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THE IMPACT OF MULTIFACTORIAL GENETIC DISORDERS
ON CRITICAL ILLNESS INSURANCE:

A SIMULATION STUDY BASED ON UK BIOBANK

By Angus Macdonald, Delme Pritchard and Pradip Tapadar

abstract

The UK Biobank project is a proposed large-scale investigation of the combined effects
of genotype and environmental exposures on the risk of common diseases. It is intended to
recruit 500,000 subjects aged 40–69, to obtain medical histories and blood samples at outset,
and to follow them up for at least 10 years. This will have a major impact on our knowledge of
multifactorial genetic disorders, rather than the rare but severe single-gene disorders that have
been studied to date. What use may insurance companies make of this knowledge, particularly
if genetic tests can identify persons at different risk? We describe here a simulation study of
the UK Biobank project. We specify a simple hypothetical model of genetic and environmental
influences on the risk of heart attack. A single simulation of UK Biobank consists of 500,000
life histories over 10 years; we suppose that case-control studies are carried out to estimate age-
specific odds ratios, and that an actuary uses these odds ratios to parameterise a model of critical
illness insurance. From a large number of such simulations we obtain sampling distributions of
premium rates in different strata defined by genotype and environmental exposure. We conclude
that the ability of such a study reliably to discriminate between different underwriting classes
is limited, and depends on large numbers of cases being analysed.
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1. Introduction

1.1 Objective
Much of human genetics is concerned with studying the genetic contribution to dis-

eases, and this leads to a profound distinction between the single-gene disorders and the
multifactorial disorders.
(a) Single-gene disorders are caused, as their name suggests, by a defect in a single gene.

Because most genes are inherited in a simple way according to Mendel’s laws, these
diseases show characteristic patterns of inheritance from one generation to the next,
known to geneticists and underwriters alike as a ‘family history’. Single-gene disorders
are quite rare but often severe.
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(b) Multifactorial disorders are (mostly) common diseases, such as coronary heart disease
and cancers, whose onset or progression may be influenced by variations in several
genes, acting in concert with environmental differences. The effect is likely to be
quite slight, conferring an altered predisposition to the disease rather than a radically
different risk.

Most genetic epidemiology has, until now, concentrated on single-gene disorders. One
reason is that the clear patterns of Mendelian inheritance identified affected families long
before the direct examination of DNA, and location of the relevant genes, became possible.
So when these tools did emerge in the 1990s, geneticists knew where to look; affected
families were studied, genes were identified, and the key epidemiological parameters were
estimated. The parameter of most interest to actuaries is the age-related penetrance,
which is the probability that a person who carries a risky version of the gene will have
suffered onset of the disease by age x. It is entirely analogous to the life table probability

xq0. (Often, the risky versions of the gene are called ‘mutations’, and a person carrying
one is called a ‘mutation carrier’ or just ‘carrier’.)

Studies of affected families are by definition retrospective in nature; families are
studied because they are known to be affected. Retrospective studies are subject to un-
controlled sources of bias, precisely because they are based on a non-randomly selected
sample of the population; so they are, if possible, avoided in favour of prospective studies,
in which a properly randomised sample of healthy subjects is followed forwards in time.
Despite this health warning, retrospective studies of single-gene disorders have been car-
ried out for reasons of convenience, cost and necessity: the ready availability of known
affected families was convenient and made data collection relatively cheap; and the rarity
of single-gene disorders made prospective studies impractical. Moreover, a prospective
study would take many years to yield results. Another consequence of the rarity of most
single-gene disorders is that most studies have had quite small sample sizes, but if the pen-
etrance is high enough this is tolerable. These studies have successfully led to many gene
discoveries and a lot of progress has been made in understanding a number of single-gene
disorders.

Multifactorial disorders, which are influenced by more than one gene or by interactions
between genes and the environment, are not so well-studied. Many disorders, including
cancer, heart disease, diabetes and Alzheimer’s disease are believed to be caused or in-
fluenced by complex interactions between multiple genes, environment and lifestyle. The
clear patterns of Mendelian inheritance are lost, and any familial clustering of disease
that may be observed could just as easily be the result of shared environment as of shared
genes. Therefore, there is no pool of known affected families that can be studied straight-
away. And, because the influence of genetic variation may be slight (low penetrance) large
samples will be needed to detect such influence with any reliability.

At the risk of oversimplifying a little, single-gene disorders represent the genetical
research of the past, and multifactorial disorders represent the genetical research of the
future. Progress will need studies that are large-scale, prospective, and long-term (and
therefore very expensive). These studies must capture both genetic and environmental
variation (and interactions) and relate them to the risks of common diseases. This is
extremely ambitious.
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The proposed UK Biobank project aims to achieve this. UK Biobank will recruit
500,000 individuals aged 40 to 69, chosen as randomly as possible from the general UK
population, and collect data on them over a period of 10 years. We will discuss the
main features of UK Biobank in Section 1.2. A key point is that UK Biobank aims
only to collect data, not to analyse it. Its data will, in due course, be made available
to researchers interested in particular genes and particular diseases, who will have to
obtain separate funding for their studies in the usual way. This is sensible because it is
impossible to predict at outset just what combinations of genes, environment and disease
it will be most fruitful to study. Nevertheless, it is necessary to have in mind the kinds
of statistical studies that may, in future, be carried out, so that UK Biobank can be set
up to capture data of the correct form. The presumption is that most studies will be
case-control studies. We outline the basics of case-control studies in Appendix A.

Given its size and significance, it is important to study the kind of results we might
expect to emerge out of UK Biobank. Our particular interest is in the implications of
UK Biobank for insurance. We need not rehearse the debate, often heated, that has
surrounded genetics and insurance in the past 10 years, except to note that it has mainly
focussed on single-gene disorders. We refer to Daykin et al. (2003) or Macdonald (2004)
as sources. It seems plausible that awareness of genetic issues will be heightened by
enrolling 500,000 people into a high-profile genetic study. Insofar as insurance questions
arise, answers obtained from past actuarial research, based on single-gene disorders, may
be wholly inapplicable. But, since the single-gene disorders provide all the easily grasped
examples and paradigms, there is a risk that these examples and paradigms will be grafted
onto UK Biobank, however inappropriately, by the media if not by the genetics community.
It will then be unfortunate that UK Biobank will not provide the evidence to refute such
errors for 5–10 years.

Our plan, therefore, is to model UK Biobank itself, so that before a single person
has been recruited, or gene sequenced, we may quantify the implications of its outcomes
for insurance. We choose critical illness (CI) insurance as the simplest type of coverage,
because the insured event is generally onset of disease, and we need not model post-onset
events (although as we shall see in Section 2, this is not entirely true in parameterising the
model). We choose heart attack (myocardial infarction) as the disease of interest, because
this will certainly be a major target of studies using UK Biobank data. Our approach
is simple: simulate 500,000 random life histories, given an assumed model of genetic and
environmental influences on the hazard rate of heart attack. Then we may analyse these
simulated data just as an epidemiologist or an actuary may be expected to.

At this stage a further complication appears, one that is all too familiar to actuarial
researchers who have modelled single-gene disorders. Actuaries almost never have access
to the original data upon which genetic studies are based. In the case of UK Biobank, Sec-
tion 5.2 of the draft protocol (www.ukbiobank.ac.uk/docs/draft protocol.pdf) says:
“Data from the project will not be accessible to the insurance industry or any other
similar body.” This means that actuarial researchers will have to rely on the published
outcomes of medical or epidemiological research projects that use the UK Biobank data.
The ideal, given the models actuaries typically use for pricing and reserving, would be
age-dependent onset rates or penetrances, corresponding to µx or qx in a life-table study.
Unfortunately, this is far in excess of what is usually published in a medical study, because
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the questions addressed by such studies can often be answered by much simpler statistics.
And, it must be said, the estimation of µx or qx is very demanding of the data. Since we
expect case-control studies to be the most common approach to UK Biobank, we must
take account of this in analysing our simulated data. We may not, realistically, assume
that the actuary can analyse directly the 500,000 simulated life histories. Instead, an
epidemiologist must first carry out a case control study and publish the results, which
most often will be expressed as odds ratios (see Appendix A). Then the actuary must take
these odds ratios and, using whatever approximate methods come to hand, estimate onset
rates or penetrances suitable for use in an actuarial model. We will model this process,
with two results:
(a) We will be able to estimate the impact on CI insurance premiums of representative

multifactorial modifiers of heart attack risk.
(b) Having simulated the data from a known model of our own choosing, we can assess

the seriousness of the errors that must be made, in parameterising an actuarial model
from published odds ratios rather than from the raw data. As mentioned before,
previous actuarial studies have done exactly that (see Macdonald & Pritchard (2000)
for an example), but only in the context of relatively high penetrances. We will be
interested to see if robust actuarial modelling of relatively low-penetrance disorders
is possible using published case-control studies.

