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INSURANCE LOSS COVERAGE UNDER RESTRICTED RISK
CLASSIFICATION: THE CASE OF ISO-ELASTIC DEMAND

BY

MINGJIE HAO, ANGUS S. MACDONALD, PRADIP TAPADAR AND R. GUY
THOMAS

ABSTRACT

This paper investigates equilibrium in an insurance market where risk classifi-
cation is restricted. Insurance demand is characterised by an iso-elastic func-
tion with a single elasticity parameter. We characterise the equilibrium by three
quantities: equilibrium premium; level of adverse selection (in the economist’s
sense); and “loss coverage”, defined as the expected population losses compen-
sated by insurance. We consider both equal elasticities for high and low risk-
groups, and then different elasticities. In the equal elasticities case, adverse se-
lection is always higher under pooling than under risk-differentiated premiums,
while loss coverage first increases and then decreases with demand elasticity.
We argue that loss coverage represents the efficacy of insurance for the whole
population; and therefore that if demand elasticity is sufficiently low, adverse
selection is not always a bad thing.

KEYWORDS

Adverse selection, loss coverage, risk classification, equilibrium premium, iso-
elastic demand.

1. INTRODUCTION

1.1. Adverse selection and loss coverage

Insurance purchased voluntarily is usually underwritten, and premiums are
charged depending on individual risk. We call this “risk-differentiated pricing”.
In certain cases, however, insurers may be compelled to charge the same pre-
miums regardless of some factor known to be relevant to the risk. For exam-
ple, in the European Union since 2012 insurers have been barred from using
gender in underwriting. Arguments over the use of genetic information in un-
derwriting began in the mid-1990s and are still going on; many countries have
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placed limits on insurers’ use of genetic test results. The possibility is not merely
theoretical.

This paper studies some of the implications of insurers not being allowed
to use risk-differentiated pricing. Our starting point is a population partitioned
into subgroups by reference to the level of risk of some undesired event, and an
insurance company or market (‘the insurer’) selling simple, standardised insur-
ance contracts, covering the undesired event, to themembers of that population.

The actuary’s natural response to risk-differentiated pricing being banned
is that adverse selection will result. That is, whatever pooled premium is
charged, lying somewhere between the “correct” premiums for the lowest-risk
and highest-risk subgroups:

• the premium will appear high to the lowest-risk subgroups, so fewer in those
subgroups will buy insurance; and

• the premium will appear low to the highest-risk subgroups, so more in those
subgroups will buy insurance.

The resulting losses will force premiums higher, possibly resulting in an “adverse
selection spiral” until equilibrium is reached at a level of premium that is attrac-
tive only to the highest-risk subgroups. Actuaries’ natural concern is that losses
will accrue, though it is entirely possible that an equilibrium will be approached
from the other side, if excessively cautious pooled premiums are charged at first.

In this paper, we assume that an equilibrium has been reached and that the
insurer is charging “pooled” premiums, to both high and low risks, that break
even. We do not consider how equilibrium was reached, or whether profits or
losses were made along the way. We model the insurance market as a ‘timeless
equilibrium’, “equilibrium” in the sense that it focuses on the steady state where
all insurers’ profits and losses are competed away; and “timeless” in the sense
that it glosses over any sequence of profits and losses which occur as insurers ad-
just the pooled premium towards the equilibrium level.Whilst risk classification
is restricted, the level of pooled premiums is not. Because insurers are assumed
to adjust the pooled premium to whatever level is necessary to ensure equilib-
rium, and competition between insurers in risk classification is not permitted,
adverse selection does not imply insurer losses.

An equilibrium under adverse selection is often regarded as bad, for several
reasons. Fewer low-risk individuals have insurance coverage, while those that
remain are subsidising a larger number of high-risk individuals. Also, there is
usually assumed to be a reduction in “gains from trade” since fewer insurance
contracts are written.

