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ABSTRACT

Evaluating the risk of disorders in long-term insurance often relies on rates
of onset estimated from quite small epidemiological studies. These estimates
can carry considerable uncertainty, hence so may functions of them, such as
a premium rate. In the case of genetic disorders, where it may be required to
demonstrate the reliability of genetic information as a risk factor, such uncer-
tainty may be material. Epidemiological studies publish their results in a variety
of forms and it is rarely easy to estimate the sampling distribution of a pre-
mium rate without access to the original data. We found a large study of breast
and ovarian cancer that cited relative risks of breast and ovarian cancer onset,
with confidence intervals, in 10-year age groups. We obtained critical illness pre-
mium rates and their sampling distributions by parametric bootstrapping, and
investigated the effect of possible patterns of sampling correlations. We found
that this study provides ample statistical evidence that known BRCA1 or BRCA2
mutations, or a typical family history of breast or ovarian cancer, are reliable
risk factors, but the sampling covariances of the relative risks could be impor-
tant at some ages and terms. Studies that cite only standard errors of parameter
estimates erect a small but awkward barrier between the models they describe,
and some important actuarial questions.
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1. INTRODUCTION

1.1. Uncertainty in the Estimation of Premium Rates

Underwriting the risk of many disorders, and genetic disorders in particular,
has usually relied on published epidemiological studies. These rarely include
the original data, for reasons of confidentiality and brevity. Therefore, while
the actuary may use such studies to estimate relevant quantities, like premium
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rates, it is rarely possible to quantify the sampling properties of these quanti-
ties. Since many medical studies involve small samples, compared with those
needed to establish reliable life tables, the sampling uncertainty of premium
rates based on them is unknown but could be large. The question we address is:
if we regard premium rates as point estimates, how may we estimate their sam-
pling properties, inherited from the data in the underlying medical studies?

In the UK, this question has extra force, because the insurance industry has
agreed not to use genetic test results for underwriting unless permitted to do so
by a quasi-governmental body called the Genetics and Insurance Committee
(GAIC). Even then, they could only be used for very large sums assured
(Daykin et al., 2003). One of GAIC’s criteria is the reliability with which a
genetic test result might identify increased risk. It has not laid down specific
methods of measuring such reliability, but it seems reasonable that the sam-
pling distributions of any key parameters estimated from genetic studies should
contribute to that assessment.

Lu, Macdonald & Wekwete (2007) studied one approach to obtaining the
sampling distribution of premium rates based upon genetic epidemiological
studies of modest size. This is the only published study of which we are aware,
and it was limited in a number of ways:

(a) They considered adult polycystic kidney disease (APKD), which is a rare
and purely genetic disorder. Therefore the existence of a family history
identifies the presence of a causative mutation in the family, which leads
to relatively straightforward analysis. But other, major, disorders have both
genetic and non-genetic causes, such as lifestyle and diet, which must both
be modelled.

(b) They applied bootstrapping methods to exposure and event data suitable for
non-parametric (Kaplan-Meier or Nelson-Aalen) estimation. However in
many genetic studies, parametric models are estimated. Even when the num-
ber of parameters is small, it is usual to publish their standard errors, but not
the full information matrix (assuming likelihood methods to be used).

We will consider breast cancer (BC) and ovarian cancer (OC), common diseases
of which a small proportion can be attributed to specific gene mutations.
We use a recent study (Antoniou et al., 2003) which estimated age-related rates
of onset using a piecewise constant parametric model. Standard errors but not
the the full information matrix were given. Our aim is to approximate the sam-
pling distributions of critical illness (CI) insurance premium rates allowing for
familial risk of BC/OC. In doing so, we are led to study the effect of possible
patterns of correlation among the parameter estimates.

1.2. Genetics of Breast and Ovarian Cancer

Two germline mutations in BRCA1 and BRCA2 genes have so far been found
to confer high risk of BC and OC. BRCA1 mutations account for 2% of all
cases of BC, BRCA2 mutations for a smaller proportion. Early studies reported
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FIGURE 1: A model of breast and ovarian cancer, development of a family history and critical illness
insurance, in subpopulation i defined by individual and familial genotype.

