 30 at Entry Age 40 at Entry Age 50 at Entry
Term Term Term Term Term Term

Genotype 10 Yrs 20 Yrs 30 Yrs 10 Yrs 20 Yrs 10 Yrs
% % % % % %

(0,0) 97 98 99 98 99 99
(1,0) 1,788 1,523 1,110 1,578 1,112 740
(0,1) 205 476 578 675 768 1,056
(1,1) 1,913 1,795 1,378 2,128 1,673 1,711

(1,1) will pay £1.45 during a 10 year term for CI cover of £1, if she survives the

term. However the probability that she claims early in the term of the policy is

very high.

To assess the variability in the premium rates, in Table 3.49 we show the net

premiums by genotype as a percentage of the premiums if we assume that the pop-

ulation is divided into subpopulations with the four genotypes and the proportions

determined by the ‘high’ mutation frequencies. The aggregate premium is applica-

ble for the risk in the (0,0) genotype but very much inappropriate for the lives with

mutations.
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3.2.2 Premium rating with complete knowledge of the fam-

ily history and structure

We now consider the premiums that would be payable assuming that we do not

know the genotype of the applicant but we know the family history and the family

size and structure. In the previous section we showed examples of the premiums as-

sociated with given genotypes. If we know the family history and the family size and

structure, we can calculate the genotype carrier probabilities as described in Section

2.5. Using the carrier probabilities we then calculate the premiums associated with

a family history as

the weighted average of the genotype specific EPV of unit benefit

the weighted average of the genotype specific EPV of unit annuity

where the weights are the genotype carrier probabilities. Using the notation of

Chapter 2, the above can be expressed as

E [E [PV of unit benefit|g1] |C(x)]

E [E [PV of unit annuity|g1] |C(x)]
.

We express the resulting premiums as a rating of the aggregate premium. The

aggregate premium is calculated as above but the weights are given genotype prob-

abilities of the ‘high’ mutation frequencies given in Table 2.11. We recall that the

rating represents the percentage of the aggregate premium to be added to the ag-

gregate premium such that a rating of +131 means that the rated premium is 231%

of the aggregate premium.

In Tables 3.50 to 3.55 we consider examples of a family history of BC. These are

considered in comparison with the underwriting guidelines of Table 2.3. The tables

show the following three aspects which are important in the underwriting.

(a) The age at entry is important to the underwriting. We note that Companies

B and C in Table 2.3 gave similar recommendations for applicants of different

ages.

(b) Knowledge of both the family size and structure is a very important factor in

the ratings. We note that family structure is not explicitly considered in the

ratings of Table 2.3.
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Table 3.50: Level net premium for £1 CI benefit, given one relative with BC before
age 50, for M = 4 or 6. ‘High’ estimates of mutation frequencies.

Premium as Rating of Aggregate Premium
Number of Age 30 at Entry Age 50 at Entry

M Sisters Aunts 10 Yrs 20 Yrs 30 Yrs 10 Yrs
4 2 0 +29 +22 +15 +6
4 1 1 +16 +12 + 8 +5
4 0 2 +11 + 8 + 6 +4
6 4 0 +28 +21 +14 +3
6 3 1 +16 +12 + 8 +2
6 2 2 +11 + 8 + 5 +2
6 1 3 + 7 + 6 + 4 +2
6 0 4 + 5 + 4 + 3 +2

(c) The term of the contract also has an effect on the ratings although at a smaller

level than age at entry and family structure. Term of contract is not explicitly

used in the ratings of Table 2.3.

Considering that roughly a rating of +200 or more will lead to declinature for

CI insurance, from Tables 3.50 and 3.51 an applicant with a family history of 1

affected relative with BC before age 50 will be accepted. The applicant would also

be accepted by all three companies in Table 2.3. However companies A and B will

recommend a rating of +100 or more in the premium while Tables 3.50 and 3.51

show that the ratings are very much below 100 and are likely to be considered as

standard premiums. Company C in Table 2.3 recommends a standard premium for

this family history. We note, however, that for applicants with family history of

1 BC before 50 family structure, term of contract, age at entry and use of ‘high’

mutation frequencies are not likely to give differences that would move the applicant

between rating classes.

We now consider an applicant with a family history of two relatives with BC

before age 50 and a known family size and structure. The premium ratings are

shown in Tables 3.52 and 3.53. We recall that Companies A and B in Table 2.3 would

decline such an applicant while Company C would give a rating of +50 regardless

of the age of the applicant. From Tables 3.52 and 3.53 we note the following:

(a) The ratings differ widely by family structure. Only the family structures for

which a sister has to be an affected relative are resulting in declinature.
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Table 3.51: Level net premium for £1 CI benefit, given one relative with BC before
age 50, for M = 4 or 6. ‘Low’ estimates of mutation frequencies.

Premium as Rating of Aggregate Premium
Number of Age 30 at Entry Age 50 at Entry

M Sisters Aunts 10 Yrs 20 Yrs 30 Yrs 10 Yrs
4 2 0 +17 +13 +9 +3
4 1 1 + 9 + 7 +5 +3
4 0 2 + 6 + 5 +3 +2
6 4 0 +16 +12 +8 +1
6 3 1 + 9 + 7 +5 +1
6 2 2 + 6 + 5 +3 +1
6 1 3 + 4 + 3 +2 +1
6 0 4 + 3 + 2 +2 +1

Table 3.52: Level net premium for £1 CI benefit, given two relatives with BC before
age 50, for M = 4 or 6. ‘High’ estimates of mutation frequencies.

Premium as Rating of Aggregate Premium
Number of Age 30 at Entry Age 50 at Entry

M Sisters Aunts 10 Yrs 20 Yrs 30 Yrs 10 Yrs
4 2 0 +331 +251 +163 +85
4 1 1 +186 +142 + 94 +67
4 0 2 +125 + 96 + 63 +47
6 4 0 +324 +245 +160 +50
6 3 1 +188 +144 + 95 +44
6 2 2 +126 + 96 + 63 +37
6 1 3 + 93 + 71 + 47 +31
6 0 4 + 71 + 54 + 36 +25

(b) Declinature is likely to be recommended only for young applicants. At age 50,

for the 10 year policy the applicants can be accepted with ratings below +100.

This is in line with the recommendation of Company C in Table 2.3.

(c) Declinature is likely to be restricted to short term policy applications. The

differences in ratings by term of policy are quite marked.

(d) Use of ‘low’ mutation frequency gives significant differences in the rating rec-

ommendation. Using the ‘low’ mutation frequencies even applicants aged 30

whose 2 affected relatives were both sisters, would be accepted, if declinature is

for ratings above +200, for policies which are not very short term.
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Table 3.53: Level net premium for £1 CI benefit, given two relatives with BC before
age 50, for M = 4 or 6. ‘Low’ estimates of mutation frequencies.

Premium as Rating of Aggregate Premium
Number of Age 30 at Entry Age 50 at Entry

M Sisters Aunts 10 Yrs 20 Yrs 30 Yrs 10 Yrs
4 2 0 +231 +173 +111 +55
4 1 1 +120 + 91 + 60 +42
4 0 2 + 79 + 60 + 39 +29
6 4 0 +225 +168 +109 +31
6 3 1 +121 + 92 + 60 +27
6 2 2 + 80 + 60 + 40 +23
6 1 3 + 58 + 44 + 29 +19
6 0 4 + 44 + 33 + 22 +15

Table 3.54: Level net premium for £1 CI benefit, given two or more relatives with
BC before age 50, for M = 4 or 6. ‘High’ estimates of mutation frequencies.

Premium as Rating of Aggregate Premium
Number of Age 30 at Entry Age 50 at Entry

M Sisters Aunts 10 Yrs 20 Yrs 30 Yrs 10 Yrs
4 2 0 +340 +257 +168 +92
4 1 1 +192 +147 + 97 +71
4 0 2 +135 +103 + 68 +49
6 4 0 +335 +254 +165 +65
6 3 1 +197 +151 + 99 +56
6 2 2 +138 +105 + 69 +46
6 1 3 +106 + 81 + 53 +37
6 0 4 + 86 + 65 + 43 +30

Companies A and B, in Table 2.3, will decline applicants if two or more relatives

are affected while Company C will refer the decision to their C.M.O. This means

that applicants who could be accepted for insurance according to Tables 3.52 to

3.55, will mostly be declined according to the guidelines of Companies A, B and C.

3.2.3 Premium rating with incomplete knowledge of the

family history and structure

Based on the methods and results of Section 2.5.6 we now consider the premiums

payable if the family size and structure are unknown. For various family histories,

in Table 3.56 we show results based on the assumption of maximum family sizes M̂

of 7, 8 or 9. The results shown in Tables 3.57 to 3.60 are based on the assumption
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Table 3.55: Level net premium for £1 CI benefit, given two or more relatives with
BC before age 50, for M = 4 or 6. ‘Low’ estimates of mutation frequencies.

Premium as Rating of Aggregate Premium
Number of Age 30 at Entry Age 50 at Entry

M Sisters Aunts 10 Yrs 20 Yrs 30 Yrs 10 Yrs
4 2 0 +237 +178 +115 +60
4 1 1 +124 + 94 + 62 +45
4 0 2 + 86 + 65 + 43 +31
6 4 0 +233 +175 +113 +41
6 3 1 +128 + 97 + 63 +34
6 2 2 + 88 + 67 + 44 +28
6 1 3 + 67 + 50 + 33 +23
6 0 4 + 53 + 40 + 26 +18

of a maximum family size of 9.

The ratings in Tables 3.56 and 3.57 show the following features.

(a) The number of relatives affected has a very strong influence on the ratings.

Ratings for a family history of 1 affected relative with BC before age 50 are very

much below +50. We note that Companies A and B in Table 2.3 recommended

ratings of +100 or higher for applicants with this family history for ages up to

50. Company C in the same table recommends standard premiums in this case.

Ratings for a family history of exactly 2 relatives with BC before 50 fall within

the insurable range. The ratings are similar to those recommended for a family

history of two or more relatives affected. As the exact number of relatives

affected rises above two the ratings rise steeply and are almost all above the

+200 rating above which declinature is normally recommended.

(b) For the 10 year policies shown, the difference in age at entry between 30 and

50 resulted in very significant differences in the ratings. As an example, the

applicants aged 50 with three relatives affected would be insurable.

(c) Longer terms for policies resulted in lower ratings. This difference is unlikely to

make a difference between insurability and declinature.

(d) Using ‘low’ mutation frequencies mostly resulted in reduced ratings. In some

cases there were slightly higher ratings for ‘low’ mutation frequencies than for

the ‘high’ frequencies. This is reasonable since the ratings are based on ag-

gregate premiums but the aggregate premium is dependent on the mutation
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Table 3.56: The effect of the family history (BC before age 50) and maximum family
size, M̂ , on level net premium for £1 CI benefit, unknown (M,X). ‘High’ estimates
of mutation frequencies.

Number of Maximum Premium as Rating of Aggregate Premium
Relatives with Family Age 30 at Entry Age 50 at Entry
BC before 50 Size M̂ 10 Yrs 20 Yrs 30 Yrs 10 Yrs

% % % %
1 7 + 17 + 13 + 9 + 5
1 8 + 16 + 13 + 8 + 5
1 9 + 16 + 13 + 8 + 5
2 7 +167 +127 + 84 + 56
2 8 +165 +125 + 82 + 55
2 9 +163 +124 + 82 + 55
3 7 +530 +410 +272 +188
3 8 +522 +404 +268 +185
3 9 +518 +401 +266 +184
4 7 +719 +563 +376 +258
4 8 +710 +556 +371 +256
4 9 +706 +552 +368 +255
5 7 +775 +607 +406 +275
5 8 +765 +600 +401 +273
5 9 +760 +595 +398 +271
≥ 2 7 +172 +131 + 86 + 60
≥ 2 8 +170 +129 + 85 + 59
≥ 2 9 +169 +128 + 84 + 58

frequency used. Therefore if the mutation frequency were zero, there would be

one genotype and hence all premiums would be the same implying all ratings

would be zero. Also if the mutation frequencies were 100% then there would

again be one genotype and all ratings being zero. This implies that as the

mutation frequencies increase, the ratings will rise and then fall.

Table 3.58 shows the ratings applicable to an applicant with a family history of

BC between 50 and 65. Compared to the ratings for a history of BC before 50, the

ratings in Table 3.58 are striking in that the number of relatives affected has a much

smaller influence on the ratings. The ratings for exactly 1, exactly 2 and 2 or more

relatives affected are well below +50. Company A in Table 2.3 recommends ratings

of between +50 and +150, while companies B and C recommend ratings of +50 or

less for these family histories.
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Table 3.57: The effect of the family history (BC before age 50) on level net premium
for £1 CI benefit, unknown (M,X). ‘Low’ estimates of mutation frequencies.

Number of Premium as Percentage of Aggregate Premium
Relatives with Age 30 at Entry Age 50 at Entry
BC before 50 10 Yrs 20 Yrs 30 Yrs 10 Yrs

1 + 9 + 7 + 5 + 3
2 +107 + 81 + 53 + 35
3 +443 +340 +223 +152
4 +693 +539 +358 +247
5 +763 +596 +397 +270
≥ 2 +110 + 83 + 54 + 37

Table 3.58: The effect of the family history (BC between ages 50–65) on level net
premium for £1 CI benefit, unknown (M,X).

Estimated Number of Premium as Rating of Aggregate Premium
Mutation Relatives with Age 30 at Entry Age 50 at Entry

Frequencies BC between 50–65 10 Yrs 20 Yrs 30 Yrs 10 Yrs
High 1 + 2 + 3 + 2 + 2
High 2 +11 + 15 + 14 + 12
High 3 +29 + 52 + 54 + 53
High 4 +48 +115 +131 +160
High 5 +53 +154 +182 +277
High ≥ 2 +11 + 15 + 14 + 13
Low 1 + 1 + 1 + 1 + 1
Low 2 + 7 + 8 + 8 + 7
Low 3 +19 + 33 + 34 + 32
Low 4 +39 + 92 + 103 +115
Low 5 +50 +145 + 171 +244
Low ≥ 2 + 7 + 9 + 8 + 7

A feature of the ratings in Table 3.58 which is not captured by the underwriting

recommendations in Table 2.3 is that applicants age 50 at entry have higher ratings

than applicants age 30. This is mainly due to the fact that for an applicant aged

30, a history of BC between ages 50 and 65 can only be observed in the mother

or aunt while for an applicant aged 50, this history can be observed in a sister.

The difference due to age at entry is very significant, and in some cases making the

difference between being insurable or not.

The premium ratings shown in Tables 3.59 and 3.60 are in respect of applicants

with family history of OC. Features listed below are generally similar to those for a

history of BC.

126



Table 3.59: The effect of the family history (OC before age 50) on level net premium
for £1 CI benefit, unknown (M,X).

Estimated Number of Premium as Rating of Aggregate Premium
Mutation Relatives with Age 30 at Entry Age 50 at Entry

Frequencies OC before 50 10 Yrs 20 Yrs 30 Yrs 10 Yrs
High 1 + 29 + 22 + 14 + 8
High 2 +302 +229 +149 +104
High 3 +664 +515 +341 +236
High 4 +753 +588 +392 +266
High 5 +780 +610 +407 +274
High ≥ 2 +304 +230 +150 +105
Low 1 + 17 + 13 + 8 + 5
Low 2 +216 +162 +104 + 74
Low 3 +630 +486 +320 +224
Low 4 +756 +589 +391 +266
Low 5 +785 +613 +407 +275
Low ≥ 2 +217 +163 +105 + 75

(a) The number of relatives with OC has a very significant influence on the ratings.

This effect though seems to be modified by the age at onset of OC in the

relatives. In particular for 2 relatives affected with OC, the ratings are very

much lower if onset is between ages 50 and 65 than onset before 50.

(b) As the age at onset of OC in the relatives increases from below 50 to between

50 and 65, the ratings reduce.

(c) Longer term policies have ratings lower than shorter term policies.

3.2.4 The effect of lower BRCA1 and BRCA2 penetrance

In Section 2.5.7, we noted that there is generally a fall in estimated carrier proba-

bilities if the penetrance associated with mutations was reduced. We now consider

the influence of a reduction in penetrance on the premium ratings associated with

various family histories. In Table 3.61 we consider the premiums when the genotype

is known. Shown in the table are the level net premiums assuming that penetrance

is reduced by assuming excess BC and OC incidence rates of 50% and 25%. We

include the premiums based on the 100% excess risk (values previously given in

Table 3.49) for comparison. The aggregate premium used in the evaluation of Table

3.61 values is based on ‘high’ mutation frequency estimates. We note that there is a
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Table 3.60: The effect of the family history (OC between ages 50–65) on level net
premium for £1 CI benefit, unknown (M,X).

Estimated Number of Premium as Rating of Aggregate Premium
Mutation Relatives with Age 30 at Entry Age 50 at Entry

Frequencies OC between 50–65 10 Yrs 20 Yrs 30 Yrs 10 Yrs
High 1 + 9 + 7 + 5 + 2
High 2 + 61 + 47 + 32 + 15
High 3 +220 +172 +116 + 53
High 4 +448 +354 +240 +126
High 5 +588 +466 +317 +196
High ≥ 2 + 61 + 48 + 32 + 15
Low 1 + 5 + 4 + 3 + 1
Low 2 +37 + 28 + 19 + 9
Low 3 +151 +117 + 79 + 34
Low 4 +379 +297 +200 + 93
Low 5 +564 +444 +300 +172
Low ≥ 2 + 37 + 29 + 19 + 9

substantial fall in the level net premium if lower penetrance estimates are assumed.

However, the premiums remain significantly higher than the average premiums.

We now consider situations where the genotype of the applicant is unknown but

the family structure and size is known. In Table 3.62 we consider family sizes of

4 or 6 for which there is a family history of two relatives with BC before age 50.

The values based on 100% excess BC or OC incidence rates were previously given in

Table 3.52. It can be seen that even in the cases where the applicant has only sisters

with no aunts (which would mean very high mutation probabilities for the applicant

as given in Table 2.20) the ratings based on 50% excess BC or OC incidence rates

would not lead to declinature. Using 25% excess BC or OC incidence rate the

ratings may not even lead to a premium different from the standard premium. This

is despite the ratings based on 100% excess BC or OC incidence rates being in the

declinature range.

We also consider the situation more applicable to underwriters in which the family

structure and size is not known. The ratings in Table 3.63 relate to a family history

of BC before age 50 and the ratings based on 100% excess BC or OC incidence rates

were previously given in Table 3.57.
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Table 3.61: Level net premium for Critical Illness cover of £1, depending on BRCA1
and BRCA2 genotype, based on ‘high’ estimates of mutation frequencies , as a
percentage of the aggregate premium. Excess BC and OC incidence rates 100%,
50% or 25% of the levels observed among high-risk families.

Excess
BC/OC Risk Age 30 at Entry Age 40 at Entry Age 50 at Entry

as % of Term Term Term Term Term Term
Observed Genotype 10 Yrs 20 Yrs 30 Yrs 10 Yrs 20 Yrs 10 Yrs

% % % % % %
100% (0,0) 97 98 99 98 99 99
100% (1,0) 1,788 1,523 1,110 1,578 1,112 740
100% (0,1) 205 476 578 675 768 1,056
100% (1,1) 1,913 1,795 1,378 2,128 1,673 1,711
50% (0,0) 99 99 99 99 99 99
50% (1,0) 968 857 642 852 608 419
50% (0,1) 153 297 380 396 471 595
50% (1,1) 1,035 1,033 856 1,151 954 925
25% (0,0) 99 99 99 99 100 100
25% (1,0) 540 491 381 479 355 259
25% (0,1) 127 201 252 250 296 352
25% (1,1) 575 592 518 635 566 518

3.3 Potential for adverse selection

We have, so far, made comparisons of costs of insurance between

(a) individual risk groups classified by genotype, detailed family history or sum-

marised family history, and

(b) the insured population considered as one group.

As expected, due to high BC and OC incidence rates associated with mutation

carriers and the rarity of mutations, the comparisons by genotype display very big

differences in the costs of insurance between genotypes. There are smaller, but

significant, differences in costs of insurance also between groups with different family

histories. However if we reconsider the results by genotype (see Table 3.49) we note

that even when using high mutation frequencies and high penetrance estimates in

the calculations, the low risk group (genotype (0, 0)) would pay 99% of the aggregate

premium. This means that by moving from being charged a premium determined

on the basis of the aggregate risk to being a charged a premium determined on the

risk of their subgroup alone, the low risk lives will not have a significant change in
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Table 3.62: Level net premium for £1 CI benefit, given two relatives with BC before
age 50, for M = 4 or 6. Applicant age 30. ‘High’ estimates of mutation frequencies.
Excess BC and OC incidence rates 100%, 50% and 25% of the levels observed among
high-risk families.

BC/OC Excess Premium as Rating of Aggregate Premium
Incidence Rates as Number of Age 30 at Entry Age 50 at Entry

% of Observed M Sisters Aunts 10 Yrs 20 Yrs 30 Yrs 10 Yrs
% % % %

100% 4 2 0 +331 + 251 + 163 + 85
4 1 1 +186 + 142 + 94 + 67
4 0 2 +125 + 96 + 63 + 47
6 4 0 +324 + 245 + 160 + 50
6 3 1 +188 + 144 + 95 + 44
6 2 2 +126 + 96 + 63 + 37
6 1 3 + 93 + 71 + 47 + 31
6 0 4 + 71 + 54 + 36 + 25

50% 4 2 0 + 83 + 68 + 46 + 17
4 1 1 + 49 + 40 + 28 + 13
4 0 2 + 35 +29 + 20 + 9
6 4 0 + 81 + 67 + 45 + 12
6 3 1 + 49 + 41 + 28 + 10
6 2 2 + 35 + 29 + 20 + 8
6 1 3 + 28 + 23 + 16 + 7
6 0 4 + 22 + 19 + 13 + 5

25% 4 2 0 + 16 + 14 + 10 + 5
4 1 1 + 10 + 9 + 6 + 4
4 0 2 + 8 + 7 + 5 + 2
6 4 0 + 16 + 14 + 10 + 4
6 3 1 + 10 + 9 + 6 + 3
6 2 2 + 8 + 7 + 5 + 3
6 1 3 + 7 + 6 + 4 + 2
6 0 4 + 6 + 5 + 4 + 2

130



Table 3.63: Level net premium for £1 CI benefit, given a history of BC before age
50, unknown (M,X). Applicant age 30. ‘Low’ estimates of mutation frequencies.
Excess BC and OC incidence rates 100%, 50% and 25% of the levels observed among
high-risk families.

BC/OC Excess Premium as Rating of Aggregate Premium
Incidence Rates as Relatives with Age 30 at Entry Age 50 at Entry

% of Observed BC Before 50 10 Yrs 20 Yrs 30 Yrs 10 Yrs
% % % %

100% 1 + 9 + 7 + 5 + 3
2 + 107 +81 + 53 + 35
3 +443 +340 + 223 + 152
4 +693 + 539 +358 + 247
5 +763 + 596 +397 +270
≥ 2 +110 + 83 + 54 + 37

50% 1 + 3 +3 + 2 + 1
2 +26 +21 + 15 + 6
3 + 118 +98 + 67 + 30
4 + 273 + 227 +156 + 74
5 +366 +306 + 211 + 101
≥ 2 + 26 + 22 + 15 + 7

25% 1 + 1 + 1 + 1 + 0
2 + 5 + 5 + 3 + 2
3 + 20 + 17 + 12 + 6
4 + 57 + 49 +35 + 18
5 + 115 + 100 +70 + 37
≥ 2 + 5 + 5 + 3 + 2
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the premium they pay. If the assumptions underlying the calculation of Table 3.49

hold, then charging the same premium to lives with any genotype should not lead to

any antiselection driven by the desire for lower premiums. This is a desired situation

and this is reflected in the code of practice ban (A.B.I. (1997)) on giving lower than

standard premiums to lives with negative genetic tests results as we mentioned in

Section 1.2.5. It is important that we note the assumptions underlying the above

conclusion:

(a) The distribution of the insured lives by genotype is the same as the distribution

of the whole population by genotype. This means that the high risk groups do

not constitute higher proportions in the insured population than they do in the

general population.

(b) Every insured life has the same sum assured or the distribution of sums assured

does not differ by genotype.

We need to investigate the effect on our comparisons of costs of insurance if one or

both of these assumptions are not valid. We consider the effects of adverse selection

that arise if high risk groups constitute a disproportionately high proportion of the

insured lives or if they have disproportionately higher sums assured.

The scenario in (a) can be invalidated if lives who are in the higher risk groups are

more likely to purchase insurance than those in low risk groups. For this to be the

case, the lives have to be aware of their high risk status. In our case the risk groups

are determined by genotype and this means that the lives need to have the results

of a genetic test. The process to having a genetic test is usually prompted by an

individual’s, or a relative’s, awareness of a family history of BCOC. The presence of

a family history which gives a high mutation carrier probability according to one of

the many family history models, is currently a precondition for having a genetic test

done in the U.K.. Therefore the level of genetic testing in the population will be a

factor in investigating adverse selection. Even if lives with mutations are more likely

to purchase insurance, the extent to which the high risk proportions in the insured

population differ from those in the general population will depend on the size of the

insured population. If the insured population is small, then even modest levels on

antiselection by mutation carriers will lead to a significant bias in the proportions of

132



- -¾

? ?

Z
Z

Z
Z

Z
Z

Z
Z

ZZ~

Z
Z

Z
Z

Z
Z

Z
Z

ZZ~

½
½

½
½

½
½

½
½

½½=

½
½

½
½

½
½

½
½

½½=

PPPPPPPPPPPPPPPPPPPPPPq

³³³³³³³³³³³³³³³³³³³³³³)

State i0State i1 State i2 State i3

State i4

Not Tested

Not Insured

Not Tested

Insured

Tested

Not Insured

Tested

Insured

Dead

State i5

CI Event

µi01
x+t µi02

x+t

µi05
x+t

µi23
x+t

µi34
x+tµi25

x+t

µi14
x+t

µi24
x+tµi04

x+t
µi15

x+t

µi35
x+t

Figure 3.26: A Markov model of the insurance purchase and CI insurance events for
a person with genotype gi.

insured lives towards the high risk groups. We therefore need to consider the market

size and the level of insurance purchase in the population in our assessment of the

effects of adverse selection.

The scenario presented by (b) above holds when lives in high risk groups buy

the level of insurance which is similar to that bought by low risk groups. Should

the lives who are aware of their high risk status choose sums assured that are much

higher than those chosen by the low risk groups then the insurance costs may be

very different from those seen in tables like Table 3.49. Therefore we include the

‘size’ of cover purchased in our investigations.

In Figure 3.26 we present a multiple state model in which having a genetic test

and buying insurance are modelled as transitions between states. Each genotype,

denoted by i, is represented by a model like Figure 3.26 and a life starts at aged x

without having effected a CI policy or having had a genetic test. A premium, at

a rate of bi,j
x+t, is payable continuously while the life is in the insured states and on

transition to the CI event state from an insured state, a benefit is paid. The model

in Figure 3.26 is an adaptation of the model in Figure 1.1 for CI policies.

In order to calculate the costs of adverse selection, we need to calculate the state-

wise prospective reserves associated with the model in Figure 3.26, in the presence

and in the absence of adverse selection. We discuss some aspects of the parameters
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of the models for this purpose.

Adverse selection

We model adverse selection by assuming that

(a) mutation carriers are more likely to have a genetic test,

(b) those who test positive may be more likely to buy insurance, or

(c) those who test positive may tend to buy larger amounts of insurance.

We can choose transition intensities and benefits in the model to reflect this

and assume that the insurance company charges everyone a premium based on the

incidence of CI claims in the whole population.

It should be noted that since insurance buying is a modelled event, the prospective

reserves are reserves in relation to the starting state in Figure 3.26 rather than the

insured states. The insurance buying model then affects the reserves such that the

lives that are more likely to buy insurance will need higher reserves at the outset.

Premiums

The statewise prospective reserves to be calculated satisfy Thiele’s Equations (1.2)

and are based on a Markov model. Therefore the premiums bi,j
x+t can not depend

on the age at entry, since this is equivalent to having the reserves for some state

depending on the duration for which the life has occupied the state. We define the

premium to be proportional to the population average of the intensity of a CI event

at age x + t. It is therefore dependent on the current age and not age at entry. The

average uses weightings, by genotype, of the intensities of a CI event, of lives that

are in any of the healthy states. We assume that at age 30 the genotype distribution

in the population is exactly as given in Table 2.11. At subsequent ages the weights

are determined by the occupancy probabilities in the model of Figure 3.26 which

are obtained by solving the Kolmogorov forward equations (see Section 1.4.1).

Levels of genetic testing and insurance purchase

We assume two scenarios for the level of genetic testing. A ‘force of testing’, µi02
x+t =

1.0 represents ‘high’ levels of genetic testing while µi02
x+t = 0.1 represents ‘low’ levels
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of genetic testing. These are only for the subpopulations with a mutation in the

genotype. Otherwise the ‘force of testing’ is assumed to zero.

The ‘high’ level of genetic testing implies that after 5 years from the start of

testing, about 99% of a population will be tested while only about 39% would have

been tested with ‘low’ levels of testing.

The intensities µi01
x+t = 0.001, 0.02 and 0.05 represent ‘low’, ‘medium’ and ‘high’

levels of market growth, in the absence of genetic testing. With ‘low’ market growth,

a life has a 1% chance of buying CI insurance within 10 years and a 3% chance

within 30 years. The levels of insurance purchase in the presence of genetic testing

are represented by µi23
x+t = 1.0 for ‘high’ levels and µi23

x+t = 0.1 for ‘low’ levels of

insurance purchase.

Given the transition intensities that parameterise the model in the absence of

adverse selection, we can calculate the EPV of the loss or of the benefits for various

starting ages and various terms. The EPV of the loss is the statewise prospective

reserve, while the expected present value of the benefits is the reserve calculated

with the premiums set to zero. We note that the ‘term’ in the following calculations

represents the time since the life entered State i0 of the model in Figure 3.26. A life

may or may not buy insurance during this term.

Using the parameters chosen to represent different forms of adverse selection,

we can calculate the EPV of the loss given adverse selection. The cost of adverse

selection, which is expressed as the percentage increase in the premiums to be met

by everyone to cover the costs of adverse selection is given by

100×
{

EPV of loss with adverse selection− EPV of loss without adverse selection

EPV of benefit without adverse selection

}
.

Table 3.64 shows the EPV of benefit in the absence of adverse selection. The

values relate to CI cover of £1, assuming different rates of insurance purchase, ‘high’

estimates of mutation frequencies and BC and OC rates at 100% of the observed

incidence rates. As we would expect, the benefit costs increase with increasing level

of insurance purchase and also with increasing terms.

The EPV of the loss in the absence of adverse selection is zero. Table 3.65 gives

the cost of adverse selection in the case where adverse selection is defined with ‘high’
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Table 3.64: Expected present value (EPV) of benefit under a CI insurance of £1,
for a woman untested and uninsured at outset, with no adverse selection. ‘High’
estimates of mutation frequencies, and excess BC and OC incidence rates 100% of
those observed. µi01

x+t represents the normal rate at which CI insurance is purchased.

Age 30 at Entry Age 40 at Entry Age 50 at Entry
Term Term Term Term Term Term

µi01
x+t 10 Yrs 20 Yrs 30 Yrs 10 Yrs 20 Yrs 10 Yrs

0.001 0.000060 0.000328 0.000870 0.000157 0.000706 0.000318
0.01 0.000583 0.003082 0.007930 0.001521 0.006644 0.003091
0.05 0.002554 0.011907 0.027497 0.006672 0.025941 0.013609

levels of genetic testing and ‘high’ levels of insurance purchase but does not include

purchase of more than average sums assured by the adverse selectors. The rate of

normal insurance purchase (or market size) has a very big influence on the costs of

adverse selection. In a large market (µi01
x+t = 0.05), the costs are less than 10% of

the premiums. The corresponding costs are lower when assuming lower mutation

frequencies (values not shown). Table 3.66 gives the corresponding costs of adverse

selection with ‘low’ levels of genetic testing and ‘low’ levels of insurance purchase by

lives with mutations. These values are also based on adverse selectors not choosing

sums assured which are higher than the average. For the medium or large markets,

the costs of adverse selection are below 5% of the premiums.

In Tables 3.67 and 3.68 we show the costs of adverse selection in cases where

the adverse selectors choose higher than average sum assured values. In both tables

we consider penetrance of 25% of the observed excess BC and OC rates and ‘high’

mutation frequencies. In Table 3.67 we assume ‘high’ levels of genetic testing and

insurance purchase while in Table 3.68 we use the ‘low’ levels. They show that the

costs of adverse selection are significant if the selectors are allowed to purchase much

higher sums assured than the average. These costs can be extreme if the market is

small or emerging.

We conclude that the effect of adverse selection on CI policies, with respect to

BRCA1 and BRCA2 mutations is only likely to be significant if:

(a) The CI insurance market is very small. In the UK, annual sales of stand-alone

CI policies reached about 700,000 in 1998 and the total number of policies in

force was about 2,400,000 (see Dinani et al. (2000)). Considering that there are
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Table 3.65: Percentage CI premium increases arising from ‘high’ levels of genetic
testing (µi02

x+t = 1.0) and ‘high’ adverse selection (µi23
x+t = 1.0 if a mutation is present).

Adverse selectors take out the average CI sum assured. ‘High’ estimates of mutation
frequencies. µi01

x+t represents the normal rate at which CI insurance is purchased.

Excess
BC/OC

Risk Age 30 at Entry Age 40 at Entry Age 50 at Entry
as % of Term Term Term Term Term Term

Observed µi01
x+t 10 Yrs 20 Yrs 30 Yrs 10 Yrs 20 Yrs 10 Yrs

% % % % % %
100% 0.001 400 167 79 255 91 96
100% 0.01 39 16 8 25 9 9
100% 0.05 7 3 1 5 2 2
50% 0.001 217 98 50 163 63 76
50% 0.01 21 9 5 16 6 7
50% 0.05 4 2 1 3 1 1
25% 0.001 112 53 28 93 37 48
25% 0.01 11 5 3 9 4 5
25% 0.05 2 1 0 2 1 1

Table 3.66: Percentage CI premium increases arising from ‘low’ levels of genetic
testing (µi02

x+t = 0.1) and ‘low’ adverse selection (µi23
x+t = 0.1 if a mutation is present).

Adverse selectors take out the average CI sum assured. ‘High’ estimates of mutation
frequencies. µi01

x+t represents the normal rate at which CI insurance is purchased.

Excess
BC/OC

Risk Age 30 at Entry Age 40 at Entry Age 50 at Entry
as % of Term Term Term Term Term Term

Observed µi01
x+t 10 Yrs 20 Yrs 30 Yrs 10 Yrs 20 Yrs 10 Yrs

% % % % % %
100% 0.001 57 50 30 31 21 10
100% 0.01 5 4 3 3 2 1
100% 0.05 1 0 0 0 0 0
50% 0.001 31 31 20 20 15 8
50% 0.01 3 3 2 2 1 1
50% 0.05 0 0 0 0 0 0
25% 0.001 16 17 12 12 10 6
25% 0.01 1 2 1 1 1 0
25% 0.05 0 0 0 0 0 0
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Table 3.67: Percentage CI premium increases arising from ‘high’ levels of genetic
testing (µi02

x+t = 1.0) and ‘high’ adverse selection (µi23
x+t = 1.0 if a mutation is present).

Adverse selectors take out one, two or four times the average CI sum assured. ‘High’
mutation frequencies and excess BC and OC incidence 25% of that observed. µi01

x+t

represents the normal rate at which CI insurance is purchased.

Sum Assured Age 30 at Entry Age 40 at Entry Age 50 at Entry
of ‘Adverse Term Term Term Term Term Term
Selectors’ µi01

x+t 10 Yrs 20 Yrs 30 Yrs 10 Yrs 20 Yrs 10 Yrs
% % % % % %

1 × average 0.001 112 54 28 85 34 40
1 × average 0.01 11 5 3 8 3 4
1 × average 0.05 2 1 0 2 1 1
2 × average 0.001 225 108 57 169 68 81
2 × average 0.01 22 11 6 17 7 8
2 × average 0.05 5 2 1 3 2 2
4 × average 0.001 450 216 114 339 136 161
4 × average 0.01 46 22 12 34 14 16
4 × average 0.05 10 5 3 7 3 3

Table 3.68: Percentage CI premium increases arising from ‘low’ levels of genetic
testing (µi02

x+t = 0.1) and ‘low’ adverse selection (µi23
x+t = 0.1 if a mutation is present).

Adverse selectors take out two or four times the average CI sum assured. High
mutation frequencies and excess BC and OC incidence 25% of that observed. µi01

x+t

represents the normal rate at which CI insurance is purchased.