The plan of the paper is as follows. In Section 1.2 we describe the main features of
UK Biobank. In Section 1.3, we will introduce our general approach to simulating UK
Biobank. A specific multiple-state model representing heart attack will be introduced in
Section 2.1. The transition intensities underlying the model will be developed in Sections
2.2–2.4. In Section 2.5, we will hypothecate a simple 2× 2 gene-environment interaction
model affecting the risk of heart attack. In Section 2.6, we present (in summary form) a
set of simulated UK Biobank data, namely 500,000 life histories.

In Section 3, we analyse these simulated data, in two stages as described above.
First, in Section 3.1, a model epidemiologist will carry out a case-control study. Then,
our model actuary will will use these ‘published’ figures to construct critical illness models
allowing for genetic variability and environmental exposures. The actuarial investigation
is discussed in Section 3.2. In Section 3.3, premium rates based on these critical illness
models will be calculated and compared for these different subgroups.

Despite its great size, UK Biobank is essentially an unrepeatable single sample. Any
estimated quantity based upon its data is subject to the usual statistical sampling error
— and a premium rate is just such an estimated quantity. It is to be hoped that the large
samples available from UK Biobank will reduce sampling error to a low level. In reality,
the designers of UK Biobank can only estimate the statistical power of representative
case-control studies, which was certainly done before choosing 500,000 lives as the sample
size. We, however, with control over our simulated data, can assess directly the sampling
properties of estimates based on UK Biobank data. In particular, and of direct relevance
to the criteria established in the UK by the Genetics and Insurance Committee (GAIC) we
can assess in statistical terms the reliability of CI premium rates based on UK Biobank
data. We do this simply by repeating the simulation of 500,000 life histories as many
times as necessary, and constructing the empirical distributions of derived quantities such
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as odds ratios and premiums. This is in Section 4.
Conclusions and suggestions for further work are in Section 5.

1.2 The UK Biobank Project
The website http://www.ukbiobank.ac.uk/ is the main source of information on

UK Biobank. In particular, it provides a draft protocol. There (Section 1.2) it is stated
that:

“The main aim of the study is to collect data to enable the investigation of the sep-
arate and combined effects of genetic and environmental factors (including lifestyle,
physiological and environmental exposures) on the risk of common multifactorial
disorders of adult life.”

UK Biobank is a cohort study, meaning that a large number of people will be recruited,
as randomly as possible, and then followed over time. The main features of the study
design are as follows:
(a) The cohort will consist of at least 500,000 men and women recruited from the UK

general population.
(b) The chosen age range is 40 to 69 (note that earlier versions, including the draft

protocol referred to above, proposed an age range 45 to 69).
(c) The initial follow-up period is 10 years.
(d) Participants will be recruited through their local general practitioners. Participants

are expected to come from a broad range of socio-economic backgrounds and regions
throughout the UK, with a wide range of exposures to factors of interest.

(e) The project will be conducted through the UK National Health Service.
(f) UK Biobank is funded by the Department of Health, the Medical Research Council,

the Scottish Executive and The Wellcome Trust. The cost is approximately £40
million.

People registered with participating general practices will be requested to join the
study by completing a self-administered questionnaire, attending an interview, undergoing
examination by a research nurse and giving a blood sample, to enable DNA extraction at
a later date. The protocol assumes that DNA extraction would be deferred and done as
and when genotyping is required.

The Office of National Statistics will provide routine follow-up data regarding cause-
specific mortality and cancer incidence. Hospitalisation and general practice records will
provide data regarding incident morbidity. Every two years a subset of 2,000 participants
and every five years the entire cohort will be re-surveyed by postal questionnaire to update
exposure data and to ascertain self-reported incident morbidity.

It is envisaged that the main study design for assessing the combined effect of environ-
ment and genotype will consist of a series of case-control studies (see Appendix A) nested
within the cohort. Options for the selection of controls include an individually matched
design or a panel of controls selected at random from the cohort, probably weighted by
age and sex. While UK Biobank will collect and store the data, any analysis of the data
in the future will require further funding.
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1.3 A UK Biobank Simulation Model
In this section we outline how we will simulate the UK Biobank project.
We suppose that the study population is subdivided (or stratified) into subgroups

with respect to: (a) different genotypes; (b) different levels of environmental exposures;
and (c) other relevant factors such as sex. Genotype defines discrete categories, and we
suppose that any environmental exposures or other factors defined on a continuous scale
are grouped into discrete categories. Thus, we always have a small number of discrete
subgroups (or strata).

The life history of each participant will be represented by a multiple-state model, with
states and transitions defining onset and possibly progression of the disease of interest.
Some of the model parameters, namely the transition intensities, will be different in
different strata — most obviously those associated with the disease of interest. These
intensities are the key to the whole UK Biobank project, as well as our study.
(a) The real-life epidemiologist wants to estimate them (or in practice, odds ratios) from

UK Biobank data, given a hypothesis about the effect of measured exposures on the
disease.

(b) The real-life actuary wants to take the estimated intensities (or in practice, approxi-
mate them from published odds ratios) and use them in pricing and reserving.

(c) We want to specify hypothetical but plausible dependencies of these intensities on
genotype and other exposures, so that we can observe our model epidemiologist and
model actuary at work.

Figure 1 shows a simple model for heart attack, parameterised by intensities denoted
λs

ij(x) or λs
ij(x, t), functions of age x and possibly also duration t since entering state i.

The superscript ‘s’ indicates subgroup or stratum. The steps in simulating UK Biobank
are then as follows.
(a) We choose the number of genotypes and the number of levels of environmental expo-

sure, and also the frequencies with which each appears in the population. Thus we
can model simple or complex genotypes and exposures, and allow them to be more
or less common or rare. These define the subgroups or strata. The simplest example
(used in the UK Biobank draft protocol) is to have two genotypes and two levels of
environmental exposure. We also choose the intensities of onset of heart attack in
each stratum (λs

12(x) in Figure 1) to reflect the strength of the association between
stratum and the risk of heart attack.

(b) We randomly ‘create’ 500,000 individuals, each equally likely to be male or female,
and with ages uniformly distributed in the range 40 to 70, and allocated to strata at
random according to the chosen frequencies.

(c) The life history of each individual is modelled by simulating the times of any transi-
tions between states in the model, as governed by the intensities. We record the times
of any transitions taking place within the 10-year follow-up period of UK Biobank.

We implicitly assume that the 500,000 participants are independent in the statistical
sense, which is unlikely to be true. The sample is so large that some related individuals
are likely to be recruited by chance, but also the method of recruitment (through general
practices) guarantees some level of familial and geographical clustering.
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Figure 1: A 4-state heart attack model for gender s.

2. A Model for Heart Attack

2.1 Specification of the Model
In this section we will parameterise the simple heart attack model, given in Figure 1,

and use it to simulate life histories.
All individuals are assumed to start in State 1, the Healthy state. From there, they

may have a heart attack and move to State 2, or die and move to State 3. We are
interested in first heart attacks only, because this will trigger a claim under a CI policy,
so any subsequent heart attacks are ignored, and the only possible transition from the
Heart Attack state is death. It is convenient to distinguish deaths occurring after a heart
attack, so States 3 and 4 are separate.

2.2 The Heart Attack Transition Intensity
First we specify the heart attack transition intensity in the general population, de-

noted λ12(x), separately for males and females. Later, we will use this to specify intensities
λs

12(x) in each stratum. We take λ12(x) from Gutiérrez & Macdonald (2003). For males,
it is given by:

λ12(x) =




exp(−13.2238 + 0.152568x) if x ≤ 44

x− 44

49− 44
× λ12(49) +

49− x

49− 44
× λ12(44) if 44 < x < 49

− 0.01245109 + 0.000315605x if x ≥ 49

(1)

and for females, it is given by:

λ12(x) =
0.598694

Γ(15.6412)
× 0.1531715.6412 exp(−0.15317x)x14.6412. (2)

These intensities are shown in Figure 2.

2.3 Mortality After First Heart Attacks
Many journal articles describe prognosis following heart attacks. Capewell et al.

(2000) describes a retrospective cohort study in Scotland involving 117,718 patients ad-
mitted to hospital with first heart attacks between 1986 and 1995. This is one of the
largest population-based studies describing both short and long-term prognoses.



Multifactorial Genetic Disorders, Critical Illness Insurance, and UK Biobank 8

0

0.005

0.01

0.015

0.02

0 10 20 30 40 50 60 70 80

T
ra

ns
it

io
n

In
te

ns
it
y

Age (years)

Male
Female

Figure 2: The transition intensity of all first heart attacks, by gender.

Table 1: Parameter estimates of the survival function after a first heart attack.