‘FH’ = Family History.

the cumulative risk of BC by age 70 to be over 80% (Easton et al., 1993; Eas-
ton et al., 1995) for a BRCA1 mutation carrier; a more recent study reduced
the risk to 65% (Antoniou et al., 2003). The corresponding risk for a BRCA2
mutation carrier is 45% (Antoniou et al., 2003). The cumulative risk by age 70
of OC is about 39% among BRCA1 mutation carriers and 11% among BRCA2
mutation carriers (Antoniou et al., 2003). Estimates of the prevalence of
BRCA1 and BRCA2 mutations in the general population vary from 0.0005 to
0.001 and from 0.0001 to 0.002, respectively. Gui et al. (2006) summarised
these and chose the estimates of Antoniou et al. (2002), namely 0.00058
(BRCA1) and 0.00068 (BRCA2). We will do the same.

1.3. A Dynamic Family History Model

Having a family history of a disease is, in most cases, much more important
in insurance practice, than having a genetic test result. This is because it often
may be used by underwriters, even if genetic tests may not be. In this context,
the difference between purely genetic disorders and other disorders is material.

The distinguishing feature of a purely genetic disease is that one or more
inheritable gene mutations cause it and non-mutation carriers cannot develop
it. A person is at risk only if they inherited a mutation from either parent, so
in many cases it is reasonable to simplify the definition of a family history as
follows:

Family History is Present = Affected Parent

see, for example, Lu, Macdonald & Wekwete (2007). However this breaks down
in the case of disorders that can have non-genetic causes, including BC and OC.
These models must take into account the possibility that a family history could
arise by chance, with no mutation being present.
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Lu, Macdonald & Waters (2007) and Gui et al. (2006) presented such a
dynamic model of a family history of BC/OC and other similar disorders.
Lu (2006) described in detail how to parameterise the model and how to
estimate critical illness (CI) insurance premiums. In the UK, CI insurance
usually pays a lump sum on the occurrence of diagnosis of cancer, heart attack,
stroke or other serious disorders as specified in the policy. Figure 1 shows a
continuous-time Markov model that represents the life history of a woman
who applies for CI insurance. We model the onset of BC and OC as transi-
tions into the states labelled i1 and i2. Some key points about this model are
as follows.

(a) The most important probability we have to obtain is:

P[Insurance Applicant Carries a Gene Mutation | Family History Present].

(b) We label genotypes 1 to indicate absence of mutations, 2 to indicate presence
of a BRCA1 mutation and 3 to represent presence of a BRCA2 mutation.

(c) We partition the whole population into five subpopulations, labelled i = 1, 2,
3, 4, 5, as shown in Table 1. The subdivision determines: (i) the presence
(or otherwise) of a mutation in the applicant’s family, denoted by fi ;
and (ii) the applicant’s own genotype, denoted by gi. The proportion of the
population in each subpopulation is derived from the population mutation
frequencies (see Gui et al. (2006) for details of the calculation).

(d) A woman’s risk of BC and OC depends on her own genotype gi. Condi-
tional on gi, her risk is independent of her family history.

(e) Given a detailed enough definition of a family history (FH) we can pin-
point its appearance as an event at a specific time, and therefore model it
as a transition between states, as shown in Figure 1 (from state ‘Healthy,
No FH’ to state ‘Healthy, FH Present’). We can calculate the correspond-
ing transition intensity given a model of family structure (see Section 4).
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TABLE 1

SUBPOPULATIONS DEFINED BY AN INSURANCE APPLICANT’S OWN GENOTYPE AND MUTATIONS

PRESENT IN THEIR FAMILY. DATA SOURCE: GUI ET AL. (2006).