Sum Assured Age 30 at Entry Age 40 at Entry Age 50 at Entry
of ‘Adverse Term Term Term Term Term Term
Selectors’ µi01

x+t 10 Yrs 20 Yrs 30 Yrs 10 Yrs 20 Yrs 10 Yrs
% % % % % %

1 × average 0.001 16 17 12 11 8 5
1 × average 0.01 1 2 1 1 1 0
1 × average 0.05 0 0 0 0 0 0
2 × average 0.001 32 35 24 23 19 11
2 × average 0.01 3 3 2 2 2 1
2 × average 0.05 0 1 0 0 0 0
4 × average 0.001 64 70 49 47 39 23
4 × average 0.01 6 7 5 5 4 2
4 × average 0.05 1 1 1 1 1 0
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lives covered by group policies (about 50,000 in 1998) and others covered by

accelerated benefit policies, we feel that the UK CI market is larger than would

be significantly affected by adverse selection. This may not be true for other

markets like the U.S.A.

(b) High sums assured can be obtained without disclosing known genetic test results

or family history.

(c) The high penetrances observed for mutation carriers which are based on mem-

bers of high risk families are applicable to mutation carriers from other families.

3.4 Discussion

The detailed information available on the genetics of breast and ovarian cancer has

enabled us to produce the insurance costs by genotype and to produce a family

history model. Using the family history model, we could produce insurance costs by

detailed family history or by summarised family history. As a result we managed

to quantify the potential costs of adverse selection should genetic information be

unavailable to the underwriters. The important aspects and parameters of our

model include:

(a) penetrance estimates,

(b) mutation frequencies, and

(c) behaviour of adverse selectors.

If the assumptions that we make on these aspects and parameters closely reflect

the reality of the U.K. market (which will become clearer as genetics advances and

more data becomes available), then a position on BCOC like that of the current

moratorium on genetic test results except for CI policies with sum assured above

£300,000 should be sustainable. It is imperative that the experience in the UK

population, with respect to the important parameters in our model, is monitored as

time progresses.

There is need for further work to extend our model to other types of life and health

insurance. The most obvious is to consider life insurance. This is appropriate in

that a large proportion of CI policies are sold as riders to life insurance policies. To
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achieve this we need to estimate the transition intensities representing the mortality

of women with breast or ovarian cancer. The force of mortality after onset of BC or

OC depends on, amoung others, the following factors.

(a) Any factors that affect prognosis after treatment. These include aspects associ-

ated with cancer staging at diagnosis like tumour size, extent of tumour spread

(Souhami and Tobias (1998)), etc.

(b) Age.

(c) Time elapsed since diagnosis.

Our modelling does not capture the details of the cancer at diagnosis of the nature

described by (a) above although these are important indicators of the survival of the

patient. Some information about these indicators may be modelled by allowing for

differing expressivity of different genotypes. However if there are benefit payments

associated with onset of disease (as is the case in CI insurance), then the age at

diagnosis and, as a result, the duration since diagnosis is observable. We need to

model the mortality in women with BC or OC as a function of age and/or duration

since diagnosis.

This can be done using UK population data. Details of registered tumours in

England and Wales pertaining to age at diagnosis and survival time are given by

Coleman et al. (1999). The exact age at diagnosis is given and also the exact time

to death after diagnosis. Associated details like sex, tumour site, date of diagnosis,

are also given among others. These data are ideal for estimating age and duration

dependent mortality of BC and OC sufferers.

A particularly challenging aspect of this modelling of mortality is representing

the effect of the fast changing treatment methods which have resulted in significant

reductions in mortality especially at short and medium term durations.

With a life insurance model it will be possible to consider the costs of insurance

by genotype and assess the costs of adverse selection. Such results may be compared

with those from Lemaire et al. (2000) and Subramanian et al. (1999).

Lemaire et al. (2000) discussed the pricing of term assurance in the presence of

a family history of BCOC based on the model in Figure 2.3. The mortality of lives

with BC was assumed to be independent of both age and duration since onset of BC.
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The mortality of OC patients was obtained by a projection of survival probabilities

(in the S.E.E.R. population (U.S.A)) to those expected for onset year 1992. The

survival for n years, independent of age and duration is represented by

S(n) = 1− 0.63 (1− exp(−0.333n)) .

They conclude that many women with a family history of BCOC can be insured

for term assurance at standard rates. However ratings are likely to be necessary for

applicants whose first degree relatives had cancer at an early age, or those with two

or more family members affected. We note that they compare the net premiums

associated with various family histories to those payable by a life with no family

history. In our results for CI, the premiums were compared to the premiums deter-

mined from the costs by genotype. Lemaire et al. (2000) also conclude that insurers

should ask for, and use, more information like the ages at onset of the affected

relatives in underwriting and pricing.

Subramanian et al. (1999) considers the costs of adverse selection if the adverse

selection can be triggered by a genetic test result but the insurance company can

price using family history only. Adverse selection can take the form of an increase

(in the case of an adverse genetic test result) or a decrease in the sum assured or the

decision to purchase or not to purchase insurance when they would not otherwise

do so. Under various assumptions of the rates of insurance purchase, lapse and re-

entry and a 5% level of genetic testing, they conclude that purchasing very high sum

assureds can lead to high costs of adverse selection. This is in agreement with our

conclusion for CI. They conclude that adverse selection is a problem that insurers

can control if they are allowed to use family history and the insurers apply strict

underwriting to ensure the full and correct family history is used.

Our results may overstate the costs of adverse selection due to our use of high rates

of genetic testing and high rates of adverse selection. However, they are based on the

analysis of two rare genetic disorders and we have not taken into consideration that

BRCA1 and BRCA2 gene mutations may lead to increased risk of other cancers.

Ford et al. (1994) reported a significantly increased risk of colon cancer and of

prostate cancer in BRCA1 mutation carriers. To assess the impact of genetics on CI
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insurance more fully we need to consider gene mutations that may be associated with

the other major critical illnesses, ‘other’ cancers and the cardiovascular disorders.

There are gene mutations associated with ‘other’ cancers. As an example, mu-

tations at the genes hMSH2 and hMLH1 predispose to cancers of the colon, en-

dometrium, stomach, pancrearicobiliary system, ovary, small intestine and upper

urological tract among others (see Marra and Boland (1995)). We feel the mod-

elling of the impact of cancer-causing genes like hMSH2 and hMLH1 can proceed

along the lines we used for BRCA1 and BRCA2. However, the increased number

of disease endpoints and the fact that these diseases affect both males and females

means that modelling the family history requires consideration of a lot more pos-

sibilities than was the case for BC and OC. Unfortunately it is unlikely that data

on gene frequencies and penetrance are currently available for any such mutations

of the same level of detail and quality as the data we had in respect of BRCA1 and

BRCA2.

The genetics of cardiovascular disorders is less tractable than that of cancers

like BC and OC. The influence of genetics in cardiovascular disorders is modified

by environmental factors. The difference with the genetics of, say, BC and OC is

seen in that while BC and OC are strongly associated with family history of these

disorders, cardiovascular disorders are less associated with family history and more

with a host of different risk factors. Due to the high proportion of CI claims which

are due to cardiovascular disorders there is a need to quantify the effect on CI of

possible genetic mutations. In the next chapter we derive a model, for coronary

heart disease and stroke, which can enable us to study this possible impact on CI

of the genetics of cardiovascular disorders.
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Chapter 4

Coronary heart disease and stroke

4.1 Coronary heart disease

Coronary heart disease (CHD) is a term for a group of disease endpoints resulting

from disorders of the coronary arteries that supply blood to the heart muscle itself.

A significant source of disorders of the coronary arteries is the accumulation of

fatty streaks (mainly cholesterol and fat deposits) and formation of fibrous plaques

in the artery walls. This is called atherosclerosis. Atherosclerosis mainly progresses

in a gradual manner resulting in a usually long phase of coronary artery disease

without any symptoms. Continued deposits on the artery walls will narrow the

arteries themselves which may lead to restrictions in blood flow. However the plaque

may become unstable leading to the rupture of plaque lesions. The raptured lesions

have an interface with the flowing blood and a clot may be formed. These clots

can block the artery or may be carried further by the blood and if they encounter

another narrowed section of the arteries they may cause a severe restriction or even

blockage of the blood flow.

The differences in the endpoints are mainly due to the extent of blood deprivation

to the heart muscle and the resultant damage.

(a) Angina Pectoris (AP) arises when the heart requires more blood than can be

supplied by the coronary arteries. It is not associated with muscle damage but

a patient experiences heart pains that can be relieved by resting.

(b) Myocardial infarction (MI) occurs when part of the heart muscle dies due to a
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deficiency in the blood supply.

(c) The extreme case is that of sudden death (SD), when the heart fails due to

extensive death of the muscle. This can occur within an hour of onset of the

symptoms.

(d) Heart failure, when the heart becomes inefficient due to one or both of areas of

the wall moving paradoxically because active muscle has been replaced by scar

tissues after an infarction, and the heart beat being disordered (arrhythmic)

because the conduction tissue has been damaged by ischaemia. This may be

complicated by mitral regurgitation, if scar has replaced active muscle around

where the valve is attached.

Complications of atherosclerosis are believed to be initiated and exacerbated by

the presence of risk factors like hypertension and high levels of low density lipopro-

tein (LDL) cholesterol. Stehbens (1999) notes that the end stage of heart disease

whose basis is atherosclerosis is statistically associated with a number of risk factors.

He also states that about 10% of heart disease is due to non-atherosclerotic causes,

in which case statistical associations with risk factors are irrelevant.

4.2 Stroke

Bamford et al. (1988) define stroke as rapidly developing clinical symptoms and/or

signs of loss of focal or global cerebral function lasting more that 24 hours or leading

to death and without an apparent cause apart from vascular origin. This is due to

an interruption in the supply of blood to the brain which is secondary to a primary

disease of the heart or blood vessels. Strokes are classified in terms of two types of

cerebral damage.

(a) Cerebral infarction occurs when there is death of part, or whole of the brain

tissue largely due to blood clots or stenosis in arteries blocking the supply of

blood to the brain. This is usually called ischaemic stroke and constitutes about

80% of strokes (Gubitz and Sandercock (2000)).

(b) Cerebral haemorrhage (intracerebral and subarachnoid haemorrhage) is associ-

ated with the rupture or break in a blood vessel in the brain. The severity of
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the resulting stroke depends on the site of rupture and the volume of blood loss.

These are called haemorrhagic strokes, and constitute about 20% of all strokes.

Bamford et al. (1988) also define transient ischaemic attack as an acute loss of

focal cerebral or ocular function with symptoms lasting less than 24 hours and due

to blood clots or stenosis in arteries blocking the supply of blood.

4.3 Epidemiology and risk factors

We represent the relationship between the disease end-points, the underlying disease

and the associated risk factors in Figure 4.27.
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Figure 4.27: Coronary artery disease pathology.

From Stehbens (1999) we note two important points:

(a) The difference between individuals who develop endpoints and those who do not

is largely due to differences in the severity of atherosclerosis rather than due to

absence or presence of atherosclerosis.
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(b) The severity of atherosclerosis is a measure encompassing many aspects of the

disease in the blood vessels which are either not possible to measure while

someone is alive or for which there is no consensus on an acceptable grading

system.

This presents a rôle for the use of statistically associated risk factors in the

epidemiology of CHD and stroke. A host of risk factors have been associated with

CHD and stroke. Risk factors usually considered by underwriters include:

(a) age,

(b) sex,

(c) body mass index,

(d) cigarette smoking,

(e) hypertension,

(f) cholesterol (hypercholesterolaemia),

(g) diabetes, and

(h) family history of CHD or stroke.

Other risk factors, not routinely used for underwriting, include:

(i) atrial fibrillation (for ischaemic stroke) and

(j) left ventricular hypertrophy.

We discuss, below, the nature and measurement of some of these risk factors

and review their association with CHD and stroke. We note that risk factors like

cigarette smoking, hypertension and cholesterol are modifiable and are the target of

most medical treatments and programmes aimed at reducing the risk of CHD and

stroke.

4.3.1 Body mass index

Body mass index, BMI, is given by weight
(height)2 where the weight is in kilograms and

the height is in metres. In a longitudinal study Shaper et al. (1997) conclude that

the incidence of CHD increases progressively with increasing body mass index. This

relationship is complicated by the presence of associated risk factors like diabetes.
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We construct three categories of BMI from the continuum based on the classi-

fication used for the periodic national health surveys for England (see Erens and

Primatesta (1999)). The classes are shown in Table 4.69.

Table 4.69: BMI categories.

Range Category
BMI ≤ 25 normal weight
25 < BMI ≤ 30 overweight
30 < BMI obese

4.3.2 Smoking

Smoking is a major risk factor for CHD. In the Copenhagen Heart Study, Nyboe

et al. (1991) confirms the role of tobacco smoking as a major risk factor for the first

acute MI. They also show that the risk increases with increasing amount of smoking.

Smoking is, fortunately, a modifiable risk factor and the risk of CHD is significantly

reduced after quitting. Nyboe et al. (1991) did not find any significant difference in

the risk of MI in non-smokers and in ex-smokers, irrespective of their duration since

quitting. Smoking is one of the most targeted risk factors in efforts to reduce CHD

incidence.

Smokers experience higher incidence of stroke than non-smokers. In the Framing-

ham Heart Study, Wolf et al. (1988) showed that the relationship between smoking

and stroke was significant even after adjusting for other known risk factors. They

also conclude that the risk of stroke is related to the number of cigarettes smoked

and that ex-smokers had incidence similar to that of non-smokers quite soon after

quitting.

4.3.3 Hypertension

Elevated blood pressure levels are associated with risk of CHD and stroke (Whisnant

et al. (1996) and Wolf et al. (1988) ). Blood pressure is measured as both systolic

blood pressure (sbp) and diastolic blood pressure (dbp) and expressed in mm Hg.
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As well as their actual values, the difference between sbp and dbp is informative.

Guidelines are produced for medical practitioners on recommended levels of sbp or

dbp to consider for diagnosis of hypertension for treatment and management pur-

poses. Table 4.70 shows one set of such diagnostic guidelines produced for medical

practitioners.

Table 4.70: Hypertension Diagnosis Guidelines. Source ( The Joint National Com-
mittee on Prevention, Detection, Evaluation and Treatment of High Blood Pressure
(1997).)

Category Systolic (mm Hg) Diastolic (mm Hg)
Optimal < 120 and < 80
Normal < 130 and < 85
High Normal 130− 139 or 85− 90
Hypertension

Stage 1 140− 159 or 90− 99
Stage 2 160− 179 or 100− 109
Stage 3 ≥ 180 or ≥ 110

For treatment purposes hypertension is classified into secondary hypertension

and essential hypertension. Secondary hypertension has an identifiable cause like

renal failure while essential hypertension has no such clearly identifiable cause.

However there are a number of risk factors associated with the risk of hyper-

tension. Dyer et al. (1999) give body mass index, cigarette smoking, triglycerides,

high density lipoprotein cholesterol (HDL-C) and age as some of the risk factors of

hypertension.

4.3.4 Cholesterol

Cholesterol is one of the three major traditional risk factors for CHD. Cholesterol,

smoking, and hypertension between them explain about 50% of CHD events. Raised

cholesterol is a sign of disease in the same way that hypertension is. This is in

contrast to risk factors like diabetes which are symptoms. Cholesterol concentration

is measured in mg/dL or in mmol/l. For cholesterol 1mg/dL = 0.02586mmol/l.

Higher levels of low density lipoprotein (LDL-C) are associated with higher risk

of CHD. Lower levels of HDL-C are associated with higher risk of CHD. Total
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Table 4.71: ATP III Classification of LDL, Total and HDL Cholesterol (mg/dL)
Source ( National Cholesterol Education Program (2001).)

LDL Cholesterol
< 100 Optimal

100− 129 Near optimal/above optimal
130− 159 Borderline high
160− 189 High
≥ 190 Very high

Total Cholesterol
< 200 Desirable

200− 239 Borderline high
≥ 240 High

HDL Cholesterol
< 40 Low
≥ 60 High

cholesterol (TC) levels measure the combined total level of LDL cholesterol and

HDL cholesterol and triglycerides. It is now felt that a measure of the ratio of LDL

cholesterol to HDL cholesterol ( LDL
HDL

) is more powerful in explaining CHD than the

total cholesterol levels. We note that often the LDL value is not known and the

ratio ( TC
HDL

) is used in its place.

For diagnosis and treatment purposes the National Cholesterol Education Pro-

gram (2001) give the classification of cholesterol levels shown in Table 4.71.

Continuing research into the CHD risk factors often redefines the importance of

traditional risk factors as new ones are found. We note here that Brackenridge and

Elder (1998) refer to LDL-C as a new independent risk factor for CHD

There seems to be no consistent result from epidemiological studies on whether

cholesterol is a risk factor for stroke or not. In a study of 7052 men and 8354 women

who had baseline examination in the mid-1970’s when they were then aged 45 to

64 years, Hart et al. (2000) failed to find a relationship between cholesterol and

stroke incidence. This was true for both men and women considering a follow-up

period of up to 20 years. Dyker et al. (1997) points out that some studies find that

cholesterol has positive association with ischaemic stroke and a negative association
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with haemorrhagic stroke and that it is likely that when stroke is studied without

subdividing the subtypes, the influence of cholesterol is diluted.

4.3.5 Diabetes

The presence of elevated glucose levels in the blood (glycaemia) is associated

with CHD risk. Epidemiological studies have shown that diabetes is also asso-

ciated with risk of stroke (Whisnant et al. (1996)). The level of glucose in the

blood is measured as either the plasma glucose (PG) level or the glycosylated

haemoglobin (HbA1c) concentration. The plasma glucose level is expressed in

mg/dL (or mmol/l) and HbA1c is expressed as a percentage. For blood glucose

level 1mg/dL = 0.05556mmol/l. The blood glucose level is a continuum over the

ranges of measurement compatible with life, and varies through the day in response

to meals and exercise.

The glycaemia continuum is categorised into two main groups. The normo-

glycaemic range on the lower end of the scale and hyperglycaemic on the upper

end of the scale. The lower end of the hyperglycaemic part forms the Impaired Glu-

cose Tolerance (IGT) or Impaired Fasting Glucose (IFG) category while the upper

end forms the Diabetic category. This is shown in Figure 4.28.

-¾ ¾ -Normoglycaemic Hyperglycaemic

-¾ ¾ -¾ -
Normal IFG or IGT Diabetic

Figure 4.28: The Glycaemia continuum.

The Expert Committee on the Diagnosis and Classification of Diabetes Mellitus,

set up by the American Diabetes Association (see American Diabetes Association:

Clinical Practice Recommendations 2000 (2000)), gave guidelines on the glycaemia

ranges constituting the above categories. To achieve this they define the conditions

for measuring the plasma glucose level such as, the casual plasma glucose level, the

fasting plasma glucose (FPG) level and the 2 hour postload glucose level (2-h PG).
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The FPG is the PG level measured at least 8 hours after the last intake of any food

or beverage apart from water. The 2-h PG level is the level taken 2 hours after

consumption of the equivalent of 75g anhydrous glucose dissolved in water. Table

4.72 shows the diagnostic categories suggested by the committee, depending on the

measure used.

Table 4.72: Diabetes diagnosis.

Normal IFG or IGT Diabetic
FPG level in mg/dL (mmol/l) < 110(6.1) 110–126 (6.1–7.0) ≥ 126(7.0)
2-h PG in mg/dL (mmol/l) < 126(7.0) 126–200(7.0–11.1) ≥ 200(11.1)

The HbA1c levels are not used in the guidelines because of the different methods

of measuring the concentration.

The causes and development of diabetes result in categories of Type 1 diabetes

and Type 2 diabetes, among others. Type 1 and Type 2 diabetes are the diabetes

types commonly found in the UK. Type 1 diabetes is a result of insulin deficiency and

typically presents before age 30 although it can occur at any age. In the U.S.A. ap-

proximately 93.6% of all diabetes diagnosed at ages above 30 is not Type 1 diabetes

(Harris and Robbins (1994)). The deficiency is due to auto-immune destruction of

cells involved in insulin production. Most sufferers will depend on insulin treatment

for the rest of their lives. The development of the symptoms is acute and diagnosis

of Type 1 diabetes is often soon after development of the symptoms.

Type 2 diabetes is a result of both insulin resistance and diminished insulin

secretion. It typically presents in the 50 to 65 age group although it could also

present at any age. In contrast to Type 1 diabetes, the hyperglycaemia related

to Type 2 diabetes may develop gradually resulting in the onset and presence of

symptoms going unnoticed for many years.

Type 1 diabetes and Type 2 diabetes are associated with high risk of cardio-

vascular diseases. Type 1 diabetes is not associated with the traditional CHD risk

factors and its pathway of influence on CHD is largely unknown. Type 2 diabetes

is associated with the CHD risk factors for the rest of the population.
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We note that on the one hand there is increased incidence of Type 2 diabetes

in people with obesity, older ages, sedentary lifestyles, family history of diabetes,

hypertension and dyslipidaemia (American Diabetes Association: Clinical Practice

Recommendations 1999 (1999)). On the other hand people with Type 2 diabetes

are more likely to have these risk factors (apart from LDL-C and smoking) than age

matched non-diabetics (Nathan et al. (1997)). Type 2 diabetics are also more likely

to have clustering of these risk factors than non-diabetics.

For those with Type 2 diabetes, Turner et al. (1998) show that LDL-C, HDL-C,

smoking and hypertension ( > 160/90 mm Hg) remain risk factors for CHD while

obesity is not. It is also true that in general, Type 2 diabetics tend to develop CHD

earlier with worse prognosis than non-diabetics.

Studies are not in agreement on the relationship between glycaemia and CHD

risk in Type 2 diabetics. Some studies suggest that the treatment of diabetes does

not seem to reduce CHD risk (Tan (1999)).

The normal end of the glycaemic scale is associated with the lowest risk of CHD.

Glycaemia levels in the IGT or IFG states, although not high enough to constitute

diabetes, are associated with higher CHD risk than the normal range. This could

be considered as midway between the normal and diabetes associated risks.

Diabetes is also associated with peripheral vascular disease (PVD) which is due

to hardening of arteries with effects mainly in the legs. PVD is not a CI claim

trigger but lives with PVD are declined CI insurance cover. In our modelling we

consider diabetes, which is a risk factor for CHD rather than PVD which is just an

indication that the individuals arteries are not healthy.

4.4 CHD and stroke underwriting for CI insur-

ance

With respect to quantitative risk factors associated with CHD, Sing and Moll (1990)

state that there is no level of these factors at which risk of CHD is totally absent or

an absolute certainty. Consequently everyone is at some risk of CHD or stroke.

152



The underwriting of CI insurance has some specific focus on CHD and stroke and

their risk factors. It should be borne in mind that the underwriting is done for the

complete CI policy and not just for CHD and stroke outcomes. However particular

attention is paid to all the risk factors mentioned above and also to the applicant’s

own history of CHD or stroke. This is so mainly because the cardiovascular CI claim

events form a significant proportion of claims.

Applicants who have a history of any of the CI insurance claim events are unlikely

to be accepted for CI insurance cover. However if the applicant can be accepted at

non-standard rates which include an exclusion of claims due to diseases already

covered, then this may be done. Current practice is such that applicants with a

history of heart attacks, stroke and other atherosclerotic disease will be declined CI

cover.

The family history considered is the presence of family members with a history

of, or deceased from, diseases of the heart, diseases of the blood vessels or diabetes.

An adverse family history is likely to trigger more medical investigations. In some

cases, if the risk profile in terms of the other risk factors is good, standard rates may

still be offered. Typical ratings associated with adverse family history range from

+50 to +100.

Diabetes is considered one of most the important underwriting factors for CI

insurance. Apart from its association with cardiovascular diseases, diabetes also is

a risk factor for kidney disease. Current underwriting practice considers the age of

the applicant, the prognosis of the diabetes since it was diagnosed and the results

of tests related to possible complications of diabetes. These tests are likely to cover

aspects such as signs of affected kidneys. An applicant with a history of diabetes

will be declined if the diabetes has not been well controlled by treatment. They are

also likely to be declined if they are below 40 at age of diagnosis. Otherwise ratings

ranging from +50 to +150 can be offered just on the basis of diabetes being present.

We note that this practice is based on a criterion of diagnosis which considers a

blood sugar level of about 140mg/dL as the threshold for diagnosis.

Hypercholesterolaemia is also considered in CI insurance underwriting. The basic

measure used in underwriting is the blood concentration of total cholesterol and the
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age of the applicant. Concentrations of up to 240mg/dL would typically not be rated.

For applicants above age 50 standard terms may be offered even for concentrations as

high as 300mg/dL while these concentrations for lives below 50 may attract ratings

of up to +75. In cases where the HDL-cholesterol values are available, these are also

used.

The consideration given to blood pressure readings in CI underwriting depends

on the level of the blood pressure and the age and sex of applicant. Values of

both the systolic blood pressure and the diastolic blood pressure are usually used

in the assessment. Most applicants are likely to have readings which can lead to

standard terms being offered. However the ratings for hypertension alone can lead

to declinature.

As already shown, the age of the applicant is a factor considered in CI insurance

underwriting. The sex and smoking status are also considered. The ratings given

are based on the appropriate standard premium specific to the sex, age and smoking

status of the applicant. Therefore the standard premium paid by male smokers will

be different to the standard premium paid by female smokers. Consequently the

same applies to the rated premiums. The ratings used are assumed to have more

than just an additive effect. If three risk factors have individual ratings whose sum

is +100, then the rating for the presence of all three is in excess of +100.

Body mass index is considered a minor risk factor in terms of CI insurance under-

writing. Considered on its own it is will to lead to the declinature of an application

only if the BMI is above 40. For BMI below 40 the ratings may depend on the age

of the applicant with applicants at older ages getting lower ratings than younger

lives with the same BMI.

4.5 The genetics of CHD and stroke

The genetics of CHD or stroke is a large and complex subject of study. We note here

that the accepted facts are that cardiovascular disorders aggregate in families but do

not exhibit the pattern of inheritance shown by single gene disorders (segregation).

Sing and Moll (1990) state that, with reference to coronary artery disease, this is
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expected if:

(a) the disease is determined by the levels of many intermediate quantitative traits

and

(b) the distribution of these quantitative traits is influenced by the segregation of

many genes and environmental factors.

There is an expectation that there would be a few rare single gene mutations,

associated with the risk factors, that would predict CHD with high probability.

However in general there is no such clear relationship between the DNA mutations

and disease status. Therefore the research into the genetics of these complex disor-

ders has been mainly on the genes that may cause the inter-individual variation in

the intermediate quantitative traits.

We will consider some of the advances in the genetics of hypertension, hyperc-

holesterolaemia and diabetes. The aim of geneticists in the study of the genetics

of these intermediate traits is to establish the ‘genetic architecture’, (Sing and Moll

(1990)), which includes

(a) the number of genes involved in determining the level and inter-individual vari-

ation of the trait,

(b) the number of alleles of each gene and their relative frequencies,

(c) the impact of each allele on the level of variability of the trait, and

(d) the impact of each allele on the relationship of the trait with other risk factors

that are involved in the development of the disease.

When more that one gene is involved, a gene whose influence on the inter-

individual variation of the trait is much greater than the influence of modifying

genes is referred to as a major gene.

4.5.1 Hypertension

Some rare single gene mutations have been identified which are associated with

hypertension. Examples of these rare or extremely rare mutations given by Corvol

et al. (1999) are the genes on chromosome 16 leading to the kidney disorder Liddle’s

syndrome and also genes on chromosomes 8 and 16.
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A lot of attention has been paid to more common mutations that may be linked

to hypertension. The first one to be linked to human hypertension (and maybe the

most studied one) is the AGT gene on chromosome 1. Its polymorphisms include the

2 frequent alleles M235T and T174M. Studies in different populations have shown

differing results on the association between the gene and hypertension. However, as

Corvol et al. (1999) note two meta-analyses in the late 1990’s showed a weak but

significant association between the M235T allele and hypertension.

Other common genes being considered as candidate genes for hypertension in-

clude the NOS3 gene on chromosome 7 (Robinson et al. (1994)) and the GNB3 gene

on chromosome 12 (Benjafield et al. (1998)). These are known genes whose associ-

ation with hypertension is being studied. There are also some loci which possibly

harbour hypertension susceptibility genes. These include the HYT1 locus on chro-

mosome 17 (Baima et al. (1999)) and the HYT2 locus on chromosome 15 (Xu et al.

(1999)).

4.5.2 Hypercholesterolaemia

A few rare single gene mutations have been associated with cholesterol disorders.

An example of these is familial hypercholesterolemia, (FH), which is an autosomal

dominant disorder whose sufferers have very high levels of serum cholesterol. FH

is caused by mutations at the LDL receptor gene, LDLR, on chromosome 19. One

such mutation which occurs with a frequency of 1 in 500 gives rise to risk of a

CHD event of 50% by age 50 in males (see Motulski and Brunzell (1992)). Two

other mutations at the LDL receptor gene with frequency 1 in 1,000,000 can result

in levels of cholesterol of up to 600 mg/dl (≈ 15.5 mmol/l). The Human Gene

Mutation Database showed the number of different known mutations of the LDL

receptor gene as 441. The elevated cholesterol levels associated with FH can be

detected by the analysis of a blood sample. The cholesterol levels are elevated from

birth and FH does not skip generations. Therefore a genetic test gives very limited

information in addition to that obtained from a blood test.

The apo E gene, also on chromosome 19, is an example of the common genes as-

sociated with cholesterol disorders. Apo E is found in 3 isoforms, ε2, ε3, and ε4. The
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resulting six genotypes are ε2/ε2, ε2/ε3, ε2/ε4, ε3/ε3, ε3/ε4, ε4/ε4. As compared to

carriers of the ε2 allele, those with the ε4 allele have higher atherosclerosis risk. The

ε4 allele is associated with higher cholesterol, higher LDL-cholesterol, higher Lp(a),

higher triglycerides and lower HDL-cholesterol than ε3 (Dallongenville (1994)). The

effect of the polymorphisms on the cholesterol levels is also influenced by environ-

mental factors like the level of cholesterol in the diet. The apo E gene is also mainly

associated with late-onset Alzheimer’s disease. Lives with the ε4 allele are at greater

risk of late-onset Alzheimer’s disease but many lives with the ε4 allele do not get

the disease while many without the allele develop the disease. Therefore apo E

genotyping is not a reliable predictive test for hypercholesterolaemia or late-onset

Alzheimer’s disease. The determination of the apo E genotype is not usually done

in individuals (Motulski and Brunzell (1992)).

With respect to LDL-C, Coon et al. (1999) found evidence of a common gene

associated with mild elevations of LDL-C. However candidate genes like the LDL

receptor gene, the apo E gene and CYP7A1 were excluded by the studies. A major

gene has also been suggested to regulate HDL-C levels. Candidate genes have been

considered but none has been accepted as the major gene. Recent study results

include evidence that some regions of chromosomes 5 and 13 may harbour a gene

that influences the inter-individual variation in HDL-C ( Peacock et al. (2001)).

4.5.3 Diabetes

Genetics of Type 1 diabetes

Type 1 diabetes runs in families so that the offspring and siblings of diabetics have

a much higher chance of being diabetics than the general population. Multiple loci

may be involved in the disease process as well as environmental factors and a number

of loci have been considered as candidate genes contributing to Type 1 diabetes

(Rotter et al. (1992)). The region considered as primary for Type 1 diabetes is on

chromosome 6 named IDDM1 (Dorman and Bunker (2000)). IDDM1 is part of the

human leukocyte antigen (HLA) complex and comprises the loci HLA-DR, HLA-DQ

and HLA-DP. Some HLA alleles are believed to predispose to Type 1 diabetes. In

particular lives with both DR3 and DR4 alleles have a higher relative risk of Type 1
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diabetes than lives which are homozygous for either DR3 or DR4. While initial focus

was on the DR alleles as markers for type 1 diabetes susceptibility, recent studies

have established the DQ alleles as the primary markers (Dorman and Bunker (2000)

and Rotter et al. (1992)). Davies et al. (1994) state that the number of siblings

with similar specific HLA haplotypes is far higher among diabetes sufferers than

would be expected from Mendelian genetics. IDDM1 is thought to be the gene with

the largest contribution to Type 1 diabetes. A gene on chromosome 11, named

IDDM2, is also thought to predispose to Type 1 diabetes. IDDM1 and IDDM2 are,

together, thought to account for less than 30% of genetic susceptibility to Type 1

diabetes. The pattern of inheritance of these genes is complex. This complexity may

be increased if there is selective transmission of particular alleles by the parents (see

Vadheim et al. (1986) and Field et al. (1986)).

Genetics of Type 2 diabetes

There is a high incidence of Type 2 diabetes in certain populations and in relatives of

Type 2 diabetes patients. These and other facts, including the high concordance in

identical twins, is taken as evidence of a strong genetic influence on Type 2 diabetes.

In recent years researchers have identified a number of gene loci with evidence

of influence on Type 2 diabetes. In 1996, Hanis et al. (1996) identified NIDDM1

on chromosome 2. Loci NIDDM2 on chromosome 12, and NIDDM3 on chromosome

20 were identified in 1996 and 1999 respectively. On the NIDDM1 locus, Horikawa

et al. (2000) concluded that genetic variation on the CAPN10 gene (segment 2q37.3)

is associated with type 2 diabetes.

Frayling et al. (2000) discussed the difficulties of identifying genes associated

with Type 2 diabetes. The problems include having different genes contributing in

different individuals, the possibility of multiple susceptibility alleles for each affected

subject, and the role of environmental factors. There have also been difficulties in

reproducing results in different populations. Frayling et al. (2000) failed to reproduce

the results on chromosomes 12 and 20 for U.K. Caucasians while Evans et al. (2001)

failed to reproduce the CAPN10 gene results in the U.K. However the setting up,

in 1997, of the International Type 2 Diabetes Linkage Analysis Consortium should
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increase the pace at which identification of genes is achieved.

As expected the epidemiology of diabetes in lives with any mutation will follow

behind the identification of the relevant genes. Our search of the literature did not

reveal what, in quantitative terms, the incidence of type 2 diabetes in mutation

carriers is expected to be in relation to that in non-mutation carriers. Neither did

we get an idea about the frequencies of any such possible mutation or mutations.

Our discussion of the genetics of cardiovascular endpoints show the difficulties

in establishing a clear link between DNA mutations and the endpoints. We had

such a reasonable link in our work on BCOC. The discussion also shows that it may

be some time until any genetic architecture that can be useful for epidemiological

analysis is available. To bring our research goals of analysing the effects of genetics

on insurance to reasonable success, we will start by attempting to construct models

for the development of the cardiovascular endpoints that take explicit account of

the development of the intermediate quantitative or factor traits in the absence of

any genetic knowledge. This will allow us to assess the impact of some hypothetical

genetic effects by adjusting the intermediate traits. By making assumptions of

genetic effects on the intermediate traits which can be shown to be extreme, we can

get estimates of the bounds of the impact of genetic information on insurance costs.

4.6 Models for the development of CHD, stroke

and the risk factors

We intend to construct a model which is an adaptation of Figure 4.27 so as to

(a) incorporate the risk factors diabetes, hypertension and hypercholesterolaemia

as proxy for underlying atherosclerosis, and

(b) consider CHD (defined as MI only) as one distinct endpoint and stroke as a

separate endpoint.

Our efforts to construct and parameterize the model will be guided largely by

the data recorded in the Framingham Heart Study and to a lesser extent by other

sources of data and guidelines. The Framingham study was conducted in Boston

(Massachusetts, U.S.A) by the National Heart, Lung and Blood Institute, starting
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in the late 1940’s and running up to the present day.

4.6.1 The Framingham Heart Study data

Available to us is data pertaining to the original cohort of 5209 (2336 men and

2873 women) participants. These people were aged between 28 and 62 years when

they attended their first study examination. Participants were then monitored by

bi-annual examinations for up to forty years (21 examinations), stretching in time

to the early 1990’s. At these examinations details of the results of a range of med-

ical tests and blood analyses were recorded. Characteristics like weight, age and

height, among others, were recorded and the participants’ status with respect to

cardiovascular diseases was noted.

These data, together with another data set pertaining to the offspring of some

of the original cohort members (which we did not have during this work) have been

used to investigate models for the risk of cardiovascular diseases. Models developed

include those which estimate the probability of cardiovascular events within up to

twelve years from a baseline examination (see Anderson et al. (1991a) and Anderson

et al. (1991b)). They consider the time to event since the start of follow up as a

random variable and use parametric regression to estimate probabilities of disease

within a specified time, given the levels of risk factors at baseline. We note that

Anderson et al. (1991a) and Anderson et al. (1991b) consider variables like blood

pressure and cholesterol as continuous variables but diabetes is considered as a

discrete variable. Wilson et al. (1998) produced a model in which the risk factors

blood pressure and cholesterol were considered as categories rather than continuous

variables. These models have been widely used to construct cardiovascular risk

tables and risk calculators. The success of these models can also be shown by

the fact that guidelines on the diagnosis of hypertension and hypercholesterolaemia

now recommend partly on the basis of the CHD risk (according to these models)

of specific blood pressure and cholesterol levels (The Joint National Committee on

Prevention, Detection, Evaluation and Treatment of High Blood Pressure (1997),

Ramsay et al. (1999), and National Cholesterol Education Program (2001)).
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However due to the fact that these models estimate the probabilities of cardio-

vascular events, they do not fall neatly into the framework of the continuous time

multiple state models introduced in Section 1.3 for which transition intensities rather

than probabilities are used in the model specification. We note that it is possible,

albeit difficult, to derive a set of transition intensities which may be reasonably

consistent with the probabilities given by the models of Anderson et al. (1991a) and

Anderson et al. (1991b). The difficulty arises from the following: Anderson et al.