Age Representative
Range Age a b c d

<55 50 0.0684 0.1040 0.0174 1.1919
55–64 60 0.1686 0.0911 0.0406 1.2280
65–74 70 0.4001 0.1237 0.0770 1.3370
75–84 80 0.8564 0.1732 0.1476 1.5504
≥85 90 1.5181 0.2431 0.3309 1.6727

The paper presents case-fatality rates for age-groups (at first heart attack) <55,
55–64, 65–74, 75–84 and ≥85, and for durations 30 days, 1 year, 5 years and 10 years
following first heart attack. The authors found that the age-adjusted case-fatality rates
did not depend on sex. The case-fatality rates can be transformed into survival rates and
parametric functions can be fitted to these. The following parametric form provides a
good fit for the survival functions:

P α
22(t) =

1

1 + a× tb + c× td
(3)

where α denotes the age group (see above), t denotes the duration after the first heart
attack and P α

22(t) denotes the conditional probability that the individual is still in State 2
t years after the first heart attack. The parameters a, b, c and d depend on the age group.
We will represent the five age groups by single representative ages, namely, 50, 60, 70, 80
and 90. We summarise the parameters in Table 1.
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Figure 3: Graphs of λα
24(t), assigned to representative ages for each age group, and the

force of mortality of the ELT15 life tables.

From the parametric form of the survival rates, the transition intensities are given as
λα

24(t) = −d(log Pα
22(t))/dt. Graphs of λα

24(t) are given in Figure 3, assigning each to its
representative age. Also shown is the force of mortality of the ELT15 life tables for males
and females. Note that in some cases λ24(x, t) falls below the ELT15 force of mortality.
This could be because survival beyond a certain duration after a first heart attack signifies
better than average overall health thereafter.

To extend the definition of the transition intensity to all ages x and durations 0 ≤
t ≤ 10, we first suppose that survival rates are the same for all strata or subgroups, so we
write λ24(x, t) instead of λs

24(x, t). Then we assign each λα
24(t) to its representative age,

so λ24(50, t) = λ
(<55)
24 (t) for all t, and so on. Then define λ24(x, t) = λ24(50, t) for x < 50,

λ24(x, t) = λ24(90, t) for x > 90, and interpolate linearly in x between the given values for
50 < x < 90. Capewell et al. (2000) do not give survival rates more than 10 years after
the first heart attack, but since the follow-up period of UK Biobank is 10 years this does
not matter.

2.4 Mortality Before First Heart Attacks
The mortality intensity for persons aged x in stratum s, who do not experience a

heart attack, is given by λs
13(x). Again, we assume that this is the same in all strata, so

we just write λ13(x). Let Pij(y, z) denote the conditional probability that a person is in
state j at age z, given that he or she was in state i at age y. Then we have:
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P13(0, x) + P14(0, x) =

∫ x

0

[
P11(0, z)λ13(z) +

∫ z

0

P11(0, y)λ12(y)P22(y, z)λ24(y, z − y)dy

]
dz

(4)

P11(0, z) = exp

[
−

∫ z

0

(
λ12(y) + λ13(y)

)
dy

]
(5)

P22(y, z) = exp

[
−

∫ z−y

0

λ24(y, z − y)dy

]
. (6)

Further, if we assume that the overall mortality is given by the ELT15 table (for each
sex) we have:

P13(0, x) + P14(0, x) = 1− exp

[
−

∫ x

0

µELT
y dy

]
. (7)

Using these, we can solve Equation (4) numerically to obtain λ13(x). The transition
intensities are given in Figure 4. For comparison, we have included the forces of mortality
of the ELT15 tables.

2.5 Definition of Strata: A Simple Example
The parameters of the heart attack model estimated above are supposed to apply to

the general population. However, the general population is divided into strata according
to genotype, environmental exposures and other factors, and we suppose that the intensity
of heart attack λs

12(x) depends on the stratum s.
In this section, we will introduce the simplest possible gene-environment interactions

into our model. We suppose that there is a single genetic locus with two genotypes,
denoted G and g, therefore just two genotypes. Also, there are just two levels of envi-
ronmental exposures, denoted E and e (a simple example might be E = ‘smoker’ and
e = ‘non-smoker’). This simple model can be used as a stepping stone to study higher
dimensional multifactorial models. Note that the UK Biobank draft protocol used the
same assumptions in its examples, despite the fact that the project aims to study complex
multifactorial disorders. We will suppose that G and E are adverse exposures, while g
and e are beneficial. Therefore, we have four strata for each sex — ge, gE,Ge and GE —
and eight in total.

We must choose plausible values for the frequencies with which each stratum is present
in the population, and the stratum-specific heart attack intensities. Since, unlike the study
of single-gene disorders, we are considering common risk factors for common diseases, let
us assume that the probability that a person possesses genotype G is 0.1, and the prob-
ability that a person has environmental exposure E is also 0.1. Assuming independence,
the four strata (for each sex) ge, gE,Ge and GE occur with frequencies 0.81, 0.09, 0.09
and 0.01 respectively.

We will suppose that the heart attack intensity in each stratum is proportional to the
population average intensity. For stratum s, set:

λs
12(x) = k × ρs × λ12(x) , (8)
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Figure 4: Transition intensities of non-heart-attack deaths plotted along with ELT15 for
both males and females.
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Table 2: The factor ρs, in Equation (8), for each gene-environment combination.

G g

E 1.3 0.9
e 1.1 0.7

Table 3: The multipliers ks × ρuv for each stratum.

Stratum ge gE Ge GE

Male 0.922 1.186 1.449 1.712
Female 0.921 1.185 1.448 1.711

where λ12(x) is the population intensity given in Section 2.2. We suppose, for clarity, that
ρs does not depend on sex, but the constant k does. Again, noting that our interest is in
genotypes of modest penetrance, we choose the values of ρs given in Table 2. Then, we
choose k so that the strata-specific heart attack intensities are consistent, in aggregate,
with the population heart attack intensities, for males and females separately. Let the
proportion of the healthy population in stratum s at age x be ws(x). Then:

λ12(x + t) =

∑
s ws(x)× exp

(
− ∫ t

0
λs

12(x + y)dy
)
× λs

12(x + t)∑
s ws(x)× exp

(
− ∫ t

0
λs

12(x + y)dy
) . (9)

Substituting Equation (8) in Equation (9), we get:

λ12(x + t) =

∑
s ws(x)× exp

(
− ∫ t

0
λ12(x + y)dy

)kρs

k × ρs × λ12(x + t)

∑
s ws(x)× exp

(
− ∫ t

0
λ12(x + y)dy

)kρs
. (10)

From Equation (10) we see that k ought to depend on a specific choice of age x and
duration t. However, to keep the model simple we will assume that k is constant and
calculate it from Equation (10) for a representative choice of age and duration. Given
that the UK Biobank protocol proposes an age range of 40 to 69 and a follow-up period
of 10 years, we have chosen x = 60 and t = 5. If we assume that the weights ws(x) are
equal to the population frequencies of each stratum, then for males k = 1.317274 and for
females k = 1.316406. The constants of proportionality (k×ρs) in Equation (8) are given
in Table 3 for future reference.

Having formulated a relationship between strata and the risk of heart attack, we now
consider the quantities likely to be estimated by epidemiologists. We have the advantage
of being able to compute their true values, because we know the true intensities. From
now on, we define the baseline population to be the most common stratum, namely ge.
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Table 4: The true relative risks for each stratum, relative to the baseline ge stratum.

Stratum ge gE Ge GE

Male 1.000 1.286 1.571 1.857
Female 1.000 1.286 1.571 1.857

(a) The relative risk in stratum s, with respect to the baseline stratum ge, is denoted rs

and is:

rs =
k × ρs

k × ρge

=
ρs

ρge

. (11)

The values of rs are given in Table 4.
(b) The odds ratio at age x in stratum s, with respect to the baseline stratum ge, based

on 1-year probabilities, is denoted ψs(x) and is given by:

ψs(x) =

(
P s

12(x, x + 1)

1− P s
12(x, x + 1)

)/(
P ge

12 (x, x + 1)

1− P ge
12 (x, x + 1)

)
(12)

where P s
12(x, x + 1) is the conditional probability that a person in stratum s who was

healthy at age x will suffer a heart attack before age x + 1.

We have verified (not shown here) that the odds ratios computed using Equation
(12) do not vary significantly with age and are approximately equal to the corresponding
relative risks. The latter is not surprising, as we have used 1-year probabilities to calculate
the odds ratios.

For details on relative risks and odds ratios, see Appendix A, or Woodward (1999) or
Breslow & Day (1980).

2.6 A Sample Realisation of UK Biobank
With the parameterised model, we simulated the life histories of 500,000 people re-

cruited to UK Biobank and followed up for 10 years. Their ages at entry are uniformly
distributed between 40 and 70. The life histories of the first 20 people are shown in Table
5. Consider person No.2 in Table 5. He is a male with the adverse allele G and is exposed
to the beneficial environment e. He entered the study in State 1 as a healthy individual
at age 58.74. During the follow-up period he had a heart attack at age 63.89 and moved
to State 2. Finally, he died at age 63.94 and moved to State 4. The numbers of people in
each state at the end of the 10-year follow-up period are given in Table 6.