Mutations

Present Carried Genotypes Proportion of
Subpopulation

in Family by Applicant Family’s Applicant’s Population

i = 1 None None fi = 1 gi = 1 0.994972360
i = 2 BRCA1 None fi = 2 gi = 1 0.001164102
i = 3 BRCA1 BRCA1 fi = 2 gi = 2 0.001164102
i = 4 BRCA2 None fi = 3 gi = 1 0.001349718
i = 5 BRCA2 BRCA2 fi = 3 gi = 3 0.001349718



Given estimates of all the intensities in all five subpopulations, we can calculate
(using Thiele’s equations) the expected present values of any insurance cashflows
for: (a) identified BRCA1 or BRCA2 mutation carriers; or (b) an applicant who
has ‘developed’ a family history. In the latter case, EPVs are weighted averages
of EPVs given presence in states 15, 25, 35, 45 and 55, the weights being the
occupancy probabilities in each of these states at the applicant’s age.

The rate of onset of ‘other critical illnesses’ is based on the model described
in Gutiérrez & Macdonald (2003). The rate of mortality is based on the Eng-
lish Life Tables No.15, adjusted to exclude deaths which follow a CI insurance
claim. We refer the reader to Gutiérrez & Macdonald (2003) for details.

We used a force of interest of 0.05 per annum and a fourth-order Runge-
Kutta method with step size 0.0005 years to solve Thiele’s equations and the
Kolmogorov forward equations, as needed.

1.4. More on Sampling Uncertainty in Actuarial Models

Consider a continuous-time Markov model with state space S = {0,1,2, …, n}.
In a classic actuarial framework, an insurance contract is specified by contin-
uous payments at rate bx

j per unit time at age x while staying in state j, and a
sum assured bx

jk paid on transition at age x from state j to state k. Given the
force of interest d, the present value (PV) of payments is a random variable Y.
The distribution of Y is determined by the set of transition intensities m =
{mx

jk : j, k ! S}. Y also depends on the payment functions bx
j and bx

jk but in this
study we assume they are known, and consider only the uncertainty intro-
duced by having to estimate m. We are interested in the sampling distribution
of the expected present value (EPV) of the payments, denoted by Em(Y ).

(a) Let m denote the estimator of m. Once we obtain a point estimate m, given
some data, we usually estimate Em(Y ) by Em(Y ).

(b) The point estimate m can be regarded as a single sample drawn from the
distribution of the estimator m, denoted by F.

(c) Following Lu, Macdonald & Wekwete (2007) we are interested in VarF [Em(Y )]
as a measure of the uncertainty about the EPV, induced by the finite sam-
ple size. More generally, we would like to estimate F itself.

(d) We are interested mainly in the intensities mx
i01 and mx

i02 in Figure 1, the rates
of onset of BC and OC, and in the intensity of onset of family history,
which will depend on mx

i01 and mx
i02. We fix the other intensities at their esti-

mated values from Gutiérrez & Macdonald (2003). We denote this set of
intensities, some fixed and others to be estimated, m*, with estimate m* given
some data, whose corresponding estimator m* has sampling distribution
denoted by F*. So we want to estimate VarF* [Em* (Y ) ].

The complexity of most EPVs, as functions of age-dependent intensities, means
it is difficult to compute VarF* [Em* (Y )] directly, but resampling methods applied
to the original data are effective. We take the following approach:
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(a) A recent study (Antoniou et al., 2003) estimated age-specific log-relative risks
(log(RR)) of BC and OC onset, in respect of mutation carriers relative to
non-carriers. They assumed the relative risks to be piecewise constant over
10-year age groups. 95% confidence intervals were given, assuming multi-
variate normal sampling distributions of the log(RR). See Section 2 for a
description of the data.

(b) The confidence intervals yield approximate variances, but the covariance
(or information) matrix for the estimates in different age groups was
not given. We explore the effect of various patterns of covariance in Sec-
tion 3.