On the other hand, more high-risk individuals being insured is arguably a so-
cial good, since coverage has shifted to where it is most needed. Thomas (2008,
2009) introduced the idea of “loss coverage”, namely the expected claims un-
der a given premium rating scheme at equilibrium. It may be thought desirable,
from a social policy point of view, for loss coverage to be as high as possible
(depending on the nature of the undesired event). Maximum possible loss cov-
erage would be achieved only if everyone bought insurance, which we assume
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is not the case. Then adverse selection, by increasing the proportion of high-
risk individuals buying insurance, may cause the loss coverage to rise. Since at
equilibrium the insurer makes neither profits nor losses, adverse selection could
be a social good, despite its name.

This paper follows Thomas (2008, 2009) which illustrated the concept of loss
coveragewith simulations based on an exponential-power demand function sug-
gested by De Jong and Ferris (2006). This demand function is very flexible, but
also rather intractable. Thus, Thomas (2008, 2009) did not give a full mathemat-
ical account of loss coverage. Here, we present a comprehensive mathematical
analysis of equilibrium premia, adverse selection and loss coverage, based on
a more tractable iso-elastic demand function. In doing so, we also give precise
definitions of adverse selection and loss coverage, thus highlighting the contrast
between the two concepts.

1.2. Literature review

This paper also follows others which investigate insurance market equilibrium
when risk classification is restricted. In the economics literature, recent surveys
of such work include Hoy (2006) and Dionne and Rothschild (2014). The work
summarised and advanced in these papers typically takes a utility-based ap-
proach: individuals make insurance choices to maximise their utility accord-
ing to some utility function, and the outcomes of different risk classification
schemes are evaluated by a social welfare function which is a (possibly weighted)
sum of expected utilities over the entire population. For example Hoy (2006)
assigns equal weight to the expected utilities of all individuals. In the actuarial
literature, Macdonald and Tapadar (2010) also take a utility-based approach,
while De Jong and Ferris (2006) instead model insurance demand directly as
an elasticity-driven function of the pooled price, without explicitly considering
utilities. The present paper follows this last approach.

This paper can also be contrasted with another strand of empirical literature
on adverse selection, which focuses on variations in purchasing choices and risk
level within the group of insurance buyers, rather than between buyers and non-
buyers. See for example Chiappori and Salanie (2000) for auto insurance; Car-
don and Hendel (2001) for health insurance; Finkelstein and Poterba (2004) for
annuities; Finkelstein and McGarry (2006) for long-term care insurance; and
Cohen and Siegelman (2010) for a general survey. We adopt a similar metric for
adverse selection as in this literature, based on a positive covariance of coverage
and losses.

2. MOTIVATING EXAMPLES

We now give three heuristic examples of insurance market equilibria to illus-
trate the concept of loss coverage and the possibility that loss coverage may be
increased by some adverse selection.
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TABLE 1

FULL RISK CLASSIFICATION WITH NO ADVERSE SELECTION.

Low Risk-Group High Risk-Group Aggregate

Risk 0.01 0.04 0.016
Total Population 800 200 1000
Expected Population Losses 8 8 16

Break-Even Premiums (Differentiated) 0.01 0.04 0.016
Numbers Insured 400 100 500
Insured Losses 4 4 8

Loss Coverage 0.5

Suppose that in a population of 1,000 risks, 16 losses are expected every
year. There are two risk-groups. Each individual in the high risk-group of 200
individuals has a probability of loss four times higher than that of an individual
in the low risk-group. This is summarised in Table 1.

We further assume that probability of loss is not altered by the purchase
of insurance, i.e. there is no moral hazard. An individual’s risk-group is fully
observable to insurers and all insurers are required to use the same risk classifi-
cation regime. The equilibrium price of insurance is determined as the price at
which insurers make zero profit.

Under our first risk classification regime, insurers operate full risk classifi-
cation, charging actuarially fair premiums to members of each risk-group. We
assume that the proportion of each risk-groupwhich buys insurance under these
conditions, i.e. the “fair-premium proportional demand”, is 50%. Table 1 shows
the outcome, which can be summarised as follows:
a. There is no adverse selection, as premiums are actuarially fair and the de-

mand is at the fair-premium proportional demand.
b. Half the losses in the population are compensated by insurance.We heuris-

tically characterise this as a “loss coverage” of 0.5.