3. Analysis

3.1 Epidemiological Analysis
With 500,000 simulated life histories, we can now carry out one or more typical epi-

demiological analyses. Apart from the life histories, the following information is available
to the epidemiologist:
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Table 5: The simulated life histories of the first 20 (of 500,000) individuals showing their
genders, exposure to environmental factors, genotypes and the times and types of all
transitions made within 10 years.

ID Sex E/e G/g Age State Age State Age State
1 M e g 41.10 1
2 M e G 58.74 1 63.89 2 63.94 4
3 M e g 52.27 1
4 M e g 68.39 1
5 F e G 60.94 1 63.81 2
6 M e g 62.49 1 68.18 3
7 M e g 55.50 1 61.57 3
8 F e G 58.95 1
9 M e g 65.67 1 69.58 3
10 M e g 49.79 1
11 F E g 45.43 1
12 F e g 57.58 1
13 F e g 59.68 1
14 F E g 55.14 1
15 F e g 42.93 1
16 M e g 56.23 1
17 F e g 62.84 1
18 M e g 62.29 1
19 F e g 43.69 1
20 M e g 45.16 1

Table 6: Number of individuals in each state at the end of the 10-year follow-up period.

Sex G/g E/e State 1 State 2 State 3 State 4 Total

G E 1,871 126 356 115 2,468
G e 17,579 928 3,219 934 22,660Male
g E 17,588 775 3,236 702 22,301
g e 162,474 5,426 29,610 5,002 202,512

G E 2,178 70 214 52 2,514
G e 19,746 397 2,021 408 22,572Female
g E 19,811 367 2,095 330 22,603
g e 178,718 2,320 18,891 2,441 202,370

Total 419,965 10,409 59,642 9,984 500,000
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(a) the framework of the UK Biobank project;
(b) the structure of the 4-state heart attack model given in Section 2.1;
(c) the transition intensities given in Sections 2.2 to 2.4;
(d) the stratum to which each person is allocated; and
(e) the proportion ws(x) of individuals in each stratum at a particular age x, say 60.

The UK Biobank protocol suggests that the combined effect of environment and
genotype be analysed using matched case-control studies nested within the cohort. In a
case-control study, the first step is to define the cases and controls. Here, clearly, the
cases are persons who had first heart attacks during the study period.

In real studies, epidemiologists will face problems such as missing data and cost
constraints, and in most circumstances they will use only a subset of all cases for their
analysis. Here, we have no such problems, unless we choose to model them. So, in the
first instance, we will include all cases in the analysis. Later, we will consider the more
realistic possibility that a subset of all cases is used.

An appropriate matching strategy is particularly important for a matched case-control
study. Firstly, we match controls with cases by age. Suppose, for example, that we are
comparing stratum s with the baseline stratum ge, and that a case entered the study at
age x last birthday and had a heart attack at age x + t last birthday. A matched control
is a person chosen randomly from persons in these two strata who also entered the study
at age x last birthday and remained healthy at least until age x + t + 1 last birthday.
Once chosen as a control, that person cannot be chosen as a control again. As controls are
plentiful compared with cases, we will match 5 controls to each case, called a 1:5 matching
strategy. In Section 1.2, we mentioned that the genotyping of individuals will be done as
and when it is required. So, it might be necessary to genotype a large number of people
to ensure that enough controls are available for 1:5 case-control study. Other matching
strategies with fewer controls per case will obviously be cheaper to implement.

To calculate odds ratios, we need to group ages sensibly. Note that epidemiological
studies often use quite wide age groups, much wider than actuaries are accustomed to
using. We will use 5-year age bands as a reasonable compromise between accuracy and
sample size. The results are given in Table 7. We can see no particular trend with respect
to age, so we calculate the age-adjusted odds ratio for each stratum (a weighted average
of the age-specific odds ratios, see the Mantel-Haenszel method described in Woodward
(1999)), shown in Table 8.

We can compare the estimated age-adjusted odds ratios with the true odds ratios
given in Table 4. The estimates are better for strata gE and Ge where the numbers of
cases are higher than in stratum GE. However all the true odds ratios lie within the 95%
confidence intervals given in Table 8.

3.2 An Actuarial Investigation
The actuary starts with the model of Figure 1 in mind, and wishes to estimate the

intensity λs
12(x) for each stratum. We assume, realistically, that the best available data

are the published odds ratios. The ‘estimation’ procedure, therefore, consists of finding
a reasonably robust way to estimate transition intensities from odds ratios. There is no
simple mathematical relationship, so approximations must be made.
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Table 7: Odds ratios with respect to the ge stratum as baseline, based on a 1:5 matching
strategy using all cases and 5-year age groups. Approximate 95% Confidence intervals
are shown in brackets. There were no cases among females age 45–49 in stratum GE.

Males
Age gE Ge GE

40–44 1.043 (0.527,2.065) 2.628 (1.561,4.423) 2.375 (0.712,7.917)
45–49 1.069 (0.816,1.400) 1.670 (1.317,2.118) 1.929 (0.940,3.959)
50–54 1.330 (1.117,1.583) 1.578 (1.336,1.865) 1.725 (1.121,2.654)
55–59 1.358 (1.168,1.579) 1.665 (1.448,1.914) 2.133 (1.486,3.062)
60–64 1.175 (1.020,1.352) 1.708 (1.507,1.935) 1.976 (1.417,2.753)
65–69 1.267 (1.116,1.438) 1.592 (1.416,1.789) 1.721 (1.251,2.368)
70–74 1.362 (1.179,1.574) 1.542 (1.348,1.764) 1.907 (1.334,2.726)
75–79 1.487 (1.160,1.907) 1.534 (1.187,1.983) 1.667 (0.910,3.052)

Females
Age gE Ge GE

40–44 1.167 (0.301,4.520) 1.333 (0.463,3.836) 5.000 (0.313,79.942)
45–49 0.944 (0.523,1.702) 1.869 (1.139,3.067) –
50–54 0.947 (0.659,1.361) 1.298 (0.929,1.814) 4.167 (1.800,9.644)
55–59 1.243 (0.967,1.597) 1.280 (0.999,1.641) 2.324 (1.282,4.211)
60–64 1.634 (1.343,1.988) 1.867 (1.538,2.267) 1.842 (1.112,3.053)
65–69 1.321 (1.111,1.571) 1.601 (1.359,1.887) 2.457 (1.637,3.689)
70–74 1.257 (1.045,1.511) 1.538 (1.296,1.825) 2.354 (1.528,3.626)
75–79 1.203 (0.893,1.620) 1.220 (0.896,1.659) 1.773 (0.788,3.986)

Table 8: The age-adjusted odds ratios calculated for both males and females.

Strata gE Ge GE
Male 1.285 (1.209,1.365) 1.625 (1.536,1.719) 1.880 (1.620,2.182)

Female 1.298 (1.188,1.418) 1.538 (1.413,1.674) 2.250 (1.814,2.790)
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Supposing that the actuary knows the rates of heart attack in the general population
λ12(x) (separately for males and females) a simple assumption is that the heart attack
intensity for each stratum is proportional to λ12(x). In stratum s, define:

γs
12(x) = cs(x)× λ12(x) (13)

where γs
12(x) is the actuary’s ‘estimate’ of λs

12(x). Assuming that the odds ratios (denoted
ψs(x)) are good approximations of the relative risks, which is reasonable as long as the
age groups are not too broad, we have:

ψs(x) =
γs(x)

γge(x)
=

cs(x)

cge(x)
(14)

which leads to:

cs(x) = ψs(x)× cge(x). (15)

As observed from Table 7, the odds ratios do not appear to depend strongly on age. So
we further assume that cs(x) is a constant cs for all ages (hence also ψs(x) is a constant
ψs), and therefore:

cs = ψs × cge (16)

where ψs is the age-adjusted odds ratio. Thus Equation (13) becomes:

γs
12(x) = cge × ψs × λ12(x). (17)

Now Equation (10) can be written:

λ12(x + t) =

∑
s ws(x) exp

(
− ∫ t

0
cgeψsλ12(x + y)dy

)
cgeψs λ12(x + t)∑

s ws(x) exp
(
− ∫ t

0
cgeψsλ12(x + y)dy

) . (18)

Let us assume that at age x = 60, the ws(x) are given by the population frequencies
of the respective strata. Now we can solve Equation (18) for the multiplier cge for a
particular choice of age x and any duration t. Then we can use Equation (16) to obtain
cs for s = gE, Ge and GE. We find (not shown here) that the results are very similar for
different values of t. In Table 9, we show the ‘estimated’ cs for representative age x = 60
and duration t = 5, based on the the age-adjusted odds ratios in Table 8. These values
can be compared with the true constants of proportionality of the underlying model given
in Table 3. They are in good agreement for strata s = ge, gE and Ge. The agreement for
stratum s = GE is not so good, but it was based on a small number of cases, 241 males
and 122 females.