(1991a) and Anderson et al. (1991b) state that the time to event for which a prob-

ability is estimated using their models should not be less than four years. Now the

probability of a cardiovascular event within, say, 5 years of baseline is a sum of

(a) the probability that an event occurs within 5 years with no change of risk factors

between baseline and time of event, and

(b) the probabilities that an event occurs within 5 years after any possible change

in the level of risk factors between baseline and time of event.

Even in the cases where risk factors are discrete, this means the probability of an

event is a sum of many composite probabilities, most of which include probabilities

of changing the risk factor levels. Therefore to use the Anderson et al. (1991a) and

Anderson et al. (1991b) probabilities to derive transition intensities requires making

assumptions about the models governing the change in the level of risk factors in an

individual. Another consequence of attempting to derive the transition intensities

in this way is that two individuals with the same levels of risk factors but different

durations with the risk factors could have significantly different transition intensi-

ties. This duration dependence of cardiovascular risk may not be readily supported

by medical opinion and does not fall within the Markov framework in which we

want to develop our model. Our investigations based on the Anderson et al. (1991a)

and Anderson et al. (1991b) probabilities show that while it is possible to remove

the duration dependency of the transition intensities, for example by averaging in-

tensities whose durations are different, the transition intensities produced will give

results which may be significantly different from those of the probability models

from which they are derived.
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Influenced by these difficulties of using the probability models to parameterise a

multiple state Markov model and also by our desire to produce a model which not

only captures the development of cardiovascular disease but also the development,

enroute, of the risk factors blood pressure, diabetes and hypercholesterolaemia, we

feel that direct analysis of the Framingham Heart Study data set is the most appro-

priate approach.

The data

For the participants who attended a particular examination, Table 4.73 gives a sum-

mary of the data available on the factors that we are going to use. These data were

made available on the Public Release Data Tapes and excludes some information

which was collected in the study and possibly available to other studies such as

Anderson et al. (1991a) and Anderson et al. (1991b). There is more data and for a

greater range of ages for the earlier examinations than for the later examinations.

Table 4.73: Summary of data available from Framingham Heart Study.

Examinations
Factors 1 2 3 4 5 6 7 8 9 10
Smoking • • • • • • •
Blood Sugar Level • • • • • • • •
Serum Cholesterol • • • • • • • • •
Systolic Blood Pressure • • • • • • • • • •
Diastolic Blood Pressure • • • • • • • • • •
Height • •
Weight • • • • • • • • • •

Examinations
Factors 11 12 13 14 15 16 17 18 19 20
Smoking • • • • • • • • •
Blood Sugar level • • • • • • • • •
Serum Cholesterol • • •
Systolic Blood Pressure • • • • • • • • • •
Diastolic Blood Pressure • • • • • • • • • •
Height • • • • • • • •
Weight • • • • • • • • • •

The date at which a participant attended an examination is given. These dates

are provided only as the number of days from a fixed date in time. This fixed date
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is not provided and we assume that it is 1 January 1960. Based on details collected

at these examinations and on other information, the data sets provide dates at

which vital events like a heart attack, stroke or death occur. Unlike the dates of

examinations, the dates pertaining to these events are given as actual calendar dates.

We consider the period between any two consecutively numbered examinations as

a separate period of investigation. For each applicant we determine the following

variables for the period of investigation:

(a) Calendar time. This denotes the time passed, at the start of the period of

investigation, since examination 1. We assume that all examinations are exactly

two years apart for this purpose. We define a variable e = 2(n− 1) where n is

the number of the examination.

(b) Start of investigation period. This is the date at which the current exami-

nation is attended by the participant. We define the variable date(0) to represent

this date.

(c) End of investigation period. This is the date of the next numbered ex-

amination, if it is attended. We denote this date(1) and we assume that

date(1) = date(0) + 2 if the participant does not attend the examination (i.e

if date(1) is not given).

(d) Sex. This is recorded for each participant at examination 1. We define the

variable s such that s = 0 for males and s = 1 for females.

(e) Age (denoted x). Age is recorded when the participant attended an examina-

tion. This recorded age is the age last birthday and therefore lives recorded

as aged y at start of the period have an average age of y + 0.5 years. Midway

through the two year period of investigation the average age of these lives is

y + 1.5 years. We define x = y + 1.5.

(f) Smoking status. This is taken to be the status recorded when the participant

took the examination. The Framingham study defined this in such a way that

one is classified a smoker if they smoked cigarettes within a year prior to the

examination. If the smoking status is not recorded at the examination under

consideration we assumed the status at the last recorded examination. We define

the variable k such that k = 0 for non-smokers and k = 1 for smokers.
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(g) Body mass index (BMI). This is calculated as the ratio of weight in kilograms

to the square of height in metres. The data set provides the weight in ounces

and height in inches. We took 1 inch as 0.025m and 1 pound as 0.454kg. We

use the height and weight measurements recorded at the examination. If any of

these measurements is not available at the required examination, we use the last

recorded value. Based on the BMI categories that we constructed previously,

we then define the variable w such that

w =




0 : BMI ≤ 25

1 : 25 < BMI ≤ 30

2 : BMI > 30.

(h) Blood pressure. At each examination there are two readings of blood pressure

each with a systolic blood pressure value and a diastolic blood pressure value.

We denote the values for the first reading sbp1 and dbp1 and those for the second

reading as sbp2 and dbp2. We classify the blood pressure of each participant into

one of four categories. These categories are derived from The Joint National

Committee on Prevention, Detection, Evaluation and Treatment of High Blood

Pressure (1997) with the optimal and normal categories combined and also the

Hypertension Stage II and Hypertension Stage III combined. Based on the first

set of readings we determine the blood pressure status according to Table 4.74.

Table 4.74: Determination of blood pressure status.

sbp1 < 130 130 ≤ sbp1 < 140 140 ≤ sbp1 < 160 sbp1 ≥ 160
dbp1 < 85 Optimal or normal High Normal Hypertension Stage I Hypertension Stage II

and Stage III

85 ≤ dbp1 < 90 High Normal High Normal Hypertension Stage I Hypertension Stage II

and Stage III

90 ≤ dbp1 < 100 Hypertension Stage I Hypertension Stage I Hypertension Stage I Hypertension Stage II

and Stage III

dbp1 ≥ 100 Hypertension Stage II

and Stage III

Hypertension Stage II

and Stage III

Hypertension Stage II

and Stage III

Hypertension Stage II

and Stage III

The blood pressure status based on the second set of readings is determined in

the same way. Using the blood pressure statuses from the two sets of readings

we define a variable b, to represent blood pressure, taking values 0, 1, 2 and 3 as

shown in Table 4.75. In the case when only one set of readings was available, the
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value of b was determined based on that one set only. We note that b represents

the lower of the blood pressure category according to the first set of readings

and the category according to the second set of readings.

Table 4.75: Values for blood pressure variable b.

Reading set 1
Optimal High Hypertension Hypertension

or normal Normal Stage I Stage II and Stage III
Optimal or normal 0 0 0 0

Reading High Normal 0 1 1 1
Set 2 Hypertension Stage I 0 1 2 2

Hypertension Stage II
and Stage III

0 1 2 3

(i) Cholesterol. The cholesterol value, chol, is considered as that recorded at

the particular examination or the last recorded value. Based on the National

Cholesterol Education Program (2001) categories for total cholesterol, we define

a variable c such that

c =




0 : chol < 200

1 : 200 ≤ chol < 240

2 : chol ≥ 240.

We will refer to these categories as ‘Normal’ cholesterol for c = 0 , ‘Moderate’

cholesterol for c = 1 and ‘High’ cholesterol for c = 2.

(j) Diabetes. We consider the blood sugar level, bsl, recorded at the examination

or the last recorded level, should there be no measurement at the particular

examination. Based on the American Diabetes Association: Clinical Practice

Recommendations 2000 (2000) classification, we define a variable d such that

d =


 0 : bsl < 126

1 : bsl ≥ 126.

(k) Date of MI. We consider MI to have occurred for a participant if they have

experienced recognised or unrecognised MI, but excluding those that have expe-

rienced only angina pectoris or coronary insufficiency. We define, for the period

of investigation, the variable date(mi) to denote the date at which MI occurs. If
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MI does not occur during the period of investigation, then date(mi) takes the

value of infinity.

(l) Date of stroke. We considered a participant to have suffered a stroke if they

had an atherothrombotic infarction, cerebral embolism, intracerebral heamor-

rhage or subarachnoid haemorrhage, but excluding transient ischaemic attacks.

We define the variable date(stroke) to represent the date at which stroke occurs

during the period of investigation. date(stroke) takes the value infinity if the

participant does not experience a stroke during the period of investigation.

(m) Date of death. The variable date(dth) denotes the date of death and takes the

value infinity if the participant survives the period of investigation.

Based on the categories for the risk factors defined above we need to parameterise

the model for CHD and stroke shown in Figure 4.29. The states represent various

combinations of risk factors (as categorised above) as well as the events CHD (MI),

stroke and death. A life in any of the transient states numbered 1 to 23 can move

directly to the ‘CHD’, ‘Stroke’ or ‘Dead’ states. They may also move to another risk

factor state as shown by the arrows. The transition intensities between the states

depend on the risk factor status of the starting state. These transition intensities

will be defined and parameterised in the following sections of this chapter.

We use i to indicate the ith participant and define

dateexit
i = minimum

(
datedth

i , datemi
i , datestroke

i

)
.

The variables b for blood pressure, c for cholesterol and d for blood sugar level only

give information on the current levels. Indeed a significant proportion of lives would

have, at some previous examination, exceeded these levels of the variables. Using

details from the current and previous examinations, we define variables for the high-

est ever categories for blood pressure, cholesterol and blood sugar level. Therefore

we define bMax as the maximum value of b for the participant from examination 1

up to the current examination. Similarly we define dMax and cMax. For each of

blood pressure, cholesterol and blood sugar level we need to determine which one of

‘current value’ or ‘highest ever value’ is most informative in modelling MI or stroke

incidence. In the next section we detail the data, the model and the tests we use to
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Figure 4.29: A CHD and Stroke model.
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make this determination. The notation used and expressions developed for the data

and models in the section will be referred to in later models.

4.6.2 Model for incidence of CHD and incidence of stroke

Assessment of the significance of blood pressure variables b and bMax

To model the incidence of MI/stroke we need to estimate the time spent at risk

of MI/stroke by the ith participant whose age (x), current blood pressure category

(b) and highest ever blood pressure category (bMax) are specified. We also need

to determine the number of MI cases (zero or one) for the same participant in the

period of investigation.

We consider three categories of participants:

(a) Participants who are present at the next numbered examination.

Since the date of the next examination is known, the exposure for the ith life is

given by

Ex,b,bMax,i = minimum(date
(1)
i , dateexit

i )− date
(0)
i .

Denoting by θx,b,bMax,i, the number of cases of MI/stroke for life i, we have

θMI
x,b,bMax,i =




1 : dateexit
i = dateMI

i and dateexit
i <= date

(1)
i

0 : otherwise,

and

θstroke
x,b,bMax,i =




1 : dateexit
i = datestroke

i and dateexit
i <= date

(1)
i

0 : otherwise.

(b) Participants who are not present at the next numbered examination but are

known to have had MI, stroke or death within 2 years of the date of the ex-

amination at the start of the investigation period.

For these participants there is no date
(1)
i available. The exposure and number

of cases for these lives are given by
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Ex,b,bMax,i = dateexit
i − date

(0)
i .

θMI
x,b,bMax,i =




1 : dateexit
i = dateMI

i

0 : otherwise,

θstroke
x,b,bMax,i =




1 : dateexit
i = datestroke

i

0 : otherwise.

(c) Participants who are not present at the next numbered examination, did not

have any of MI, stroke or death within 2 years of the date of the examination

at the start of the investigation period and attended at least one of the three

examinations subsequent to the missed examination.

For these participants

Ex,b,bMax,i = 2

and

θMI
x,b,bMax,i = θstroke

x,b,bMax,i = 0

We then define

Ex,b,bMax
=

∑
i

Ex,b,bMax,i as the exposed to risk

θMI
x,b,bMax

=
∑
i

θMI
x,b,bMax,i number of MI cases, and

θstroke
x,b,bMax

=
∑
i

θstroke
x,b,bMax,i number of stroke cases,

where the summation covers participants attending examinations 2 to 16 inclu-

sive. The ages considered are such that 30 ≤ x ≤ 82.

For MI we assume that

θMI
x,b,bMax

∼ Poisson (Ex,b,bMax
· exp (g(x, b, bMax)))
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where g(·) is a linear predictor. To fit the linear predictor we have 490 data points.

We use a GLM which uses a stepwise fitting procedure and allows for possible inter-

actions between b and bMax. The fitting retains only age x and bMax as significant

variables. To illustrate why the choice of the stepwise fitting procedure is sensible we

show in Table 4.76 the residual deviance and degrees of freedom when we alternately

add bMax and b to the model.

Table 4.76: Model fitting for MI and stroke incidence considering covariates b (the
current blood pressure category) and bMax (the highest ever blood pressure cate-
gory).

MI Stroke
Parameters in GLM Residual Degrees Residual Degrees
model deviance of freedom deviance of freedom
Age only 562 488 474 488
Age and b only 498 485 370 485
Age and bMax only 457 485 372 485
Age, b and bMax 452 482 345 482

We conclude that bMax has more significance in MI prediction than b. We also

conclude that given bMax, b does not give us any more information on the MI in-

cidence. Table 4.76 also shows the results of a similar analysis with respect to the

incidence of stroke. In this case the results show that given either bMax or b in the

model, adding the other variable to the model gives a significant improvement in the

fitting. The results also show that b is slightly (maybe insignificantly) more infor-

mative of stroke incidence than bMax. We note that the stepwise fitting procedure

for the GLM retained both b and bMax as significant variables in the stroke incidence

model.

Assessment of the significance of cholesterol variables c and cMax

We calculate Ex,c,cMax
and θMI

x,c,cMax
in a way corresponding to that used to calculate

Ex,b,bMax
and θMI

x,b,bMax
. We assume

θMI
x,c,cMax

∼ Poisson (Ex,c,cMax
· exp (g(x, c, cMax))) .

To fit the linear predictor, g(·), we have 293 data points. The GLM fit retains only
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age x and cMax as significant variables. To assess this choice of the stepwise fitting

procedure we show in Table 4.77 the residual deviance and degrees of freedom when

we alternately add cMax and c to the model.

Table 4.77: Model fitting for MI and stroke incidence considering covariates c (the
current cholesterol category) and cMax (the highest ever cholesterol category).

MI Stroke
Parameters in GLM Residual Degrees Residual Degrees
model deviance of freedom deviance of freedom
Age only 310 291 271 291
Age and c only 307 289 253 289
Age and cMax only 289 289 270 289
Age, c and cMax 286 287 251 287

We conclude that cMax has more significance in MI prediction than c and that

given cMax, c does not give us any more information on the MI incidence. Con-

sidering the analysis on stroke incidence, results in Table 4.77 show that c is more

informative in stroke prediction than cMax.

Assessment of blood sugar level variables d and dMax

We calculate Ex,d,dMax
and θMI

x,d,dMax
and assume

θMI
x,d,dMax

∼ Poisson (Ex,d,dMax
· exp (g(x, d, dMax))) .

We have 29 data points to which we fit the linear predictor. Only dMax and x are

retained as significant while d is not. To assess this, Table 4.78 shows the residual

deviance and degrees of freedom when we alternately add dMax and d to the model.

This leads us to the conclusions that dMax has more significance in MI prediction

than d and, given dMax, d does not give us any more information on the MI incidence.

However from the stroke incidence analysis, whose results are also shown in Table

4.78, we note that dMax is slightly (practically insignificantly) more informative than

d in stroke prediction.

In view of the above analyses, we decided to use the variables bMax, dMax and

cMax in our modelling rather than b, d and c. This means our model assumes that

any treatment or reduction of the variables does not reduce the risk of MI or stroke.
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Table 4.78: Model fitting MI and stroke incidence considering covariates d (the
current blood sugar level category) and dMax (the highest ever blood sugar level
category).

MI stroke
Parameters in GLM Residual Degrees Residual Degrees
model deviance of freedom deviance of freedom
Age only 42.1 27 39.3 27
Age and d only 29.5 26 26.2 26
Age and dMax only 18.2 26 25.6 26
Age, d and dMax 17.9 25 23.0 25

We note that it is feasible to construct a model based on the ‘current’ values. Such a

model will mean that any reduction in MI or stroke risk due to treatment of the risk

factors will be reflected in the model. However in a multiple state model formulation,

this means incorporating and parameterising reverse transitions to signify recovery

or lowering of levels of risk factors. An associated problem is that any such intensity

of recovery is likely to be dependent on the duration of ‘illness’.

For easier notation in the work that follows, we redefine b, d and c to refer to

bMax, dMax and cMax respectively.

The models

Along the lines described previously, we calculate Ex,s,k,w,b,d,c,e, θMI
x,s,k,w,b,d,c,e and

θstroke
x,s,k,w,b,d,c,e. We assume that

θMI
x,s,k,w,b,d,c,e ∼ Poisson (Ex,s,k,w,b,d,c,eexp (g(x, s, k, w, b, d, c, e)))

and

θstroke
x,s,k,w,b,d,c,e ∼ Poisson (Ex,s,k,w,b,d,c,e · exp (hx,s,k,w,b,d,c,e))

where g(·) and h(·) are appropriate linear predictors. Based on 25,416 data points

we fitted the linear predictors, not allowing for interactions between factors (apart

from any possible age and sex interaction). In the MI model, time e was not retained

as significant but it was retained in the stroke model. To simplify our model we do

not include e in the MI and stroke models. This allows us to group all the data in

the different inter-examination periods. Therefore we calculate
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Ex,s,k,w,b,d,c =
∑

e

Ex,s,k,w,b,d,c,e,

θMI
x,s,k,w,b,d,c =

∑
e

θMI
x,s,k,w,b,d,c,e

and

θstroke
x,s,k,w,b,d,c =

∑
e

θstroke
x,s,k,w,b,d,c,e.

This creates 6,981 data points and Table 4.79 shows summaries of the characteristics

of this data.

Table 4.79: Characteristics of data for MI and stroke models.

Variable Categories Exposure Cases
(person years) MI Stroke

All 99032.2 581 304
Sex s

Males 41301.1 405 142
Females 57731.1 176 162

Smoking k
No 54873.3 289 180
Yes 44158.9 292 124

Body Mass Index w
Normal 34948.2 134 91
Overweight 45021.8 303 131
Obese 19062.2 144 82

Blood Pressure b
Optimal or Normal 20477.9 34 19
High Normal 18188.8 50 15
Hypertension Stage I 29374.7 163 50
Hypertension Stage II or III 30990.7 334 220

Diabetes d
No 88849.4 452 228
Yes 10182.8 129 76

Cholesterol c
Normal 7689.41 13 14
Moderate 25102.5 96 62
High 66240.2 472 228

MI

We fitted the data for males separately from that for females. In both cases we

found no significant difference in the coefficients for the blood pressure categories

b = 0 and b = 1 (that is between the ‘Optimal or Normal’ and the ‘High normal’

categories). We also did not find a significant difference between coefficients for the

cholesterol categories c = 0 and c = 1 (that is between the ‘Normal’ and ‘Moderate’
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categories). As a result we derived reduced data sets Ex,s,k,b∗,d,c∗ , θMI
x,s,k,b∗,d,c∗ where

c∗ is derived from c by grouping c = 0 and c = 1. b∗ is derived from b by grouping

b = 0 and b = 1. The reduced data set for males has 1,022 data points and that for

females has 927 data points. Fitting the linear predictors to this data we get the

coefficients shown in Table 4.80 for males and Table 4.81 for females.

Table 4.80: Coefficients of linear predictor for MI incidence GLM for males.

Variable Coefficient Value St. Error t-value
Intercept (α) −7.440 3.569× 10−1 −20.84
Age (β) 4.492× 10−2 5.529× 10−3 8.125

Blood pressure
Optimal, Normal or
High normal (δ0) −5.127× 10−1 9.036× 10−2 −5.675
Hypertension Stage I (δ1) 4.631× 10−2 7.569× 10−2 6.119× 10−1

Hypertension Stage II −(δ0 + δ1)
Smoking

No (ρ) −1.198× 10−1 5.172× 10−2 −2.317
Yes −ρ

Cholesterol
Normal or moderate (η) −2.663× 10−1 6.018× 10−2 −4.425
High −η

Diabetes
No (φ) −1.367× 10−1 6.189× 10−2 −2.209
Yes −φ

Therefore the incidence of MI, for males, is given by

λMI
x,s=0,k,b∗,d,c∗ = exp (αint + βx + ρk + δb∗ + φd + ηc∗) (4.39)

where the coefficients are in Table 4.80. MI incidence for females is modelled by

λMI
x,s=1,k,b∗,d,c∗ = exp

(
αint + βx + γx2 + ρk + δb∗ + φd + ηc∗

)
(4.40)

where the coefficients are shown in Table 4.81. The variance-covariance matrices for

the fitted parameters of the model for males and that for females are shown in Table

I.133 (Appendix I). In fitting this and subsequent GLM models our main measure

of adequacy of fit is the size of the residual deviance given the degrees of freedom

under an approximate χ2 distribution assumption. Futher diagnostic checks used to

assess the quality of the fit include plotting the residuals against the fitted values

and plotting the fitted values against the observed values. These generally gave

satisfactory results.
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Table 4.81: Coefficients of linear predictor for MI incidence GLM for females.

Variable Coefficient Value St. Error t-value
Intercept (α) −17.00 3.784 −4.493
Age (β0) 3.003× 10−1 1.174× 10−1 2.558
Age2 (β1) −1.916× 10−3 8.997× 10−4 −2.130

Blood pressure
Optimal, Normal or
High normal (δ0) −8.145× 10−1 1.832× 10−1 −4.447
Hypertension Stage I (δ1) 5.794× 10−2 1.382× 10−1 0.4193
Hypertension Stage II −(δ0 + δ1)

Smoking
No (ρ) −3.195× 10−1 8.265× 10−2 −3.865
Yes −ρ

Cholesterol
Normal or moderate (η) −2.513× 10−1 1.183× 10−1 −2.124
High −η

Diabetes
No (φ) −2.862× 10−1 9.081× 10−2 −3.151
Yes −φ

Stroke

Based on our assumption that

θstroke
x,s,k,w,b,d,c ∼ Poisson (Ex,s,k,w,b,d,c · exp (hx,s,k,w,b,d,c))

we use the 6981 pairs of values of Ex,s,k,w,b,d,c, θstroke
x,s,k,w,b,d,c to fit the linear predictor

h(·). For the fitting, we did not allow for interactions apart from that between age

and sex. BMI and cholesterol were not retained as significant factors. We also

found no significant difference between the coefficients for the three blood pressure

categories ‘Optimal or Normal’, ‘High normal’ and ‘Hypertension Stage I’. We derive

a reduced data set of Ex,s,k,b∗,d, θstroke
x,s,k,b∗,d where b∗ is derived from b by combining

into one the three categories b = 0, b = 1 and b = 2. This set has 720 data points

and Table 4.82 shows the results of fitting the linear predictor to this data.

The incidence of stroke is given by

λstroke
x,s,k,b∗,d = exp (αint + βx + γs + ρk + δb∗ + φd + ψxs) (4.41)

where the coefficients are given in Table 4.82.

The models developed in this section give the incidence of MI/stroke which de-

pend on the age (x), sex (s), smoking (k), highest ever cholesterol level category (c),
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Table 4.82: Coefficients of linear predictor for stroke incidence GLM.

Variable Coefficient Value St. Error t-value
Intercept (α) −10.47 4.717× 10−1 −22.20
Age (β) 7.716× 10−2 7.011× 10−3 11.01

Blood pressure
Optimal, Normal, High normal or
Hypertension Stage I (δ) −6.416× 10−1 6.700× 10−2 −9.575
Hypertension Stage II −δ

Smoking
No (ρ) −1.911× 10−1 6.293× 10−2 −3.036
Yes −ρ

Diabetes
No (φ) −1.986× 10−1 6.809× 10−2 −2.917
Yes −φ

Sex
Male (γ) −7.824× 10−1 4.371× 10−1 −1.790
Female −γ

Age*Sex
Age:Male (ψ) 1.365× 10−2 6.480× 10−3 2.106
Age:Female −ψ

highest ever blood pressure category (b) and highest ever blood sugar level category

(d) of an individual. In order to complete the model which incorporates movement

between blood pressure, cholesterol level and blood sugar level categories we need

to model the incidence rates between different levels of (b), (c) and (d).

4.6.3 Models for movement between blood pressure cate-

gories

We denote by λbp01, the incidence rate of ‘High normal’ blood pressure for the

first ever time in lives who have ‘Optimal or Normal’ blood pressure. To model

λbp01 we need to calculate from the data set, the exposed to risk Ebp01
x,s,k,w,d,c,e, and

the number of new cases θbp01
x,s,k,w,d,c,e. For this purpose we can only consider those

participants who attended two consecutively numbered examinations at which blood

pressure readings were taken. These participants should not have had MI or stroke

at the start of the investigation period (that is at the first of the two consecutively

numbered examinations). For the ith such participant with who has ‘Optimal or

Normal’ blood pressure at the start of the investigation period we define
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Ebp01
x,s,k,w,d,c,e,i =

1

b + 1

(
date

(1)
i − date

(0)
i

)
where b is the blood pressure category at date

(1)
i (i.e. at the end of the period of

investigation). In the expression above, b + 1 ensures that the correct proportion of

the time between date
(0)
i and date

(1)
i is apportioned to Ebp01

x,s,k,w,d,c,e,i. As an example

if a participant had b = 0 at date
(0)
i and b = 3 at date

(1)
i then their contribution to

the exposed to risk Ebp01
x,s,k,w,d,c,e,i is 1

4
of date

(1)
i − date

(0)
i . We also define

θbp01
x,s,k,w,d,c,e,i =


 0 : b = 0 at date

(1)
i

1 : otherwise.

We recall that the variable b represents the maximum blood pressure category

up to the examination in question and we note that it is possible to evaluate these

expressions since date
(1)
i is always known. Summing over the participants attending

examinations numbers 2 to 18 inclusive, for whom 30 ≤ x ≤ 82 we calculate

Ebp01
x,e =

∑
s,k,w,d,c,i

Ebp01
x,s,k,w,d,c,e,i

and

θbp01
x,e =

∑
s,k,w,d,c,i

θbp01
x,s,k,w,d,c,e,i.

An analysis of the incidence rate estimates
θbp01
x,e

Ebp01
x,e

shows that there is no significant

difference in the rates from examinations 5, 6, 7, 8, 9 and 10. We also do not find

a significant difference in the rates from examinations 11, 12, 13, 14, 15, 16 and

17. Adding the data from examination 18 to the latter data set gives a significant

difference due to time. The evidence for this difference is, however, not too strong. In

Figure 4.30 we show, based on data grouped using five year age bands, the incidence

rates from the two sets of examinations. We note however that there is no evidence,

from the plot, that the two sets of rates have different shapes.

As a result we feel that it is reasonable to combine the data for the purposes

of modelling the incidence of ‘High normal’ blood pressure. However to reduce the

variation in the data and to increase the influence of data from later examinations we

consider the data from examinations 7 to 18 inclusive. This corresponds roughly to

excluding data from examinations before the 1960s. Based on this data we calculate
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Figure 4.30: The observed crude incidence rates of ‘High normal’ blood pressure in
different time periods for females.

Ebp01
x,s,k,w,d,c =

∑
i,e

Ebp01
x,s,k,w,d,c,e,i

and

θbp01
x,s,k,w,d,c =

∑
i,e

θbp01
x,s,k,w,d,c,e,i.

We then assume that

θbp01
x,s,k,w,d,c ∼ Poisson

(
Ebp01

x,s,k,w,d,c · exp (gx,s,k,w,d,c)
)

where g(·) is an appropriate linear predictor. On fitting the linear predictor, only

age and BMI are retained as significant. However we did not find a significant

difference in the coefficients of the BMI categories w = 1 and w = 2. Therefore we

calculate

Ebp01
x,w∗ =

∑
Ebp01

x,s,k,w,d,c

and

θbp01
x,w∗ =

∑
θbp01

x,s,k,w,d,c
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where w∗ is obtained from w by combining into one category the two categories

w = 1 and w = 2. This results in 79 data points which we use to fit the linear

predictor assuming

θbp01
x,w∗ ∼ Poisson (Ex,w∗ · exp (gx,w∗)) .

This fit achieves a residual deviance of 87 on 76 degrees of freedom and the results

are shown in Table 4.83.

Table 4.83: Coefficients of linear predictor for ‘High normal’ blood pressure incidence
GLM.

Variable Coefficient Value St. Error t-value
Intercept (α) −3.969 3.158× 10−1 −12.57
Age (β) 2.199× 10−2 5.231× 10−3 4.204

Body mass index
Normal BMI (ν) −9.433× 10−2 4.443× 10−2 −2.123
Overweight or Obese −ν

Therefore the incidence of ‘High normal’ blood pressure is modelled by

λbp01
x,w = exp (αint + βx + νw)

where the coefficients are given in Table 4.83. The variance-covariance matrix as-

sociated with the parameters in Table 4.83 is given in Table I.132 (see Appendix

I).

The incidence of ‘Hypertension Stage I’ blood pressure for the first ever time in

lives with ‘High Normal’ blood pressure is denoted λbp12. To model λbp12 we calculate

for each participant with ‘High Normal’ blood pressure at date
(0)
i , the exposed to

risk

Ebp12
x,s,k,w,d,c,e,i =




1
b

(
date

(1)
i − date

(0)
i

)
: b = 1, 2 or 3 at date

(1)
i

0 : otherwise.

As an example, a participant who remains with ‘High Normal’ blood pressure (b = 1)

up to date
(1)
i will have exposure for the full

(
date

(1)
i − date

(0)
i

)
period. Also the
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number of cases

θbp12
x,s,k,w,d,c,e,i =


 1 : b = 2 or 3 at date

(1)
i

0 : otherwise.

We calculate Ebp12
x,s,k,w,d,c and θbp12

x,s,k,w,d,c based on examinations 7 to 18 inclusive and

assume that

θbp12
x,s,k,w,d,c ∼ Poisson

(
Ebp12

x,s,k,w,d,c · exp (gx,s,k,w,d,c,)
)

.

On fitting the linear predictor, g(·), only age and sex are retained as significant

variables. We show in Table 4.84 the coefficients of the fitting based on 79 data

points of Ebp12
x,s and θbp12

x,s . This fitting achieved a residual deviance of 66 on 76

degrees of freedom.

Table 4.84: Coefficients of linear predictor for ‘Hypertension Stage I’ blood pressure
incidence GLM.

Variable Coefficient Value St. Error t-value
Intercept (α) −3.865 2.718× 10−1 −14.22
Age (β) 2.139× 10−2 4.331× 10−3 4.938

Sex
Males (γ) −1.300× 10−1 3.850× 10−2 −3.376
Females −γ

The incidence of ‘Hypertension Stage I’ blood pressure is modelled by

λbp12
x,w = exp (αint + βx + γs)

where the coefficients are given in Table 4.84. The variance-covariance matrices

associated with the parameters in Table 4.84 are also given in Table I.132 (see

Appendix I).

We denote by λbp23 the incidence rate of ‘Hypertension Stage II or Stage III’ for

the first ever time in lives who have ‘Hypertension Stage I’. For the ith participant

with ‘Hypertension Stage I’ at date
(0)
i , we have

Ebp23
x,s,k,w,d,c,e,i =




1
b−1

(
date

(1)
i − date

(0)
i

)
: b = 2 or 3 at date

(1)
i

0 : otherwise
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and

θbp23
x,s,k,w,d,c,e,i =


 1 : b = 3 at date

(1)
i

0 : otherwise.

We calculate Ebp23
x,s,k,w,d,c and θbp23

x,s,k,w,d,c, based on examinations 7 to 18 inclusive, and

use the data to fit the linear predictor for the model

θbp23
x,s,k,w,d,c ∼ Poisson

(
Ebp23

x,s,k,w,d,c · exp (gx,s,k,w,d,c)
)

.

This fitting retains sex and age as significant variables. Based on 79 data points

Ebp23
x,s and θbp23

x,s , we fit a model which achieves a residual deviance of 80 on 76 degrees

of freedom. The results of this fitting are shown in Table 4.85.

Table 4.85: Coefficients of linear predictor for ‘Hypertension Stage II or Stage III’
blood pressure incidence GLM.

Variable Coefficient Value St. Error t-value
Intercept (α) −4.071 2.717× 10−1 −14.99
Age (β) 1.539× 10−2 4.198× 10−3 3.667

Sex
Males (γ) −8.670× 10−2 3.638× 10−2 −2.383
Females −γ

Therefore we model λbp23
x,s by

λbp23
x,s = exp (αint + βx + γs)

where the coefficients are given in Table 4.85. The variance-covariance matrix asso-

ciated with the parameters in Table 4.85 are also given in Table I.132 (see Appendix

I).

In the consideration of the intensities of movement between cholesterol levels and

between blood sugar levels that we fit in the following two sections, we use the

methods described in this section.

4.6.4 Models for movement between cholesterol levels

Regarding the movement between the cholesterol categories, we need to model the

incidence of ‘Moderate’ cholesterol for the first ever time in lives with ‘Normal’
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cholesterol (denoted λchol01 ) and the incidence of ‘High’ cholesterol for the first ever

time in lives with ‘Moderate’ cholesterol (denoted λchol12).

To model λchol01 we first define, Echol01
x,s,k,w,b,d,e,i and θchol01

x,s,k,w,b,d,e,i such that for lives

with ‘Moderate’ cholesterol at date
(0)
i

Echol01
x,s,k,w,b,d,e,i =

1

c + 1

(
date

(1)
i − date

(0)
i

)
where c is the cholesterol category at date

(1)
i and

θchol01
x,s,k,w,b,d,e,i =


 0 : c = 0 at date

(1)
i

1 : otherwise.

Figure 4.31 shows the incidence rates for males with a marked difference between

the rates based on examinations 2, 3, 4, 5 and 6. and those based on examinations

7, 8, 9, 13 and 14. Incidence rates based on data from the earlier examinations are

about nine times as great as the rates based on data from the later examinations.
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Figure 4.31: The observed crude incidence rates of ‘Moderate’ cholesterol in different
time periods for males.
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Therefore to model λchol01 for males we consider Echol01
x,s=0,k,w,b,d,e and θchol01

x,s=0,k,w,b,d,e

based on data from examinations 7, 8, 9, 13 and 14. On the assumption that

θchol01
x,s=0,k,w,b,d,e ∼ Poisson

(
Echol01

x,s=0,k,w,b,d,e · exp (gx,k,w,b,d,e)
)

we fit the linear predictor g(·) using the data Echol01
x,s=0,k,w,b,d,e and θchol01

x,s=0,k,w,b,d,e. The

model retains the time variable e as significant but age and all the other variables

are not retained. For parsimony we intend to derive a model without the variable e

and so we aggregate the data over the 5 examination periods. Using 38 data points

(subdivided by age only), we fit the GLM linear predictor g(·). The fit achieved a

residual deviance of 32 on 37 degrees of freedom and the results are shown in Table

4.86.

Table 4.86: Coefficients of linear predictor for ‘Moderate’ cholesterol incidence GLM
for males.

Variable Coefficient Value St. Error t-value
Intercept −3.312 0.2353 −14.07

Therefore the incidence of ‘Moderate’ cholesterol in males is modelled by

λchol01
s=0 = exp(−3.312) = 0.036.

Figure 4.32 shows the incidence rates rates of ‘Moderate’ cholesterol for females

with a difference between those based on the examinations 2, 3, 4, 5, 6 and those

based on examinations 7, 8, 9, 13, 14. The rates from the later examinations are

about half of those from the earlier ones.The two sets of rates have the same general

shape.

To model λchol01 for females we will consider the data from examinations 2, 3,

4, 5 and 6 to determine the shape of the function representing the incidence rates.

We then adjust the level of the function to the level of the rates based on data from

examinations 7, 8, 9, 13, 14. This is due to the fact that there is more data from

examinations 2, 3, 4, 5 and 6 than from examinations 7, 8, 9, 13, 14 which makes

the earlier examinations’ data more reliable in determining the shape of the curve.