Now suppose that a new risk classification regime is introduced, where in-
surers have to charge a single “pooled” price to members of both the low and
high risk-groups. One possible outcome is shown in Table 2, which can be sum-
marised as follows:
a. The pooled premium of 0.02 at which insurers make zero profits is calcu-

lated as the demand-weighted average of the risk premiums: (300 × 0.01 +
150 × 0.04)/450 = 0.02).

b. The pooled premium is expensive for low risks, so fewer of them buy in-
surance (300, compared with 400 before). The pooled premium is cheap
for high risks, so more of them buy insurance (150, compared with 100
before). Because there are four times as many low risks as high risks in the
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TABLE 2

NO RISK CLASSIFICATION LEADING TO MODERATE ADVERSE SELECTION BUT HIGHER LOSS COVERAGE.

Low Risk-Group High Risk-Group Aggregate

Risk 0.01 0.04 0.016
Total Population 800 200 1000
Expected Population Losses 8 8 16

Break-Even Premiums (Pooled) 0.02 0.02 0.02
Numbers Insured 300 150 450
Insured Losses 3 6 9

Loss Coverage 0.5625

population, the total number of policies sold falls (450, compared with 500
before).

c. There is moderate adverse selection, as the break-even pooled premium
exceeds population-weighted average risk and the aggregate demand has
fallen.

d. The resulting loss coverage is 0.5625. The shift in coverage towards high
risks more than outweighs the fall in number of policies sold: 9 of the 16
losses (56%) in the population as a whole are now compensated by insur-
ance (compared with 8 of 16 before).

Table 2 exhibited moderate adverse selection. Another possible outcome un-
der the restricted risk classification scheme, this time with more severe adverse
selection, is shown in Table 3, which can be summarised as follows:
a. The pooled premium of 0.02154 at which insurers make zero profits is cal-

culated as the demand-weighted average of the risk premiums: (200 × 0.01
+ 125 × 0.04)/325 = 0.02154.

b. There is severe adverse selection, with further increase in pooled premium
and significant fall in demand.

c. The loss coverage is 0.4375. The shift in coverage towards high risks is in-
sufficient to outweigh the fall in number of policies sold: 7 of the 16 losses
(43.75%) in the population as a whole are now compensated by insurance
(compared with 8 of 16 in Table 1, and 9 out of 16 in Table 3).

Taking the three tables together, we can summarise by saying that compared
with an initial position of no adverse selection (Table 1), moderate adverse se-
lection leads to a higher fraction of the population’s losses compensated by in-
surance (higher loss coverage) in Table 2; but too much adverse selection leads
to a lower fraction of the population’s losses compensated by insurance (lower
loss coverage) in Table 3. This argument is quite general: it does not depend on
any unusual choice of numbers for the examples.
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TABLE 3

NO RISK CLASSIFICATION LEADING TO SEVERE ADVERSE SELECTION AND LOWER LOSS COVERAGE.

Low Risk-Group High Risk-Group Aggregate

Risk 0.01 0.04 0.016
Total Population 800 200 1000
Expected Population Losses 8 8 16

Break-even Premiums (Pooled) 0.02154 0.02154 0.02154
Numbers Insured 200 125 325
Insured Losses 2 5 7

Loss Coverage 0.4375

3. THE MODEL

Based on the motivation in the previous section, we now develop a model to
analyse the impact of restricted risk classification on equilibrium premium, ad-
verse selection and loss coverage. We first outline the model assumptions and
define the underlying concepts.

3.1. Population parameters

We assume that a population of risks can be divided into a low risk-group and a
high risk-group, based on information which is fully observable by insurers. Let
μ1 andμ2 be the underlying probabilities of loss, of an individual in the low-risk
group and high risk-group respectively (μ1 < μ2). Let p1 be the proportion of
the population in the low risk-group and p2 = 1 − p1 be the proportion of the
population in the high risk-group. For simplicity, we assume that all losses are
of unit size. All quantities defined below are for a single risk sampled at random
from the population (unless the context requires otherwise).