3.3 Premium Rating for Critical Illness Insurance
The actuary will use the intensities γs

12(x) ‘estimated’ in Section 3.2 to calculate CI
insurance premiums. The full CI insurance model from Gutiérrez & Macdonald (2003)
is specified in Appendix B. We will assume that all intensities except those for heart



Multifactorial Genetic Disorders, Critical Illness Insurance, and UK Biobank 18

Table 9: The estimated multipliers cs for each stratum.

Stratum ge gE Ge GE

Male 0.918 1.179 1.492 1.726
Female 0.920 1.194 1.415 2.070

Table 10: The true critical illness insurance premiums for different strata as a percentage
of those for stratum ge.

Stratum Males Females

Term Term
Age

5 15 25 35
Age

5 15 25 35
45 112% 111% 109% 107% 45 103% 103% 104% 104%

gE 55 110% 108% 107% 55 104% 105% 105%
65 107% 106% 65 105% 106%
75 106% 75 106%
45 124% 121% 117% 115% 45 105% 107% 108% 108%

Ge 55 119% 116% 114% 55 109% 110% 110%
65 114% 112% 65 111% 111%
75 111% 75 111%
45 136% 131% 126% 122% 45 108% 110% 112% 112%

GE 55 129% 124% 121% 55 113% 115% 115%
65 120% 118% 65 116% 117%
75 117% 75 117%

attack are as given there. For heart attack, we use the intensities γs
12(x). We compute

expected present values by solving Thiele’s differential equations numerically, with a force
of interest of δ = 0.044017 (see Norberg (1995)).

Table 10 shows the true premiums for the strata s = ge, Ge and GE, as a percentage
of the premiums for stratum ge, for males and females and for different ages and terms.
Here, ‘true’ means that they have been computed using the intensities of Section 2, not
the actuary’s estimates. Table 11 then shows the corresponding premiums, again as a
percentage of those charged for stratum ge, using the actuary’s estimates from Section
3.2. The results are similar to those in Table 10. The estimates are good for strata gE and
Ge, but not as accurate for females in stratum GE. As mentioned before, this stratum
had relatively few cases.

4. Simulation Results

4.1 Varying the Genetic and Environment Model
In the last section, we estimated parameters of a heart attack model and the resulting

CI insurance premiums, based on a simulated realisation of UK Biobank. The underlying
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Table 11: The actuary’s estimated critical illness insurance premiums for different strata
as a percentage of those for stratum ge.

Stratum Males Females

Term Term
Age

5 15 25 35
Age

5 15 25 35
45 112% 110% 109% 107% 45 103% 104% 104% 104%

gE 55 110% 108% 107% 55 105% 105% 105%
65 107% 106% 65 106% 106%
75 106% 75 106%
45 126% 123% 119% 116% 45 105% 106% 108% 108%

Ge 55 121% 117% 115% 55 108% 109% 109%
65 115% 113% 65 110% 110%
75 112% 75 111%
45 137% 132% 126% 123% 45 111% 115% 118% 118%

GE 55 129% 124% 121% 55 119% 121% 121%
65 121% 119% 65 124% 124%
75 117% 75 125%

‘true’ model (chosen by us) was particularly simple — two genotypes, two environmental
exposures and proportional hazards of heart attack — and by great good luck, our model
epidemiologist hit upon exactly the correct hypotheses in fitting his/her model. So it is
not surprising that he/she obtained good parameter estimates, with the possible exception
of those in respect of the smallest stratum, GE.

In reality, the epidemiologist faces more difficult problems:
(a) There is likely to be more than one gene, many with more than two variants, as

candidates for influencing the disease.
(b) Similarly, there are likely to be several environmental exposures of interest.
(c) Model mis-specification is always possible (indeed, it may be the norm).
(d) On grounds of cost, the number of cases and the number of controls per case may be

limited.
(e) As mentioned earlier, UK Biobank will be a single unrepeatable sample, hence sam-

pling error will be present. Although 500,000 seems like a huge sample, it may not
be when smaller numbers of cases are sampled from within it.

In a simulation study, we are in a position to explore these problems. In particular,
we can address (d) and (e) above, because we can replicate the entire UK Biobank dataset
many times, and repeat the epidemiological and actuarial analyses using each realisation.
Thus we can estimate the sampling distributions of parameter estimates and premium
rates, while the analysis of the single realization in Section 3 only gave us point estimates
of the latter. (We did give approximate confidence intervals of the estimated odds ratios,
because they can be derived on theoretical grounds. This is not possible for such a
complicated function of the model parameters as a premium rate, and simulation is one
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of the few practical approaches.) We concentrate on this question in the rest of this paper,
because it is directly relevant to the approach adopted by GAIC in the UK, and likely to
be adopted by similar bodies elsewhere, which demands that the reliability of prognoses
based on genetic information must be demonstrated if it is to be used in any way. In the
case of multifactorial disorders, we assume that this requirement is to be interpreted in
the statistical sense rather than as applying to individual applicants. Our exploration of
(a), (b) and (c) above will be the subject of a future paper.

In addition to simulating many replications of UK Biobank, we will consider the
effect of stronger or weaker genetic and environmental effects, and of more common and
less common adverse genotypes. We call each such variant of the underlying model a
‘scenario’, which should not be confused with the simulation procedure discussed above.
We will hold each scenario fixed, and then simulate outcomes of UK Biobank under those
assumptions.

We have already introduced one set of assumptions is Section 2, which we will refer
to as our Base scenario. The details of all the scenarios are given in Table 12. The
parameters that must be specified are:
(a) The population frequency of each stratum (the same for males and females).
(b) The parameters k for each sex and ρs for each stratum. Although ρs does not depend

on sex, for convenience Table 12 shows the combined constants of proportionality
k × ρs for each sex.

Although the odds ratios are derived quantities rather than parameters, they are also
shown in Table 12 for convenience.

The Low and High Penetrance scenarios assume smaller and larger differences, re-
spectively, between the effects of the different strata, governed by ρs. The Low and High
Frequency scenarios assume that disadvantageous G genotype and E environment have
population frequencies half (0.05) or double (0.2) those in the baseline scenario (0.1),
respectively.

In Section 3.1, we noted that problems like missing values and cost constraints might
limit the number of cases that can be used for analysis. So we will also examine the
effect of limiting the number of cases used in the analysis. From Table 6, around 20,000
individuals were eligible to be considered as cases (in that particular realisation). For
each scenario, we will show results based on 1,000, 2,500, 5,000 and 10,000 cases as well
as those based on all cases.

4.2 Outcomes of 1,000 Simulations: The Base Scenario
We will make 1,000 simulations of UK Biobank. The outcomes will be the empir-

ical distributions of the parameters of the epidemiologist’s model, and of CI insurance
premium rates. Let us first consider the Base scenario, all cases included, for males
aged 45 taking out a CI insurance policy with term 15 years. Figure 5 shows scatter
plots of the CI insurance premium rates per unit sum assured for strata gE, Ge and
GE versus those of ge. More precisely, the outcome of the ith simulation is a draw-
ing pi = (pi

ge, p
i
gE, pi

Ge, p
i
GE) from the sampling distribution of the 4-dimensional random

variable P = (Pge, PgE, PGe, PGE), where Ps is the premium rate in stratum s.
The scatter plots show clearly that the premium rate pairs (Pge,PgE) and (Pge,PGe) are
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Table 12: The model parameters for different scenarios. Odds ratios are also shown.

Penetrance Frequency
Parameters Stratum Base Low High Low High

ge 0.81 0.81 0.81 0.9025 0.64
Population gE 0.09 0.09 0.09 0.0475 0.16
Frequency Ge 0.09 0.09 0.09 0.0475 0.16

GE 0.01 0.01 0.01 0.0025 0.04

ge 0.70 0.85 0.55 0.70 0.70
gE 0.90 0.95 0.85 0.90 0.90

ρs Ge 1.10 1.05 1.15 1.10 1.10
GE 1.30 1.15 1.45 1.30 1.30

k (Male) All 1.317274 1.136603 1.568090 1.370745 1.221620
k (Female) All 1.316406 1.136463 1.564821 1.370230 1.220385

ge 0.922 0.966 0.862 0.960 0.855
k × ρs gE 1.186 1.080 1.333 1.234 1.099
(Male) Ge 1.449 1.193 1.803 1.508 1.344

GE 1.712 1.307 2.274 1.782 1.588

ge 0.921 0.966 0.861 0.959 0.854
k × ρs gE 1.185 1.080 1.330 1.233 1.098

(Female) Ge 1.448 1.193 1.800 1.507 1.342
GE 1.711 1.307 2.269 1.781 1.587

ge 1.000 1.000 1.000 1.000 1.000
gE 1.286 1.118 1.545 1.286 1.286Odds Ratio
Ge 1.571 1.235 2.091 1.571 1.571
GE 1.857 1.353 2.636 1.857 1.857
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Figure 5: Scatter plots of CI insurance premium rates for strata gE, Ge and GE versus
that of ge under the Base scenario for males aged 45 and policy term 15 years.

more stongly correlated than the pair (Pge,PGE). This is true, as the correlation matrix
given in Table 13 shows, but note that the scale of the x-axis is greatly compressed
compared with that of the y-axis. The reason they are correlated is that, as outlined in
Section 3.2, the actuary uses the three odds ratios published by the epidemiologist, plus
the overall population intensity of heart attack, to obtain the heart attack intensities for
the four strata, so the four premium estimates are not independent. The reason that the
correlations are negative is that the overall level of the four intensities is adjusted so that
their aggregate effect is consistent with the general population. So, if the intensities in any
of the strata are high, the intensities in the others will tend to fall to restore consistency
with the aggregate intensity.