However it is our aim to model the level of λchol01 based on more recent rather than
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Figure 4.32: The observed crude incidence rates of ‘Moderate’ cholesterol in different
time periods for females.

the earlier data. Based on examinations 2, 3, 4, 5 and 6 we derive Echol01
x and θchol01

x

and estimate the crude rates estimates θchol01
x

Echol01
x

. Using weighted least squares fitting

we represent these rates by the function

f(x, s = 1)chol01 = exp(−8.848 + 2.717× 10−1x− 2.446× 10−3x2). (4.42)

In Figure 4.33 we show the crude rates and the fitted function. Also shown on

the plot are approximate 95% confidence limits for the crude rates. The function is

extrapolated to age zero to show the general shape of the curve. We show on the

plot, the value at age 56 (encircled) which we feel is an outlier and is not used for

fitting the function.

Using Echol01
x,s=1,k,w,b,d,e and θchol01

x,s=1,k,w,b,d,e based on data from examinations 7, 8, 9,

13 and 14, we fitted the model

θchol01
x,s=1,k,w,b,d,e ∼ Poisson

(
Echol01

x,s=1,k,w,b,d,e · f chol01(x) · exp (gx,k,w,b,d,e)
)
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Figure 4.33: The observed and fitted chol01 offset incidence rates for females.

where g(·) is a linear predictor and f chol01(x) is an offset function given by Equation

(4.42). None of the variables of the linear predictor was retained as significant.

Therefore based on 35 data points (subdivided by age only) the GLM fit for the

linear predictor achieved a residual deviance of 34 on 34 degrees of freedom. The

results are shown in Table 4.87.

Table 4.87: Coefficients of linear predictor for ‘Moderate’ cholesterol incidence GLM
for females.

Variable Coefficient Value St. Error t-value
Intercept −0.6446 0.126 −5.117

Therefore the incidence of ‘Moderate’ cholesterol in females is modelled by

λchol01
x,s=1 = exp(−9.493 + 2.717× 10−1x− 2.446× 10−3x2).
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To model λchol12 we consider for the ith participant with ‘Moderate’ cholesterol

at date
(0)
i , the exposed to risk

Echol12
x,s,k,w,b,d,e,i =




1
c

(
date

(1)
i − date

(0)
i

)
: c = 1 or 2 at date

(1)
i

0 : otherwise

and

θchol12
x,s,k,w,b,d,e,i =


 1 : c = 2 at date

(1)
i

0 : otherwise.

Figure 4.34 shows that the incidence rates of ‘High’ cholesterol for males with

a significant difference between rates from examinations 2, 3, 4, 5 and 6 and those

from examinations 7, 8, 9, 13 and 14. The rates based on the earlier examinations

are on average about four times as great as the rates based on data from the later

examinations.
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Figure 4.34: The observed crude incidence rates of ‘High’ cholesterol in different
time periods for males.
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We use the data from examinations 2, 3, 4, 5 and 6 to determine the shape of

the incidence curve and then adjust it to the level of the rates derived from the

data for examinations 7, 8, 9, 13 and 14. Using single years of age, we calculate the

incidence rates estimates based on data from the earlier set of examinations,
θx,s=0

Ex,s=0
.

Using weighted least squares, we fit the function

f(x, s = 0)chol12 = exp(−5.533 + 1.432× 10−1x− 1.539× 10−3x2) (4.43)

to these crude rates. Figure 4.35 shows the crude rates and the fitted function. We

also show the approximate 95% confidence limits for the crude rates. The function

is extrapolated beyond the fitted ages to show the general shape of the curve.
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Figure 4.35: The observed and fitted chol12 offset incidence rates for males.

We then calculate, from the data based on examinations 7, 8, 9, 13 and 14,

Echol12
x,s=0,k,w,b,d,e and θchol12

x,s=0,k,w,b,d,e. We assume that

θchol12
x,s=0,k,w,b,d,e ∼ Poisson

(
Echol12

x,s=0,k,w,b,d,e · f(x, s = 0)chol12 · exp (gx,k,w,b,d,e)
)
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where f(x, s = 0)chol12 is the offset function in Equation (4.43) and g(·) is an ap-

propriate linear predictor. The fit retains the time variable e as significant but the

other variables are not retained. However, for parsimony we group the data over all

the examinations 7, 8, 9, 13 and 14. Based on 40 data points (subdivided by age

only) the fitting achieves a residual deviance of 51 on 39 degrees of freedom. The

results are shown in Table 4.88.

Table 4.88: Coefficients of linear predictor for ‘High’ cholesterol incidence GLM for
males.

Variable Coefficient Value St. Error t-value
Intercept −1.324 0.1259 −10.52

Therefore the incidence of ‘High’ cholesterol in males is modelled by

λchol12
x,s=0 = exp(−6.857 + 1.432× 10−1x− 1.539× 10−3x2).

We note that from the results shown in Table 4.88 the variation in the fitted rates

relative to the mean, is more than we would expect for a Poisson model. We feel

this is due to the effect of grouping over the examinations 7, 8, 9, 13 and 14. This

problem does not arise if we group the data over the examinations 8, 9, 13 and 14

only. However there is significantly less data from examinations 8, 9, 13 and 14.

Therefore we will use the model based on examinations 7, 8, 9, 13 and 14 and this

can be further refined if better data becomes available.

Figure 4.36 shows a comparison of the incidence rates between those based on

the data from examinations 2, 3, 4, 5, and 6 and those from the later examinations,

for females. The difference between the two sets of rates is noticeable but the plot

also shows that the rates have the same general shape. Incidence rates based on

data from the earlier examinations are on average about three times as great as the

rates based on data from the later examinations.

To model the incidence of ‘High’ cholesterol in females we use the data from

examinations 2, 3, 4, 5, and 6 to determine the shape of the incidence curve and

then adjust the level to that of the rates based on the later examinations. Using

single years of age, we derive, from the earlier examinations, the estimates of the
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Figure 4.36: The observed crude incidence rates of ‘High’ cholesterol in different
time periods for females.

incidence rates for ‘High’ cholesterol, θchol12
x

Echol12
x

. Using weighted least squares, we fit

the function

f(x, s = 1)chol12 = exp(−14.31 + 4.744× 10−1x− 4.470× 10−3x2) (4.44)

to the crude rates. Figure 4.37 shows the crude rates and the fitted function. We

also show the approximate 95% confidence limits for the crude rates and the function

is extrapolated beyond the fitted ages to show the general shape of the curve.

Using data from examinations 7, 8, 9, 13 and 14, we fitted the model

θchol12
x,s=1,k,w,b,d,e ∼ Poisson

(
Echol12

x,s=1,k,w,b,d,e · f(x, s = 1)chol12 · exp (gx,k,w,b,d,e)
)

where f(x, s = 1)chol12 is the offset function in Equation (4.44) and g(·) is an appro-

priate linear predictor. None of the variables in the linear predictor was retained as
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Figure 4.37: The observed and fitted chol12 offset incidence rates for females.

significant. In Table 4.89 we show the results of the fitting, based on 40 data points,

which achieves a residual deviance of 33 on 39 degrees of freedom.

Table 4.89: Coefficients of linear predictor for ‘High’ cholesterol incidence GLM for
females.

Variable Coefficient Value St. Error t-value
Intercept −0.9638 7.596× 10−2 −12.12

Therefore the incidence of ‘High’ cholesterol in females is modelled by

λchol12
x,s=1 = exp(−15.27 + 4.744× 10−1x− 4.470× 10−3x2).

4.6.5 Models for movement between blood sugar levels

We denote the incidence of diabetes by λdiab. From the data we consider the exposed

to risk Ediab and the number of new cases θdiab. For the ith participant with bsl < 126

at date(0), we define
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Ediab
x,s,k,w,b,c,e,i =

1

d + 1

(
date

(1)
i − date

(0)
i

)
where d is the blood sugar level category at date

(1)
i and

θdiab
x,s,k,w,b,c,e,i =


 0 : d = 0 at date

(1)
i

1 : otherwise.

We can derive the data Ediab
x and θdiab

x by aggregating details over examinations 2,

3, 8, 9, 12, 13, 14, 15, 16, 17 and 18. However we note that examinations 2 and

3 are removed in time from the rest of the data. We therefore only consider data

from the remaining examinations. An analysis of the incidence rates for various

examination periods show that for examinations 8, 9, 12, 13, 14 and 15, there

is no significant difference in the incidence rates θdiab
x

Ediab
x

due to time. However the

rates from examinations 16, 17 and 18 show some differences from rates from earlier

examinations and also significant variation within themselves. Figure 4.38 shows the

crude incidence rates grouped using five-year age bands for the two time periods.
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Figure 4.38: The observed crude incidence rates of diabetes in different time periods.
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There is less data for the older ages and no data at the younger ages in the later

examinations’ data. However we also need to capture the recent levels represented

by the later data. Consequently, to model the diabetes incidence we aggregate the

data over the examinations 8, 9, 12, 13, 14, 15, 16, 17 and 18 and use it to fit a

GLM.

We therefore calculate Ediab
x,s,k,w,b,c and θdiab

x,s,k,w,b,c and assume that

θdiab
x,s,k,w,b,c ∼ Poisson

(
Ediab

x,s,k,w,b,cexp (gx,s,k,w,b,c)
)
,

where g(·) is a linear predictor. On fitting the linear predictor only age and BMI

are retained as significant variables. However we found no significant difference in

the coefficients of the BMI categories w = 0 and w = 1 (‘Normal’ and ‘Overweight’

categories). We derive a reduced data set Ediab
x,w∗ and θdiab

x,w∗ where w∗ is obtained from

w by combining the two categories w = 0 and w = 1 into one. The results shown in

Table 4.90 represent the fitting based on 77 data points which achieved a residual

deviance of 88 on 74 degrees of freedom.

Table 4.90: Coefficients of linear predictor for diabetes incidence GLM.

Variable Coefficient Value St. Error t-value
Intercept (α) −6.703 3.294× 10−1 −20.35
Age (β) 4.448× 10−2 4.874× 10−3 9.126

Body Mass Index
Normal or Overweight (ν) −2.434× 10−1 4.332× 10−2 −5.619
Obese −ν

Therefore the model for diabetes incidence is

λdiab
x,w = exp (αint + βx + νw∗)

where the coefficients are given in Table 4.90. The variance-covariance matrix as-

sociated with the parameters in Table 4.90 is given in Table I.132 (see Appendix

I).

Table 4.91 shows a summary of the factors relevant to the various models we have

derived.

We will apply these models for MI, stroke and the risk factors in a CI insurance

model in Chapter 5. Now we assess the reasonableness of the models for the risk
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Table 4.91: Summary of models.

Function Offset Age Sex Smoking BMI Blood Pressure Cholesterol Diabetes
λMI • • • • • •
λstroke • • • • •

λbp01 • •
λbp12 • •
λbp23 • •

λchol01
males

λchol01
females Exponential •

λchol12
males Exponential •

λchol12
females Exponential •

λdiab • •

factors and the adequacy of the MI and stroke models by comparing them to other

published results.

4.7 Discussion of risk factor models

4.7.1 Blood pressure

There is a fundamental difficulty in comparing the blood pressure models we have

developed with other results. This is due to the fact we divide the blood pressure

continuum into 4 categories (a multiple threshold model, MTM) while the other

studies available to us divide the same continuum into two categories (single thresh-

old models, STM). We therefore need some way in which to compare the two results.

We will perform two comparisons.

The first comparison considers the rates of hypertension based on a STM applied

to the Framingham data alongside the hypertension rates based on the data from

The Morbidity Statistics from General Practice (M.S.G.P.) fourth national study

(McCormick et al. (1995)). For the M.S.G.P. data we define Hypertension as diag-

noses categorised under ICD codes 410, 411, and 419 in the study. Only first ever

cases are considered for this analysis. We assume that for this survey the diagnosis
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definition of ‘hypertension’, conforms to nationally agreed guidelines. Guidelines is-

sued in 1989 (Swales et al. (1989)) suggested treatment for lives with dbp at 100 mm

Hg or higher and updated guidelines issued in 1999 (Ramsay et al. (1999)) suggest

starting treatment for hypertension in lives with sbp greater than 160 mm Hg or

dbp greater than 100 mm Hg. The actual clinical decision to initiate treatment will

consider other factors like the presence or absence of organ damage, alongside the

recommended levels of sbp and dbp.

For each age x, we derive from (McCormick et al. (1995)), the number of new

hypertension cases θMSGP
x . We can also derive the amount of time spent in the study

by lives aged x, which we denote EMSGP
x . To calculate this we use the convention

that a life who develops hypertension during the study contributes half of the time

they spend in the study to the value of EMSGP
x . Lives who did not develop hyper-

tension contribute time equivalent to the full time they spent in the study. The

problem with the estimate EMSGP
x is that it includes time contributed by some lives

who have already had hypertension. Using the data in the study, lives who have had

hypertension can not be distinguished from the lives who have never had hyperten-

sion. Therefore we need to determine the appropriate amount by which to reduce

EMSGP
x using other sources of information. We use the data on the prevalence of

hypertension in the population in England to do that.

Table 4.92 shows the prevalence of hypertension in England according to the

Health Survey for England 1998 (Erens and Primatesta (1999)). These values are

based on hypertension defined as systolic blood pressure exceeding 160 mm Hg or

diastolic blood pressure exceeding 95 mm Hg.

Table 4.92: Prevalence of hypertension based on the 1998 Health Survey for England.
(Source: Erens and Primatesta (1999).)

Age group
16-24 25-34 35-44 45-54 55-64 65-74 75+

Males 0.013 0.018 0.076 0.174 0.324 0.426 0.449
Females 0.004 0.013 0.042 0.137 0.273 0.486 0.552
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Using these data and assuming a maximum possible age of 100 we fitted the

models

λbp prev males
x = 30.21

[
0.122510.77exp (−0.1225x) x9.77

Γ(10.77)

]
(4.45)

and

λbp prev females
x = 31.88

[
0.167014.75exp (−0.1670x) x13.75

Γ(14.75)

]
(4.46)

to represent the prevalence of hypertension in males and females, respectively. We

use formulae (4.45) and (4.46) to adjust the individual contributions to EMSGP
x ,

EMSGP
x,i , by using

(
1− λbp prev males

x

)
EMSGP

x,i or
(
1− λbp prev females

x

)
EMSGP

x,i as ap-

propriate. We use the adjusted data to estimate the incidence of hypertension

θMSGP
x

EMSGP
x

and approximate variance of the estimates θMSGP
x

(EMSGP
x )2.

From the Framingham data, using the methods of Section 4.6.3, we derive the

number of new ‘Hypertension Stages II and III’ for the first time ever in lives who are

in the ‘Optimal or Normal’, ‘High Normal’ or ‘Hypertension Stage I’ categories. We

denote this θFramingham
x and we derive the exposed to risk corresponding to it which

we denote EFramingham
x . These values are based on details from examinations 7 to

18 inclusive only. We can then estimate the incidence of hypertension (defined as

systolic blood pressure exceeding 160 mm Hg or diastolic blood pressure exceeding

100 mm Hg), θFramingham
x

EFramingham
x

.

Figure 4.39 shows the comparison of the hypertension incidence rates estimates

from the Framingham data and from the M.S.G.P. (McCormick et al. (1995)), for

males and females combined. The Framingham rates are higher than the M.S.G.P.

rates. This is consistent with an expectation of lowering incidence rates given the

difference in times between the two studies. To achieve a good fit of the hypertension

incidence in the M.S.G.P. study, a model based on the Framingham data may need

to be adjusted slightly to lower the rates. We feel that any such adjustment has to

be minor and may not have a significant effect in a model with other factors, like

the CI insurance model we develop in Chapter 5.

Our second assessment of the blood pressure models developed in section 4.6.3

considers the prevalence rates based on the 1998 Health Survey for England which

we have represented by formulae (4.45) and (4.46). Based on our MTM we calcu-

late the implied prevalence of hypertension in the population and compare it with
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Figure 4.39: Comparison of hypertension incidence rates from the Framingham data
and the M.S.G.P. data.

that modelled by formulae (4.45) and (4.46). We do this using a five state model

incorporating the four blood pressure categories and death. This is shown in Figure

4.40.

We assume that in Figure 4.40, a life is in State 0 at age 0. The movement

into the various blood pressure categories is given by the models in Section 4.6.3 as

labelled. We assume the mortality is given by ELT15M and ELT15F without any

adjustments. We calculate the probability of being in any of the five states at any age

for lives having started in State 0 at age 0. We note that since the models depend

on age, sex and BMI we have three models like Figure 4.40 representing BMI

categories for each sex. We calculate for each age, the prevalence of hypertension

as the probability of being in State 3 given that they are still alive. For each sex

we can calculate the age specific weighted average of the prevalence over the BMI

categories. To achieve this we assume that the population has fixed proportions in

the various BMI categories and those are as given by the 1998 Health Survey for
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Figure 4.40: Model for movement between blood pressure categories.

England (Erens and Primatesta (1999)), as represented in Table 4.93.

Table 4.93: Subdivision (proportions) of population in England by BMI category.
(Source: Erens and Primatesta (1999).)

Males Females
BMI ≤ 25 0.37 0.47
25 < BMI ≤ 30 0.46 0.32
BMI > 30 0.17 0.21

In Figure 4.41 we show the prevalence of hypertension from our model as derived

by the above calculation together with the prevalence represented by formulae (4.45)

and (4.46). Our models produce prevalence rates which are very close to those in

the population of England as given by the survey of 1998.

4.7.2 Cholesterol

As was the case for the assessment of blood pressure models, the three categories that

we use for cholesterol classification make comparisons with other studies difficult.

Comparisons with the models we have developed for cholesterol can only be reliably

done with studies in which actual cholesterol readings were taken. This is due

to the fact that, unlike blood pressure and blood sugar level, movement across

cholesterol categories is unlikely to give immediate or noticeable symptoms that

can be used as a proxy for blood cholesterol level changes. The only such study we

had access to is the Health Survey for England (Erens and Primatesta (1999)) which

reported the prevalence of hypercholesterolaemia. Table 4.94 shows these prevalence
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Figure 4.41: Comparison of hypertension prevalence rates from our bp models with
the Health Survey for England 1998 rates.

rates for the 1998 survey and also for the 1994 survey and we note that Erens and

Primatesta (1999) define hypercholesterolaemia as having total cholesterol exceeding

about 251mg/dL.

Table 4.94: Prevalence of hypercholesterolaemia based on the Health Survey for
England. (Source: Erens and Primatesta (1999).)

Age group
16–24 25–34 35–44 45–54 55–64 65–74 75+ All ages

Males (1998) 0.019 0.108 0.169 0.238 0.229 0.264 0.202 0.18
Females (1998) 0.029 0.067 0.088 0.22 0.374 0.480 0.444 0.224

Males (1994) 0.036 0.147 0.309 0.393 0.407 0.383 0.301 0.279
Females (1994) 0.048 0.098 0.134 0.322 0.574 0.674 0.576 0.319

We represent the 1998 prevalence rates with the functions:

λchol prev males
x = 20.5

[
0.06495.13exp (−0.0649x) x4.13

Γ(5.13)

]
(4.47)
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Figure 4.42: Model for movement between cholesterol categories.

and

λchol prev females
x = 0.0401 + 25.4

[
0.15913.0exp (−0.159x) x12.0

Γ(13.0)

]
. (4.48)

To estimate the prevalence of hypercholesterolaemia consistent with the models de-

veloped in Section 4.6.4 we construct a four state stochastic model where the three

cholesterol categories and death comprise the states. The transition intensities be-

tween the cholesterol category states are given by the cholesterol models we devel-

oped in Section 4.6.4 and the mortality is given by ELT15F and ELT15M without

adjustments. This model is shown in Figure 4.42.

If we assume that all lives are in State 0 at age 0 we can estimate the prevalence

at any future age as the probability of being in State 2 given that the life is not

dead.

In Figure 4.43 we show the prevalence of hypercholesterolaemia from our model

as derived by the above calculation together with the prevalence represented by

formulae (4.47) and (4.48).

The difference in the prevalence rates shown in Figure 4.43 is consistent with an

expected fall in the incidence of hypercholesterolaemia in the time period between

the Framingham study and 1998. We note that the values shown in Table 4.94

show that even in just the four years between 1994 and 1998 the prevalence of

hypercholesterolaemia fell from 28% to 18% for males and from 32% to 22% for

females. However we do not expect the prevalence of hypercholesterolaemia to be

higher in our model than in the Health Survey for England rates as it is for females

at the younger ages. We feel that this is due to our models underestimating the

199



Females

Age

H
yp

er
ch

ol
es

te
ro

la
em

ia
 p

re
va

le
nc

e

30 40 50 60 70 80

0.
0

0.
2

0.
4

0.
6

0.
8

Our model
H.S.E. 1998 rates

Males

Age
H

yp
er

ch
ol

es
te

ro
la

em
ia

 p
re

va
le

nc
e

30 40 50 60 70 80

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Our model
H.S.E. 1998 rates

Figure 4.43: Comparison of hypercholesterolaemia prevalence rates from our chol
models with the Health Survey for England 1998 rates.

transition intensities between cholesterol categories at these ages. However we would

need more data at the younger ages to refine the models. Consequently we will use

the models developed in Section 4.6.4 for the applications in Chapter 5.

4.7.3 Diabetes

We compare the rates of diabetes incidence based on the Framingham data with

the diabetes incidence rates from the M.S.G.P. (McCormick et al. (1995)). Only

first ever cases of diabetes are considered for this analysis. We assume that for

this survey the diagnosis definition of ‘diabetes’ conforms to professional medical

guidelines. The World Health Organisation (1985) defined diabetes as a fasting

plasma glucose level exceeding 140 mg/dL.

For each age x, we derive from McCormick et al. (1995) the number of new

diabetes cases θMSGP
x . We follow the methods used in Section 4.7.1 to estimate the

amount of time spent in the study by lives aged x, which we denote EMSGP
x . To

adjust EMSGP
x for lives who already have diabetes we need the prevalence of diabetes
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in the population.

Table 4.95 shows the prevalence of diabetes in England according to the Health

Survey for England 1998 (Erens and Primatesta (1999)). These values are based

on self-reported diagnosis of diabetes and we assume that the diagnosis conforms to

the guidelines of the World Health Organisation (1985).

Table 4.95: Prevalence of diabetes based on the 1998 Health Survey for England.
(Source: Erens and Primatesta (1999).)

Age group
16-24 25-34 35-44 45-54 55-64 65-74 75+

Males 0.001 0.007 0.016 0.029 0.058 0.070 0.087
Females 0.008 0.007 0.009 0.016 0.031 0.066 0.066

Using this data and assuming a maximum possible age of 100 we fitted the models

λdiab prev males
x = 7.62

[
0.07497.68exp (−0.0749x) x6.68

Γ(7.78)

]
(4.49)

and

λdiab prev females
x = 0.00859 + 2.48

[
0.39632.0exp (−0.396x) x31.0

Γ(32.0)

]
(4.50)

to represent the prevalence of diabetes in males and females, respectively. We use

formulae (4.49) and (4.50) to adjust the individual contributions to EMSGP
x , EMSGP

x,i .

We use the adjusted data to estimate the incidence of diabetes θMSGP
x

EMSGP
x .

From the Framingham data, using the methods of Section 4.6.5, we derive the

number of new diabetes cases. We denote this θFramingham
x and we derive the exposed

to risk corresponding to it which we denote EFramingham
x . These are derived from

examinations 8, 9, 12, 13, 14, 15, 16, 17 and 18. We can then estimate the incidence

of diabetes (defined as blood sugar level exceeding 140 mm/dL), θFramingham
x

EFramingham
x

.

Figure 4.44 shows the comparison of the diabetes incidence rates estimated from

the Framingham data and from the M.S.G.P. (McCormick et al. (1995)). The Fram-

ingham rates are higher than the M.S.G.P. rates. The difference may be due to an

expected under-diagnosis of diabetes in the M.S.G.P. (McCormick et al. (1995))

data. Between a third and a half of all diabetes cases are undiagnosed at any given

time (see Harris et al. (1998) and Lawrence et al. (2001)). This under-reporting
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is also expected to explain the shape of the incidence curve for the M.S.G.P. (Mc-

Cormick et al. (1995)) data, which falls at the older ages. Less likely, having higher

Framingham rates than M.S.G.P. rates may be consistent with a lowering of diabetes

incidence rates (given the fixed diagnosis threshold) due to the difference in time

between the two studies. Our conclusion is that the incidence rates represented by

the two data sets are not similar. However we note that:

(a) Our expectation of under-diagnosis in the M.S.G.P. (McCormick et al. (1995)

and Erens and Primatesta (1999)) means that if the correct incidence of diagno-

sis were reported, it may well be similar to that modelled from the Framingham

data.

(b) If we use the diabetes incidence modelled from the Framingham data in a model

to estimate MI or stroke incidence, as we will do in Chapter 5, the MI or stroke

incidence that we get is consistent with that of Dinani et al. (2000).

For the above reasons we will use the diabetes model of Section 4.6.5 for the CI

model in Chapter 5.

4.8 Assessment of CHD and stroke model ade-

quacy

In the analyses below we use the occupancy probabilities associated with states

in the ‘CHD and stroke’ model. This requires the parameterisation of the mor-

tality transitions into the ‘Dead’ state. The mortality, λD
x+t,s, is that of ELT15M

and ELT15F (λELT15
x,s ) adjusted for deaths due to MI and stroke. The mortality

adjustments are such that

λD
x+t,s = (1− φCHD

x,s − φstroke
x,s )× λELT15

x,s

and the adjustment factors φCHD
x,s and φstroke

x,s , which are sex specific, are discussed

in Appendix G.
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Figure 4.44: Comparison of diabetes incidence rates from the Framingham data and
the M.S.G.P. data.

4.8.1 Comparison of CHD and stroke incidence rates

To assess how reasonable our models are in terms of the level of MI and stroke

incidence rates we compare the incidence rates from our model with the age and sex

specific MI and stroke incidence rates:

(a) from the Framingham data set, and,

(b) those given by Dinani et al. (2000).

Each of these comparisons requires that from our model we have age specific inci-

dence rates of CHD and of stroke for male non-smokers, male smokers, female non-

smokers and for female non-smokers. However our model rates (given by formulae

(4.39), (4.40) and (4.41)) are in terms of populations subdivided by smoking, BMI,

cholesterol levels, blood pressure levels and diabetes status. Therefore we need to

calculate weighted averages of the incidence rates given by Equations (4.39), (4.40)

and (4.41) over categories of smoking, BMI, cholesterol levels, blood pressure levels

and diabetes status.
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The weights to use for BMI and smoking status in the calculation of the weighted

averages are derived from the distribution of the England and Wales population

by BMI and smoking status (see Tables 4.93 and 4.96). The BMI and smoking

distributions are assumed to be independent of each other such that the proportion of

the male population in the, say, non-smokers and BMI ≤ 25 category subpopulation

is 0.37× 0.72 = 0.2664.

Table 4.96: Subdivision (proportions) of population in England by smoking status.
(Source: Erens and Primatesta (1999).)

Males Females
Smokers 0.28 0.27
Non-smokers 0.72 0.73

The weights to use for the cholesterol levels, blood pressure levels and diabetes

status categories are derived from the occupancy probabilities of the associated

‘CHD and stroke’ model. We calculate the probability of being in any state of

the model, conditional on the state not being one of the three absorbing states.

It is assumed that all lives are in the chol0, bp0 state at age 30 and movement

through the model is determined by the models we developed earlier in this chapter.

These occupancy probabilities are calculated using the iterative method described

in Waters and Wilkie (1987).

In Figure 4.45 we show the age and sex specific weighted averages of the MI and

stroke incidence rates from our model together with the observed crude incidence

rates from the Framingham data. The plot shows a good fit to the Framingham rates

in all cases. The fit for CHD (Males) is slightly lower than the Framingham rates

mainly due to the fact that for our model we use cholesterol incidence rates from the

later examinations which are much lower than the average rates. The Framingham

crude rates shown in the graphs are based on data covering examinations 2 to 16

inclusive.

In Figure 4.46 we show the comparison of the rates from our model with those

from England as given by Dinani et al. (2000). The plots also show a good fit to

the Dinani et al. (2000) rates. This is particularly so when we consider ages below
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Figure 4.45: Comparison of incidence rates from our model and those from the
Framingham data.

60. The closeness of the two sets of rates is a very reassuring feature given that:

(a) many assumptions are made in our model,

(b) we construct and parameterise a large number of sub-models that make up the

input to our model and

(c) some of the data sets and results used for the parameterisation of our models

come from a time period very removed from the late 1990’s to which the Dinani

et al. (2000) rates relate.

4.8.2 Comparison of CHD and stroke probability rates

The two comparisons done above compare the model output with other rates that

would be considered as instantaneous incidence rates. We also need to assess the

model for adequacy in estimating probabilities of events over a longer period of time.

We need to consider the probabilities of being in the CHD or stroke state ( state

23 or 24) given a starting state, a starting age and the time period. To assess these
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Figure 4.46: Comparison of incidence rates from our model and those from Dinani
et al. (2000).

occupancy probabilities we compare them with crude probabilities derived from the

Framingham data and also with the probabilities derived Anderson et al. (1991b).

Estimating probabilities directly from the Framingham data

We discuss, firstly, how we derive the estimates of the probability of MI from the

Framingham data. To estimate the 5-year probability of MI, we consider the inter-

examination periods starting at examinations 2, 5, 8, 11 and 14 as separate periods

of investigation. At the start each of these periods we consider, separately by sex

and smoking status, the number of lives who fall into each of the 24 transient states

of the ‘CHD and stroke’ model in Figure 4.29. Grouping the data into 10-year age

groups and summing corresponding data from the 5 investigation periods, we define

for each state the following:

Ex as the number of people alive at the start of the investigation considering

only those who attended one of the 5 baseline examinations, never having had MI
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or stroke prior to that examination, and,

θx as the number of lives who develop MI (before stroke) within 5 years from the

date on which they attend the baseline examination.

From this data, we calculate the probability of MI within 5 years as θx

Ex
. We also

calculate the approximate 95% lower confidence limit (LCL) of this estimate as the

greater of 0 and θx

Ex
− 2

√
θx

Ex
. The approximate 95% upper confidence limit (UCL) is

given by θx

Ex
+ 2

√
θx

Ex
. Due to the limited amount of data available, the values of θx

or both θx and Ex are 0 for many of the states in the ‘CHD and stroke’ model for

various sex and smoking status subpopulations. In Table 4.98 we show the values

of the 5-year MI probabilities, LCL, and UCL for the cases for which there are at

least five MI cases.

By considering examinations 2, 7 and 12 as baseline examinations, we can split

the data period into three investigation periods. We can then estimate 10 year

probabilities of MI in a manner similar to that described for estimating the 5 year

probabilities. To estimate probabilities of MI within 15 years we consider exami-

nations 2 and 10 as baseline examinations. In Tables 4.98 to 4.100 we show the

values of these crude probabilities together with the probabilities calculated from

our model.

Calculation of probabilities from our model

Our model probabilities are calculated based on the ‘CHD and stroke’ model shown

in Figure 4.29. We note that our modelled probabilities shown in Tables 4.98 to

4.100 are based on subpopulations with ‘Normal’ BMI. The comparisons will not

materially differ if we use other BMI categories.

From the values in Tables 4.98 to 4.100, only a very small proportion of the

modelled probabilities fall outside the approximate 95% confidence limits of the

probabilities estimated directly from the data. Comparing the modelled probabilities

with the point estimates from the data, there does not seem to be evidence that the

modelled probabilities are consistently below or above the point estimates. We note

that the values shown are only those cases where there are at least five MI cases. We

would expect that for the remaining cases (most of which would have no cases) the
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model would inevitably produce probabilities which are above the point estimates

from the data (which are mostly zero). We feel that this is a result of scarcity of

data and does not present a problem in terms of the goodness of fit for our model.

Indeed an aim of using GLM in the modelling is to enable cases where there is little

data to benefit from the cases where there is more data.

Comparison with probabilities from Anderson et al. (1991b)

We also show in Tables 4.98 to 4.100, the probabilities based on the MI risk profile

from Anderson et al. (1991b). The risk profiles are shown in Appendix H. The

Anderson et al. (1991b) risk profile for MI is appropriate because the definition of

MI is the same as the one we use for our model. However the Anderson et al. (1991b)

risk profiles consider the current status of the risk factors at baseline while our

model (and also the way we derive the data for the directly estimated probabilities)

considers the worst ever status of the risk factors. Since the current status can only

be as bad as the worst ever state, the probabilities derived from Anderson et al.

(1991b) in Tables 4.98 to 4.100 are expected to be lower than the probabilities from

our model. We also note that the presence of diabetes as used in Anderson et al.

(1991b) is based on a blood sugar level threshold of 140 mg/dL. This leads us to

expect that the probabilities given will also overestimate the actual risk since the

states in our model are defined using a lower threshold of 126 mg/dL. An important

feature of the calculation of the probabilities based on the Anderson et al. (1991b)

risk profile is that we need values of systolic blood pressure, total cholesterol and

HDL-cholesterol to be used as representative of the risk factors for every state. We

assume that these values are as given in Table 4.97.

As we expect, for the reasons discussed above, the probabilities based on the

Anderson et al. (1991b) risk profile in Tables 4.98 to 4.100 are mostly higher than

our modelled probabilities as well as the crude probabilities. There are, however, a

handful of cases where this is not the case.

In Tables 4.101 to 4.103, we show the crude probabilities of stroke within 5, 10 and

15 years, respectively, based on the Framingham data set. The corresponding LCL

and UCL are also shown as are probabilities modelled using the ‘CHD/stroke’ model
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Table 4.97: Blood pressure and cholesterol values for use with Anderson et al.
(1991b)’s risk profiles, for the states in the ‘CHD and stroke CI’ model of Figure
4.29.

State SBP TC HDL-C State SBP TC HDL-C
0 120 190 42.0 12 150 220 38.0
1 120 220 38.0 13 150 190 42.0
2 120 190 42.0 14 160 190 42.0
3 135 190 42.0 15 135 250 35.0
4 120 250 35.0 16 150 250 35.0
5 120 220 38.0 17 150 220 38.0
6 135 220 38.0 18 160 220 38.0
7 135 190 42.0 19 160 190 42.0
8 150 190 42.0 20 150 250 35.0
9 120 250 35.0 21 160 250 35.0
10 135 250 35.0 22 160 220 38.0
11 135 220 38.0 23 160 250 35.0

SBP: systolic blood pressure (mm Hg) TC: total cholesterol (mg/dL)
HDL-C: HDL-cholesterol (mg/dL)

in Figure 4.29 as described above. In almost all cases, the modelled probability falls

within the approximate 95% confidence interval of the estimated probability. We

also show in these tables the probabilities of stroke according to the stroke risk profile

given by Anderson et al. (1991b) (see Appendix H). The stroke definition used for

the Anderson et al. (1991b) risk profile is comparable to the one we have used for the

estimated probability and also for the modelled probability. However the Anderson

et al. (1991b) risk profile definition includes strokes that occur in lives with prior

CHD events while for the estimated rates and the modelled probabilities we only

consider stroke that occurs before any CHD event. Hart et al. (2000) estimate that

males with preexisting CHD have a relative risk of stroke of 1.63 (95% confidence

interval 1.34 to 1.97) compared to those without CHD. In females, the relative risk

of stroke is 1.52 (95% confidence interval 1.28 to 1.81) for those with preexisting

CHD. This leads us to expect the probabilities from the Anderson et al. (1991b)

risk profile to be higher than those from the crude rates or our model.
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Table 4.98: Analysis of modelled 5 year probabilities of MI.

Starting Age No: of lives No: of LCL Estimated UCL Modelled Anderson et al. (1991b)
State at start cases probability probability probability

Males non-smokers
16 55 209 5 0.003 0.024 0.045 0.042 0.056
21 55 190 18 0.050 0.095 0.139 0.060 0.064

12 65 75 5 0.007 0.067 0.126 0.039 0.042
16 65 182 10 0.020 0.055 0.090 0.064 0.085
21 65 229 29 0.080 0.127 0.174 0.089 0.097
23 65 61 6 0.018 0.098 0.179 0.113 0.142

Females non-smokers
21 55 397 9 0.008 0.023 0.038 0.017 0.032

16 65 497 6 0.002 0.012 0.022 0.018 0.035
21 65 696 18 0.014 0.026 0.038 0.031 0.042
23 65 96 7 0.018 0.073 0.128 0.052 0.101

Males smokers
16 45 261 15 0.028 0.057 0.087 0.034 0.079
21 45 135 8 0.017 0.059 0.101 0.049 0.090

10 55 152 7 0.011 0.046 0.081 0.033 0.103
12 55 127 8 0.018 0.063 0.108 0.033 0.068
16 55 274 19 0.038 0.069 0.101 0.053 0.136
21 55 250 14 0.026 0.056 0.086 0.075 0.123

10 65 96 7 0.018 0.073 0.128 0.051 0.143
12 65 83 5 0.006 0.060 0.114 0.049 0.101
16 65 188 11 0.023 0.059 0.094 0.080 0.166
18 65 77 6 0.014 0.078 0.142 0.069 0.116
21 65 220 16 0.036 0.073 0.109 0.111 0.181

Females smokers
16 55 231 8 0.010 0.035 0.059 0.018 0.073

16 65 180 5 0.003 0.028 0.053 0.033 0.089
21 65 185 9 0.016 0.049 0.081 0.058 0.101
In bold: probabilities outside the 95% confidence interval for the estimated probability
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Table 4.99: Analysis of modelled 10 year probabilities of MI.