Define L to be the loss in respect of a person chosen at random from the
population. L is a random variable, the randomness arising from the existence
of different risk-groups, and the fact that a loss may or may not eventuate. The
expected loss is given by:

E[L] = μ1 p1 + μ2 p2. (1)

E[L] corresponds to a unit version of the third row of the tables in Section 2.
Information on risk being freely available, insurers can distinguish between

the two risk-groups accurately and charge premiums π1 and π2 for risks in risk-
groups 1 and 2 respectively. Moreover, individuals themselves know to which
risk-group they belong, and in that light they will adjust their demand for in-
surance according to its price. Define the demand function d(μ, π) to be the
probability that an individual, whose probability of loss is μ, will buy one unit
of insurance if they are offered it for premium π .
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Given an individual picked at random from the population, define the insur-
ance coverage Q as follows: Q = 1 if the individual buys insurance, and Q = 0
otherwise. Q is a random variable, because the demand function governs only
the probability that an individual will buy insurance. The expected insurance
coverage is given by:

E[Q] = d(μ1, π1)p1 + d(μ2, π2)p2. (2)

E[Q] corresponds to a unit version of the fifth row of the tables in Section 2.
Note that we do not assume that individuals within each risk-group are ho-

mogeneous, except for their common probability of loss. They may have differ-
ent characteristics and preferences, which are unobserved, so their insurance
purchasing decisions appear to be random. We represent this apparent ran-
domness with this simplest possible probabilistic model, a Bernoulli random
variable.

Suppose the insurer charges premium π1 to individuals in the low risk-group
and π2 to individuals in the high risk-group. Given an individual picked at ran-
dom from the population, the premium they pay is a random variable, denoted
�, the randomness arising from membership of one or other risk group, and
the decision to buy insurance, or not. The expected premium is given by:

E[�] = d(μ1, π1)p1π1 + d(μ2, π2)p2π2. (3)

E[�] corresponds to the final column of the fourth row in the tables in Section
2. Since individuals who do not buy insurance pay premium zero, we can also
write E[�] = E[Q�].

The insurance claim actuallymade by an individual chosen at random is QL.
The expected insurance claim — equivalent to the “loss coverage” heuristically
defined in Section 2 — is given by:

Loss coverage: E[QL] = d(μ1, π1)p1μ1 + d(μ2, π2)p2μ2, (4)

where we assume no moral hazard, i.e. purchase of insurance has no bearing
on the risk. Loss coverage can also be thought of as risk-weighted insurance de-
mand. Note that we do not normalise loss coverage, i.e. define it to be E[QL]/L,
because L is a random variable and not a deterministic amount of loss.

A formal probabilistic framework for the above set-up is provided in
Appendix A.

3.2. Demand for insurance

In the previous section, we have introduced the concept of proportional demand
for insurance, d(μi , πi ), when a premium πi is charged for risk-group with true
risk μi (in fact, d(μi , πi ) was defined to be a probability). In this section, we
specify a functional form for d(μi , πi ) and its relevant properties.

This form of demand function differs from others found in the literature, in
that we assume that everyone either does or does not buy insurance which fully
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covers their potential loss. Other approaches would be that individuals decide
what level of cover to buy (possibly zero) or what deductible to choose. This
would be a useful area for future research.

De Jong and Ferris (2006) suggested axioms for an insurance demand func-
tion, adapted below using our notation:
a. d(μi , πi ) is a decreasing function of premium πi for all risk-groups i ;
b. d(μ1, π) < d(μ2, π), i.e. at a given premium π , the proportional demand

is greater for the higher risk-group;
c. d(μi , πi ) is a decreasing function of the premium loading πi/μi ; and
d. for ourmodel, where all losses are of unit size, we need to add d(μi , πi ) ≤ 1,

i.e. the highest possible demand is when all members of the risk-group buy
insurance.