We also consider the premium rates for strata gE, Ge and GE as a proportion of those

Table 13: The correlation matrix of the strata-specific premium rates for males aged 45
and policy term 15 years under the Base scenario, all cases included.

Stratum ge gE Ge GE

ge 1.000
gE −0.604 1.000
Ge −0.656 −0.123 1.000
GE −0.194 −0.057 −0.095 1.000
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Figure 6: The scatter plots of the premium ratings Ge/ge and GE/ge versus gE/ge and
the corresponding density plots for males aged 45 and policy term 15 years under the
Base scenario, all cases included.
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Table 14: The correlation matrix of the premium ratings for males aged 45 and policy
term 15 years under the Base scenario, all cases included.

Stratum RgE RGe RGE

RgE 1.000
RGe 0.095 1.000
RGE 0.013 −0.018 1.000

for stratum ge, namely PgE/Pge, PGe/Pge and PGE/Pge. These correspond to premium
ratings, if we take the standard premium rate to be that of stratum ge, and we will refer to
them as such. For brevity, define Rs = Ps/Pge to be the premium rating for stratum s with
respect to stratum ge. The correlation matrix of these premium ratings is given in Table
14 and the corresponding scatter plots are given in Figure 6. Both suggest correlations
are small enough to neglect, which means that instead of always considering the full joint
distribution of the premiums P , we can obtain all the information of interest by separate
examination of the marginal distributions of the premium ratings. The densities of these
marginal distributions are given in Figure 6. This immediately suggests a simple approach
to the questions that GAIC must ask, because the reliability of the premium rating in
each stratum — in terms of its distinguishability from the premium ratings in the other
strata — is revealed by the degree to which its marginal density overlaps the marginal
densities of the others. Presented with Figure 6, we might expect GAIC to agree that
strata Ge and GE had premium ratings distinct from that of stratum gE, but to ask
whether or not they had premium ratings reliably distinct from each other.

4.3 A Measure of Confidence
Our precise formulation of the question that GAIC might now ask is: are the marginal

empirical distributions of premium ratings in different strata sufficiently different to sup-
port charging different premiums (when doing so is allowed)? Hence, we need some kind
of measure of confidence in distinguishing one stratum from another in terms of CI insur-
ance premium ratings. In the remainder of this section, we will suggest a simple measure
to achieve this.

Let X and Y be two continuous random variables with cumulative distribution func-
tions FX and FY respectively. We can find u such that FX(u) + FY (u) = 1. If the ranges
of X and Y overlap, u lies in both and is unique, otherwise any u that lies between their
ranges will do. This can be rewritten as FX(u) = 1− FY (u), or P[X ≤ u] = P[Y > u].

Without loss of generality, let us also assume that FX(u) ≥ FY (u). Define our measure
of confidence to be 2 × FX(u) − 1, which gives a measure of the overlap of FX and FY .
Denote this O(X,Y ), or just O if the context is clear. If FX(u) = FY (u) = 0.5, then we
are as unsure as we can be that FX and FY are distinct, and O = 0. As FX(u) increases to
1, the area of overlap decreases. If the ranges of X and Y do not overlap at all, FX(u) = 1
and we have high confidence in deciding that FX and FY are distinct; in this case O = 1.
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Table 15: The measure of overlap O for CI insurance premium ratings for males aged 45,
with policy term 15 years, for different scenarios.

Scenario Cases O(RgE , RGe) O(RgE , RGE) O(RGe, RGE)

All 1.000 1.000 0.924
10,000 0.968 0.962 0.632

Base 5,000 0.872 0.850 0.484
2,500 0.718 0.698 0.356
1,000 0.490 0.416 0.176

All 0.918 0.904 0.572
10,000 0.662 0.658 0.346

Low Penetrance 5,000 0.528 0.472 0.216
2,500 0.412 0.360 0.148
1,000 0.250 0.222 0.076

All 1.000 1.000 0.992
10,000 1.000 0.998 0.844

High Penetrance 5,000 0.984 0.970 0.692
2,500 0.906 0.886 0.540
1,000 0.688 0.658 0.354

All 0.996 0.948 0.658
10,000 0.892 0.706 0.352

Low Frequency 5,000 0.712 0.516 0.208
2,500 0.566 0.322 0.060
1,000 – – –

All 1.000 1.000 0.994
10,000 0.988 1.000 0.896

High Frequency 5,000 0.932 0.986 0.744
2,500 0.806 0.902 0.546
1,000 0.594 0.716 0.358

4.4 Results
In this section, we simulate 1,000 realisations of UK Biobank under each scenario

outlined in Table 12. Our aim is to examine how reliably UK Biobank might identify
differences in premium ratings, as a body like GAIC might require. This is measured by
the three quantities O(RgE, RGe), O(RGe, RGE) and O(RgE, RGE). We have verified (not
shown here) that these do not vary significantly by age or policy term, so in Table 15, we
present results for a representative policy for males aged 45 and policy term 15 years.

Note that it is impossible to calculate an odds ratio for a given age group unless there
is at least one case in that age group in each stratum. In some circumstances some of the
1,000 simulations failed this criterion, and these were omitted from the results in Table
15. Those affected were the Base and the Low Penetrance scenarios with 1,000 cases (1
simulation omitted in each case) and the Low Frequency scenarios with 2,500 and 1,000
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cases (10 and 238 simulations omitted, respectively). We omit the last of these from the
table as it is possibly misleading. We make the following comments on Table 15:
(a) We saw in Section 4.3 that under the Base Scenario, all cases included, the densities

of RGe and RGE overlap over a small region. This qualitative observation is made
more concrete by Table 15, which shows that O(RGe, RGE) = 0.924 in this case. By
definition, this means that there exists x such that P[RGe < x] = P[RGE > x] = 0.962,
and we (or GAIC) may have high confidence in assigning these strata to different
underwriting groups.

(b) Stratum GE is always the smallest, so the distribution of RGE is always the most
spread out. This is also evident from the scatter plots in Figure 6.

(c) We expect real case-control studies to use only a subset of cases, and Table 15 shows
that the effect of this is very great. For example, in the Base scenario, O(RGe, RGE)
falls from 0.924 to 0.176 as the number of cases used falls from ‘All’ to 1,000. Figure
7 shows, for the Base scenario, the marginal densities with different numbers of cases.
The densities overlap considerably if the number of cases is small (and bear in mind
that 1,000 cases is not a very small investigation by normal standards).

(d) Figure 8 shows the empirical distribution functions of the premium ratings for males
under the Base scenario. For each premium rating, we show the effect of using different
numbers of cases. For example, if only 1,000 cases were used, there is about a 30%
chance that underwriters would incorrectly assume RGE to be 150% or higher. If
instead 10,000 cases were used the chance of making this error is very small.

(e) Figure 9 shows, for 5,000 cases, the effect of the different scenarios. Reduced fre-
quency of the adverse genetic and environmental exposures, or reduced penetrance
of the adverse genotype, both reduce the ability to discriminate between different
underwriting classes. Changes in the opposite direction improve the discrimination.
This qualitative observation is backed up in a more quantitative way by Table 15.

Table 16 gives the corresponding results for females (again, we omit the results for the
Low Frequency scenario with 1,000 cases because of a large number of simulations with
undefined odds ratios). When a fixed number of cases is used the results are very similar
to those for males. This is as expected, as we assumed that the effects of genotype and
environmental exposures were the same for males and females, albeit acting on different
baseline risks of heart attack. However, when all cases are included, the values of O are
smaller than those for males. This is because the lower incidence of heart attack among
females results in fewer cases, therefore estimates with higher variances.

Until now, we have used a 1:5 matching strategy for all case-control studies; that is,
five controls per case. However, cost constraints might dictate the use of fewer controls.
In Table 17, we show the values of O for males if a 1:1 matching strategy is used. As
expected these are decreased significantly under all scenarios.