Starting Age No: of lives No: of LCL Estimated UCL Modelled Anderson et al. (1991b)
State at start cases probability probability probability

Males non-smokers
12 55 45 6 0.024 0.133 0.242 0.061 0.062
21 55 101 11 0.043 0.109 0.175 0.127 0.133
23 55 29 8 0.081 0.276 0.471 0.159 0.189

10 65 42 5 0.013 0.119 0.226 0.092 0.140
16 65 81 12 0.063 0.148 0.234 0.135 0.165
21 65 128 25 0.117 0.195 0.273 0.176 0.182
23 65 42 13 0.138 0.309 0.481 0.214 0.243

Females non-smokers
21 55 281 8 0.008 0.028 0.049 0.041 0.076

16 65 271 12 0.019 0.044 0.070 0.041 0.083
21 65 379 26 0.042 0.069 0.096 0.065 0.095
23 65 67 10 0.055 0.149 0.244 0.103 0.188

Males smokers
1 45 122 5 0.004 0.041 0.078 0.028 0.053
10 45 112 13 0.052 0.116 0.180 0.050 0.131
12 45 97 5 0.005 0.052 0.098 0.051 0.089
21 45 81 12 0.063 0.148 0.234 0.107 0.172

4 55 110 9 0.027 0.082 0.136 0.066 0.160
10 55 109 9 0.028 0.083 0.138 0.078 0.190
12 55 89 11 0.049 0.124 0.198 0.076 0.139
16 55 180 19 0.057 0.106 0.154 0.117 0.218
20 55 27 5 0.02 0.185 0.351 0.148 0.281
21 55 194 30 0.098 0.155 0.211 0.157 0.235

10 65 47 6 0.023 0.128 0.232 0.114 0.244
12 65 63 7 0.027 0.111 0.195 0.106 0.188
16 65 100 12 0.051 0.120 0.189 0.166 0.273
18 65 47 11 0.093 0.234 0.375 0.138 0.205
21 65 135 19 0.076 0.141 0.205 0.213 0.290
23 65 35 7 0.049 0.200 0.351 0.256 0.353

Females smokers
16 55 157 12 0.032 0.076 0.121 0.047 0.146
21 55 138 7 0.012 0.051 0.089 0.076 0.161

21 65 141 14 0.046 0.099 0.152 0.117 0.187
In bold: probabilities outside the 95% confidence interval for the estimated probability
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Table 4.100: Analysis of modelled 15 year probabilities of MI.

Starting Age No: of lives No: of LCL Estimated UCL Modelled Anderson et al. (1991b)
State at start cases probability probability probability

Males non-smokers
12 55 29 5 0.018 0.172 0.327 0.104 0.105
16 55 71 10 0.052 0.141 0.230 0.155 0.181
21 55 58 10 0.063 0.172 0.281 0.198 0.199
16 65 62 13 0.093 0.210 0.326 0.204 0.239
21 65 69 26 0.229 0.377 0.525 0.250 0.258
23 65 12 9 0.25 0.750 1 0.294 0.326

Females non-smokers
16 55 220 6 0.005 0.027 0.050 0.048 0.111
21 55 178 6 0.006 0.034 0.061 0.070 0.126
23 55 18 6 0.061 0.333 0.605 0.111 0.235
16 65 163 10 0.023 0.061 0.100 0.067 0.135
21 65 207 19 0.05 0.092 0.134 0.096 0.151
23 65 28 6 0.039 0.214 0.389 0.145 0.265

Males smokers
16 35 38 6 0.029 0.158 0.287 0.086 0.145
1 45 95 8 0.025 0.084 0.144 0.051 0.092
4 45 65 5 0.008 0.077 0.146 0.074 0.165
10 45 61 7 0.028 0.115 0.202 0.090 0.197
12 45 73 5 0.007 0.068 0.130 0.090 0.142
16 45 99 15 0.073 0.152 0.230 0.131 0.228
21 45 35 6 0.031 0.171 0.311 0.172 0.246
4 55 90 10 0.041 0.111 0.181 0.112 0.233
6 55 51 5 0.01 0.098 0.186 0.091 0.178
10 55 80 15 0.091 0.188 0.284 0.135 0.268
12 55 71 11 0.062 0.155 0.248 0.129 0.207
16 55 146 34 0.153 0.233 0.313 0.190 0.299
18 55 46 7 0.037 0.152 0.267 0.164 0.225
21 55 141 27 0.118 0.191 0.265 0.240 0.318
16 65 55 12 0.092 0.218 0.344 0.246 0.357
18 65 24 6 0.046 0.250 0.454 0.197 0.285
21 65 78 20 0.142 0.256 0.371 0.294 0.375

Females smokers
16 55 118 12 0.043 0.102 0.160 0.087 0.215
21 55 88 13 0.066 0.148 0.230 0.127 0.234
21 65 58 8 0.04 0.138 0.235 0.169 0.264
In bold: probabilities outside the 95% confidence interval for the estimated probability

Table 4.101: Analysis of modelled 5 year probabilities of stroke.

Starting Age No: of lives No: of LCL Estimated UCL Modelled Anderson et al. (1991b)
State at start cases probability probability probability

Males: non-smokers
21 65 229 7 0.007 0.031 0.054 0.035 0.023

Females: non-smokers
16 55 483 6 0.002 0.012 0.023 0.006 0.007

21 65 696 20 0.016 0.029 0.042 0.028 0.017
23 65 96 7 0.018 0.073 0.128 0.040 0.040

Males: smokers
21 55 250 7 0.007 0.028 0.049 0.022 0.023

21 65 220 13 0.026 0.059 0.092 0.051 0.042
Females: smokers

21 65 185 5 0.003 0.027 0.051 0.040 0.031
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Table 4.102: Analysis of modelled 10 year probabilities of stroke.

Starting Age No: of lives No: of LCL Estimated UCL Modelled Anderson et al. (1991b)
State at start cases probability probability probability

Males: non-smokers
16 65 81 5 0.007 0.062 0.117 0.036 0.052
21 65 128 5 0.004 0.039 0.074 0.079 0.066

Females: non-smokers
12 55 89 5 0.006 0.056 0.106 0.016 0.021
21 55 281 5 0.002 0.018 0.034 0.035 0.057

18 65 86 8 0.027 0.093 0.159 0.064 0.048
23 65 67 6 0.016 0.090 0.163 0.086 0.113

Males: smokers
21 55 194 13 0.03 0.067 0.104 0.052 0.065

16 65 100 8 0.023 0.080 0.137 0.050 0.093
21 65 135 16 0.059 0.119 0.178 0.110 0.117

Females: smokers
21 55 138 7 0.012 0.051 0.089 0.050 0.048

16 65 97 6 0.011 0.062 0.112 0.042 0.069
21 65 141 8 0.017 0.057 0.097 0.088 0.087
23 65 23 5 0.023 0.217 0.412 0.117 0.197
In bold: probabilities outside the 95% confidence interval for the estimated probability

Table 4.103: Analysis of modelled 15 year probabilities of stroke.

Starting Age No: of lives No: of LCL Estimated UCL Modelled Anderson et al. (1991b)
State at start cases probability probability probability

Males: non-smokers
21 65 69 8 0.034 0.116 0.198 0.126 0.119

Females: non-smokers
16 55 220 8 0.011 0.036 0.062 0.032 0.039
21 55 178 9 0.017 0.051 0.084 0.061 0.049

16 65 163 7 0.01 0.043 0.075 0.057 0.070
18 65 47 6 0.023 0.128 0.232 0.106 0.087
21 65 207 18 0.046 0.087 0.128 0.104 0.089
23 65 28 9 0.107 0.321 0.536 0.136 0.201

Males: smokers
16 55 146 6 0.008 0.041 0.075 0.046 0.094
18 55 46 8 0.051 0.174 0.297 0.095 0.116
21 55 141 13 0.041 0.092 0.143 0.090 0.118

12 65 42 5 0.013 0.119 0.226 0.100 0.163
21 65 78 11 0.056 0.141 0.226 0.169 0.207

Females: smokers
18 55 29 5 0.018 0.172 0.327 0.087 0.087
21 55 88 8 0.027 0.091 0.155 0.085 0.088

16 65 52 5 0.01 0.096 0.182 0.079 0.125
In bold: probabilities outside the 95% confidence interval for the estimated probability
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Chapter 5

Application of the CHD and

stroke model to Critical Illness

insurance

5.1 The critical illness insurance model

The model in Figure 5.47 (which we call the ‘CHD and stroke CI’ model) represents

stand alone CI insurance with explicit account of CHD and stroke development

and also the development of associated risk factors. We define subpopulations such

that in each subpopulation, lives have the same sex, the same smoking status and

the same BMI status. This creates 12 subpopulations since sex has 2 categories,

smoking has 2 categories and BMI has 3 categories. We assume that each of the

12 resulting subpopulations is represented by a ‘CHD and stroke CI’ model. The

differences between the ‘CHD and stroke CI’ models for various subpopulations are

in different values of the transition intensities. In the following sections we consider

the parameterisations of the various transition intensities.
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Figure 5.47: A CHD and stroke model for Critical Illness Insurance.
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5.2 Parameters for the model

5.2.1 Mortality

We assume that the mortality differs only by age and sex. The mortality is taken

as that of ELT15 adjusted for deaths due to cancer, heart attack, stroke, kidney

failure, multiple sclerosis, Alzheimer’s disease, Parkinson’s disease and benign brain

tumour. For females this means the mortality is

λD
x,s=1 = (1− φf

x)λ
ELT15F
x

where φf
x is given by Equation (3.37). Similar to Equation (3.36) we define, for

males,

φ̇m
x =

θD
x

θELT15M
x

where θD
x and θELT15M

x are derived from O.P.C.S. (1991b), O.P.C.S. (1993b),

O.P.C.S. (1993c) and O.N.S. (1997a). The values are given in Table 5.104. The

factor φ̇m
x is smoothed, using unweighted least squares, by the function

φm
x =




1.8541× 10−2 + 6.5572× 10−2 × x− 6.6711× 10−3 × x2

+2.2397× 10−4 × x3 − 2.2836× 10−6 × x4 : x ≤ 30

−2.0969 + 1.0683× 10−1 × x− 1.2252× 10−3 × x2+

4.0118× 10−6 × x3 : x ≥ 44

with linear blending for 30 < x < 44. Figure 5.48 shows the crude and smoothed

adjustment factors. The adjusted mortality is λD
x,s=0 = (1− φm

x )λELT15M
x .

5.2.2 Onset of risk factors

The transition intensities λbp01, λbp12, λbp23, λchol01, λchol12 and λdiab represent the

incidence of the risk factors hypertension, hypercholesterolaemia and diabetes. They

are given by the models described in Sections 4.6.3, 4.6.4 and 4.6.5.
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Table 5.104: Mortality data for adjusting ELT15M for CI causes of death. (Source:
O.P.C.S. (1991b), O.P.C.S. (1993b), O.P.C.S. (1993c) and O.N.S. (1997a).)

Age range Total deaths CI deaths Age range Total deaths CI deaths
x θELT15M

x θD
x x θELT15M

x θD
x

1–4 2.5 1,634 184 50–54 52 23,915 17,353
5–9 7 976 221 55–59 57 38,889 29,737

10–14 12 1,014 182 60–64 62 66,043 51,136
15–19 17 3,472 300 65–69 67 105,365 80,043
20–24 22 5,270 467 70–74 72 125,823 92,443
25–29 27 5,542 804 75–79 77 148,932 103,055
30–34 32 5,610 1,233 80–84 82 135,084 86,445
35–39 37 7,104 2,510 85–89 87 80,844 46,099
40–44 42 11,068 5,646 90–94 92 28,624 13,890
45–49 47 15,860 10,228

5.2.3 CHD

The incidence rate of CHD appropriate to a subpopulation and state as given by

formulae (4.39) and (4.40) gives the corresponding transition intensity into the CHD

state in the ‘CHD/stroke CI’ model, λMI
x+t,s,k,b,d,c.

5.2.4 Stroke

The incidence rate of stroke appropriate to a subpopulation and state as given by

formula (4.41) gives, the corresponding transition intensity into the ‘Stroke’ state in

Model 1, λStroke
x+t,s,k,b,d.

5.2.5 Other CI events

We consider under the incidence of other CI causes the following:

(a) The incidence of all cancers.

(b) The incidence of kidney failure.

(c) The incidence of ‘minor’ claim causes like bypass surgery and total and perma-

nent disability (see Table 3.44).
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Figure 5.48: Crude and smoothed CI mortality adjustment factors for males.

Cancer incidence

In the model, males and females are in different subpopulations and so are smok-

ers and non-smokers. Siemiatycki et al. (1995) discuss the association between smok-

ing and types of cancer. In this work we only consider the effect of smoking on lung

cancer. We produce, from the O.N.S. (1999) data, incidence rates for lung can-

cer by age, separately for males and females. We also produce incidence rates for

other cancers which are not lung cancer and not skin cancer (apart from malignant

melanoma) for males and for females. For the lung cancer rates, we then adjust the

age and sex specific rates for smoking status using published relative risk values.

The data used in the following modelling are given in Appendices E (for females)

and F (for males).
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Females

For the three year investigation period 1990 to 1992, there were 35,372 cases of

lung cancer whose behaviour is given as malignant and at primary site. These apply

to ages between 30 and 88. There were 46,516,070 life-years of exposure for the

period, calculated using the census method and the population estimates for the

years 1989 to 1993 (see Section 2.5.2 for details of the calculation method). Figure

5.49 shows the crude incidence rates and the fitted function. The fitted function is

given by

f(x)lung females =




exp(α0 + α1 × x + α2 × x2) : x ≤ 60

β0 + β1 × x + β × x2 : x > 65

with linear blending between ages 60 and 65 and the coefficients are given in Table

5.105.

The two components of the function were fitted separately using weighted least

squares and in Table I.134 (Appendix I) we give the variance-covariance matrices

associated with the two sets of estimated parameters.

Table 5.105: Coefficients for fitting lung cancer incidence for females.

Coefficient Value St. Error t-value
For x ≤ 60 :
α0 −19.13 7.282× 10−1 −26.27
α1 2.877× 10−1 2.760× 10−2 10.43
α2 −1.431× 10−3 2.582× 10−4 −5.542

For x ≥ 65 :
β0 −2.484× 10−2 8.708× 10−4 −28.53
β1 7.101× 10−4 2.431× 10−5 29.22
β2 −4.686× 10−6 1.678× 10−7 −27.93

The incidence rates shown in Figure 5.49 show a decline in the incidence at the

older ages. This is mainly due to a cohort effect since the women at the older ages

are unlikely to have been affected by the large rises in smoking in the mid 1900’s).

It will be seen later that the fall in lung cancer incidence rates is less pronounced in

males. We note that this feature of falling incidence rates at the older ages is not
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Figure 5.49: The incidence of lung cancer in females.

found in the incidence rates of all cancers combined. Some features of lung cancer

are that it is usually diagnosed late and is rapidly fatal.

All the other cancers considered for females had 258,756 cases and the crude rates

were smoothed using the function

f(x)other females =




exp(α0 + α1 × x + α2 × x2) : x ≤ 52

exp(β0 + β1 × x + β2 × x2) : x > 52

.

The coefficients are given in Table 5.106. The variance-covariance matrices as-

sociated with the two sets of estimated parameters are also given in Table I.134

(Appendix I).

We note that the crude rates are elevated between ages 50 and 64 due to the

effect of breast cancer screening between those ages. The effect of breast cancer

screening was discussed in Section 2.5.2. We also recall the discussion in Section

3.1.3 on the reasons for not adjusting the denominator for the prevalence of cancers
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Table 5.106: Coefficients for fitting ‘Other cancers’ incidence for females.

Coefficient Value St. Error t-value
For x ≤ 52 :
α0 −11.78 3.513× 10−1 −33.54
α1 1.773× 10−1 1.679× 10−2 10.56
α2 −1.052× 10−3 1.977× 10−4 −5.322

For x > 52 :
β0 −8.510 5.087× 10−1 −16.73
β1 7.262× 10−2 1.344× 10−2 5.402
β2 −2.560× 10−4 8.830× 10−5 −2.899

in the calculation of the incidence rates. The crude rates and the smoothed function

are shown in Figure 5.50.
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Figure 5.50: The incidence of other cancers in females.

Males

There were, for ages 30 to 88, 76,208 lung cancer cases and a corresponding

42,167,325 life-years of exposure for the period of investigation. The crude incidence

rates of lung cancer were smoothed using the function f(x) where
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f(x)lung males =




exp(α0 + α1 × x + α2 × x2) : x ≤ 60

β0 ×
{

β
β2
1

Γ(β2)
e−β1xxβ2−1

}
: x > 70

with linear blending between ages 60 and 70. The coefficients are given in Table

5.107. The two components of the function are fitted separately using weighted least

squares and the variance-covariance matrices are given in Table I.134 (Appendix I).

Table 5.107: Coefficients for fitting lung cancer incidence for males.

Coefficient Value St. Error t-value
For x ≤ 60 :
α0 −21.56 3.598× 10−1 −59.92
α1 3.945× 10−1 1.249× 10−2 31.58
α2 −2.299× 10−3 1.073× 10−4 −21.42

For x > 70 :
β0 3.017× 10−1 1.050× 10−2 28.73
β1 3.339× 10−1 1.604× 10−2 20.82
β2 28.65 1.161 24.69

The crude rates and the fitted function are shown in Figure 5.51.

We then considered all other cancers in males and there were 216,590 cases for

the period for ages 30 to 88. The crude rates were smoothed using the function

f(x)other males =




exp(α0 + α1 × x) : x ≤ 55

exp(β0 + β1 × x + β2 × x2) : x > 60

with linear blending between ages 55 and 60. The coefficients are given in Table

5.108. The two components of the function are fitted separately using weighted least

squares and the variance-covariance matrices are also given in Table I.134 (Appendix

I).

The crude rates and smooth function are shown in Figure 5.52

Adjustment for smoking in lung cancer incidence

Based on a study of 857 cases and 2,238 controls in Canada, Siemiatycki et al.

(1995) estimate that the relative risk of lung cancer in people who have ever smoked
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Figure 5.51: The incidence of lung cancer in males.

as compared to those who have never smoked is 12.1 with a 95% confidence interval

of 6.6 to 22.3.

According to Erens and Primatesta (1999), of men over 16 years of age, an average

of 28% are current smokers while the rest are ex-regular smokers or never smoked.

We note that this proportion ranges from 41% in those aged 16 to 24 down to 9%

in those aged above 75. For women the proportion of current smokers is 27%. The

value for females aged 16 to 24 is 38% while that for females aged over 75 is 10%.

We use the fixed 27% and 28% proportions of smokers in females and males,

respectively, and we assume that if f f
x is the given incidence rate for lung cancer for

females, then the incidence rate for female non-smokers is 0.25 × f f
x and that for

smokers 3.03× f f
x . In this way, the incidence rate for smokers is 12.1 times that of

non-smokers (as in Siemiatycki et al. (1995) estimate of the relative risk) and the

weighted average incidence of smokers and non-smokers is f f
x . Similarly if fm

x is the

incidence for males, then for non-smokers the incidence rate is also 0.25 × fm
x and

for smokers is 3.03× fm
x .
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Table 5.108: Coefficients for fitting ‘Other cancers’ incidence for males.

Coefficient Value St. Error t-value
For x ≤ 55 :
α0 −11.02 7.736× 10−2 −142.5
α1 9.621× 10−2 1.506× 10−3 63.87

For x > 60 :
β0 −16.37 1.795× 10−1 −91.16
β1 2.725× 10−1 5.058× 10−3 53.88
β2 −1.443× 10−3 3.529× 10−5 −40.89

Kidney failure

Kidney failure is one of the end-points covered under critical illness policies. The

U.K. insurance industry’s definition of kidney failure is

“End-stage renal failure (ESRD) presenting as chronic irreversible failure of both

kidneys to function, as a result of which either regular renal dialysis or renal transplant

is required.”

These two forms of treatment for ESRD mentioned in the definition are referred to

as renal replacement therapy (RRT).

American Diabetes Association: Clinical Practice Recommendations 2000 (2000)

state that nephropathy leading to kidney failure is one of the long-term complica-

tions of diabetes mellitus. Our model for CHD stroke and CI explicitly models the

influence of diabetes on insurance costs and therefore we should consider the differ-

ence between incidence rates of kidney failure between diabetics and non-diabetics.

This is in contrast to the approach for the CI model applied to BCOC in which we

considered renal failure as part of ‘other CI’ claim causes.

To parameterize the incidence rates of kidney failure we use data mainly from

the U.S. Renal Data System (USRDS) 1999 Annual Data Report (U.S. Renal Data

System (1999)). For the years 1994 to 1997 combined, the data includes the number

of new cases of patients requiring RRT subdivided by the primary disease causing

the ESRD. These primary causes include diabetes, hypertension, glomerulonephritis,

cystic kidney disease and other urologic diseases. Diabetes is the largest single cause

of ESRD. They also give the corresponding population figures for the U.S.A. states
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Figure 5.52: The incidence of other cancers in males.

that provided the data. We assume that 1 January 1994 to 31 December 1997

constitutes a period of investigation from which the number of cases was derived.

We denote

θesrd diab
x as the number of cases of ESRD at age x caused by diabetes, and

θesrd nondiab
x as the number of cases of ESRD at age x in non-diabetics.

We denote time in years since 1 January 1994 as t and Px(t) as the relevant

population at time t. We calculate the total exposure, at age x, for the investigation

period as

Ex =

4∫
t=0

Px(t)dt ≈ 0.25Px(−0.5) + 0.75Px(0.5) + Px(1.5) + Px(2.5) + 0.75Px(3.5) + 0.25Px(4.5)

using the trapezium rule for integration. Population values are only given at mid-

year times. However we need to split Ex into the exposure applicable to diabetics

and that for non-diabetics. Harris et al. (1998) give the prevalence of diabetes in a

sample of lives representative of the U.S.A. population, based on a survey carried

out between 1988 and 1994. The prevalence is based on diagnosed diabetes and
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undiagnosed diabetes. Undiagonised diabetes is defined as blood sugar level ex-

ceeding 126mg/dL in lives without a previous diagnosis of diabetes. The definition,

combining diagnosed and undiagnosed diabetes, is comparable with the definition

of diabetes that we use in our modelling. The prevalence rate estimates given by

Harris et al. (1998) are shown in Table 5.109

Table 5.109: Prevalence of diabetes (as % of population) in men and women in the
U.S.A. population. Source ( Harris et al. (1998).)

Age group
20-39 40-49 50-59 60-74 75+

Males 1.6 6.8 12.9 20.2 21.1
Females 1.7 6.1 12.4 17.8 17.5

We represent the prevalence of diabetes by

exp
(−8.887 + 0.1967x− 0.001313x2

)
for males and

exp
(−9.0211 + 0.2019x− 0.001387x2

)
for females, where x represents age at the last birthday. These functions are derived

by unweighted least squares fitting of the data in Table 5.109 using the mid-point

ages of the age groups. The estimated prevalence rates together with the fitted

functions are shown in Figure 5.53

We can then split Ex into the exposure for diabetics Ediab
x and that for non-

diabetics Enondiab
x in proportions given by the prevalence functions.

For lives with diabetes we note that the incidence of kidney failure depends on

whether the life has Type 1 or Type 2 diabetes (Stephens et al. (1990)). Therefore

we need to split our exposure Ediab
x into the exposures E1

x and E2
x for Type 1 and

Type 2 diabetics respectively.

We need to know, for the ages of interest, the proportion of diabetics who are

Type 1. There is little published about the age and sex specific proportions of

Type 1 diabetics among all diabetics. Table 5.110 shows the prevalence of Insulin

Dependent Diabetes Mellitus (IDDM) diagnosed at ages above 30 as a proportion
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Figure 5.53: The crude and fitted prevalence rates for diabetes.

of all diabetes diagnoses at ages above 30. Type 1 diabetes is the new term for

IDDM. The values in Table 5.110 would understate the actual prevalence since they

do not consider diagnosed at ages below 30. We assume that the prevalence values

are equally applicable to both males and females.

Table 5.110: The prevalence of IDDM as a proportion of people with diabetes diag-
nosed at ages 30–74 of age. Source ( Harris and Robbins (1994).)

Age group 30–49 50–64 65–74
Prevalence 0.085 0.074 0.068

In order to evaluate the incidence of ESRD in diabetics we also need to split the

number of cases θesrd diab
x into θesrd 1

x and θesrd 2
x . There is also very little published

data to use for this subdivision. The data in Table 5.111 shows the number of ESRD

cases due to diabetes and how they are distributed by type of diabetes over some

broad age groups.
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Table 5.111: Characteristics of ESRD due to diabetes. (Source: USRDS Annual
Reports 1997–2001.)

Period Number of cases due to % of cases due % due to Type 1 at ages
Type 1 Type 2 to Type 1 < 20 20–64 > 64

1991–1995 47,839 68,099 41% 56% 48% 32%
1992–1996 46,100 84,373 35% 50% 42% 26%
1993–1997 41,521 102,333 29% 50% 36% 20%
1994–1998 33,818 118,626 22% 42% 30% 13%
1995–1999 23,390 144,601 16%

The values in Table 5.111 show a marked decline in the proportion of cases due to

Type 1 diabetes in the total number of cases due to diabetes. The USRDS reports

that since 1992 the number of cases of ESRD due to diabetes has been increasing

at a rate of 9% per annum (U.S. Renal Data System (1999)). We suspect that

this increase in ESRD cases due to diabetes is largely due to an increase in Type

2 diabetes cases (the underlying disease or its diagnosis). This would be consistent

with the pattern seen in Table 5.111 in which the proportional contribution of Type

1 diabetes falls.

Given that our period of investigation is 1994 to 1997, we assume that the dis-

tribution of ESRD cases due to each type of diabetes is given by that of 1994 to

1998 in Table 5.111. To avoid any possible distortions due to the wide age groups

used in Table 5.111 we assume that the proportion of cases due to Type 1 changes

linearly with age with 30% being applicable at exact age 42 and 13% at exact age

75. Therefore the proportion is represented by 0.5163−0.00515x where x is the age.

We then split θesrd diab
x into ESRDθesrd 1

x and θesrd 2
x using these proportions as well

as assuming that Type 1 and Type 2 diabetes are the only types of diabetes. The

data we obtain for non-diabetics, Type 1 diabetics and Type 2 diabetics are shown

in Appendix J.

The crude incidence rates of ESRD for non-diabetics, Type 1 diabetics and Type

2 diabetics are calculated as

λ̇esrd nondiab
x =

θesrd nondiab
x

Enondiab
x

, λ̇esrd 1
x =

θesrd 1
x

E1
x

and λ̇esrd 2
x =

θesrd 2
x

E2
x

228



respectively and for both males and females.

Using unweighted least squares fitting, we smooth these incidence rates of ESRD

by the following functions: for both males and females

λesrd 1
x = exp

(
α0 + α1x + α2x

2 + α3x
3
)

and λesrd nondiab
x = exp (α0 + α1x) ,

for males

λesrd 2
x = exp

(
α1x + α2x

2 + α3x
3
)
,

and for females

λesrd 2
x = exp (α0 + α1x) ,

where the values of the coefficients are given in Table 5.112. The variance-covariance

matrices associated with the estimated coefficients are given in Table I.135 (Ap-

pendix I).

The fitted incidence rates together with the crude rates are shown in Figures 5.54

and 5.55
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Figure 5.54: The crude and fitted incidence rates of ESRD for males.
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Table 5.112: Coefficients for fitting kidney failure incidence.

Coefficient Value St. Error t-value
Males:

Non-diabetic
α0 −11.5513 1.572× 10−1 −73.48
α1 6.509× 10−2 2.184× 10−3 29.81

Type 1 diabetics
α0 4.3868 1.120 3.916
α1 −5.689× 10−1 6.860× 10−2 −8.292
α2 1.103× 10−2 1.341× 10−3 8.226
α3 −6.952× 10−5 8.433× 10−6 −8.244

Type 2 diabetics
α1 −4.194× 10−1 3.452× 10−3 −121.48
α2 8.330× 10−3 1.189× 10−4 70.04
α3 −5.136× 10−5 1.002× 10−6 −51.25

Females:
Non-diabetic

α0 −12.1810 1.487× 10−1 −81.94
α1 6.489× 10−2 2.065× 10−3 31.42

Type 1 diabetics
α0 3.6856 1.763 2.090
α1 −5.675× 10−1 1.033× 10−1 −5.495
α2 1.087× 10−2 1.925× 10−3 5.649
α3 −6.491× 10−5 1.153× 10−5 −5.632

Type 2 diabetics
α0 −8.9406 1.934× 10−1 −46.23
α1 4.141× 10−2 2.811× 10−3 14.73

In Table 5.113 we show the crude incidence rates of ESRD for the ages below

64 from our data and compare them to those given by Stephens et al. (1990). The

values show very good agreement between the incidence rates for ESRD due to

Type 1 diabetes. Our data have much higher incidence rates for ESRD due to

Type 2 diabetes than Stephens et al. (1990). Given that the results from Stephens

et al. (1990) relate to the years 1983 to 1984, we feel the comparison is consistent

with stable rates of ESRD due to Type 1 diabetes and with rates of ESRD due to

Type 2 diabetes sharply rising over the years. We feel that having results which

are consistent with Stephens et al. (1990) indicates that our overall split of the

exposure and the number of cases into those applicable to Type 1 and Type 2

diabetes is reasonable. However there is still uncertainty as to the reasonableness

of the distribution of the cases by age. Age specific numbers of ESRD cases due to

Type 1 would enable us to be more confident about the relationship of the incidence
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Figure 5.55: The crude and fitted incidence rates of ESRD for females.

rates with age.

Table 5.113: The incidence of ESRD by type of diabetes.

Our data Stephens et al. (1990) results
Males Females Males Females

Type 1 0.00609 0.00412 0.00592 0.00394
Type 2 0.00156 0.00111 0.000698 0.000711

‘Minor’ CI claim causes

We consider the incidence of the ‘minor’ CI claim causes in the same way as we

did in Section 3.1, in particular formula (3.34). This approach is based on Table

3.44 and assumes that the incidence of these claim causes for females is 15% of the

level of the total incidence of all cancers, heart attack and stroke. For males, based

on Table 5.114, we assume that the proportion of ‘minor’ CI claim causes is 20%.
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Table 5.114: Incidence rates (per 1,000) of CI claims by cause, for males in the U.K.
in 1991–97. (Source: Dinani et al. (2000).)

Incidence Rate per 1,000 at Age
Cause ≤ 30 31–40 41–50 51–60 ≥ 61
Cancer 0.371 0.608 1.196 3.062 10.816
Heart Attack 0.015 0.172 1.088 2.932 5.408
Stroke 0.049 0.104 0.208 0.812 2.028
Bypass Surgery 0.005 0.019 0.203 0.830 1.859
Multiple Sclerosis 0.034 0.083 0.095 0.037 0.000
Total Permanent Disability 0.039 0.057 0.153 0.664 0.338
Other 0.034 0.072 0.077 0.129 1.859
Total 0.547 1.117 3.020 8.465 22.309

Therefore for the ‘CHD and stroke CI’ model, the transition intensity for ‘Other

CI’ is given as:

λOther
x+t,s=0,k=0,b,d,c = 1.20

{
0.25× f(x + t)lung males + f(x + t)other males

}
+0.20{λCHD

x+t,s=0,k=0,b,d,c + λstroke
x+t,s=0,k=0,b,d}+ λesrd

x+t ,

for males, non-smokers,

λOther
x+t,s=0,k=1,b,d,c = 1.20

{
3.03× f(x + t)lung males + f(x + t)other males

}
+0.20{λCHD

x+t,s=0,k=1,b,d,c + λstroke
x+t,s=0,k=1,b,d}+ λesrd

x+t ,

for males, smokers,

λOther
x+t,s=1,k=0,b,d,c = 1.15

{
0.25× f(x + t)lung females + f(x + t)other females

}
+0.15{λCHD

x+t,s=1,k=0,b,d,c + λstroke
x+t,s=1,k=0,b,d}+ λesrd

x+t ,

for females, non-smokers, and

λOther
x+t,s=1,k=1,b,d,c = 1.15

{
3.03× f(x + t)lung females + f(x + t)other females

}
+0.15{λCHD

x+t,s=1,k=1,b,d,c + λstroke
x+t,s=1,k=1,b,d}+ λesrd

x+t ,

for females, smokers.
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5.3 Costs of critical illness insurance

We consider the ‘CHD and stroke CI’ model in Figure 5.47. For an individual life

the states labelled ‘Diabetes’ represent one of Type 1 diabetes and Type 2 diabetes

since a life can, normally, be affected by only one of them. We consider the incidence

of diabetes, λdiab, as representing the sum of the incidence of Type 1 diabetes and

of Type 2 diabetes. Based on the prevalence of Type 1 diabetes diagnosed after

the age of 30 years (given in Table 5.110 ) we assume that the incidence of Type 1

diabetes is 0.085× λdiab and the incidence of Type 2 diabetes is 0.915× λdiab at all

ages.

In this model we assume that the incidence of cardiovascular disorders is not

dependent on the type of diabetes. We have not seen literature that indicates that

the incidence of CHD or stroke in Type 1 diabetics is significantly different from

that in Type 2 diabetics and give age specific differentials in the incidence rates.

Figure 5.47 is a Markov model and, using the results of Norberg (1995) sum-

marised in Section 1.3, we can calculate any moments of the present value of

(a) a benefit payable on transition into any of the states numbered 24 to 26, and

(b) a premium payable continuously while in any of the transient states numbered

0 to 23 in Figure 5.47.

Similar to the assumptions used in Section 3.2, we use a value of δ = 0.05 in

solving Thiele’s differential equation. In these calculations the transition intensities

into the CHD and stroke states are adjusted for the 28-day survival requirement for

CI claims to be valid. Therefore the transition intensity into the CHD state is given

by pheart
x × λMI

x+t,s,k,b,d,c where pheart
x is given by Equation (3.29). The corresponding

transition intensity for stroke is pstroke
x ×λstroke

x+t,s,k,b,d where pstroke
x is given by Equation

(3.32). Consequently, the force of mortality is adjusted so that it is

λD
x+t,s + (1− pheart

x )× λMI
x+t,s,k,b,d,c + (1− pstroke

x )× λstroke
x+t,s,k,b,d.
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5.3.1 Premium rating by subpopulation and risk factor sta-

tus

We consider the lives in the ‘Males, non-smoker, normal BMI’ subpopulation, and

in state 0 of the corresponding ‘CHD and stroke CI’ model (Figure 5.47) as our

baseline population. Firstly we discuss the level of the risk associated with the

baseline population and then we look at the risk differentials of other subpopulations

and states with reference to this chosen baseline.

Premium levels

For various ages at entry and terms of CI policies we can calculate the expected

present value (EPV) of an annuity payable continuously until the end of the term

or earlier claim event or death. We can also calculate the EPV of a benefit of £1

payable on transition to the CI claim states. We define the level net premium as

the level of the annuity payment that makes the EPV of the loss ( EPV of benefit –

EPV of annuity) equal to zero. The premiums for the baseline group are shown in

Table 5.115. As we would expect, for a fixed term the premiums increase with the

age at entry and for a fixed age at entry, the premiums increase with the term of

the policy.

We also show in Table 5.115 the standard deviation of the present value (PV) of

the loss associated with the premium and the corresponding skewness. The skewness

values are all negative which suggests that the PV’s of the loss are largely positive

with a small probability of very large negative PV’s.

The level net premiums shown in Table 5.115 are based on the estimates of pa-

rameter values for the incidence rate models that are described in Chapter 4 and

the earlier sections of this chapter. In all, apart from the adjustments for mortality,

we use 48 least squares estimates in the calculation of incidence rates of cancers,

CHD, stroke, blood pressure, hypercholesterolaemia, diabetes and kidney failure for

males. There are 49 estimates used for females, 19 of which are common to both

sexes. These parameter values represent the estimated means of the corresponding

estimators, given the data. The variation and correlation associated with the estima-

tors are contained in the estimate of the variance-covariance matrix. The variance
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Table 5.115: Premium details for CI cover of £1 for non-smoking males with ‘normal’
BMI.