(c) We resample point estimates of the log(RR) by simulating from their
assumed multivariate Normal sampling distribution. The relative risks are
applied to baseline risks, which are the population rates of onset of BC/OC
in 1973-77 (the relevant period).

(d) Each simulation gives a sample from the distribution F*, from which we can
compute a value of Em* (Y ) , for any relevant insurance cashflows. A large
number of simulations (10,000) provides the empirical distribution function
of Em* (Y ) , hence an estimate of VarF* [Em* (Y )].

(e) Using underwriting classes defined in Section 5.2, we obtain premium rates
given knowledge of family history.

2. THE DATA

Antoniou et al. (2003) combined pedigree data from 22 studies to investigate
the average risk of BC/OC. The study involved 8,139 index patients with female
or male breast cancer or invasive epithelial ovarian cancer. Mutations in the
BRCA1 or BRCA2 genes were carried by 500 patients. The records of these
mutation carriers included date of birth, age at diagnosis of BC/OC and age
at death or age at last observation.

Age-specific BC/OC incidence rates were estimated by maximum likelihood.
These were assumed to be of the form l (x) = l0(x) exp[g(x)] at age x, where
l0(x) is the onset rate in England and Wales in 1973-77, and exp[g(x)] is the
age-specific relative risk (RR) of BC/OC onset in mutation carriers, with respect
to the whole population. The l0(x) were estimated using data from the Office of
National Statistics (ONS) and the Human Mortality Database (www.mortality.org).
The relative risks were assumed to be constant over 10-year age groups.

Table 2 shows the relative risks. Those for BRCA2 mutation carriers were
only estimated for ages over 40 years, because there were no OC cases diag-
nosed at lower ages.

We estimated the standard errors of the estimated log-relative risks from
the 95% confidence intervals in Table 2. These are shown in Table 3. Note that,
given the genotype, the probability of developing BC was assumed to be inde-
pendent of the probability of developing OC.
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3. SIMULATING FROM THE SAMPLING DISTRIBUTIONS

OF THE RELATIVE RISKS

We wish to simulate from the sampling distributions of the log-relative risks,
which are assumed to be multivariate Normal. Given estimates of the (vector)
mean and the full covariance matrix, this can be done by standard methods,
see for example Glasserman (2004). (We used Cholesky decomposition of the
covariance matrix.) The problem is that we know only the diagonal entries of
the covariance matrix. The off-diagonal sampling covariances are unknown.

The first approximation, in these circumstances, might be to assume the
covariances to be zero, hence uncorrelated estimates in each age group. How-
ever, we set out to explore the effect that various patterns of covariance might
have on the outcomes (the sampling distributions of EPVs).

(a) For our purposes we may as well assume strong rather than weak correlations.
Weaker correlations will give results closer to the case of independent estimates.

(b) We use correlation coefficients with values +0.9 and –0.9.
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TABLE 2

POINT ESTIMATES OF RELATIVE RISKS OF BREAST CANCER (BC) AND OVARIAN CANCER (OC) IN BRCA1 OR

BRCA2 MUTATION CARRIERS AS COMPARED TO INCIDENCES FOR ENGLAND AND WALES IN 1973-77.
95% CONFIDENCE INTERVALS ARE SHOWN IN BRACKETS.

SOURCE: ANTONIOU ET AL. (2003).

Age BRCA 1 Mutation BRCA2 Mutation

Group BC OC BC OC

20-29 17 (4.2-71) 1.0 19 (4.5-81) 1.0
30-39 33 (23-49) 49 (21-111) 16 (9.3-29) 1.0
40-49 32 (24-43) 68 (42-111) 9.9 (6.1-16) 6.3 (1.4-28)
50-59 18 (11-30) 31 (14-66) 12 (7.4-19) 19 (9.0-41)
60-69 14 (6.3-31) 50 (22-114) 11 (6.3-20) 8.4 (2.2-32)

TABLE 3

STANDARD ERRORS OF THE ESTIMATED LOG-RELATIVE RISKS.