As we mentioned when discussing Table 15, we may find simulations under which
the odds ratios cannot be calculated because of a lack of cases. Also, note that the
calculation of odds ratios requires the existence of enough exposed controls. This is more
demanding under a 1:1 matching strategy, as fewer controls are available than in 1:5
matching strategy. (At first sight this is surprising; it ought to be easier to find a smaller
number of controls. This is true, but there is also a higher chance that one of the cells in
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Figure 7: Marginal densities of premium ratings in the Base scenario (males) with different
numbers of cases in the case-control study.
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Figure 8: The empirical cumulative distribution function of the premium ratings gE/ge,
Ge/ge and GE/ge for males aged 45 and policy term 15 years under Base scenario.
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Figure 9: Marginal densities of premium ratings in different scenarios (males), with 5,000
cases in the case-control study.



Multifactorial Genetic Disorders, Critical Illness Insurance, and UK Biobank 30

Table 16: The measure of overlap O for CI insurance premium ratings for females aged
45 with policy term 15 years, for different scenarios.

Scenario Cases O(RgE , RGe) O(RgE , RGE) O(RGe, RGE)

All 0.990 0.990 0.734
10,000 0.958 0.948 0.626

Base 5,000 0.850 0.844 0.494
2,500 0.728 0.706 0.378
1,000 0.466 0.488 0.244

All 0.778 0.762 0.402
10,000 0.680 0.646 0.302

Low Penetrance 5,000 0.528 0.506 0.222
2,500 0.392 0.326 0.122
1,000 0.238 0.198 0.078

All 1.000 1.000 0.906
10,000 1.000 0.998 0.836

High Penetrance 5,000 0.992 0.984 0.696
2,500 0.914 0.884 0.484
1,000 0.716 0.656 0.320

All 0.932 0.800 0.436
10,000 0.896 0.676 0.298

Low Frequency 5,000 0.748 0.486 0.192
2,500 0.552 0.340 0.134
1,000 – – –

All 0.998 1.000 0.922
10,000 0.994 1.000 0.884

High Frequency 5,000 0.922 0.986 0.756
2,500 0.814 0.914 0.576
1,000 0.598 0.678 0.348
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Table 17: The measure of overlap O for CI insurance premium ratings for males aged 45,
with policy term 15 years, for different scenarios and a 1:1 matching strategy.

Scenario Cases O(RgE , RGe) O(RgE , RGE) O(RGe, RGE)

All 0.990 0.990 0.774
10,000 0.886 0.872 0.454

Base 5,000 0.740 0.720 0.374
2,500 0.554 0.544 0.248
1,000 0.378 0.400 0.222

All 0.808 0.820 0.456
10,000 0.558 0.526 0.220

Low Penetrance 5,000 0.372 0.378 0.188
2,500 0.288 0.308 0.184
1,000 0.232 0.204 0.048

All 1.000 1.000 0.908
10,000 0.988 0.978 0.680

High Penetrance 5,000 0.898 0.902 0.494
2,500 0.762 0.742 0.366
1,000 0.548 0.480 0.222

All 0.954 0.856 0.474
Low Frequency 10,000 0.738 0.558 0.284

5,000 0.574 0.464 0.228
2,500 – – –
1,000 – – –

All 1.000 1.000 0.950
10,000 0.944 0.986 0.746

High Frequency 5,000 0.826 0.932 0.592
2,500 0.668 0.802 0.456
1,000 0.474 0.594 0.306

the 2× 2 table used to calculate the odds ratio will be empty, see Table 19 in Appendix
A.) Table 18 shows the numbers of simulations rejected for this reason. The numbers are
rather high for the Low Frequency scenarios where 1,000 and 2,500 cases were used. The
results based on the remaining simulations may not be reliable and so these are not given
in Table 17.

5. Conclusions

In this paper we ask the question: how well may UK Biobank distinguish between
different levels of risk associated with the influence of genes, environment and their in-
teractions on a given multifactorial disorder? Using a simple model of heart attack as an
example, we simulated the outcome of UK Biobank, each simulation consisting of 500,000
life histories. Then we supposed that a model epidemiologist carried out case-control
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Table 18: The number of simulations rejected due to the inability to calculate the odds
ratios for a 1:1 matching strategy.

Number of Cases
Scenario All 10,000 5,000 2,500 1,000

Base 0 0 0 0 13
Low Penetrance 0 0 0 0 16
High Penetrance 0 0 0 0 36
Low Frequency 0 0 6 123 630
High Frequency 0 0 0 0 0

studies using the UK Biobank data, and a model actuary used the published odds ratios
from these studies to parameterise a pricing model for CI insurance.

We supposed that GAIC (in the UK) would approach the question of the reliability
of any genetic test capable of detecting the genetic variation in terms of its ability to
allocate tested individuals to distinct underwriting classes. From each simulation of UK
Biobank we could estimate the premium rates of a representative CI insurance policy for
each stratum defined by genoype and the environment, and for each sex. From a large
number of such simulations, we could estimate the sampling distributions of premium
ratings with respect to a chosen ‘standard’ underwriting class.

For simplicity, we used only two genotypes and two levels of environmental exposure
(as in the examples in the UK Biobank protocol). We used proportional hazards of heart
attack in different strata, and assumed that the model epidemiologist, in his/her analyses,
hit upon the same model. Thus our results correspond to the simplest possible hypothesis
that might be investigated using UK Biobank, and is free of model mis-specification on
the part of the analyst, and of any noise, nuisance parameters, or missing or contaminated
data.

The parameters we chose as our baseline represented genetic and environmental ex-
posures that were fairly common (10% of the population with each adverse exposure) and
had modest penetrance: the most adverse stratum (GE) and least adverse stratum (ge)
had intensities of heart attack 30% higher and 30% lower than average, respectively. (For
comparison, CI insurance underwriters typically might consider an extra premium to be
appropriate once the assessed premium exceeds about 25% of the standard.) We also
considered the effect of varying key parameters, as follows:
(a) The relative incidence rates of heart attack for each stratum.
(b) The population frequencies of each stratum.
(c) The number of cases used in the case-control study.

We defined a very simple measure of the extent to which two distributions overlap.
We did not attempt to define a cut-off point, beyond which GAIC might deem a genetic
test to be insufficiently reliable to be used in underwriting, but the results we obtained
ranged across all values of this measure, showing that in some circumstances a genetic test
would almost certainly be deemed reliable, and in other circumstances it would almost
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certainly be deemed unreliable.
On the basis of this simple model, we conclude that the ability of case-control studies

based on UK Biobank to identify distinct CI underwriting classes was marginal. If a very
large number of cases was used, quite reliable discrimination was achieved, but this is a
very expensive option. If a more realistic number of cases was used — a few thousands —
the power to discriminate quickly diminished. In particular, it was clear that if the effects
of the adverse genotype and adverse environment were any less than we had assumed, the
power to discriminate would be rather poor.

This conclusion ought to bring comfort to those who are worried about insurers’ use
of genetic information, and to insurers themselves. This is particularly important during
the 5 to 10 years that must pass before UK Biobank itself starts to yield results. We have
found no support for the idea that very large-scale genetic studies like UK Biobank will
lead to significant changes in underwriting practice.

Our study has been very simple and idealised in several respects mentioned above.
Most obviously, our genetic model is not truly multifactorial, although it does allow for a
basic environmental interaction. Further research is in hand to extend the model to a more
realistic, though still hypothetical, representation of a multifactorial genetic contribution
to heart attack. Our aim will be to find out whether this will strengthen or weaken the
discriminatory power of genetic tests, along the lines that GAIC has pioneered for single-
gene disorders. Another point that will repay further study is the possibility of model
mis-specification.
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APPENDIX A

A BRIEF INTRODUCTION TO CASE-CONTROL STUDIES

This appendix describes the main features of a case-control study, one of the main
tools in epidemiology, but which is not well-known to actuaries. Standard references for
this material are Woodward (1999) and Breslow & Day (1980).

The question asked is: what factors affect the risk of a disease or other outcome?
There might be a number of risk factors, including genotype, whose interplay affects the
risk of a disease. However, the rôle of environmental factors is not diminished just because
genetic factors can be more accurately defined — smokers account for most lung cancers
whatever their genotypes.

We make two key assumptions: (a) that the usual goal of an epidemiological study
is to obtain results that are valid for the general population; and (b) that we can only
study a relatively small sample of individuals. The best way to proceed is to carry out a
prospective cohort study — recruit a sample of healthy people, observe them over time,
and then see how closely the suspected risk factors match up with cases of the disease.
Provided the sample has been chosen randomly from the population, the results should be
free of any selection biases. However, such a study is time consuming and (especially for
rare diseases) prohibitively expensive. It is much quicker and cheaper to select a sample
of people who already have the disease of interest, and a sample of people who do not
have the disease, and see if the suspected risk factor turns up more often in the diseased
sample. This is a case-control study; the two samples are known as cases and controls,
respectively. But, because the cases are chosen retrospectively from known sufferers of
the disease, the sampling may be biased. The statistical question, therefore, is what
inferences can be drawn about the general population, from a case-control study whose
cases have been selected retrospectively?