Age 35 at Entry Age 45 at Entry Age 55 at Entry
Term Term Term Term Term Term
10 Yrs 20 Yrs 30 Yrs 10 Yrs 20 Yrs 10 Yrs

Level net
premium 0.00250 0.00362 0.00521 0.00514 0.00764 0.01139

Standard deviation of
present value of loss 0.1229 0.1622 0.1833 0.1744 0.2285 0.2540
Skewness of
present value of loss −6.26 −3.69 −2.57 −4.23 −2.33 −2.63

Mean of simulated
premiums 0.00253 0.00366 0.00525 0.00518 0.00769 0.01144
Standard deviation of
simulated premiums 0.00025 0.00028 0.00030 0.00033 0.00037 0.00047

will reflect the uncertainty of the mean parameter estimates and is dependent on

the amount of data used to calculate the estimates. We need to assess how any

such uncertainty in the data used to parameterise our model may affect the level

net premiums.

We assume that our estimators are normally (or multivariate normally) dis-

tributed, their mean is given by the estimated mean (vector of means) and the

variance is given by the estimated variance (variance-covariance matrix). This en-

ables us to draw samples of parameter values from these distributions such that the

sampled values will have the same mean, variance and correlations as our estimators.

We let A represent the vector of estimated means of the estimators, and V

the estimated variance-covariance matrix. From V we can derive a ‘square root’

decomposition L such that LLT = V. LT is an upper triangular matrix called the

Cholesky decomposition of V (see Conte and de Boor (1980)). For a vector R of

deviates from a normal distribution with mean 0 and variance 1, RLT + A produces

a vector of values from a distribution with mean A and variance and correlations

given by V. We applied this method, using the variance-covariance matrices given

in Appendix I to derive 9, 999 sets of parameter values. These sets were used to

calculate 9, 999 premium values for the 5 policy scenarios we are considering. The

mean values of these premiums and the standard deviations are also shown in Table
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5.115. It shows that the means of the premiums are very close to the premiums

based on the estimated means of the parameter estimators. It can be seen from

Figure 5.56 that the distributions of the premiums are approximately symmetric

around the means of the premiums.

Age 35 years, term 10 years

Level net premium
0.0020 0.0025 0.0030 0.0035

0.
0

0.
05

0.
10

0.
15

0.
20

Age 35 years, term 20 years

Level net premium
0.0030 0.0035 0.0040 0.0045 0.0050

0.
0

0.
05

0.
10

0.
15

Age 35 years, term 30 years

Level net premium
0.0045 0.0050 0.0055 0.0060 0.0065

0.
0

0.
05

0.
10

0.
15

Age 45 years, term 10 years

Level net premium
0.0040 0.0045 0.0050 0.0055 0.0060 0.0065

0.
0

0.
05

0.
10

0.
15

Age 45 years, term 20 years

Level net premium
0.0065 0.0070 0.0075 0.0080 0.0085 0.0090

0.
0

0.
04

0.
08

0.
12

Age 55 years, term 10 years

Level net premium
0.0100 0.0105 0.0110 0.0115 0.0120 0.0125

0.
0

0.
04

0.
08

0.
12

Figure 5.56: Probability distribution of simulated level net premium values of CI
policies of £1 cover for non-smoking males with ‘normal’ BMI. The dashed vertical
lines represent the level net premium calculated using the means of the parameter
estimates and the solid vertical lines represent the means of the simulated level net
premiums.

Premium differentials

Within the subpopulation of non-smoking males with ‘normal’ BMI, we need to

assess how the risk (as measured by the rating) changes for different risk profiles

at policy inception, i.e. for different starting states in Figure 5.47. In Table 5.116

we show the ratings relative to the baseline level net premiums previously given in

Table 5.115.
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Table 5.116: Premium ratings for CI cover of £1 for non-smoking males with ‘normal’
BMI.

Age at Entry
35 35 35 45 45 55

Risk factors Term (in Years) 10 20 30 10 20 10
% % % % % %

‘Moderate’ chol +4 +5 +5 +3 +4 +2
Type 1 diab +247 +168 +117 +118 +82 +61
Type 2 diab +60 +44 +33 +36 +27 +22
‘High normal’ b.p. +6 +10 +11 +6 +8 +5
‘High’ chol +33 +27 +21 +24 +19 +16
‘Moderate’ chol and Type 1 diab +251 +174 +123 +122 +86 +63
‘Moderate’ chol and Type 2 diab +65 +51 +39 +39 +31 +24
‘Moderate’ chol and ‘High normal’ b.p. +11 +16 +17 +9 +13 +7
‘High normal’ b.p. and Type 1 diab +255 +181 +130 +126 +92 +67
‘High normal’ b.p. and Type 2 diab +68 +57 +46 +43 +37 +29
‘Hypertension Stage I’ +43 +40 +34 +33 +30 +24
‘High’ chol and Type 1 diab +290 +203 +143 +150 +106 +82
‘High’ chol and Type 2 diab +103 +79 +60 +67 +51 +44
‘High’ chol and ‘High normal’ b.p. +44 +43 +37 +34 +32 +24
‘High normal’ b.p., ‘Moderate’ chol, Type 1 diab +260 +189 +137 +130 +98 +69
‘High normal’ b.p., ‘Moderate’ chol, Type 2 diab +74 +65 +54 +48 +43 +31
‘Hypertension Stage I’ and ‘Moderate’ chol +49 +49 +43 +38 +37 +27
‘Hypertension Stage I’ and Type 1 diab +303 +220 +160 +161 +120 +92
‘Hypertension Stage I’ and Type 2 diab +116 +96 +77 +79 +65 +53
‘Hypertension Stage II-III’ +97 +82 +65 +79 +64 +62
‘High’ chol, ‘High normal’ b.p., Type 1 diab +304 +222 +162 +162 +121 +91
‘High’ chol, ‘High normal’ b.p., Type 2 diab +117 +99 +79 +79 +67 +53
‘High’ chol and ‘Hypertension Stage I’ +103 +90 +72 +77 +65 +54
‘Hypertension Stage I’, ‘Moderate’ chol and Type 1 diab +311 +231 +170 +168 +128 +96
‘Hypertension Stage I’, ‘Moderate’ chol and Type 2 diab +124 +108 +87 +85 +73 +57
‘Hypertension Stage II-III’ and ‘Moderate’ chol +106 +94 +76 +86 +72 +65
‘Hypertension Stage II-III’ and Type 1 diab +376 +276 +201 +224 +166 +144
‘Hypertension Stage II-III’ and Type 2 diab +189 +153 +118 +142 +111 +105
‘Hypertension Stage I’, and ‘High’ chol and Type 1 diab +381 +283 +207 +219 +164 +130
‘Hypertension Stage I’, and ‘High’ chol and Type 2 diab +195 +160 +124 +136 +109 +92
‘Hypertension Stage II-III’ and ‘High’ chol +183 +149 +115 +142 +111 +103
‘Hypertension Stage II-III’, ‘Moderate’ chol, Type 1 diab +388 +291 +213 +233 +176 +149
‘Hypertension Stage II-III’, ‘Moderate’ chol, Type 2 diab +201 +168 +131 +151 +121 +110
‘Hypertension Stage II-III’, ‘High’ chol and Type 1 diab +489 +362 +263 +305 +224 +198
‘Hypertension Stage II-III’, ‘High’ chol and Type 2 diab +302 +239 +180 +223 +170 +159

chol = cholesterol, b.p.= blood pressure, diab = diabetes
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We note the following about the ratings in Table 5.116:

(a) For the younger ages, the single risk factor with the highest rating is Type 1

diabetes, while for the older ages the highest rating is associated with blood

pressure (Hypertension Stage II-III).

(b) There is a significant difference in risk for lives with different risk profiles. The

highest risk is always associated with lives who have ‘High cholesterol’, ‘Hyper-

tension stage II-III’ and Type 1 diabetes. The ranking of the risk for any other

combination of risk factors depends on the age at entry and the term of the

policy. The differences are mainly due to the increase, with age, in the signifi-

cance of blood pressure values on the risk and a decrease in the significance of

diabetes.

(c) For the same term, the impact of the risk factors on the ratings decreases as the

age increases. This reflects that CHD and stroke incidence increase with age

independent of the risk factors. This is in line with current underwriting practice

which considers the age of the applicant. For the blood pressure and cholesterol

risk factors, underwriting practice tends to consider narrow age ranges while

for diabetes the age distinction is generally whether the applicant is below or

above age 40. In the ratings for blood pressure and for cholesterol, older ages

have lower ratings than younger lives, for the same risk factor levels. This is

also reflected in current underwriting practice.

(d) The significance, in terms of risk, of particular factors depends on which other

factors are present. As an example, for a 10-year policy for a life aged 35, the

ratings associated with ‘High cholesterol’, ‘Hypertension stage II-III’ and Type

1 diabetes separately add up to +377 but the rating for the presence of all three

is +489. This synergy is reflected in the current underwriting practice (Pokorski

(1999) and Swiss-Re ratings).

(e) The ratings are consistent in that having an additional risk factor leads to a

higher rating.

(f) The ratings are partly consistent with current underwriting practice concern-

ing lives with Type 1 diabetes. As we mentioned before, current underwriting
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would recommend declinature for any applicant aged under 40 who has dia-

betes. According to Table 5.116, for policies of term 10 years, these lives attract

ratings of at least +247 which is above the insurable limit. For policies of longer

terms, Type 1 diabetics under 40 years of age may be insurable depending on

which other risk factors are present. This dependence of the ratings for Type 1

diabetics on the term of the policy is largely not allowed for in current under-

writing. In the case of lives with Type 1 or Type 2 diabetes for which current

underwriting may recommend insurance rather than declinature, the policies

are supposed to be of short term, with the policy not covering ages beyond 55

years. However in Table 5.116, for policies issued to lives age 35, we find that

the ratings for diabetics decrease as the term increases.

We note that the higher costs of insurance for lives with Type 1 diabetes are

due to the high incidence of kidney failure in these lives.

(g) There is disagreement between the ratings from our model and current under-

writing practice for lives with Type 2 diabetes. Underwriting practice recom-

mends declinature in all cases of Type 2 diabetes below age 40 but our ratings

show that such lives, in certain cases, are insurable.

(h) Current underwriting uses narrower categories for blood pressure and blood

cholesterol levels, than those used in our model. This makes the comparison of

the ratings in Table 5.116 and underwriting practice ratings rather difficult. In

Table 5.117, for lives aged 35 at entry and policies of term 10 years, we show

some of the ratings from Table 5.116 and the range of possible ratings according

to current underwriting practice. We have not shown some states which include

Type 1 diabetes as declinature is recommended both by our model and by cur-

rent underwriting practice. There is some broad agreement between our model

ratings and the range of ratings currently recommended by underwriters for the

risk factors moderate cholesterol, ‘High Normal’ blood pressure, ‘Hypertension

Stage I’ and ‘Hypertension Stage II-III’ but the disparity in ratings associated

with Type 2 diabetes and ‘High’ cholesterol is also marked.

The differentials in premiums considered so far are for lives in the same sub-

population but with different risk factors. We now consider the ratings associated
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Table 5.117: Premium ratings for CI cover of £1 for males with ‘normal’ BMI, aged
35 at entry with a 10 year policy term.

Ratings
Risk factors Model Underwriters

% %
‘Moderate’ cholesterol +4 Std to +25
Type 1 Diabetes +247 D
Type 2 Diabetes +60 D
‘Moderate’ cholesterol and Type 2 diabetes +65 D
‘High normal’ blood pressure +6 Std
‘High normal’ blood pressure and Type 2 diabetes +68 D
‘High’ cholesterol +33 +125 to D
‘High’ cholesterol and Type 2 diabetes +103 D
‘Moderate’ cholesterol and ‘High normal’ blood pressure +11 Std to+25
‘Moderate’ cholesterol, ‘High normal’ blood pressure and Type 2 diabetes +74 D
‘Hypertension Stage I’ +43 Std to +100
‘Hypertension Stage I’ and Type 2 diabetes +116 D
‘High’ cholesterol and ‘High normal’ blood pressure +44 +25 to D
‘High’ cholesterol, ‘High normal’ blood pressure and Type 2 diabetes +117 D
‘Hypertension Stage I’ and ‘Moderate’ cholesterol +49 Std to +188
‘Hypertension Stage I’ and ‘Moderate’ cholesterol and Type 2 diabetes +124 D
‘Hypertension Stage II-III’ +97 +50 to D
‘Hypertension Stage II-III’ and Type 2 diabetes +189 D
‘High’ cholesterol and ‘Hypertension Stage I’ +103 +25 to D
‘High’ cholesterol and ‘Hypertension Stage I’ and Type 2 diabetes +195 D
‘Hypertension Stage II-III’ and ‘Moderate’ cholesterol +106 +75 to D
‘Hypertension Stage II-III’ and ‘Moderate’ cholesterol and Type 2 diabetes +201 D
‘Hypertension Stage II-III’ and ‘High’ cholesterol +183 +150 to D
‘Hypertension Stage II-III’ and ‘High’ cholesterol and Type 2 diabetes +302 D

Std=Standard, D=Decline
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with different subpopulations. These ratings are shown in Tables 5.118 and 5.119,

expressed in relation to the level net premiums given in Table 5.115. In Table 5.118

we give the ratings for lives with ‘No risk factors’ (that is in State 0 of the ‘CHD and

stroke CI’ model) but in different sex, smoking and BMI specific subpopulations.

The ratings in Table 5.119 relate to ‘Males, smokers, normal BMI’ subpopulation

considering different risk factors. We note some points from these tables.

(a) The ratings for males are different from those for females. However, these ratings

are not as high as the ratings for the very high risk states shown in Table 5.116.

(b) The ratings for smokers are different from those for non-smokers. The ratings are

also generally much lower than those for combinations of diabetes, hypertension

and hypercholesterolaemia.

One of the main differences between the ratings for smokers in Table 5.119

compared to those for non-smokers in Table 5.116 is that for states without

diabetes the ratings for smokers do not fall much as either age or term increases.

Indeed for the states with fewer risk factors, the ratings increase as both age and

term increases. However this is not the case for states which include diabetes

as a risk factor.

(c) The ratings do not differ much by BMI status. We recall, from Table 4.91,

that our MI and stroke intensities are not directly influenced by BMI status.

However there is an indirect influence through the effect of BMI on the incidence

of ‘Hypertension Stage I’ and that of diabetes. Whether BMI is an independent

risk factor for CHD or stroke is a subject of debate. The cardiovascular models

of Anderson et al. (1991a) (see Appendix H) do not have BMI as a variable.

Hubert et al. (1983) give a discussion on obesity as an independent risk factor

for cardiovascular endpoints. They suggest there may be a duration dependence

in the influence of obesity on cardiovascular disease, which may explain the

absence in models that have considered follow-up of participants over short

periods of time. Indeed there are arguments as to whether the incidence of

CHD or stroke is more related to other measures of obesity like waist/hip ratio

or central adiposity than to BMI. To emphasise the importance of the pathway

of BMI influence through associated risk factors, Shaper et al. (1997) wrote the
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following about adjusting for other risk factors in analysing the influence of BMI

on coronary disease, stroke and diabetes:

“Any relations observed between body weight and the end points have been consid-

erably attenuated after adjustment, often becoming non-significant. This has been

interpreted as meaning “body weight does not matter” as these other variables have

accounted for the relations observed. Our results were also attenuated after we ad-

justed for blood pressure, cholesterol, and high density lipoprotein cholesterol. In

trying to assess the effects of body weight it seems illogical to adjust for those factors

which are almost certainly the mechanisms by which increasing body weight brings

about vascular damage.”

This could explain the lack of influence of BMI in the ratings. In our model

parameterisation we use follow-up periods of approximately two years and we

do not distinguish lives by the duration spent in a particular BMI category.

This could also explain this lack of influence if the BMI influence is more likely

to be detected by investigations of longer term, as according to Hubert et al.

(1983).

(d) The synergy reflected by risk factors in a subpopulation is also seen across

subpopulations. As an example, for males with age at entry of 35 years and

policy term of 10 years, the rating for ‘Hypertension stage II-III’ is +97 (Table

5.116), the rating for smokers is +28 (Table 5.118) but the rating for ‘smokers

with hypertension stage II-III’ is +154 (Table 5.119).

5.3.2 Premium ratings under hypothetical assumptions of

genetic influence of incidence rates.

Premium ratings under hypothetical assumptions of the influence of geno-

type on incidence of the risk factors of CHD and stroke.

We have previously mentioned that mutations of genes associated with multifactorial

disorders are unlikely to have an impact on the incidence of these disorders which

is as high as that of mutations associated with single gene disorders. In Chapters

2 and 3, we noted that the incidence of BC in mutation carriers peaked at about

242



Table 5.118: Premium ratings for CI cover of £1 for lives in State 0 of other sub-
populations.

Age 35 at Entry Age 45 at Entry Age 55 at Entry
Term Term Term Term Term Term

Subpopulation 10 Yrs 20 Yrs 30 Yrs 10 Yrs 20 Yrs 10 Yrs
% % % % % %

Males: smokers +28 +37 +45 +47 +56 +70
Males: overweight 0 +1 +1 0 +1 0
Males: smokers and overweight +28 +38 +46 +47 +57 +70
Males: obese +1 +2 +3 +1 +2 +1
Males: smokers and obese +29 +40 +48 +48 +58 +71
Females −5 −3 −10 +3 −10 −20
Females: smokers +9 +17 +15 +27 +19 +13
Females: overweight −5 −2 −10 +3 −10 −20
Females: smokers and overweight +9 +17 +15 +27 +19 +13
Females: obese −4 −1 −8 +4 −8 −19
Females: smokers and obese +10 +18 +17 +28 +21 +14

50 times the incidence in non-mutation carriers. We feel that mutations which may

be discovered to be associated with cardiovascular disorders or associated with the

risk factors are unlikely to result in increases in the incidence of these disorders as

extreme as in the BCOC case. However we can assume that some gene mutations will

be found which increase the risk of CHD and stroke in mutation carriers, through

higher incidence rates of the risk factors. By using these higher incidence rates

as transition intensities in our ‘CHD and stroke CI’ model, we can calculate the

insurance costs for lives with these (hypothetical) high risk mutations. The model

translates the high risk of risk factors into insurance premium ratings which can be

compared to ratings like those in Tables 5.115 to 5.118.

Based on our model there are many examples that we could show of the impact

of such genetic risk assumptions on insurance costs. Here we consider lives in the

‘Males, non-smoker, normal BMI’ subpopulation, aged 35 at entry and who buy

policies with a term of 10 years. In Table 5.120 we show the premium rating factors

if we assume that the lives have a hypothetical mutation which gives rise to the

incidence rate of a specific risk factor which is twice the rate given in Sections 4.6.3,

4.6.4 or 4.6.5. In the case where the affected risk factor is hypercholesterolaemia

(chol), both λchol01 and λchol12 are multiplied by 2 and if blood pressure (b.p.) is the
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Table 5.119: Premium ratings for CI cover of £1 for male smokers with ‘normal’
BMI.

Age at Entry
35 35 35 45 45 55

Risk factors Term (in Years) 10 20 30 10 20 10
% % % % % %

No risk factors +28 +37 +45 +47 +56 +70
‘Moderate’ chol +32 +43 +51 +50 +60 +72
Type 1 diab +280 +209 +163 +170 +140 +134
Type 2 diab +93 +86 +81 +87 +86 +96
‘High normal’ b.p. +36 +50 +58 +54 +66 +76
‘High’ chol +70 +71 +71 +78 +80 +90
‘Moderate’ chol and Type 1 diab +286 +217 +170 +174 +145 +137
‘Moderate’ chol and Type 2 diab +99 +94 +88 +92 +91 +98
‘Moderate’ chol and ‘High normal’ b.p. +41 +58 +66 +58 +72 +78
‘High normal’ b.p. and Type 1 diab +291 +225 +179 +179 +153 +142
‘High normal’ b.p. and Type 2 diab +104 +102 +97 +97 +99 +103
‘Hypertension Stage I’ +82 +88 +88 +89 +94 +100
‘High’ chol and Type 1 diab +335 +253 +196 +209 +170 +161
‘High’ chol and Type 2 diab +148 +130 +114 +127 +116 +122
‘High’ chol and ‘High normal’ b.p. +83 +91 +90 +89 +95 +100
‘High normal’ b.p., ‘Moderate’ chol, Type 1 diab +297 +235 +188 +185 +159 +145
‘High normal’ b.p., ‘Moderate’ chol, Type 2 diab +111 +112 +106 +102 +105 +106
‘Hypertension Stage I’ and ‘Moderate’ chol +90 +100 +98 +95 +101 +104
‘Hypertension Stage I’ and Type 1 diab +351 +275 +217 +225 +188 +174
‘Hypertension Stage I’ and Type 2 diab +165 +152 +135 +143 +134 +136
‘Hypertension Stage II-III’ +154 +144 +128 +151 +139 +152
‘High’ chol, ‘High normal’ b.p., Type 1 diab +352 +277 +218 +224 +188 +172
‘High’ chol, ‘High normal’ b.p., Type 2 diab +165 +154 +137 +142 +135 +134
‘High’ chol and ‘Hypertension Stage I’ +159 +150 +133 +145 +136 +137
‘Hypertension Stage I’, ‘Moderate’ chol and Type 1 diab +362 +289 +228 +233 +197 +178
‘Hypertension Stage I’, ‘Moderate’ chol and Type 2 diab +175 +167 +147 +151 +144 +140
‘Hypertension Stage II-III’ and ‘Moderate’ chol +166 +159 +140 +160 +148 +156
‘Hypertension Stage II-III’ and Type 1 diab +449 +350 +270 +310 +249 +244
‘Hypertension Stage II-III’ and Type 2 diab +263 +227 +189 +227 +195 +206
‘Hypertension Stage I’, and ‘High’ chol and Type 1 diab +451 +354 +273 +297 +241 +221
‘Hypertension Stage I’, and ‘High’ chol and Type 2 diab +265 +232 +192 +215 +188 +183
‘Hypertension Stage II-III’ and ‘High’ chol +264 +228 +188 +230 +196 +204
‘Hypertension Stage II-III’, ‘Moderate’ chol, Type 1 diab +464 +368 +285 +321 +260 +250
‘Hypertension Stage II-III’, ‘Moderate’ chol, Type 2 diab +278 +246 +204 +239 +207 +212
‘Hypertension Stage II-III’, ‘High’ chol and Type 1 diab +592 +458 +345 +412 +320 +312
‘Hypertension Stage II-III’, ‘High’ chol and Type 2 diab +406 +335 +264 +330 +267 +274

chol = cholesterol, b.p.= blood pressure, diab = diabetes
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affected disorder then all of λbp01, λbp12, and λbp23 are multiplied by 2. The column

headed ‘none’ represents the ratings without any genetic influence on all the risk

factors and the ratings in this column were previously given in Table 5.118. Table

5.120 shows very small changes in the ratings given the assumed effect of genetic

mutations. None of these changes is likely to warrant a change in the underwriting

recommendations.

It is important that we consider how the ratings would change if the multiplier

for incidence rates was more than 2. In Tables 5.121 to 5.124 hypothetical mutations

give increased risk of risk factors of 5 times, 10 times, 20 times and 50 times the

modelled rates. The following can be seen from these tables:

(a) For a risk multiplier of 5, mutations warrant a change of rating from below +200

to above +200 only for the very high risk states. Increasing the risk multiplier

to 50 results in a few more states moving above the +200 rating. However, in

general, even mutations that are associated with very high risk of incidence of

the risk factors will not cause the difference between acceptance for insurance

and declinature assuming that +200 is the maximum rating for acceptance for

insurance.

(b) In cases where ratings associated with mutations are in the insurable range, they

still represent significant differences from the ratings associated with no muta-

tions. These differences become more marked as the risk multiplier increases.

(c) The greatest changes to ratings are associated with mutations predisposing to

hypertension. Changes to the ratings associated with hypercholesterolaemia

are generally higher than those associated with diabetes. The value of the risk

multiplier impacts the risk factors differently and Tables 5.120 to 5.124 can be

used to assess the extent of this impact separately. As an example, consider a

life aged 35 with ‘High normal’ blood pressure, and no mutation for any of the

risk factors who would have a rating of +6 for a 10 year policy. A mutation for

hypercholesterolaemia with a risk multiplier of 10 will result in a rating of +23.

However a mutation for Type 1 diabetes with a risk multiplier of 50 will attract

a rating of only +28.
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Table 5.120: Premium ratings for CI cover of £1 for non-smoking males with ‘normal’
BMI aged 35 at entry with policy term 10 years, under hypothetical assumptions of
genetic influence increasing the incidence of risk factors 2×.

Premium rating factors with 2×
the incidence rate of

Risk factors none chol b.p. Type 1 diab Type 2 diab
% % % % %

No risk factors 0 +1 +2 0 +1
‘Moderate’ chol +4 +7 +6 +4 +5
Type 1 diab +247 +248 +250
Type 2 diab +60 +61 +63
‘High normal’ b.p. +6 +8 +14 +7 +8
‘High’ chol +33 +37 +34 +35
‘Moderate’ chol and Type 1 diab +251 +256 +255
‘Moderate’ chol and Type 2 diab +65 +69 +68
‘Moderate’ chol and ‘High normal’ b.p. +11 +15 +19 +11 +12
‘High normal’ b.p. and Type 1 diab +255 +257 +265
‘High normal’ b.p. and Type 2 diab +68 +70 +78
‘Hypertension Stage I’ +43 +45 +49 +43 +44
‘High’ chol and Type 1 diab +290 +295
‘High’ chol and Type 2 diab +103 +108
‘High’ chol and ‘High normal’ b.p. +44 +56 +44 +45
‘High normal’ b.p., ‘Moderate’ chol, Type 1 diab +260 +265 +271
‘High normal’ b.p., ‘Moderate’ chol, Type 2 diab +74 +79 +84
‘Hypertension Stage I’ and ‘Moderate’ chol +49 +55 +56 +50 +51
‘Hypertension Stage I’ and Type 1 diab +303 +305 +311
‘Hypertension Stage I’ and Type 2 diab +116 +119 +125
‘Hypertension Stage II-III’ +97 +100 +98 +99
‘High’ chol, ‘High normal’ b.p., Type 1 diab +304 +319
‘High’ chol, ‘High normal’ b.p., Type 2 diab +117 +132
‘High’ chol and ‘Hypertension Stage I’ +103 +113 +104 +105
‘Hypertension Stage I’, ‘Moderate’ chol and Type 1 diab +311 +319 +320
‘Hypertension Stage I’, ‘Moderate’ chol and Type 2 diab +124 +132 +134
‘Hypertension Stage II-III’ and ‘Moderate’ chol +106 +115 +107 +108
‘Hypertension Stage II-III’ and Type 1 diab +376 +380
‘Hypertension Stage II-III’ and Type 2 diab +189 +193
‘Hypertension Stage I’, and ‘High’ chol and Type 1 diab +381 +394
‘Hypertension Stage I’, and ‘High’ chol and Type 2 diab +195 +208
‘Hypertension Stage II-III’ and ‘High’ chol +183 +184 +186
‘Hypertension Stage II-III’, ‘Moderate’ chol, Type 1 diab +388 +399
‘Hypertension Stage II-III’, ‘Moderate’ chol, Type 2 diab +201 +212

chol = cholesterol, b.p.= blood pressure, diab = diabetes
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Table 5.121: Premium ratings for CI cover of £1 for non-smoking males with ‘normal’
BMI aged 35 at entry with policy term 10 years, under hypothetical assumptions of
genetic influence increasing the incidence of risk factors 5×.

Premium rating factors with 5×
the incidence rate of

Risk factors none chol b.p. Type 1 diab Type 2 diab
% % % % %

No risk factors 0 +6 +14 +2 +5
‘Moderate’ chol +4 +14 +19 +5 +9
Type 1 diab +247 +255 +265
Type 2 diab +60 +68 +79
‘High normal’ b.p. +6 +14 +33 +8 +12
‘High’ chol +33 +56 +35 +39
‘Moderate’ chol and Type 1 diab +251 +265 +271
‘Moderate’ chol and Type 2 diab +65 +78 +85
‘Moderate’ chol and ‘High normal’ b.p. +11 +23 +39 +13 +16
‘High normal’ b.p. and Type 1 diab +255 +264 +290
‘High normal’ b.p. and Type 2 diab +68 +78 +104
‘Hypertension Stage I’ +43 +54 +64 +45 +49
‘High’ chol and Type 1 diab +290 +290 +319
‘High’ chol and Type 2 diab +103 +103 +133
‘High’ chol and ‘High normal’ b.p. +44 +86 +46 +50
‘High normal’ b.p., ‘Moderate’ chol, Type 1 diab +260 +276 +298
‘High normal’ b.p., ‘Moderate’ chol, Type 2 diab +74 +90 +112
‘Hypertension Stage I’ and ‘Moderate’ chol +49 +69 +71 +51 +56
‘Hypertension Stage I’ and Type 1 diab +303 +317 +330
‘Hypertension Stage I’ and Type 2 diab +116 +130 +144
‘Hypertension Stage II-III’ +97 +113 +99 +105
‘High’ chol, ‘High normal’ b.p., Type 1 diab +304 +358
‘High’ chol, ‘High normal’ b.p., Type 2 diab +117 +172
‘High’ chol and ‘Hypertension Stage I’ +103 +134 +105 +111
‘Hypertension Stage I’, ‘Moderate’ chol and Type 1 diab +311 +336 +340
‘Hypertension Stage I’, ‘Moderate’ chol and Type 2 diab +124 +150 +154
‘Hypertension Stage II-III’ and ‘Moderate’ chol +106 +134 +108 +114
‘Hypertension Stage II-III’ and Type 1 diab +376 +396
‘Hypertension Stage II-III’ and Type 2 diab +189 +210
‘Hypertension Stage I’, and ‘High’ chol and Type 1 diab +381 +381 +421
‘Hypertension Stage I’, and ‘High’ chol and Type 2 diab +195 +235
‘Hypertension Stage II-III’ and ‘High’ chol +183 +186 +193
‘Hypertension Stage II-III’, ‘Moderate’ chol, Type 1 diab +388 +423 +388
‘Hypertension Stage II-III’, ‘Moderate’ chol, Type 2 diab +201 +237

chol = cholesterol, b.p.= blood pressure, diab = diabetes
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Table 5.122: Premium ratings for CI cover of £1 for non-smoking males with ‘normal’
BMI aged 35 at entry with policy term 10 years, under hypothetical assumptions of
genetic influence increasing the incidence of risk factors 10×.

Premium rating factors with 10×
the incidence rate of

Risk factors none chol b.p. Type 1 diab Type 2 diab
% % % % %

No risk factors 0 +14 +36 +4 +10
‘Moderate’ chol +4 +21 +42 +8 +14
Type 1 diab +247 +264 +294
Type 2 diab +60 +78 +107
‘High normal’ b.p. +6 +23 +55 +11 +17
‘High’ chol +33 +89 +37 +45
‘Moderate’ chol and Type 1 diab +251 +274 +302
‘Moderate’ chol and Type 2 diab +65 +87 +116
‘Moderate’ chol and ‘High normal’ b.p. +11 +31 +62 +15 +22
‘High normal’ b.p. and Type 1 diab +255 +276 +318
‘High normal’ b.p. and Type 2 diab +68 +89 +132
‘Hypertension Stage I’ +43 +68 +76 +47 +56
‘High’ chol and Type 1 diab +290 +362
‘High’ chol and Type 2 diab +103 +176
‘High’ chol and ‘High normal’ b.p. +44 +118 +48 +57
‘High normal’ b.p., ‘Moderate’ chol, Type 1 diab +260 +286 +328
‘High normal’ b.p., ‘Moderate’ chol, Type 2 diab +74 +100 +142
‘Hypertension Stage I’ and ‘Moderate’ chol +49 +81 +84 +54 +63
‘Hypertension Stage I’ and Type 1 diab +303 +335 +347
‘Hypertension Stage I’ and Type 2 diab +116 +149 +161
‘Hypertension Stage II-III’ +97 +132 +102 +113
‘High’ chol, ‘High normal’ b.p., Type 1 diab +304 +401
‘High’ chol, ‘High normal’ b.p., Type 2 diab +117 +215
‘High’ chol and ‘Hypertension Stage I’ +103 +152 +108 +119
‘Hypertension Stage I’, ‘Moderate’ chol and Type 1 diab +311 +352 +358
‘Hypertension Stage I’, ‘Moderate’ chol and Type 2 diab +124 +166 +172
‘Hypertension Stage II-III’ and ‘Moderate’ chol +106 +151 +111 +123
‘Hypertension Stage II-III’ and Type 1 diab +376 +421
‘Hypertension Stage II-III’ and Type 2 diab +189 +235
‘Hypertension Stage I’, and ‘High’ chol and Type 1 diab +381 +446
‘Hypertension Stage I’, and ‘High’ chol and Type 2 diab +195 +260
‘Hypertension Stage II-III’ and ‘High’ chol +183 +189 +204
‘Hypertension Stage II-III’, ‘Moderate’ chol, Type 1 diab +388 +446
‘Hypertension Stage II-III’, ‘Moderate’ chol, Type 2 diab +201 +259

chol = cholesterol, b.p.= blood pressure, diab = diabetes
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Table 5.123: Premium ratings for CI cover of £1 for non-smoking males with ‘normal’
BMI aged 35 at entry with policy term 10 years, under hypothetical assumptions of
genetic influence increasing the incidence of risk factors 20×.

Premium rating factors with 20×
the incidence rate of

Risk factors none chol b.p. Type 1 diab Type 2 diab
% % % % %

No risk factors 0 +22 +61 +9 +19
‘Moderate’ chol +4 +26 +69 +12 +23
Type 1 diab +247 +275 +328
Type 2 diab +60 +89 +142
‘High normal’ b.p. +6 +32 +74 +15 +26
‘High’ chol +33 +128 +42 +56
‘Moderate’ chol and Type 1 diab +251 +281 +338
‘Moderate’ chol and Type 2 diab +65 +94 +152
‘Moderate’ chol and ‘High normal’ b.p. +11 +37 +82 +19 +31
‘High normal’ b.p. and Type 1 diab +255 +288 +344
‘High normal’ b.p. and Type 2 diab +68 +101 +158
‘Hypertension Stage I’ +43 +83 +86 +52 +66
‘High’ chol and Type 1 diab +290 +414
‘High’ chol and Type 2 diab +103 +228
‘High’ chol and ‘High normal’ b.p. +44 +147 +53 +68
‘High normal’ b.p., ‘Moderate’ chol, Type 1 diab +260 +294 +355
‘High normal’ b.p., ‘Moderate’ chol, Type 2 diab +74 +108 +169
‘Hypertension Stage I’ and ‘Moderate’ chol +49 +91 +95 +58 +74
‘Hypertension Stage I’ and Type 1 diab +303 +355 +361
‘Hypertension Stage I’ and Type 2 diab +116 +168 +174
‘Hypertension Stage II-III’ +97 +154 +107 +127
‘High’ chol, ‘High normal’ b.p., Type 1 diab +304 +439
‘High’ chol, ‘High normal’ b.p., Type 2 diab +117 +253
‘High’ chol and ‘Hypertension Stage I’ +103 +166 +113 +133
‘Hypertension Stage I’, ‘Moderate’ chol and Type 1 diab +311 +365 +372
‘Hypertension Stage I’, ‘Moderate’ chol and Type 2 diab +124 +179 +186
‘Hypertension Stage II-III’ and ‘Moderate’ chol +106 +165 +116 +137
‘Hypertension Stage II-III’ and Type 1 diab +376 +449
‘Hypertension Stage II-III’ and Type 2 diab +189 +263
‘Hypertension Stage I’, and ‘High’ chol and Type 1 diab +381 +465
‘Hypertension Stage I’, and ‘High’ chol and Type 2 diab +195 +279
‘Hypertension Stage II-III’ and ‘High’ chol +183 +194 +222
‘Hypertension Stage II-III’, ‘Moderate’ chol, Type 1 diab +388 +464
‘Hypertension Stage II-III’, ‘Moderate’ chol, Type 2 diab +201 +278

chol = cholesterol, b.p.= blood pressure, diab = diabetes
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Table 5.124: Premium ratings for CI cover of £1 for non-smoking males with ‘normal’
BMI aged 35 at entry with policy term 10 years, under hypothetical assumptions of
genetic influence increasing incidence of risk factors 50×.