The case of actuarially fair premiums, πi = μi , is of special interest. We
define τi = d(μi , μi ) to be the “fair-premium demand” for insurance for risk-
group i , which can be regarded as the proportion of risk-group i who buy in-
surance at an actuarially fair premium

De Jong and Ferris (2006) suggested a “flexible but practical” exponential-
power demand function, and this approach was also followed by Thomas (2008,
2009). However, the exponential-power function, whilst very flexible, is also
rather intractable. In the present paper, we use a more tractable function which
satisfies the axioms above and for which the price elasticity of demand in risk-
group i is a positive constant λi , i.e.

− πi

d(μi , πi )

∂d(μi , πi )

∂πi
= λi . (5)

Solving Equation (5) leads to the following functional form for demand:

d(μi , πi ) = τi

(
πi

μi

)−λi

. (6)

This equation specifies demand as a function of the “premium loading” (πi/μi ).
When the premium loading is high (insurance is expensive), demand is low, and
vice versa. The λi parameter controls the shape of the demand curve. The “iso-
elastic” terminology reflects that the price elasticity of demand is the same ev-
erywhere along the demand curve.

Clearly, iso-elastic demand functions satisfy axioms (a) and (c) of De Jong
and Ferris (2006). Axioms (b) and (d) appear superficially to require conditions
on the fair-premium demands τ1 and τ2. However, if we define fair-premium
demand-shares α1 and α2 as:

Fair-premium demand-share: αi = τi pi
τ1 p1 + τ2 p2

, i = 1, 2, (7)

then it turns out that the properties of most interest in the model depend just
on α1 (clearly, α2 = 1−α1). It will suffice to analyse the model for the full range
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of fair-premium demand-shares 0 ≤ α1 ≤ 1 without specifying the pi and τi . It
is enough to know that for every possible α1 there must exist some combination
of pi and τi which satisfies the axioms (b) and (d) above.

4. EQUILIBRIUM

In the model in Section 3, an insurance market equilibrium is reached when the
premiums charged (π1, π2) ensure that the expected profit, f (π1, π2) = 0, where

f (π1, π2) = E[�] − E[QL] (8)

= d(μ1, π1)(π1 − μ1)p1 + d(μ2, π2)(π2 − μ2)p2. (9)

4.1. Risk-differentiated premiums

The profit equation f (π1, π2) = 0 is obviously satisfied if (π1, π2) = (μ1, μ2).
Setting premiums equal to the respective risks results in an expected profit of
zero for each risk group and also in aggregate. We shall refer to this case as
risk-differentiated premiums.

Following the notation introduced in Section 3, the expected insurance cov-
erage in this case is given by:

E[Q] = τ1 p1 + τ2 p2. (10)

Also, (π1, π2) being equal to (μ1, μ2), the expected premium and expected claim
are equal and given by:

E[�] = E[QL] = τ1 p1μ1 + τ2 p2μ2. (11)

4.2. Equilibrium pooled premium

Next, we consider the case of an equilibrium pooled premium. This is where risk
classification is banned, so that insurers have to charge the same premium π0 for
both risk-groups, i.e. π1 = π2 = π0, leading at equilibrium to f (π0, π0) = 0. For
convenience, we omit one argument for all bivariate functions if both arguments
are equal, e.g. we write f (π) for f (π, π).

Equation (8) leads to the following relationship for the equilibrium pooled
premium π0:

π0 = E[QL]
E[Q]

. (12)

The existence of a solution for f (π) = 0 within the interval (μ1, μ2] is obvious,
because f (π) is a continuous functionwith f (μ1) < 0 and f (μ2) ≥ 0. However,
uniqueness of the solution is not guaranteed.
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The equilibrium pooled premium π0 depends on the demand elasticities λ1
and λ2. If λ1 = λ2 then π0 should satisfy some constraints which are easily
deduced from economic considerations, and in Section 4.2.1 we show that this
is so. However, it is more realistic to expect that λ1 < λ2, because of the income
effect on demand (i.e. for high risks the cost of insurance represents a larger part
of an individual’s total budget constraint, so their elasticity of demand for insur-
ance is likely to be higher). We consider unequal demand elasticities in Section
4.2.2, and find that the key to the properties of π0 lies in a linear relationship
between λ1 and λ2 for fixed values of π0.