Age BRCA1 BRCA2

Group BC OC BC OC

20-29 0.72 – 0.73 –
30-39 0.19 0.42 0.29 –
40-49 0.15 0.25 0.25 0.76
50-59 0.25 0.40 0.24 0.38
60-69 0.41 0.42 0.29 0.68



(c) A covariance matrix must be positive definite. This limits the possible pat-
terns. Given a 4 ≈ 4 covariance matrix (since we will not be interested in
ages over 60) we identified 8 possible patterns, denoted by S1–S8, of pos-
itive and negative correlations. They are shown in Table 4.

(d) There may be more possible patterns but we think these eight give sufficient
insight into the effect on the sampling distributions of EPVs.

4. MODELLING ONSET OF FAMILY HISTORY

Following typical insurance practice, we define a ‘family history’ to mean that
two or more first-degree relatives (FDRs, meaning parents and siblings) develop
BC or OC before age 50.

Given a person in Subpopulation i we know their own genotype gi and the
genotype fi present in their family (where fi = 1 means no mutations are present
in the family). Let the probability that they have developed a family history by
age x be iFx

fh. From this, we can find the intensity mx
i05 by numerical differenti-

ation. The following method of estimating iFx
fh was described in detail in Lu,

Macdonald & Waters (2007) and Gui et al. (2006). We make the following
assumptions:

(a) We consider nuclear families only, in which all siblings are at the same age
and the parents are 30 years older. We suppose the mother was healthy at
age 30 when she had her children.
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TABLE 4

ASSUMED STRUCTURE OF CORRELATION COEFFICIENTS.
+ INDICATES POSITIVE CORRELATION AND – INDICATES NEGATIVE CORRELATION.

Age S1 S2 S3 S4

Group 20 30 40 50 20 30 40 50 20 30 40 50 20 30 40 50

20 1 + + + 1 – + + 1 + – + 1 + + –
30 + 1 + + – 1 – – + 1 – + + 1 + –
40 + + 1 + + – 1 + – – 1 – + + 1 –
50 + + + 1 + – + 1 + + – 1 – – – 1

Age S5 S6 S7 S8

Group 20 30 40 50 20 30 40 50 20 30 40 50 20 30 40 50

20 1 – – + 1 – + – 1 + – – 1 – – –
30 – 1 + – – 1 – + + 1 – – – 1 + +
40 – + 1 – + – 1 – – – 1 + – + 1 +
50 + – – 1 – + – 1 – – + 1 – + + 1



(b) The distribution of the number of the applicant’s sisters is taken from
Macdonald, Waters & Wekwete (2003) and is shown in Table 5. The prob-
ability that she has k sisters is denoted by P[k]. We assume the applicant
has no more than 6 sisters.

(c) Each of the applicant’s sisters in a carrier family (Subpopulations 2-5) is
a carrier with probability 1/2.

(d) Only one parent in a carrier family is a mutation carrier. We ignore the
remote possibility that both parents are carriers.

We consider a healthy applicant age x in Subpopulation i. Let iPx
0M denote the

probability that her mother has not suffered BC and OC by age x + 30 or age 50,
whichever is lower (including the possibility that she died of something else
before reaching that age). Let iPx

0S and iPx
1S denote the probability that no

sister, or exactly one sister, respectively, has developed BC or OC by age x.
Then iFx

fh can be split into two terms:

iFx
fh = (1 – iPx

0M) ≈ (1 – iPx
0S) + iPx

0M ≈ (1 – iPx
0S – iPx

1S). (1)

We can represent the life histories of each of the applicant’s relatives by a
model similar to that in Figure 1, excluding the ‘family history’ state. Let Px,t

g,BC

and Px,t
g,OC be the probabilities that a person with genotype g, who is healthy at

age x, is in the state representing onset of BC or OC, respectively, at age x + t.
These can all be computed because we have estimates of all the intensities.
Then based on the assumptions above:

iPx
0M = 1 – 2

1 (Pfi,BC
30,x / 20 + Pfi,OC

30,x / 20 + P 1,BC
30,x / 20 + P 1,OC

30,x / 20), (2)

where x / 20 indicates that onset of BC or OC after age 50 does not contribute
to the development of a family history.