Premium rating factors with 50×
the incidence rate of

Risk factors none chol b.p. Type 1 diab Type 2 diab
% % % % %

No risk factors 0 +28 +82 +22 +34
‘Moderate’ chol +4 +30 +91 +25 +39
Type 1 diab +247 +284 +356
Type 2 diab +60 +97 +169
‘High normal’ b.p. +6 +39 +87 +28 +42
‘High’ chol +33 +160 +56 +73
‘Moderate’ chol and Type 1 diab +251 +286 +367
‘Moderate’ chol and Type 2 diab +65 +99 +181
‘Moderate’ chol and ‘High normal’ b.p. +11 +41 +96 +33 +47
‘High normal’ b.p. and Type 1 diab +255 +297 +363
‘High normal’ b.p. and Type 2 diab +68 +111 +176
‘Hypertension Stage I’ +43 +95 +92 +65 +85
‘High’ chol and Type 1 diab +290 +457
‘High’ chol and Type 2 diab +103 +271
‘High’ chol and ‘High normal’ b.p. +44 +168 +67 +86
‘High normal’ b.p., ‘Moderate’ chol, Type 1 diab +260 +300 +374
‘High normal’ b.p., ‘Moderate’ chol, Type 2 diab +74 +113 +188
‘Hypertension Stage I’ and ‘Moderate’ chol +49 +98 +101 +72 +93
‘Hypertension Stage I’ and Type 1 diab +303 +370 +370
‘Hypertension Stage I’ and Type 2 diab +116 +184 +183
‘Hypertension Stage II-III’ +97 +171 +122 +151
‘High’ chol, ‘High normal’ b.p., Type 1 diab +304 +468
‘High’ chol, ‘High normal’ b.p., Type 2 diab +117 +282
‘High’ chol and ‘Hypertension Stage I’ +103 +176 +128 +156
‘Hypertension Stage I’, ‘Moderate’ chol and Type 1 diab +311 +375 +381
‘Hypertension Stage I’, ‘Moderate’ chol and Type 2 diab +124 +188 +195
‘Hypertension Stage II-III’ and ‘Moderate’ chol +106 +176 +131 +162
‘Hypertension Stage II-III’ and Type 1 diab +376 +472
‘Hypertension Stage II-III’ and Type 2 diab +189 +285
‘Hypertension Stage I’, and ‘High’ chol and Type 1 diab +381 +479
‘Hypertension Stage I’, and ‘High’ chol and Type 2 diab +195 +293
‘Hypertension Stage II-III’ and ‘High’ chol +183 +210 +252
‘Hypertension Stage II-III’, ‘Moderate’ chol, Type 1 diab +388 +478
‘Hypertension Stage II-III’, ‘Moderate’ chol, Type 2 diab +201 +292

chol = cholesterol, b.p.= blood pressure, diab = diabetes
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Our discussion in Section 4.5 indicated that mutations that will be identified to

have an impact on CHD and stroke risk are likely to be those associated with the

risk factors. However we briefly analyse the impact of mutations that have influence

on CHD and stroke risk directly and not through the risk factors yet considered.

Premium ratings under hypothetical assumptions of the influence of geno-

type on the direct incidence of CHD and stroke.

We consider a hypothetical genetic influence on the direct risk of CHD or stroke.

This assumes that a genetic mutation will increase the incidence of CHD or stroke

independently of the level and nature of any risk factors present. This is incorporated

in the calculations by multiplying the direct intensities into the CHD (stroke) state

of the ‘CHD and stroke CI’ model by some factor. It is also likely that a direct

genetic influence on CHD depends on the risk factors present. In this case the

mutations effectively modify the way the risk factors influence CHD incidence. We

study the effects of this mode of genetic influence by assuming mutations that will

only increase the direct CHD incidence if a particular risk factor, say diabetes, is

present. The calculation can be handled by our model and ratings associated with

CHD risk ‘modified’ by diab, chol and bp are produced.

Table 5.125 shows the rating associated with genetic influence which multiplies

the direct CHD incidence rates by a factor of 2. There are significant changes in

the ratings even for this low level of the risk multiplier. In a high proportion of the

states, the presence of a hypothetical mutation increases the ratings to above +200.

The change in ratings is less if the gene increases direct CHD incidence rates when

only a specified risk factor is present. The ratings under the assumption of genetic

influence on stroke incidence are much lower than those under similar assumptions

about CHD incidence.

In Tables 5.126 to 5.129 we assess how increasing the risk multiplier of direct

CHD and stroke incidence rates to 5, 10, 20 and 50 times affects the ratings. These

tables show that higher risk multiplier values produce very big changes in the ratings.

This is particularly so in the case when the mutations increase the direct incidence

of CHD irrespective of the other risk factors.
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As an indicator of the effect of the policy term on these ratings, we show in Table

5.130 the ratings assuming a risk multiplier of 5 but for a policy with age 35 at

entry and a term of 30 years. When compared to the ratings in Table 5.126 we note

that a genetic mutation results in more states moving to above +200. This may be

due to the effect of higher incidence rates of risk factors at higher ages which makes

the genetic information more useful at assessing insurability of lives for longer term

policies than for short term policies.

5.4 Discussion

We constructed a multiple state model in which states represent combinations of

cardiovascular risk factors as well as the cardiovascular and other CI end-points.

The states relating to the risk factors are a proxy for the underlying pathology in

CHD and stroke development. The intensities of transitions between the states were

parameterised from medical data. Age-specific transition intensities were given for

each of the subpopulations specified by sex, smoking status and BMI status.

The premiums payable for any combination of risk factors and assumptions con-

cerning genetic influence were determined by solving Thiele’s equations with the

appropriate transition intensities. These premiums are used to calculated ratings

that would be applicable on application for insurance given a baseline premium.

The premium ratings were broadly consistent with current underwriting guidelines

but differed mainly in the ratings associated with the presence of diabetes and of

‘High’ cholesterol.

5.4.1 Relative importance of types of mutations

By analysing tables of ratings associated with the presence or absence of specified

risk factors we showed that the the effect of mutations that alter CHD and stroke

risk only through the risk factors on underwriting is limited. This is limited by

the fact that current underwriting methods already give the maximum possible

rating under the effect of any mutation. This can be seen from the fact that using

current underwriting methods the rating associated with a life with diabetes is
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Table 5.125: Premium ratings for CI cover of £1 for non-smoking males with ‘normal’
BMI aged 35 at entry with policy term 10 years, under hypothetical assumptions of
genetic influence increasing the incidence of CHD and stroke 2×.

Premium rating factors with 2×
the incidence rate of

Risk factors none CHD Stroke CHD modified by the presence of
Type 1 Type 2

chol bp diab diab
% % % % % % %

No risk factors 0 +48 +7 +8 +9 0 +1
‘Moderate’ chol +4 +55 +11 +55 +13 +4 +5
Type 1 diab +247 +310 +258 +257 +258 +310
Type 2 diab +60 +123 +71 +70 +72 +123
‘High normal’ b.p. +6 +61 +14 +16 +61 +7 +8
‘High’ chol +33 +114 +41 +114 +48 +33 +36
‘Moderate’ chol and Type 1 diab +251 +319 +262 +319 +264 +319
‘Moderate’ chol and Type 2 diab +65 +132 +75 +132 +77 +132
‘Moderate’ chol and ‘High normal’ b.p. +11 +69 +18 +69 +69 +11 +12
‘High normal’ b.p. and Type 1 diab +255 +326 +266 +267 +326 +326
‘High normal’ b.p. and Type 2 diab +68 +139 +80 +81 +139 +139
‘H’tension Stage I’ +43 +131 +53 +57 +131 +43 +45
‘High’ chol and Type 1 diab +290 +396 +301 +396 +309 +396
‘High’ chol and Type 2 diab +103 +209 +114 +209 +123 +209
‘High’ chol and ‘High normal’ b.p. +44 +135 +51 +135 +135 +44 +47
‘High normal’ b.p., ‘Moderate’ chol, Type 1 diab +260 +336 +272 +336 +336 +336
‘High normal’ b.p., ‘Moderate’ chol, Type 2 diab +74 +150 +85 +150 +150 +150
‘H’tension Stage I’ and ‘Moderate’ chol +49 +143 +59 +143 +143 +49 +52
‘H’tension Stage I’ and Type 1 diab +303 +417 +317 +322 +417 +417
‘H’tension Stage I’ and Type 2 diab +116 +230 +130 +135 +230 +230
‘H’tension Stage II-III’ +97 +223 +124 +118 +223 +97 +101
‘High’ chol, ‘High normal’ b.p., Type 1 diab +304 +422 +315 +422 +422 +422
‘High’ chol, ‘High normal’ b.p., Type 2 diab +117 +236 +128 +236 +236 +236
‘High’ chol and ‘H’tension Stage I’ +103 +251 +113 +251 +251 +104 +108
‘H’tension Stage I’, ‘Moderate’ chol and Type 1 diab +311 +433 +325 +433 +433 +433
‘H’tension Stage I’, ‘Moderate’ chol and Type 2 diab +124 +247 +139 +247 +247 +247
‘H’tension Stage II-III’ and ‘Moderate’ chol +106 +240 +133 +240 +240 +106 +110
‘H’tension Stage II-III’ and Type 1 diab +376 +540 +415 +403 +540 +540
‘H’tension Stage II-III’ and Type 2 diab +189 +353 +228 +216 +353 +353
‘H’tension Stage I’, and ‘High’ chol and Type 1 diab +381 +574 +396 +574 +574 +574
‘H’tension Stage I’, and ‘High’ chol and Type 2 diab +195 +387 +209 +387 +387 +387
‘H’tension Stage II-III’ and ‘High’ chol +183 +395 +210 +395 +395 +184 +189
‘H’tension Stage II-III’, ‘Moderate’ chol, Type 1 diab +388 +562 +426 +562 +562 +562
‘H’tension Stage II-III’, ‘Moderate’ chol, Type 2 diab +201 +376 +240 +376 +376 +376
‘H’tension Stage II-III’, ‘High’ chol and Type 1 diab +489 +764 +527 +764 +764 +764
‘H’tension Stage II-III’, ‘High’ chol and Type 2 diab +302 +577 +341 +577 +577 +577

chol = cholesterol, b.p.= blood pressure, H’tension = Hypertension, diab = diabetes
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Table 5.126: Premium ratings for CI cover of £1 for non-smoking males with ‘normal’
BMI aged 35 at entry with policy term 10 years, under hypothetical assumptions of
genetic influence increasing the incidence of CHD and stroke 5×.

Premium rating factors with 5×
the incidence rate of

Risk factors none CHD Stroke CHD modified by the presence of
Type 1 Type 2

chol bp diab diab
% % % % % % %

No risk factors 0 +192 +30 +32 +35 +1 +6
‘Moderate’ chol +4 +210 +33 +210 +42 +4 +10
Type 1 diab +247 +497 +290 +287 +292 +497
Type 2 diab +60 +311 +103 +101 +106 +311
‘High normal’ b.p. +6 +223 +37 +43 +223 +7 +13
‘High’ chol +33 +357 +63 +357 +92 +34 +43
‘Moderate’ chol and Type 1 diab +251 +519 +295 +519 +301 +519
‘Moderate’ chol and Type 2 diab +65 +333 +108 +333 +114 +333
‘Moderate’ chol and ‘High normal’ b.p. +11 +243 +41 +243 +243 +11 +18
‘High normal’ b.p. and Type 1 diab +255 +536 +300 +302 +536 +536
‘High normal’ b.p. and Type 2 diab +68 +350 +114 +116 +350 +350
‘H’tension Stage I’ +43 +393 +82 +100 +393 +44 +53
‘High’ chol and Type 1 diab +290 +711 +333 +711 +364 +711
‘High’ chol and Type 2 diab +103 +525 +147 +525 +178 +525
‘High’ chol and ‘High normal’ b.p. +44 +407 +75 +407 +407 +45 +55
‘High normal’ b.p., ‘Moderate’ chol, Type 1 diab +260 +561 +305 +561 +561 +561
‘High normal’ b.p., ‘Moderate’ chol, Type 2 diab +74 +375 +119 +375 +375 +375
‘H’tension Stage I’ and ‘Moderate’ chol +49 +424 +89 +424 +424 +50 +60
‘H’tension Stage I’ and Type 1 diab +303 +758 +360 +376 +758 +758
‘H’tension Stage I’ and Type 2 diab +116 +572 +174 +190 +572 +572
‘H’tension Stage II-III’ +97 +597 +203 +176 +597 +98 +111
‘High’ chol, ‘High normal’ b.p., Type 1 diab +304 +774 +349 +774 +774 +774
‘High’ chol, ‘High normal’ b.p., Type 2 diab +117 +588 +162 +588 +588 +588
‘High’ chol and ‘H’tension Stage I’ +103 +691 +143 +691 +691 +105 +120
‘H’tension Stage I’, ‘Moderate’ chol and Type 1 diab +311 +797 +369 +797 +797 +797
‘H’tension Stage I’, ‘Moderate’ chol and Type 2 diab +124 +611 +182 +611 +611 +611
‘H’tension Stage II-III’ and ‘Moderate’ chol +106 +640 +212 +640 +640 +107 +121
‘H’tension Stage II-III’ and Type 1 diab +376 +1027 +531 +477 +1027 +1027
‘H’tension Stage II-III’ and Type 2 diab +189 +840 +344 +291 +840 +840
‘H’tension Stage I’, and ‘High’ chol and Type 1 diab +381 +1144 +439 +1144 +1144 +1144
‘H’tension Stage I’, and ‘High’ chol and Type 2 diab +195 +958 +252 +958 +958 +958
‘H’tension Stage II-III’ and ‘High’ chol +183 +1024 +289 +1024 +1024 +185 +206
‘H’tension Stage II-III’, ‘Moderate’ chol, Type 1 diab +388 +1080 +542 +1080 +1080 +1080
‘H’tension Stage II-III’, ‘Moderate’ chol, Type 2 diab +201 +894 +356 +894 +894 +894
‘H’tension Stage II-III’, ‘High’ chol and Type 1 diab +489 +1580 +643 +1580 +1580 +1580
‘H’tension Stage II-III’, ‘High’ chol and Type 2 diab +302 +1394 +456 +1394 +1394 +1394

chol = cholesterol, b.p.= blood pressure, H’tension = Hypertension, diab = diabetes
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Table 5.127: Premium ratings for CI cover of £1 for non-smoking males with ‘normal’
BMI aged 35 at entry with policy term 10 years, under hypothetical assumptions of
genetic influence increasing the incidence of CHD and stroke 10×.

Premium rating factors with 10×
the incidence rate of

Risk factors none CHD Stroke CHD modified by the presence of
Type 1 Type 2

chol bp diab diab
% % % % % % %

No risk factors 0 +432 +67 +70 +78 +1 +13
‘Moderate’ chol +4 +465 +70 +465 +88 +5 +17
Type 1 diab +247 +808 +344 +336 +345 +808
Type 2 diab +60 +621 +158 +150 +159 +621
‘High normal’ b.p. +6 +490 +76 +87 +490 +8 +21
‘High’ chol +33 +758 +100 +758 +160 +35 +53
‘Moderate’ chol and Type 1 diab +251 +850 +349 +850 +358 +850
‘Moderate’ chol and Type 2 diab +65 +664 +162 +664 +173 +664
‘Moderate’ chol and ‘High normal’ b.p. +11 +528 +80 +528 +528 +12 +26
‘High normal’ b.p. and Type 1 diab +255 +881 +356 +357 +881 +881
‘High normal’ b.p. and Type 2 diab +68 +695 +170 +171 +695 +695
‘H’tension Stage I’ +43 +825 +132 +167 +825 +45 +65
‘High’ chol and Type 1 diab +290 +1232 +387 +1232 +449 +1232
‘High’ chol and Type 2 diab +103 +1045 +201 +1045 +263 +1045
‘High’ chol and ‘High normal’ b.p. +44 +851 +113 +851 +851 +46 +67
‘High normal’ b.p., ‘Moderate’ chol, Type 1 diab +260 +929 +362 +929 +929 +929
‘High normal’ b.p., ‘Moderate’ chol, Type 2 diab +74 +743 +175 +743 +743 +743
‘H’tension Stage I’ and ‘Moderate’ chol +49 +883 +138 +883 +883 +51 +73
‘H’tension Stage I’ and Type 1 diab +303 +1317 +432 +458 +1317 +1317
‘H’tension Stage I’ and Type 2 diab +116 +1131 +246 +273 +1131 +1131
‘H’tension Stage II-III’ +97 +1214 +334 +265 +1214 +100 +126
‘High’ chol, ‘High normal’ b.p., Type 1 diab +304 +1347 +405 +1347 +1347 +1347
‘High’ chol, ‘High normal’ b.p., Type 2 diab +117 +1162 +218 +1162 +1162 +1162
‘High’ chol and ‘H’tension Stage I’ +103 +1411 +192 +1411 +1411 +106 +137
‘H’tension Stage I’, ‘Moderate’ chol and Type 1 diab +311 +1389 +440 +1389 +1389 +1389
‘H’tension Stage I’, ‘Moderate’ chol and Type 2 diab +124 +1204 +254 +1204 +1204 +1204
‘H’tension Stage II-III’ and ‘Moderate’ chol +106 +1292 +343 +1292 +1292 +109 +138
‘H’tension Stage II-III’ and Type 1 diab +376 +1827 +723 +585 +1827 +1827
‘H’tension Stage II-III’ and Type 2 diab +189 +1640 +537 +400 +1640 +1640
‘H’tension Stage I’, and ‘High’ chol and Type 1 diab +381 +2074 +510 +2074 +2074 +2074
‘H’tension Stage I’, and ‘High’ chol and Type 2 diab +195 +1888 +324 +1888 +1888 +1888
‘H’tension Stage II-III’ and ‘High’ chol +183 +2052 +420 +2052 +2052 +187 +228
‘H’tension Stage II-III’, ‘Moderate’ chol, Type 1 diab +388 +1922 +734 +1922 +1922 +1922
‘H’tension Stage II-III’, ‘Moderate’ chol, Type 2 diab +201 +1736 +548 +1736 +1736 +1736
‘H’tension Stage II-III’, ‘High’ chol and Type 1 diab +489 +2911 +834 +2911 +2911 +2911
‘H’tension Stage II-III’, ‘High’ chol and Type 2 diab +302 +2725 +648 +2725 +2725 +2725

chol = cholesterol, b.p.= blood pressure, H’tension = Hypertension, diab = diabetes
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Table 5.128: Premium ratings for CI cover of £1 for non-smoking males with ‘normal’
BMI aged 35 at entry with policy term 10 years, under hypothetical assumptions of
genetic influence increasing the incidence of CHD and stroke 20×.

Premium rating factors with 20×
the incidence rate of

Risk factors none CHD Stroke CHD modified by the presence of
Type 1 Type 2

chol bp diab diab
% % % % % % %

No risk factors 0 +905 +140 +141 +156 +2 +25
‘Moderate’ chol +4 +967 +144 +967 +173 +6 +30
Type 1 diab +247 +1421 +452 +423 +442 +1421
Type 2 diab +60 +1235 +266 +238 +257 +1235
‘High normal’ b.p. +6 +1013 +152 +167 +1013 +9 +35
‘High’ chol +33 +1548 +173 +1548 +280 +37 +72
‘Moderate’ chol and Type 1 diab +251 +1498 +456 +1498 +462 +1498
‘Moderate’ chol and Type 2 diab +65 +1313 +270 +1313 +277 +1313
‘Moderate’ chol and ‘High normal’ b.p. +11 +1082 +157 +1082 +1082 +13 +41
‘High normal’ b.p. and Type 1 diab +255 +1555 +468 +455 +1555 +1555
‘High normal’ b.p. and Type 2 diab +68 +1369 +282 +270 +1369 +1369
‘H’tension Stage I’ +43 +1671 +229 +283 +1671 +46 +84
‘High’ chol and Type 1 diab +290 +2253 +495 +2253 +593 +2253
‘High’ chol and Type 2 diab +103 +2067 +308 +2067 +409 +2067
‘High’ chol and ‘High normal’ b.p. +44 +1712 +189 +1712 +1712 +48 +87
‘High normal’ b.p., ‘Moderate’ chol, Type 1 diab +260 +1639 +473 +1639 +1639 +1639
‘High normal’ b.p., ‘Moderate’ chol, Type 2 diab +74 +1455 +287 +1455 +1455 +1455
‘H’tension Stage I’ and ‘Moderate’ chol +49 +1772 +236 +1772 +1772 +53 +94
‘H’tension Stage I’ and Type 1 diab +303 +2407 +573 +598 +2407 +2407
‘H’tension Stage I’ and Type 2 diab +116 +2221 +387 +413 +2221 +2221
‘H’tension Stage II-III’ +97 +2422 +595 +414 +2422 +102 +151
‘High’ chol, ‘High normal’ b.p., Type 1 diab +304 +2452 +516 +2452 +2452 +2452
‘High’ chol, ‘High normal’ b.p., Type 2 diab +117 +2267 +330 +2267 +2267 +2267
‘High’ chol and ‘H’tension Stage I’ +103 +2804 +289 +2804 +2804 +109 +164
‘H’tension Stage I’, ‘Moderate’ chol and Type 1 diab +311 +2529 +581 +2529 +2529 +2529
‘H’tension Stage I’, ‘Moderate’ chol and Type 2 diab +124 +2344 +395 +2344 +2344 +2344
‘H’tension Stage II-III’ and ‘Moderate’ chol +106 +2554 +604 +2554 +2554 +111 +163
‘H’tension Stage II-III’ and Type 1 diab +376 +3386 +1102 +759 +3386 +3386
‘H’tension Stage II-III’ and Type 2 diab +189 +3200 +916 +575 +3200 +3200
‘H’tension Stage I’, and ‘High’ chol and Type 1 diab +381 +3862 +650 +3862 +3862 +3862
‘H’tension Stage I’, and ‘High’ chol and Type 2 diab +195 +3677 +464 +3677 +3677 +3677
‘H’tension Stage II-III’ and ‘High’ chol +183 +4048 +680 +4048 +4048 +190 +259
‘H’tension Stage II-III’, ‘Moderate’ chol, Type 1 diab +388 +3541 +1112 +3541 +3541 +3541
‘H’tension Stage II-III’, ‘Moderate’ chol, Type 2 diab +201 +3356 +927 +3356 +3356 +3356
‘H’tension Stage II-III’, ‘High’ chol and Type 1 diab +489 +5480 +1212 +5480 +5480 +5480
‘H’tension Stage II-III’, ‘High’ chol and Type 2 diab +302 +5293 +1026 +5293 +5293 +5293

chol = cholesterol, b.p.= blood pressure, H’tension = Hypertension, diab = diabetes
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Table 5.129: Premium ratings for CI cover of £1 for non-smoking males with ‘normal’
BMI aged 35 at entry with policy term 10 years, under hypothetical assumptions of
genetic influence increasing the incidence of CHD and stroke 50×.

Premium rating factors with 50×
the incidence rate of

Risk factors none CHD Stroke CHD modified by the presence of
Type 1 Type 2

chol bp diab diab
% % % % % % %

No risk factors 0 +2288 +360 +317 +351 +5 +54
‘Moderate’ chol +4 +2416 +364 +2416 +378 +9 +61
Type 1 diab +247 +3206 +772 +631 +671 +3206
Type 2 diab +60 +3020 +586 +446 +487 +3020
‘High normal’ b.p. +6 +2506 +380 +359 +2506 +12 +67
‘High’ chol +33 +3829 +393 +3829 +545 +40 +110
‘Moderate’ chol and Type 1 diab +251 +3356 +776 +3356 +700 +3356
‘Moderate’ chol and Type 2 diab +65 +3172 +591 +3172 +517 +3172
‘Moderate’ chol and ‘High normal’ b.p. +11 +2641 +384 +2641 +2641 +16 +74
‘High normal’ b.p. and Type 1 diab +255 +3462 +798 +677 +3462 +3462
‘High normal’ b.p. and Type 2 diab +68 +3278 +613 +493 +3278 +3278
‘H’tension Stage I’ +43 +4080 +514 +534 +4080 +50 +124
‘High’ chol and Type 1 diab +290 +5188 +814 +5188 +889 +5188
‘High’ chol and Type 2 diab +103 +5002 +629 +5002 +706 +5002
‘High’ chol and ‘High normal’ b.p. +44 +4126 +417 +4126 +4126 +51 +127
‘High normal’ b.p., ‘Moderate’ chol, Type 1 diab +260 +3618 +803 +3618 +3618 +3618
‘High normal’ b.p., ‘Moderate’ chol, Type 2 diab +74 +3435 +618 +3435 +3435 +3435
‘H’tension Stage I’ and ‘Moderate’ chol +49 +4261 +520 +4261 +4261 +57 +134
‘H’tension Stage I’ and Type 1 diab +303 +5489 +979 +874 +5489 +5489
‘H’tension Stage I’ and Type 2 diab +116 +5304 +795 +691 +5304 +5304
‘H’tension Stage II-III’ +97 +5874 +1360 +701 +5874 +106 +193
‘High’ chol, ‘High normal’ b.p., Type 1 diab +304 +5521 +846 +5521 +5521 +5521
‘High’ chol, ‘High normal’ b.p., Type 2 diab +117 +5337 +660 +5337 +5337 +5337
‘High’ chol and ‘H’tension Stage I’ +103 +6708 +572 +6708 +6708 +112 +207
‘H’tension Stage I’, ‘Moderate’ chol and Type 1 diab +311 +5690 +987 +5690 +5690 +5690
‘H’tension Stage I’, ‘Moderate’ chol and Type 2 diab +124 +5506 +803 +5506 +5506 +5506
‘H’tension Stage II-III’ and ‘Moderate’ chol +106 +6088 +1368 +6088 +6088 +115 +206
‘H’tension Stage II-III’ and Type 1 diab +376 +7818 +2203 +1061 +7818 +7818
‘H’tension Stage II-III’ and Type 2 diab +189 +7630 +2020 +878 +7630 +7630
‘H’tension Stage I’, and ‘High’ chol and Type 1 diab +381 +8851 +1055 +8851 +8851 +8851
‘H’tension Stage I’, and ‘High’ chol and Type 2 diab +195 +8663 +870 +8663 +8663 +8663
‘H’tension Stage II-III’ and ‘High’ chol +183 +9682 +1443 +9682 +9682 +194 +301
‘H’tension Stage II-III’, ‘Moderate’ chol, Type 1 diab +388 +8050 +2213 +8050 +8050 +8050
‘H’tension Stage II-III’, ‘Moderate’ chol, Type 2 diab +201 +7863 +2030 +7863 +7863 +7863
‘H’tension Stage II-III’, ‘High’ chol and Type 1 diab +489 +12732 +2309 +12732 +12732 +12732
‘H’tension Stage II-III’, ‘High’ chol and Type 2 diab +302 +12539 +2126 +12539 +12539 +12539

chol = cholesterol, b.p.= blood pressure, H’tension = Hypertension, diab = diabetes

257



Table 5.130: Premium ratings for CI cover of £1 for non-smoking males with ‘normal’
BMI aged 35 at entry with policy term 30 years, under hypothetical assumptions of
genetic influence increasing the incidence rate of CHD and stroke 5×.

Premium rating factors with 5×
the incidence rate of

Risk factors none CHD Stroke CHD modified by the presence of
Type 1 Type 2

chol bp diab diab
% % % % % % %

No risk factors 0 +135 +34 +53 +63 +1 +14
‘Moderate’ chol +5 +156 +39 +156 +76 +6 +21
Type 1 diab +117 +283 +162 +178 +189 +283
Type 2 diab +33 +201 +79 +96 +108 +201
‘High normal’ b.p. +11 +172 +52 +75 +172 +12 +28
‘High’ chol +21 +232 +55 +232 +112 +23 +41
‘Moderate’ chol and Type 1 diab +123 +307 +168 +307 +204 +307
‘Moderate’ chol and Type 2 diab +39 +226 +85 +226 +123 +226
‘Moderate’ chol and ‘High normal’ b.p. +17 +197 +58 +197 +197 +19 +36
‘High normal’ b.p. and Type 1 diab +130 +326 +183 +203 +326 +326
‘High normal’ b.p. and Type 2 diab +46 +245 +101 +122 +245 +245
‘H’tension Stage I’ +34 +263 +91 +117 +263 +36 +55
‘High’ chol and Type 1 diab +143 +403 +188 +403 +247 +403
‘High’ chol and Type 2 diab +60 +322 +105 +322 +166 +322
‘High’ chol and ‘High normal’ b.p. +37 +284 +77 +284 +284 +39 +60
‘High normal’ b.p., ‘Moderate’ chol, Type 1 diab +137 +354 +190 +354 +354 +354
‘High normal’ b.p., ‘Moderate’ chol, Type 2 diab +54 +274 +108 +274 +274 +274
‘H’tension Stage I’ and ‘Moderate’ chol +43 +295 +99 +295 +295 +45 +66
‘H’tension Stage I’ and Type 1 diab +160 +441 +233 +254 +441 +441
‘H’tension Stage I’ and Type 2 diab +77 +360 +152 +173 +360 +360
‘H’tension Stage II-III’ +65 +363 +167 +163 +363 +68 +90
‘High’ chol, ‘High normal’ b.p., Type 1 diab +162 +462 +213 +462 +462 +462
‘High’ chol, ‘High normal’ b.p., Type 2 diab +79 +383 +132 +383 +383 +383
‘High’ chol and ‘H’tension Stage I’ +72 +426 +126 +426 +426 +74 +100
‘H’tension Stage I’, ‘Moderate’ chol and Type 1 diab +170 +477 +242 +477 +477 +477
‘H’tension Stage I’, ‘Moderate’ chol and Type 2 diab +87 +397 +161 +397 +397 +397
‘H’tension Stage II-III’ and ‘Moderate’ chol +76 +401 +176 +401 +401 +78 +102
‘H’tension Stage II-III’ and Type 1 diab +201 +569 +335 +312 +569 +569
‘H’tension Stage II-III’ and Type 2 diab +118 +489 +255 +232 +489 +489
‘H’tension Stage I’, and ‘High’ chol and Type 1 diab +207 +642 +276 +642 +642 +642
‘H’tension Stage I’, and ‘High’ chol and Type 2 diab +124 +562 +196 +562 +562 +562
‘H’tension Stage II-III’ and ‘High’ chol +115 +580 +213 +580 +580 +117 +146
‘H’tension Stage II-III’, ‘Moderate’ chol, Type 1 diab +213 +612 +346 +612 +612 +612
‘H’tension Stage II-III’, ‘Moderate’ chol, Type 2 diab +131 +532 +266 +532 +532 +532
‘H’tension Stage II-III’, ‘High’ chol and Type 1 diab +263 +842 +392 +842 +842 +842
‘H’tension Stage II-III’, ‘High’ chol and Type 2 diab +180 +762 +312 +762 +762 +762

chol = cholesterol, b.p.= blood pressure, H’tension = Hypertension, diab = diabetes
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known. Therefore for a life with similar other risk factors, no diabetes but with a

mutation associated with diabetes should have a rating not exceeding the one for a

life who already has diabetes. The significance of any mutation was seen to depend

on:

(a) the risk multiplier associated with the mutation,

(b) the term of policy, and

(c) age at entry.

The results showed a greater impact on ratings for mutations associated with

hypertension than with hypercholesterolaemia or diabetes.

Ratings based on hypothetical genetic influence which increased the direct inci-

dence of CHD were high even for moderate values of the risk multiplier. The ratings

associated with mutations for stroke were much less than those for CHD.

The ratings associated with higher direct incidence of CHD and stroke are much

higher than those associated with higher incidence of the risk factors. Comparing

ratings in Tables 5.125 and 5.122 shows that a risk multiplier of 2 for the direct

incidence rates will lead to generally higher ratings than a risk multiplier of 10 for

the indirect incidence rates. This indicates that genetic mutations which influence

the direct risk of CHD or stroke, or those which modify the influence of risk factors

on CHD incidence, are likely to have more impact on insurance costs than mutations

which increase the risk of onset of the risk factors.

5.4.2 Potential for adverse selection

The results we have considered so far are ratings for lives with specified risk factors

in particular subpopulations in relation to the premium payable by non-smoking

males with normal BMI. In practice ratings would be relative to a premium payable

by a broader group of lives. Also in practice the ratings, and overall underwriting,

are derived with consideration of the possibilities of anti-selection. Therefore to

give more conclusive assessments on insurability of lives we need to consider the

following:

(a) The relative sizes of the subpopulations and states within subpopulations. This

influences the level of the standard premium and also the impact of anti-selection
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by lives in any of the states and subpopulations.

(b) The insurance buying behaviour of lives in the various states and subpopula-

tions.

To put this in context we note that for BCOC, in the absence of adverse selection,

mutation carriers could be insured at standard rates even with the high insurance

costs of mutation carriers shown in Table 3.48. We went on to conclude that under

modest forms of adverse selection, costs of insuring BRCA1 and BRCA2 mutation

carriers could be absorbed without large increases in the aggregate premiums. The

insurability, or not, of carriers of mutations associated with CHD and stroke depends

on the results of the interplay of factors in a model for adverse selection.

5.4.3 Ongoing assessment of the impact of genetic advances

on insurability

Our results on heart disease and stroke represent a first step to quantifying the

impact of genetics on insurance. We have shown that the insurance costs associated

with mutations that increase the risk of onset of risk factors can be significant. Even

more significant insurance costs are likely for mutations which have a direct impact

on CHD and stroke incidence. The insurance industry should regularly monitor

developments in the genetics of cardiovascular diseases and we feel any new results

can be fed into our model to assess the implications on insurance costs.

Using realistic assumptions and various models of anti-selection by mutation

carriers, our model can give indications on whether some mutation carriers can

be insured, with limits on sum assured values, as the case is for BCOC.

5.4.4 Application to insurance underwriting

The transition intensities used in the model are based on population based studies.

In Section 4.8.1 we showed that the model produces overall incidence rates of CHD

and stroke which are comparable with current population incidence rates. As it is

for permanent assurances in life insurance, we would expect the CI claim causes

experience for insured lives to be lighter than for the general population. In the
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analysis of the CI claims experience for 1991–1997, Dinani et al. (2000) state that

they observe temporary initial selection but it was not possible to gauge the level of

the ultimate rates. This was due to little data being available at longer durations. A

crude approach to adjusting the population CI incidence rates in our model would

be to assume that morbidity differentials between insured lives and the general

population are the same as the mortality differentials. A more demanding approach

involves parameterising our model for each social-class. This requires more detailed

data than we had for this study. With social-class specific incidence rates, we can

then use assumptions about the social-class composition of the insured population,

which would be weighted in favour of the higher social classes in the population.

The model, without any genetic component, can then be used to construct an

underwriting manual or check ratings that are currently being used. We feel this

may be an important use with the advent of evidence based underwriting.
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Chapter 6

Conclusions and further research

This thesis takes further the results of Macdonald (1997). We have considered CI as

a specific insurance product which insures against morbidity risk as opposed to mor-

tality. This work also considers the genetics of specific disorders. In Chapters 2 and

3 we assessed the impact of information about the known gene mutations associated

with breast and ovarian cancer. In Chapters 4 and 5 we looked at the importance

of information on hypothetical genes associated with heart disease, stroke and their

main risk factors hypertension, hypercholesterolaemia and diabetes. In both the

investigations for BCOC and for CHD and stroke, the assessment of the impact of

gene mutations was carried out within the framework of a completely specified CI

policy. This means that we took into account the background incidence of all the

main causes of CI claim, as well as mortality. We also took into account the risk

factors that are already used in the underwriting of lives for CI policies. This al-

lowed us to give more realistic results on the effect of genetic information on current

CI underwriting.

6.1 Breast and Ovarian Cancer

6.1.1 Conclusions

The basis of the BCOC work was the construction of a family history model specific

to the genotype of the applicant. This enabled us to calculate the carrier proba-

bilities associated with given family histories. The family histories represent the
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information that may be available to insurance underwriters and the carrier proba-

bilities link this information to the genetic status of the applicant.

A model for CI insurance was also developed which took into account the inci-

dence of BCOC, other cancers, heart disease, stroke and other minor causes of CI

claims. Only BCOC incidences were assumed to depend on the genetic status at

BRCA1 and BRCA2.

Using the model for CI insurance and the results of the family history model, we

assessed the insurance costs associated with the gene mutations assuming that we

have:

(a) full information on the applicant’s relatives, their ages and their history of

BCOC, or

(b) partial or summarised information on relatives and their history of BCOC.

Full information is unlikely to be available at underwriting for CI policies.

Based on an adverse selection model which considers the rate of genetic testing

in the population and associated rates of insurance purchase, we managed to spec-

ify some conditions associated with the costs of adverse selection to the insurance

industry. If the high penetrance of BRCA1 and BRCA2 mutations associated with

members of some high risk families with mutations at these loci are applicable to

all mutation carriers then the costs of adverse selection may be significant. The

purchase of very high sums assured by mutation carriers and a small size for the CI

market also contribute to high costs of adverse selection. In the absence of these

conditions, it is unlikely that antiselection, based on the knowledge of genetic status

of BRCA1 and BRCA2, will result in substantial increases in the cost of insurance

for non-mutation carriers.

6.1.2 Contribution

We provide a family history model for the evaluation of carrier probabilities with the

family history defined in terms of categories used in insurance underwriting. This

gives the probability that an applicant for CI insurance is a mutation carrier using

family history information typically available to underwriters.
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The work then quantifies the costs of CI insurance for individuals with and with-

out mutations at BRCA1 and BRCA2. These costs are derived based on incidence

rates of BCOC from studies of actual families with these mutations and from na-

tional statistics based on large population data sets. It establishes that the cost of

CI insurance for an individual with a BRCA1 or BRCA2 mutation is much higher

than the costs for lives without mutations even when the incidence of other main

CI claim causes like heart disease and stroke does not depend on genetic status.

We confirm that the results of Macdonald (1997) also apply to adverse selection

associated with the specific gene mutations BRCA1 and BRCA2 and CI insurance.