4.2.1. Equal demand elasticities. Assuming an iso-elastic demand function
with λ1 = λ2 = λ, Equation (12) provides a unique solution:

π0 = α1μ
λ+1
1 + α2μ

λ+1
2

α1μ
λ
1 + α2μ

λ
2

. (13)

This can be written as a weighted average of the true risks μ1 and μ2:

π0 = vμ1 + (1 − v)μ2, where v = α1

α1 + α2

(
μ2
μ1

)λ
. (14)

Note that π0 does not depend directly on the individual values of the popula-
tion fractions (p1, p2) and fair-premium demands (τ1, τ2), but only indirectly on
these parameters through the demand-shares (α1, α2). In other words, popula-
tionswith the same true risks (μ1, μ2) and demand-shares (α1, α2) have the same
equilibrium premium, even if the underlying (p1, p2) and (τ1, τ2) are different.

Figure 1 plots the pooled equilibrium premium against demand elasticity,
λ, for two different population structures with the same true risks (μ1, μ2) =
(0.01, 0.04) but different fair-premium demand-shares (α1, α2).

The following observations can be derived from Equations (13) and (14),
and are illustrated by Figure 1:
a.

lim
λ→0

π0 = α1μ1 + α2μ2. (15)

Intuitively, if demand is inelastic, changing the premium makes no differ-
ence, and so the equilibriumpremiumwill be the same as the expected claim
per policy if risk-differentiated premiums were charged. In Figure 1, this is
0.013 and 0.019 for fair-premium demand-shares of α1 = 0.9 and α1 = 0.7
respectively.

b.
π0 is an increasing function of λ. (16)

Intuitively, an increase in demand elasticity means that at any premium be-
tween μ1 and μ2, there will be less demand than before from low risks and
more demand than before from high risks; the premium for which profits
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FIGURE 1: Pooled equilibrium premium as a function of λ for two populations with the same
(μ1, μ2) = (0.01, 0.04) but different values of α1.

on low risks exactly balance losses on high risks will therefore be higher.
In Figure 1, both curves slope upwards. In Equation (14), increasing λ re-
duces the weight w on low-risk, resulting in an increase in the equilibrium
premium π0.

c.
lim

λ→∞
π0 = μ2. (17)

Intuitively, if demand elasticity is very high, demand from the low risk-
group falls to zero for any premium above their true risk μ1. The only re-
maining insureds are then all high risks, so the equilibrium premium must
move to π0 = μ2. In Figure 1, both curves converge to μ2 = 0.04 as λ

increases.
d.

π0 is a decreasing function of α1. (18)

Intuitively, if the fair-premium demand-share α1 of the lower risk-group
increases, we would expect the equilibrium premium to fall. In Figure 1,
the curve for α1 = 0.9 lies below the curve for α1 = 0.7.

4.2.2. Different demand elasticities. Where demand elasticities are not the
same, any equilibrium premium π0 can be consistent withmany different elastic-
ity pairs (λ1, λ2). For iso-elastic demand, the elasticity pairs consistent with any
particular equilibriumpremium turn out to be linearly related. This is illustrated
in Figure 2.
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FIGURE 2: Equilibrium premium as a function of (λ1, λ2) for α1 = 70% and α1 = 90%, when
(μ1, μ2) = (0.01, 0.04).

Figure 2 shows contour plots of constant pooled equilibrium premiums. The
left-hand panel shows a populationwith fair-premiumdemand-shareα1 = 70%,
and the right-hand panel shows a population with α1 = 90%. Each straight
dashed line represents all the pairs of λ1 and λ2 values consistent with one par-
ticular equilibrium premium. As expected, each straight dashed line has nega-
tive slope: if one elasticity parameter rises, the other elasticity parameter must
fall, if the equilibrium premium is to stay the same. Note that the 45◦ diagonal
(λ1 = λ2) in each panel corresponds to the case of equal demand elasticities
represented by the respective curves in Figure 1.