Let P50/x denote the probability that a sister of the applicant has developed
BC or OC by age x or by age 50, whichever is less. Then:

Px / 50 = 2
1 (Pfi,BC

0,x / 50 + Pfi,OC
0,x / 50 + P1,BC

0,x / 50 + P1,OC
0,x / 50) (3)
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TABLE 5

DISTRIBUTION OF THE NUMBER OF THE APPLICANT’S SISTERS.
SOURCE: MACDONALD, WATERS & WEKWETE (2003).

No. of sisters k Probability P[k ] No. of sisters k Probability P[k ]

0 0.54759802 4 0.00285702
1 0.33055298 5 0.00035658
2 0.09749316 6 0.00002634
3 0.02111590



and the other terms in Equation (1) are obtained as:

Px
0S = P k

k 0

6

=

! 6 @ (1 – Px / 50)k (4)

Px
1S = P k

k 0

6

=

! 6 @k (1 – Px / 50)k–1 Px / 50 . (5)

5. THE SAMPLING DISTRIBUTION OF CRITICAL ILLNESS

INSURANCE PREMIUMS

5.1. The Premium Rate for a Known Mutation Carrier

We consider all the assumed patterns of covariance shown in Table 4, denoted
by S1–S8. Each results in a different degree of dispersion of the simulated pre-
mium rates. For brevity we choose to show the results obtained under those
patterns that achieved the greatest and least degrees of dispersion, together
with results assuming independent estimators in respect of each age group.

Figures 2 and 3 illustrate the empirical distributions of the simulated pre-
miums. We express premiums as a percentage of the standard premium rate,
which is the premium rate for a known non-carrier. The solid line is the
case of no correlation, the dashed line represents the most dispersed result and
the dotted line represents the least dispersed result. The correlation patterns
yielding these results are indicated.

We observe the following main features:

(a) All-positive correlation (S1 in Table 4) results in the greatest dispersion
for almost all entry ages and policy terms. This is not surprising, since the
relative risks will tend to be high or low in all age groups, with no offsetting
of high risks in some age groups and low risks in others.

(b) No one pattern of correlation accounted for all the least dispersed premium
rates. The empirical densities all have a sharp peak and, in most cases,
95% confidence intervals as narrow as ±10% of the simulated mean.

(c) The pattern of correlation makes almost no difference to the means of the
simulated premium rates.

(d) We include the results for entry age 50 with policy term 10 years for
consistency with Figure 4. However, these are determined by the age group
50-59 years alone, therefore by the marginal distribution of the relative
risk estimate for that age group. Hence the results are identical under any
pattern of correlation.

5.2. Premium Rates Allowing for a Family History

Consider the premium rate charged to a person age x, who has a family history
of BC/OC. We assume insurers may use this information for underwriting,
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FIGURE 2: Empirical distribution of simulated level premium rates, as a multiple of the standard premium,
for a known BRCA1 mutation carrier with various terms and ages at entry. The x-axis is the simulated

premium rate, as a multiple of the standard premium; the y-axis is the density.
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FIGURE 3: Empirical distribution of simulated level premium rates, as a multiple of the standard premium,
for a known BRCA2 mutation carrier with various terms and ages at entry. The x-axis is the simulated

premium rate, as a multiple of the standard premium; the y-axis is the density.
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which is the practice in the UK but not everywhere else. Hence there are
two underwriting classes: the ‘ordinary rates’ class (denoted by OR) and the
‘family history’ class (denoted by FH). Let C denote the set of states included
in an underwriting class. Let OPx

ij denote the proportion of people in the gen-
eral population who are in state ij at age x. Let Bx

ij and Cx
ij be the EPVs of a unit

benefit and a unit premium, respectively, conditional on presence in state ij at
age x. The EPV of any insurance payments due to a person in an underwriting
class is a weighted average of the EPVs in respect of each state in that underwriting
class, the weights being the proportions OPx

ij. Therefore the level premium for
the underwriting class defined by the set of states C , denoted by LPx

C, is:

x
x x

x x

O

O

i

iC

C

B
LP

P

P
i i

j

i i
j

C

C
=

!