These results, stated in the previous section, are that adverse selection is unlikely

to cause a substantial increase to the insurance costs unless the market is small and

mutation carriers take out very high sums assured.

The thesis gives the level of change in insurance costs that is associated with

a fall in the penetrance estimates of BRCA1 and BRCA2 from the level initially

given in epidemiology publications. The effect of using different values for BRCA1

or BRCA2 mutation frequencies in the population is also quantified.

6.1.3 Further research

It was assumed that lives with BRCA1 mutations all have the same risk of BCOC

and that lives with BRCA2 have the same risk of BCOC. There is a need to assess

the extent to which the risk of BCOC in mutation carriers differs between members

of high risk families and those who are not from such families. The developments

in genetics regarding this heterogeneity of risk associated with different mutations

need to be monitored so that when this difference in risk has been quantified, we

can assess how the impact on insurance costs differ from our current results.

We need to extend the CI model to a life insurance model. We have stated before

that this requires the estimation of the incidence of death in lives with BCOC. The

incidence of deaths in these lives may depend more on the duration since onset of

disease than on the age of the life. We have identified the U.K. data available on

cancer registrations as ideal for such work.
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Both the CI and possible life model will have been parameterised using population

data. The incidence of CI and of death in insured lives may be significantly different

than for the general population. It will be useful, mainly for purposes of using these

models as tools for pricing CI and life insurance, for the incidence rates of CI and

death to be adjusted to reflect the level in respect of the insured lives. The results

that come from the analysis of claims of policies that have already been sold may

be very useful in assessing the need and the possible level of any adjustment of

the population rates to apply to insured lives. We note that for the purposes of

deriving ratings only (differentials in risk between different groups of lives), the use

of population rates should be reasonably sufficient.

6.2 CHD and Stroke

6.2.1 Conclusions and contribution

Models for CHD and stroke in the literature take into account the initial profile of

risk factors. Given that they are parameterised from data from lives who moved

through various levels of the risk factors it means that these profiles implicitly take

into account progression through risk factors enroute to CHD or stroke. Our work

represents an advance on these models in that it explicitly models the intermediate

transitions through the risk factors. This was necessitated by the need to make

hypothetical assumptions about gene mutations acting on risk factors. Our model

produced remarkably similar results to models which do not model risk factors ex-

plicitly, with the added advantage of being able to assess the effect of changing the

incidence of one or more risk factors.

We applied our CHD and stroke model within a CI insurance context to produce

insurance costs and premium ratings associated with specific combinations of risk

factors. The ratings were in reasonable agreement with the underwriting guidelines

used in industry. Our feeling is that the model can have an important role in deriving

evidence based rating guidelines.

Due to the virtual unavailability of epidemiological genetics associated with CHD

and stroke we assumed hypothetical mutations existed which conferred extra CHD
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and stroke risk in different ways. We concluded that mutations that increase risk

of CHD and stroke through risk factors are not likely to add much knowledge to

current underwriting. We also note that the impact on insurance costs of mutations

acting in this way is generally less than that of mutations which increase the direct

incidence of CHD and stroke.

The penetrance of mutations will strongly determine the insurance costs espe-

cially for the mutations that impact on direct CHD and stroke incidence. Assuming

that the insurability of an individual depends on their rating falling below +200,

mutations increasing the incidence of risk factors by up to 50 times more than in

non-mutation carriers rarely resulted in a change from acceptance to declinature.

However the actual changes in the ratings were significant.

We provided a model that can be used to calculate the effect of changes in the

incidence of any of the CHD and stroke risk factors on the incidence of the CHD and

stroke endpoints themselves. We used the model to assess the impact of genetics on

insurance but it can be used for a wide range of purposes like assessing the impact

of prevention of these risk factors on the burden from cardiovascular disorders to a

country’s health system.

6.2.2 Further research

We discussed the need to develop an adverse selection model to derive more infor-

mative results on the level of risk due to mutations that can be considered insurable.

This depends on the assumed frequencies of mutations. Our discussion on the genet-

ics of CHD and stroke point to the expectation of common, rather than rare, genes

being associated with quantitative traits like the risk factors. It is maybe that if the

mutation frequencies of any assumed mutations are high then even low penetrance

assumptions could lead to large changes to insurance costs for the whole insured

portfolio.

Therefore the development of an adverse selection model represents an important

area of further research. However it is also important that research is done to validate

the CHD and stroke models we have developed. Data from other epidemiological

studies can be used. However, ideally, data based on lives with CI policies should
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be used to test the adequacy of the model for an insured population.

In this work it was appropriate to assume that the incidence of CHD and stroke

was dependent on the highest ever attained levels of blood pressure, cholesterol or

sugar. Should the current level of any of these risk factors be more informative than

the highest ever value, then we need to capture that in the modelling. This area

of possible future work requires modelling with allowance for reverse movements

between the risk factor states in Figures 4.29 and 5.47. The transition intensities

for the recoveries may depend more on duration of stay in the respective states than

on age at the time of recovery.

There is also a need to investigate the possibility of developing a family history

model along the lines of the BCOC model. This may be achieved by assuming

genotypes for an individual’s ancestors and using simulation techniques to generate

possible family structures down the generations. A distribution of family structures

could then be used with our model to produce family histories of risk factors, CHD

and stroke under some hypothetical genetic assumptions. The complications arising

from

(a) the presence of both males and females in the models, as compared to just

females in the BCOC model,

(b) the possibility of many genes interacting to influence heart disease, stroke and

the risk factors, and,

(c) the requirement to allow for environmental interactions

make the production of such a family history model a challenging task.

An extension of our model to a life insurance model is also an important future

research avenue. This requires the modelling of mortality after an CHD event or

stroke. This can be used to price the newer innovations on CI policies like the

buy-back facility.

267



Appendix A

BC cases and exposed to risk

Age Ec
x θx Age Ec

x θx Age Ec
x θx

0 1,011,690.00 0 30 1,178,881.75 204 60 794,161.25 2,379
1 1,007,439.00 0 31 1,140,228.75 209 61 796,665.25 2,466
2 1,000,323.50 0 32 1,105,038.50 262 62 790,732.50 2,549
3 993,375.50 1 33 1,079,453.75 357 63 784,631.75 2,536
4 982,266.75 0 34 1,052,151.00 354 64 783,470.00 2,475
5 967,111.00 0 35 1,025,611.50 441 65 785,757.25 2,050
6 951,458.75 0 36 1,009,771.00 469 66 787,182.75 1,935
7 936,434.00 0 37 1,003,210.00 586 67 790,462.75 1,985
8 927,823.75 0 38 1,001,309.25 647 68 803,726.50 2,103
9 928,874.25 0 39 1,004,259.00 764 69 826,768.75 2,166

10 932,159.75 1 40 1,016,538.00 823 70 823,753.00 2,170
11 924,175.25 0 41 1,046,196.00 957 71 763,647.50 2,048
12 895,039.75 0 42 1,095,710.25 1,077 72 666,853.75 1,748
13 861,801.00 0 43 1,135,768.75 1,308 73 599,288.00 1,544
14 848,424.25 0 44 1,122,718.00 1,499 74 593,720.00 1,610
15 863,719.00 0 45 1,059,394.75 1,638 75 617,812.25 1,707
16 898,706.75 2 46 991,211.75 1,557 76 629,417.50 1,760
17 943,879.00 2 47 948,682.50 1,595 77 618,263.50 1,729
18 1,000,169.25 5 48 906,960.75 1,613 78 590,059.50 1,732
19 1,059,026.00 3 49 857,112.50 1,559 79 554,722.75 1,515
20 1,106,592.25 7 50 823,039.50 1,824 80 520,476.00 1,555
21 1,135,454.50 12 51 817,325.00 1,822 81 487,730.25 1,454
22 1,156,750.50 8 52 823,652.00 1,806 82 451,147.75 1,435
23 1,182,455.75 23 53 823,601.50 1,973 83 412,025.00 1,214
24 1,210,055.00 32 54 812,805.00 1,939 84 371,299.25 1,193
25 1,236,764.50 39 55 797,528.25 1,957 85 334,412.00 1,090
26 1,255,464.25 54 56 782,367.75 1,968 86 290,556.50 1,015
27 1,257,690.25 103 57 771,297.75 2,098 87 249,016.00 872
28 1,243,613.50 120 58 772,157.25 2,160 88 210,844.00 735
29 1,215,676.00 154 59 783,484.75 2,358 89 177,182.75 662

Sources: O.N.S. (1999), O.P.C.S. (1990), O.P.C.S. (1991a), O.P.C.S. (1993a), O.P.C.S. (1994), and O.P.C.S. (1996)
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Appendix B

OC cases and exposed to risk

Age Ec
x θx Age Ec

x θx Age Ec
x θx

0 1,011,690.00 0 30 1,178,881.75 42 60 794,161.25 453
1 1,007,439.00 2 31 1,140,228.75 25 61 796,665.25 401
2 1,000,323.50 1 32 1,105,038.50 43 62 790,732.50 394
3 993,375.50 0 33 1,079,453.75 38 63 784,631.75 432
4 982,266.75 0 34 1,052,151.00 49 64 783,470.00 468
5 967,111.00 2 35 1,025,611.50 48 65 785,757.25 463
6 951,458.75 0 36 1,009,771.00 68 66 787,182.75 420
7 936,434.00 1 37 1,003,210.00 52 67 790,462.75 436
8 927,823.75 1 38 1,001,309.25 51 68 803,726.50 442
9 928,874.25 2 39 1,004,259.00 86 69 826,768.75 468

10 932,159.75 1 40 1,016,538.00 92 70 823,753.00 453
11 924,175.25 2 41 1,046,196.00 111 71 763,647.50 454
12 895,039.75 2 42 1,095,710.25 123 72 666,853.75 424
13 861,801.00 3 43 1,135,768.75 172 73 599,288.00 345
14 848,424.25 2 44 1,122,718.00 177 74 593,720.00 358
15 863,719.00 7 45 1,059,394.75 165 75 617,812.25 344
16 898,706.75 5 46 991,211.75 180 76 629,417.50 390
17 943,879.00 8 47 948,682.50 247 77 618,263.50 357
18 1,000,169.25 11 48 906,960.75 213 78 590,059.50 331
19 1,059,026.00 13 49 857,112.50 211 79 554,722.75 321
20 1,106,592.25 19 50 823,039.50 274 80 520,476.00 278
21 1,135,454.50 15 51 817,325.00 221 81 487,730.25 270
22 1,156,750.50 22 52 823,652.00 291 82 451,147.75 259
23 1,182,455.75 17 53 823,601.50 272 83 412,025.00 225
24 1,210,055.00 19 54 812,805.00 303 84 371,299.25 196
25 1,236,764.50 29 55 797,528.25 328 85 334,412.00 179
26 1,255,464.25 16 56 782,367.75 335 86 290,556.50 147
27 1,257,690.25 34 57 771,297.75 347 87 249,016.00 136
28 1,243,613.50 39 58 772,157.25 322 88 210,844.00 114
29 1,215,676.00 31 59 783,484.75 371 89 177,182.75 105

Sources: O.N.S. (1999), O.P.C.S. (1990), O.P.C.S. (1991a), O.P.C.S. (1993a), O.P.C.S. (1994), and O.P.C.S. (1996)
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Appendix C

Mortality adjustment data set

Age Deaths Age Deaths Age Deaths
Total BC OC Total BC OC Total BC OC

1 555 0 0 33 597 91 15 65 11,195 958 363
2 300 0 0 34 659 77 15 66 11,951 893 328
3 227 0 0 35 724 103 13 67 13,422 972 365
4 178 0 0 36 750 116 18 68 14,871 989 365
5 138 0 1 37 829 121 21 69 16,827 1,116 376
6 151 0 0 38 883 166 26 70 18,832 1,152 392
7 129 0 0 39 1,004 170 36 71 18,529 1,025 381
8 125 0 0 40 1,067 206 32 72 18,199 951 359
9 139 0 0 41 1,201 257 31 73 17,820 808 348

10 113 0 0 42 1,490 307 54 74 19,703 954 298
11 132 0 0 43 1,536 313 73 75 22,735 952 296
12 127 0 0 44 1,811 387 87 76 25,340 973 313
13 108 0 0 45 1,908 425 92 77 27,799 1,070 325
14 171 0 0 46 1,935 405 93 78 29,187 1,063 312
15 187 0 1 47 2,087 454 102 79 30,590 1,039 280
16 232 0 2 48 2,217 458 112 80 32,073 1,050 249
17 308 0 3 49 2,203 456 113 81 33,378 1,092 262
18 297 0 0 50 2,412 471 151 82 34,440 1,027 238
19 342 0 3 51 2,650 529 160 83 34,924 945 207
20 340 1 1 52 3,000 561 166 84 34,790 950 187
21 377 1 3 53 3,200 611 182 85 34,326 867 164
22 384 1 0 54 3,430 638 175 86 33,617 803 140
23 382 0 5 55 3,823 663 201 87 32,018 730 123
24 392 3 4 56 4,134 661 214 88 29,331 616 114
25 412 8 2 57 4,597 634 248 89 26,944 542 112
26 441 7 6 58 5,043 690 235 90 24,454 493 63
27 436 10 4 59 5,780 753 276 91 21,315 425 45
28 498 32 10 60 6,661 804 301 92 18,206 316 43
29 479 28 8 61 7,485 845 319 93 14,956 295 26
30 473 38 6 62 7,989 787 297 94 12,102 202 18
31 541 49 12 63 8,827 883 310 95 9,781 155 18
32 617 57 12 64 10,060 901 333 96 7,476 131 6

Sources: O.P.C.S. (1991b), O.P.C.S. (1993b), O.P.C.S. (1993c) and O.N.S. (1997a).
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Appendix D

‘Other cancers’ incidence data

Age Ec
x θx Age Ec

x θx Age Ec
x θx

0 1,011,690.00 0 30 1,178,881.75 511 60 794,161.25 3,573
1 1,007,439.00 162 31 1,140,228.75 505 61 796,665.25 3,929
2 1,000,323.50 185 32 1,105,038.50 581 62 790,732.50 4,155
3 993,375.50 146 33 1,079,453.75 595 63 784,631.75 4,468
4 982,266.75 124 34 1,052,151.00 612 64 783,470.00 4,810
5 967,111.00 111 35 1,025,611.50 607 65 785,757.25 5,053
6 951,458.75 84 36 1,009,771.00 698 66 787,182.75 5,360
7 936,434.00 70 37 1,003,210.00 696 67 790,462.75 5,797
8 927,823.75 63 38 1,001,309.25 768 68 803,726.50 6,276
9 928,874.25 70 39 1,004,259.00 781 69 826,768.75 6,771

10 932,159.75 61 40 1,016,538.00 839 70 823,753.00 7,187
11 924,175.25 69 41 1,046,196.00 967 71 763,647.50 6,788
12 895,039.75 81 42 1,095,710.25 1,096 72 666,853.75 6,180
13 861,801.00 69 43 1,135,768.75 1,190 73 599,288.00 5,585
14 848,424.25 80 44 1,122,718.00 1,393 74 593,720.00 5,992
15 863,719.00 76 45 1,059,394.75 1,343 75 617,812.25 6,381
16 898,706.75 116 46 991,211.75 1,380 76 629,417.50 6,877
17 943,879.00 129 47 948,682.50 1,405 77 618,263.50 6,900
18 1,000,169.25 141 48 906,960.75 1,473 78 590,059.50 7,101
19 1,059,026.00 155 49 857,112.50 1,457 79 554,722.75 6,619
20 1,106,592.25 206 50 823,039.50 1,566 80 520,476.00 6,505
21 1,135,454.50 215 51 817,325.00 1,721 81 487,730.25 6,289
22 1,156,750.50 223 52 823,652.00 1,923 82 451,147.75 6,075
23 1,182,455.75 260 53 823,601.50 2,024 83 412,025.00 5,677
24 1,210,055.00 301 54 812,805.00 2,199 84 371,299.25 5,142
25 1,236,764.50 311 55 797,528.25 2,291 85 334,412.00 4,749
26 1,255,464.25 362 56 782,367.75 2,512 86 290,556.50 4,161
27 1,257,690.25 381 57 771,297.75 2,635 87 249,016.00 3,720
28 1,243,613.50 457 58 772,157.25 2,860 88 210,844.00 3,179
29 1,215,676.00 455 59 783,484.75 3,196 89 177,182.75 2,629

Sources: O.N.S. (1999), O.P.C.S. (1990), O.P.C.S. (1991a), O.P.C.S. (1993a), O.P.C.S. (1994), and O.P.C.S. (1996)
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Appendix E

Cancer incidence data: Females

Age Ec
x θL

x θO
x Age Ec

x θL
x θO

x Age Ec
x θL

x θO
x

0 1,011,690.00 1 136 30 1,178,881.75 8 506 60 794,161.25 715 3,402
1 1,007,439.00 1 162 31 1,140,228.75 7 493 61 796,665.25 797 3,713
2 1,000,323.50 1 184 32 1,105,038.50 11 573 62 790,732.50 880 3,929
3 993,375.50 0 143 33 1,079,453.75 9 580 63 784,631.75 1,057 4,262
4 982,266.75 0 123 34 1,052,151.00 16 600 64 783,470.00 1,165 4,562
5 967,111.00 0 111 35 1,025,611.50 12 591 65 785,757.25 1,176 4,791
6 951,458.75 0 84 36 1,009,771.00 20 688 66 787,182.75 1,300 5,103
7 936,434.00 0 70 37 1,003,210.00 27 684 67 790,462.75 1,379 5,455
8 927,823.75 0 63 38 1,001,309.25 34 746 68 803,726.50 1,436 5,962
9 928,874.25 0 69 39 1,004,259.00 39 755 69 826,768.75 1,511 6,423

10 932,159.75 0 61 40 1,016,538.00 52 806 70 823,753.00 1,589 6,807
11 924,175.25 0 69 41 1,046,196.00 61 935 71 763,647.50 1,495 6,452
12 895,039.75 0 81 42 1,095,710.25 111 1,052 72 666,853.75 1,326 5,823
13 861,801.00 0 68 43 1,135,768.75 95 1,129 73 599,288.00 1,202 5,278
14 848,424.25 0 79 44 1,122,718.00 123 1,334 74 593,720.00 1,226 5,654
15 863,719.00 1 75 45 1,059,394.75 133 1,284 75 617,812.25 1,260 5,995
16 898,706.75 1 115 46 991,211.75 149 1,316 76 629,417.50 1,304 6,496
17 943,879.00 4 129 47 948,682.50 203 1,349 77 618,263.50 1,252 6,501
18 1,000,169.25 1 140 48 906,960.75 180 1,402 78 590,059.50 1,239 6,642
19 1,059,026.00 0 153 49 857,112.50 207 1,397 79 554,722.75 1,024 6,166
20 1,106,592.25 1 204 50 823,039.50 222 1,491 80 520,476.00 1,009 6,093
21 1,135,454.50 1 208 51 817,325.00 237 1,656 81 487,730.25 972 5,881
22 1,156,750.50 1 222 52 823,652.00 289 1,838 82 451,147.75 863 5,694
23 1,182,455.75 3 258 53 823,601.50 296 1,931 83 412,025.00 750 5,311
24 1,210,055.00 6 297 54 812,805.00 326 2,115 84 371,299.25 657 4,778
25 1,236,764.50 4 307 55 797,528.25 321 2,195 85 334,412.00 522 4,414
26 1,255,464.25 3 357 56 782,367.75 382 2,400 86 290,556.50 454 3,874
27 1,257,690.25 0 375 57 771,297.75 460 2,523 87 249,016.00 408 3,426
28 1,243,613.50 3 451 58 772,157.25 482 2,736 88 210,844.00 290 2,957
29 1,215,676.00 6 450 59 783,484.75 602 3,039 89 177,182.75 235 2,426

θL
x is Lung cancer exposed to risk θO

x is ‘Other’ cancers exposed to risk
Sources: O.N.S. (1999),O.P.C.S. (1990), O.P.C.S. (1991a), O.P.C.S. (1993a), O.P.C.S. (1994), and O.P.C.S. (1996)
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Appendix F

Cancer incidence data: Males

Age Ec
x θL

x θO
x Age Ec

x θL
x θO

x Age Ec
x θL

x θO
x

0 1,062,525 3 171 30 1,206,725 12 494 60 762,150 1,507 4,122
1 1,058,350 0 184 31 1,167,725 8 475 61 753,775 1,734 4,420
2 1,051,775 0 210 32 1,126,175 11 509 62 740,250 1,913 4,959
3 1,045,475 0 247 33 1,090,100 17 482 63 727,825 2,197 5,366
4 1,035,000 1 180 34 1,060,800 22 495 64 720,175 2,402 5,827
5 1,019,875 0 135 35 1,035,675 18 539 65 712,200 2,616 6,058
6 1,003,200 0 131 36 1,015,800 34 585 66 699,725 2,864 6,630
7 987,775 0 109 37 1,006,900 28 600 67 684,950 3,054 6,964
8 979,250 0 88 38 1,003,050 65 615 68 679,700 3,179 7,498
9 980,500 0 93 39 1,004,800 72 640 69 682,825 3,349 8,072

10 984,025 0 90 40 1,017,175 68 746 70 664,675 3,578 8,551
11 975,950 0 86 41 1,046,825 104 830 71 596,225 3,382 8,096
12 947,300 1 96 42 1,096,075 136 939 72 505,050 2,931 7,312
13 913,650 2 98 43 1,137,750 152 1,084 73 441,125 2,517 6,729
14 898,600 0 117 44 1,127,300 222 1,216 74 424,400 2,639 6,879
15 914,025 1 100 45 1,065,475 215 1,260 75 427,125 2,848 7,494
16 953,200 0 154 46 996,100 244 1,282 76 419,100 2,853 7,760
17 999,175 1 156 47 952,125 320 1,363 77 395,875 2,755 7,742
18 1,054,650 3 209 48 909,175 366 1,388 78 363,675 2,623 7,514
19 1,114,825 2 207 49 857,950 405 1,461 79 327,900 2,412 7,162
20 1,158,675 1 274 50 824,550 441 1,625 80 292,700 2,250 6,536
21 1,183,650 2 297 51 817,450 531 1,821 81 260,400 1,933 6,049
22 1,203,900 1 280 52 823,825 606 2,037 82 227,450 1,836 5,620
23 1,227,050 5 346 53 823,325 688 2,265 83 195,375 1,538 4,951
24 1,253,350 4 347 54 811,525 742 2,382 84 164,750 1,252 4,344
25 1,277,375 1 407 55 794,500 889 2,532 85 141,325 1,082 3,705
26 1,296,075 2 453 56 775,925 921 2,876 86 115,250 848 3,052
27 1,294,650 5 452 57 762,750 1,065 3,094 87 91,750 665 2,507
28 1,275,300 11 461 58 758,500 1,181 3,380 88 72,200 526 1,988
29 1,243,525 6 482 59 761,350 1,342 3,668

θL
x is Lung cancer exposed to risk θO

x is ‘Other’ cancers exposed to risk
Sources: O.N.S. (1999), O.P.C.S. (1991a), O.P.C.S. (1993a),O.P.C.S. (1994), and O.P.C.S. (1996)
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Appendix G

Mortality adjustment factors

To derive the appropriate mortality rates we adjust ELT15M or ELT15F using

equation (2.16). The crude adjustment factors are given by

φx =
θD

x

θELT15
x

where θD
x is the number of deaths, for lives aged x, in the ELT15 data which are

due to CHD or stroke as appropriate. θELT15
x is the total number of deaths for lives

aged x in the ELT15 data. The total number of deaths θELT15
x are given by O.N.S.

(1997a) but the number of deaths due to CHD or stroke, θD
x , is approximated using

the mortality statistics O.P.C.S. (1991b), O.P.C.S. (1993b), O.P.C.S. (1993c) for the

years 1990 to 1992. The data is shown in Tables G.131. The data is aggregated in

mostly five year age groups since the data from O.P.C.S. (1991b), O.P.C.S. (1993b),

O.P.C.S. (1993c) is aggregated in this way. The adjustment factors were smoothed,

using unweighted least squares, by the following functions:

For males:

φCHD(x) =


 exp(−9.4142 + 0.2008× x) : x ≤ 32.5

−1.479 + 7.400× 10−2 × x− 9.478× 10−4 × x2 + 3.734× 10−6 × x3 : x ≥ 38

with linear blending for 32.5 < x < 38,

φSTR(x) = 0.2274− 3.079× 10−2 × x + 1.555× 10−3 × x2 − 3.478× 10−5 × x3

+3.602× 10−7 × x4 − 1.392× 10−9 × x5

for x ≥ 20, and 0 otherwise.
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For females:

φCHD(x) = exp(−9.201 + 2.057× 10−1 × x− 1.337× 10−3 × x2),

and

φSTR(x) = 0.3306− 4.385× 10−2 × x + 2.310× 10−3 × x2

−5.439× 10−5 × x3 + 5.878× 10−7 × x4 − 2.341× 10−9 × x5

for x ≥ 20, and 0 otherwise.

Figure G.57 shows, for ages 30 to 85, the crude mortality adjustment factors

together with the smoothed adjustment factors as given by the equations above.
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 Males: Stroke.
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Females: CHD.
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Females: Stroke.
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Figure G.57: Crude and smoothed mortality adjustment factors.
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Table G.131: Mortality adjustment data for CHD and stroke.

(Sources: O.P.C.S. (1991b), O.P.C.S. (1993b), O.P.C.S. (1993c) and O.N.S. (1997a).)

Age range Middle age Total deaths CHD deaths Stroke deaths

Males
1 – 4 2.5 1,634 4 4
5 – 9 7 976 1 10

10 – 14 12 1,014 1 10
15 – 19 17 3,472 5 28
20 – 24 22 5,270 20 53
25 – 29 27 5,542 103 86
30 – 34 32 5,610 289 154
35 – 39 37 7,104 973 225
40 – 44 42 11,068 2,517 447
45 – 49 47 15,860 4,728 745
50 – 54 52 23,915 8,103 1,026
55 – 59 57 38,889 13,990 1,914
60 – 64 62 66,043 23,340 3,606
65 – 69 67 105,365 35,987 6,561
70 – 74 72 125,823 41,545 9,815
75 – 79 77 148,932 45,303 14,379
80 – 84 82 135,084 37,165 14,716
85 – 89 87 80,844 19,878 8,970
90 – 94 92 28,624 6,168 3,048

Females
1 – 4 2.5 1,260 1 8
5 – 9 7 682 0 12

10 – 14 12 651 2 8
15 – 19 17 1,366 3 32
20 – 24 22 1,875 7 58
25 – 29 27 2,266 19 87
30 – 34 32 2,887 70 139
35 – 39 37 4,190 160 229
40 – 44 42 7,105 408 420
45 – 49 47 10,350 812 594
50 – 54 52 14,692 1,660 855
55 – 59 57 23,377 3,738 1,441
60 – 64 62 41,022 8,588 2,796
65 – 69 67 68,266 16,583 6,002
70 – 74 72 93,083 25,210 10,876
75 – 79 77 135,651 37,268 20,622
80 – 84 82 169,605 44,518 30,374
85 – 89 87 156,236 37,274 29,632
90 – 94 92 91,033 18,836 16,566
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Appendix H

Cardiovascular risk profiles

We define tp
CHD
[x] as the probability of a myocardial infarction event within t years

of a baseline examination taking place at age x. Taking

(a) sbp as the level of systolic blood pressure,

(b) chol as the ratio of total cholesterol to HDL-cholesterol levels,

(c) diab as 0 for non-diabetics and 1 for diabetics,

(d) smoking as 0 for non-smokers and 1 for smokers,

Anderson et al. (1991a) give,

tp
CHD
[x] = 1− exp

(
−exp

[
log(t)− a

exp(3.4064− 0.8584× a)

])
(H.52)

where for males:

a = 11.4712− 0.7965× log(x)− 0.6623× log(sbp)− 0.2675× (smoking)

−0.4277× log(chol)− 0.1534× (diab)

and for females:

a = 21.9821− 6.2181× log(x) + 0.7101(log(x))2 − 0.6623× log(sbp)

−0.2675× (smoking)− 0.4277× log(chol)− 0.2699× (diab).

The probability of a stroke (STR) within t years of a baseline examination is given

by
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tp
STR
[x] = 1− exp

(
−exp

[
log(t)− a

exp(−0.4312)

])
(H.53)

where for males:

a = 26.5116− 2.3741× log(x)− 2.4643× log(sbp)− 0.3914× (smoking)

−0.0229× log(chol)− 0.3087× (diab)

and for females:

a = 26.7135− 2.3741× log(x)− 2.4643× log(sbp)− 0.3914× (smoking)

−0.0229× log(chol)− 0.5714× (diab).

Anderson et al. (1991a) suggest that formulae (H.52) and (H.53) be used for

values of t between 4 and 12 and values of x between 30 and 74.
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Appendix I

Variance-covariance matrices

Table I.132: Variance-covariance matrices for fitting blood pressure incidence and
diabetes incidence.

Blood Pressure

Incidence of ‘High normal’ blood pressure
α β ν

α 9.973× 10−2 −1.636× 10−3 −4.420× 10−4

β 2.737× 10−5 8.327× 10−6

ν 1.974× 10−3

Incidence of ‘Hypertension Stage I’
α β γ

α 7.388× 10−2 −1.165× 10−3 8.039× 10−4

β 1.876× 10−5 −5.519× 10−6

γ 1.483× 10−3

Incidence of ‘Hypertension Stage II/III’
α β γ

α 7.380× 10−2 −1.130× 10−3 −3.854× 10−4

β 1.762× 10−5 1.064× 10−5

γ 1.323× 10−3

Diabetes

α β ν
α 1.085× 10−1 −1.592× 10−3 −8.283× 10−4

β 2.375× 10−5 6.645× 10−7

ν 1.876× 10−3
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Table I.133: Variance-covariance matrices for fitting MI and stroke incidence.

MI fitting: Males
α δ0 δ1 η ρ φ β

α 1.274× 10−1 −2.032× 10−3 −8.988× 10−4 7.898× 10−4 4.425× 10−3 −6.369× 10−3 −1.930× 10−3

δ0 8.164× 10−3 −4.501× 10−3 −3.348× 10−4 2.082× 10−4 −3.032× 10−4 6.327× 10−5

δ1 5.728× 10−3 6.111× 10−5 −8.741× 10−5 −4.824× 10−5 9.747× 10−6

η 3.622× 10−3 1.664× 10−5 −2.047× 10−5 1.832× 10−5

ρ 2.675× 10−3 6.149× 10−5 −6.377× 10−5

φ 3.830× 10−3 6.493× 10−5

β 3.057× 10−5

MI fitting: Females
α δ0 δ1 β0 ρ φ η β1

α 14.32 −9.287× 10−2 3.736× 10−2 −4.422× 10−1 2.774× 10−3 −8.008× 10−3 −3.879× 10−2 3.350× 10−3

δ0 3.355× 10−2 −1.886× 10−2 2.855× 10−3 5.216× 10−4 −2.889× 10−4 −2.932× 10−4 −1.914× 10−5

δ1 1.910× 10−2 −1.202× 10−3 −1.288× 10−4 −1.746× 10−4 3.673× 10−4 9.030× 10−6

β0 1.378× 10−2 7.033× 10−5 −8.768× 10−5 1.351× 10−3 −1.052× 10−4

ρ 6.831× 10−3 1.125× 10−4 −6.519× 10−5 −2.127× 10−6

φ 8.246× 10−3 −9.597× 10−5 2.055× 10−6

η 1.399× 10−2 −8.987× 10−6

β1 8.094× 10−7

Stroke fitting
α δ β ρ φ γ ψ

α 2.225× 10−1 −5.174× 10−3 −3.266× 10−3 6.265× 10−3 −8.298× 10−3 1.793× 10−2 −2.416× 10−4

δ 4.490× 10−3 1.089× 10−4 1.400× 10−4 −2.596× 10−4 2.181× 10−3 −3.434× 10−5

β 4.916× 10−5 −1.029× 10−4 8.790× 10−5 −2.516× 10−4 3.328× 10−6

ρ 3.960× 10−3 3.452× 10−5 5.250× 10−4 8.435× 10−6

φ 4.636× 10−3 3.914× 10−4 −1.205× 10−6

γ 1.910× 10−1 −2.805× 10−3

ψ 4.199× 10−5
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Table I.134: Variance-covariance matrices for fitting cancer incidence.

Lung cancer: Females
For x ≤ 60 :

α0 α1 α2

α0 0.5302 −1.998× 10−2 1.845× 10−4

α1 7.616× 10−4 −7.099× 10−6

α2 6.668× 10−8

For x > 65 :
β0 β1 β2

β0 7.583× 10−7 −2.114× 10−8 1.454× 10−10

β1 5.908× 10−10 −4.073× 10−12

β2 2.815× 10−14

Other cancers: Females
For x ≤ 52 :

α0 α1 α2

α0 1.234× 10−1 −5.877× 10−3 6.861× 10−5

α1 2.819× 10−4 −3.310× 10−6

α2 3.907× 10−8

For x > 52 :
β0 β1 β2

β0 2.588× 10−1 −6.832× 10−3 4.477× 10−5

β1 1.807× 10−4 −1.186× 10−6

β2 7.797× 10−9

Lung cancer: Males
For x ≤ 55 :

α0 α1 α2

α0 1.294× 10−1 −4.471× 10−3 3.796× 10−5

α1 1.560× 10−4 −1.336× 10−6

α2 1.152× 10−8

For x > 60 :
β0 β1 β2

β0 1.103× 10−4 −1.598× 10−4 −1.138× 10−2

β1 2.571× 10−4 1.859× 10−2

β2 1.347

Other cancers: Males
For x ≤ 55 :

α0 α1

α0 5.985× 10−3 −1.153× 10−4

α1 2.269× 10−6

For x > 60 :
β0 β1 β2

β0 3.224× 10−2 −9.062× 10−4 6.287× 10−6

β1 2.558× 10−5 −1.782× 10−7

β2 1.246× 10−9
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Table I.135: Variance-covariance matrices for fitting kidney failure incidence.

Males
Non-diabetic

α0 α1

α0 2.471× 10−2 −3.415× 10−4

α1 4.768× 10−6

Type 1 diabetics
α0 α1 α2 α3

α0 1.255 −7.660× 10−2 1.484× 10−3 −9.198× 10−6

α1 4.707× 10−3 −9.172× 10−5 5.718× 10−7

α2 1.799× 10−6 −1.128× 10−8

α3 7.112× 10−11

Type 2 diabetics
α1 α2 α3

α1 1.192× 10−5 −4.059× 10−7 3.340× 10−9

α2 1.414× 10−8 −1.184× 10−10

α3 1.004× 10−12

Females
Non-diabetic

α0 α1

α0 2.210× 10−2 −3.054× 10−4

α1 4.266× 10−6

Type 1 diabetics
α0 α1 α2 α3

α0 3.109 −1.814× 10−1 3.349× 10−3 −1.979× 10−5

α1 1.067× 10−2 −1.982× 10−4 1.178× 10−6

α2 3.704× 10−6 −2.213× 10−8

α3 1.328× 10−10

Type 2 diabetics
α0 α1

α0 3.741× 10−2 −5.377× 10−4

α1 7.900× 10−6
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Appendix J

ESRD cases and exposed to risk

Males
Exposure Cases

Age No Diabetes Type 1 Type 2 No Diabetes Type 1 Type 2
30–34 41,865,034 70,781 761,935 3,762 589 1,088
35–39 42,975,276 125,245 1,348,229 5,145 772 1,597
40–44 38,475,678 182,182 1,961,139 6,126 962 2,244
45–49 32,072,073 232,724 2,505,203 6,600 1,232 3,259
50–54 24,207,264 220,926 2,764,560 6,287 1,409 4,263
55–59 18,577,208 230,347 2,882,445 6,532 1,500 5,234
60–64 15,624,511 246,401 3,083,338 8,257 1,506 6,141
65–69 14,349,333 246,035 3,372,132 11,064 1,450 7,015
70–74 11,965,652 224,390 3,075,458 13,274 1,084 6,364
75–79 8,725,989 164,731 2,257,780 12,297 548 4,031

Females
Age No Diabetes Type 1 Type 2 No Diabetes Type 1 Type 2
30–34 42,386,845 68,608 738,547 2,010 294, 543
35–39 43,488,262 121,336 1,306,151 2,656 408 843
40–44 39,451,290 178,093 1,917,117 3,408 499 1,163
45–49 33,435,521 229,307 2,468,422 3,910 635 1,680
50–54 25,788,935 219,433 2,745,881 4,310 939 2,839
55–59 20,410,666 231,497 2,896,838 4,441 1,174 4,096
60–64 17,910,039 252,060 3,154,151 5,013 1,410 5,746
65–69 17,702,203 262,908 3,603,389 6,372 1,607 7,776
70–74 16,105,114 252,918 3,466,467 8,783 1,595 9,365
75–79 13,166,502 200,821 2,752,428 10,182 1,145 8,415
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