The patterns in the plots in Figure 2 can be explained conveniently if
Equation (9), with the iso-elastic demand function, is re-arranged as follows:

λ1 log
(

π0

μ1

)
+ λ2 log

(
μ2

π0

)
= log

(
α1(π0 − μ1)

α2(μ2 − π0)

)
. (19)

We observe the following:
a. Equation (19) expresses a linear relationship between λ1 and λ2, for a fixed

value π0 of the equilibrium pooled premium. This produces the linear pat-
terns in the contour plots of Figure 2.

b.
lim

(λ1,λ2)→(0,0)
π0 = α1μ1 + α2μ2. (20)

This follows directly from Equation (19). Intuitively, if demand is inelastic,
the equilibrium pooled premium will be close to the expected claim under
fair premiums.
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c.
π0 ≥ α1μ1 + α2μ2. (21)

This follows from the fact that μ1 ≤ π0 ≤ μ2, λ1 ≥ 0, λ2 ≥ 0 and the
relationship in Equation (19). Intuitively, the equilibrium pooled premium
is never smaller than the expected claim under fair premiums.

d.
lim

(λ1,λ2)→(∞,λ2)
π0 = μ2, (22)

which again follows from Equation (19). Intuitively, high demand elastici-
ties lead to an equilibrium where only high risks purchase insurance.

e. Given π0:
log (π0/μ1)

log (μ2/π0)
is an increasing function of π0, (23)

i.e. the (absolute value of the) slope of the line, in Equation (19) increases
with π0. Intuitively, a higher equilibrium premium π0 is consistent with
higher sensitivity to λ2 and lower sensitivity to λ1. In the limit, as π0 → μ2,
the straight line in Equation (19) becomes perpendicular to the λ1-axis, as
can be seen from Figure 2.

f. Given π0:

lim
λ1→0

λ2 =
log

(
α1(π0−μ1)

α2(μ2−π0)

)
log

(
μ2
π0

) is an increasing function of π0, (24)

i.e. the intercept on the λ2-axis in the plots of Figure 2 increases with π0.
Intuitively, if the low-risk group is insensitive to premiums, a higher equilib-
rium premium π0 is consistent with higher demand elasticity λ2 for of high
risks, because this increases the demand from that group at any premium
π0 < μ2.

g. Given π0, changing the fair-premium demand-share α1 results in parallel
shifts of the straight lines given in Equation (19), as the slopes remain un-
changed while the intercepts are adjusted accordingly. In Figure 2, chang-
ing α1 from 70% to 90% has the effect of translating the contours towards
the top-right corner. It also confirms that increasing the fair-premium
demand-share α1 results in a decrease in equilibrium premium, because
the impact of the low risk-group increases.

4.3. Multiple equilibria

In Section 4.2, we noted that the existence of an equilibrium pooled premium
in our model is obvious, but its uniqueness is not. That multiple equilibria can
arise was demonstrated by Thomas (2009) using the exponential power demand
function proposed byDe Jong andFerris (2006). Thus, for any choice of demand
function, we must determine whether or not multiple equilibria can arise, and if
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they can, whether or not they are material. We can show that multiple equilibria
can arise under an iso-elastic demand function, but only under two conditions
that are practically ruled out by economic considerations, so that that multi-
ple equilibria are unlikely to be troublesome in any practical application. These
conditions are as follows:

• Demand elasticity λ1 for the low risk-group is substantially higher than
demand elasticity λ2 for the high risk-group. This is the opposite of what
we would expect, because of the income effect on demand mentioned in
Section 4.2.

• The low risk-group has fair-premium demand-share within a very narrow
range of very high values. Loosely speaking, this means that the high risk-
group must be very small relative to the total population.

However, in a competitive market only the smallest equilibrium premium
should matter (see Hoy and Polborn (2000)), and the proof of the above condi-
tions is lengthy, so we omit it.