!

j j

j j

.
!
!

(6)

We calculated level premiums LPx
OR for the OR class and LPx

FH for the FH class.
Figure 4 shows the simulated sampling distributions of the level premium rates
LPx

FH, as a percentage of the OR premium rates LPx
OR. We choose the upper

bound of the x-axis to be as large as 250% of the OR premium. This choice
is consistent with insurance practice, in that most insurers would decline the
application if the premium exceeds 250% of the standard rate. We make the fol-
lowing comments on these results.

(a) In most cases the simulated extra premium is much less than 150%. This
suggests that people with a family history of BC/OC are far from being
uninsurable.

(b) The dispersion at lower ages (entry age 20) is very small. This is affected
by two factors: the EPVs given presence in each state (Bx

ij and Cx
ij in

Equation (6)) and the composition of the underwriting classes (OPx
ij in

Equation (6)). At entry age 20, the occupancy probabilities are the same
in every simulation, and so is the composition of underwriting classes.

(c) At higher ages different patterns of correlation may affect both the loca-
tion and the dispersion of the simulated premiums. The means of the sim-
ulated premiums are not the same under different patterns of correlation.

(d) All-positive correlation (S1 in Table 4) results in the largest dispersion and
the broadest 95% confidence intervals.

(e) For entry age 50 with policy term 10 years, the patterns of correlation do
not affect the premium rates for each given genotype but can change the
occupancy probabilities OPx

ij at age 50, so differences do appear, unlike the
case of known genotype.

6. CONCLUSIONS

Antoniou et al. (2003) published relative risks of BC and OC onset in respect
of BRCA1 and BRCA2 mutation carriers, with confidence intervals. Their
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FIGURE 4: Empirical distribution of the simulated FH premium rates, for a person with a family history
of BC/OC with various entry ages and policy terms. The x-axis is the level FH premium,

as a percentage of the OR premium rate; the y-axis is the density.
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parametric model assumed piecewise-constant relative risks over 10-year age
groups. It is straightforward to calculate premium rates for mutation carriers,
but these must themselves be point estimates, and we would like to know their
sampling distributions. We can obtain sampling distributions by bootstrapping,
but we know only the sample variances of the log-relative risks, and not the
full covariance matrix. Therefore, we must consider the possible effect of the
full covariance matrix on the premium rates.

By selecting eight patterns of strong correlation (with absolute values of off-
diagonal elements of the correlation matrix set at 0.9) we tested the effect of
sampling covariance on the sampling distribution of level premium rates for
CI insurance, and found it to be considerable.

The relevance of sampling distributions of premium rates lies in the ques-
tion of whether genetic information (meaning genetic test results in the U.K.,
but including family history in some other countries) can ever be used for
underwriting. GAIC in the UK will expect to receive evidence that a genetic
test is a reliable indicator of increased insurance risk, in deciding whether it
may be used. Their methodology is not published, but statistical properties of
premium rate estimates may quite possibly be taken into consideration. There-
fore methods of estimating, for example, sample variances of premium rate
estimates, from the results of published studies, are needed. This is not usually
straightforward.

In the case considered here, presence of a mutation or a family history
presents convincing statistical evidence to justify charging an extra premium
for CI insurance, in all cases. For younger applicants with a family history, how-
ever, the increased premiums are so small that they would probably be ignored.

The results shown here may raise the question: what is special about genet-
ics? Why are sampling distributions, or just confidence intervals, not routinely
considered in medical underwriting, or quoted where possible in underwriting
manuals?
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