Controls should be a representative sample of disease-free individuals, who had exactly
the same chances as the cases of become diseased, except in respect of the risk factors
of interest. For example, suppose we are studying the effect of smoking on lung cancer.
If all the cases are over 60 years old, and all the controls are under 30 years old, we can
hardly compare their respective risks of lung cancer. Therefore we would match controls
to cases: given as a case a man age 65 who had had lung cancer, a suitable control might
be a man age 65 who had not. The general approach would be to match in respect of as
many factors as possible that might affect the risk of lung cancer, except smoking habits.
Then we would expect that any difference between the proportions of smokers among
cases and controls would be informative.

Matching reduces confounding when comparing cases and controls, but not within
each of the two groups. For example, if age is thought to affect the risk of lung cancer, we
would not want to analyse as a single unit a sample of cases whose ages ranged from 20
to 80: to do so would be to assume, implicitly, that risk was unaffected by age. The usual
approach would be to stratify the sample by age, say into 5-year or 10-year age groups.
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-1 = Healthy 2 = Diseased
λs

Figure 10: A 2-state model of a disease, in respect of a person in stratum s.

(Actuaries are accustomed to stratify their data by age to an exceptional extent; much
broader age groups are usual in epidemiology.) We would stratify both cases and controls
with respect to risk factors other than that being studied, ensuring that matched cases
and controls are in corresponding strata.

In the simplest situation, a risk factor has two levels: an individual either is exposed
to it or is not. For example, people may be classified as smokers or non-smokers. Here
we will mainly look at such binary risk factors, and studies that take one risk factor at a
time.

We introduce a simple model with two states, ‘Healthy’ and ‘Diseased’, see Figure
10. Return from the ‘Diseased’ state is not possible. The (constant) transition intensity
λs governs the probability that a healthy person in stratum s will become diseased, as
follows: over a small time dt this probability is approximately λsdt.

The ideal outcome of a study would be estimates of all the λs. However, a retro-
spective study cannot, in general, provide unbiased estimates of the λs. Next best (with
actuarial models in mind) might be the relative risks: the relative risk in stratum s,
compared with stratum z, is rsz = λs/λz. Then, if we could just establish λz in a single
stratum, we could find λs in any stratum. Unfortunately, a retrospective study cannot,
in general, provide unbiased estimates of relative risks either. Since the data are what
they are, we have to seek relevant quantities that can be estimated in an unbiased fashion
from them. The main example is the odds ratio.

Whenever we study the probabilities of events in epidemiology, a time interval is
involved, which we denote T . Expressions such as ‘the probability that X occurred’
should be taken to mean ‘the probability that X occurred during the interval of length
T ’. For example, T might be equal to the width of the age-groups used to stratify the
sample.

Let Ps be the probability that a person in stratum s suffered the disease (during a
period of length T ), and let Qs = 1−Ps. Choose one stratum, z say, as the baseline: the
most common stratum is often chosen. Then the odds in strata s and z are Ps/Qs and
Pz/Qz respectively, and the odds ratio in stratum s relative to the baseline is:

φsz =
Odds in stratum s

Odds in stratum z
=

Ps Qz

Qs Pz

. (19)

Suppose, for simplicity, we are studying the effect of two genotypes, g and G, on lung
cancer. We can draw up the simple 2 × 2 table in Table 19, where a and b are the numbers
of cases and controls, respectively, with genotype G, and c and d are the numbers of cases
and controls, respectively, with genotype g. Then ad/bc is an unbiased estimate of the
odds ratio φGg of genotype G with respect to genotype g. This is true regardless of the
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Table 19: Two-way table of numbers of cases and controls by genotype. Marginal totals
are also shown.

Diseased Disease-free Total
Genotype G a b a + b
Genotype g c d c + d

Total a + c b + d a + b + c + d

retrospective sampling scheme, and is the reason why odds ratio are normally reported in
case-control studies (see Woodward (1999, Chapter 6)).

If there is reason to believe that there is a common true odds ratio for all strata,
and the differences in the observed odds ratios across strata (with respect to the same
baseline) are purely due to chance variation, an estimate of the common odds ratio is
given by the Mantel-Haenszel statistic:

ψ̂ =

(∑
s6=z

as bz

Ns

)/(∑
s6=z

bs az

Ns

)
(20)

where the summation is over all strata s except the baseline stratum z, as and bs are the
numbers of cases and controls, respectively, in stratum s, and Ns = as + bs + az + bz.

It often happens that controls are more plentiful than cases, and more efficient es-
timates can then be obtained by matching more than one control to each case: if we
match c controls to each case we have 1:c matching. However, as c increases, the marginal
increase in efficiency decreases, so c is rarely greater than 5 in practice.

For 1:c matching, the Mantel-Haenszel estimate of the odds ratio is as follows:

ψ̂ =

∑c
u=1(c + 1− u)mu∑c

u=1 u(tu −mu)
(21)

where:

tu = the number of sets with u exposures

mu = the number of sets with u exposures in which the case is exposed.

Sometimes data in respect of a few controls may not be available. Then a case can be
matched against a number of controls which is not fixed but can vary between 1 and c.
This is a 1:variable matching design. The most general of all matching strategies is the
many:many matching design, where a variable number of controls are matched against
a variable number of cases. Although somewhat complicated, similar techniques can be
used to derive the Mantel-Haenszel estimate of the odds ratio.

The actuary’s problem is to ‘estimate’ intensities from published odds ratios, plus
some other information to provide a baseline, such as the intensity in one stratum or
(more often) the general population. If T is reasonably short, we have:
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Ps

Pz

=
1− exp(−λsT )

1− exp(−λzT )
≈ λs

λz

= rsz. (22)

Moreover if all the probabilities Ps are small, then we can put Qs ≈ 1 and then:

ψsz =
Ps Qz

Qz Pz

≈ Ps

Pz

≈ rsz. (23)

APPENDIX B

A Critical Illness Insurance Model

Gutiérrez & Macdonald (2003) obtained the following model for critical illness insur-
ance based on medical studies and population data. Full references can be found in that
paper. The structure of the model, as outlined in the paper, is given in Figure 11. The
relevant transition intensities are listed below.
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Figure 11: A full critical illness model for gender s.

(a) For males, the age-dependent transition intensities governing the incidence of heart
attack are given below:
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Table 20: 28-Day mortality rates, qm
01(x) = 1− pm

01(x), for males following heart attacks.
age x qm

01(x) age x qm
01(x) age x qm

01(x) age x qm
01(x)

20–39 0.15 47–52 0.18 58–59 0.21 65–74 0.24
40–42 0.16 53–56 0.19 60–61 0.22 75–79 0.25
43–46 0.17 57 0.20 62–64 0.23 80+ 0.26

µm
01(x) =




exp(−13.2238 + 0.152568x) if x ≤ 44

x− 44

49− 44
× µm

01(49) +
49− x

49− 44
× µm

01(44) if 44 < x < 49

− 0.01245109 + 0.000315605x if x ≥ 49

(24)

For females, the age-dependent transition intensities are:

µf
01(x) =

0.598694

Γ(15.6412)
× 0.1531715.6412 exp(−0.15317x)x14.6412 (25)

We also need the 28-day survival factors following heart attacks. This relates to the
common contractual condition, that payment depends on surviving for 28 days. Let
ps

01(x) be the 28-day survival probabilities for gender s, and qs
01(x) = 1− ps

01(x). For
females, at ages 20–80, qf

01(x) = 0.21, and for males the values are given in Tables 20.
(b) For males, the age-dependent transition intensities governing the incidence of cancer

are given below:

µm
02(x) =




exp(−11.25 + 0.105x) if x ≤ 51

x− 51

60− 51
× µm

02(60) +
60− x

60− 51
× µm

02(51) if 51 < x < 60

− 0.2591585− 0.01247354x + 0.0001916916x2 − 8.952933× 10−7x3 if x ≥ 60
(26)

For females, the age-dependent transition intensities are:

µf
02(x) =

{
exp(−10.78 + 0.123x− 0.00033x2) if x < 53

− 0.01545632 + 0.0003805097x if x ≥ 53
(27)

(c) For males, the age-dependent transition intensities governing the incidence of stroke
are given below:

µm
03(x) = exp(−16.9524 + 0.294973x− 0.001904x2 + 0.00000159449x3) (28)

For females, the age-dependent transition intensities are:

µm
03(x) = exp(−11.1477 + 0.081076x) (29)

We need the 28-day survival factors following stroke. Let ps
03(x) be the 28-day survival

probabilities for gender s, and qs
03(x) = 1 − ps

03(x). For both males and females,
qs
03(x) = 0.002x/0.9.
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(d) The transition intensities for other minor causes of critical illnesses amount to 15%
of those arising from cancer, heart attack and stroke. So the aggregate rate of critical
illness claims, for gender s, is:

µs(x) = 1.15(µs
01(x)× ps

01(x) + µs
02(x) + µs

03(x)× ps
03(x)) (30)

(e) Population mortality rates, given by English Life Tables No. 15 (ELT15) were ad-
justed to exclude deaths which would have followed a critical illness insurance claim.