5. ADVERSE SELECTION

Evidence of adverse selection is typically demonstrated in the economics litera-
ture as positive correlation (or equivalently, covariance) of coverage and losses
(e.g. for a survey see Cohen and Siegelman (2010)). Using the notations devel-
oped in Section 3, this can be quantified by the covariance between the random
variables Q and L, i.e. E[QL]−E[Q]E[L]. We prefer to use the ratio rather than
the difference, so our definition is

Adverse selection: S(π1, π2) = E[QL]
E[Q]E[L]

. (25)

Using Equations (7), (10) and (11), adverse selection under risk-
differentiated premiums is:

S(μ1, μ2) = τ1 p1μ1 + τ2 p2μ2

τ1 p1 + τ2 p2
× 1
E[L]

= α1μ1 + α2μ2

E[L]
. (26)

In the particular case of pooled equilibrium premium, π0, by Equation (12), we
have:

S(π0) = π0

E[L]
. (27)

However, since by Equation (21), π0 ≥ α1μ1 + α2μ2, we have:

S(π0) ≥ S(μ1, μ2). (28)

In other words, adverse selection is always higher under pooling than under
risk-differentiated premiums. Therefore, it cannot serve as a measure of better
outcomes for society as a whole (Table 2 in themotivating examples in Section 2)
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or worse outcomes for society as a whole (Table 3 in the motivating examples in
Section 2). This leads us to the concept of loss coverage ratio (LCR) discussed
in the next section.

6. LOSS COVERAGE

The motivating examples in Section 2 suggested loss coverage — heuristically
characterised as the proportion of the population’s losses compensated by in-
surance — as a measure of the social efficacy of insurance. This can be formally
quantified in our model by the expected insurance claim, E[QL], defined in
Section 3 as:

Loss coverage: LC(π1, π2) = E[QL]. (29)

To compare the relative merits of different risk classification regimes, we
need to define a reference level of loss coverage. We use the level under risk-
differentiated premiums, and so define the LCR, as follows:

Loss coverage ratio: C = LC(π1, π2)

LC(μ1, μ2)
. (30)

In the following sections, we consider the LCR when the equi-
librium pooled premium is charged, i.e. π1 = π2 = π0. We
are particularly interested in establishing when the LCR may ex-
ceed unity. The case of unequal demand elasticities is considered in
Section 6.2. As with the equilibrium pooled premium π0 itself, the properties
of the LCR are explored by finding relationships between λ1 and λ2 for fixed
values of π0. In this case, the relationships are log-linear rather than linear. It
is then possible to determine values of λ1 and λ2 for which the LCR exceeds
unity. Arguably, this region includes plausible values of λ1 and λ2.

6.1. Equal demand elasticities

As for the equilibrium pooled premium, we first analyse the properties of the
LCR in the special case of equal demand elasticities, i.e. λ1 = λ2 = λ. Using the
iso-elastic demand function in Equation (4) leads to:

C(λ) = 1
πλ
0

α1μ
λ+1
1 + α2μ

λ+1
2

α1μ1 + α2μ2
, (31)

where π0 is the pooled equilibrium premium given in Equation (13). The above
can also be conveniently re-expressed as
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FIGURE 3: Loss coverage ratio as a function of λ for four population structures.

C(λ) =
[
wβ1−λ + (1 − w)

]λ [
w + (1 − w)βλ

]1−λ

βλ(1−λ)
, where (32)

w = α1μ1

α1μ1 + α2μ2
, and (33)

β = μ2

μ1
> 1. (34)

Figure 3 shows LCR for four population structures. Both plots in Figure 3
show the same example, with the right-hand plot zooming over the range 0 <

λ < 1. We make the following observations:
a.

lim
λ→0

C(λ) = 1. (35)

This follows directly from Equation (31). Intuitively, if demand is inelastic
then pooling must give the same loss coverage as fair premiums.

b.
lim

λ→∞
C(λ) = 1 − w = α2μ2

α1μ1 + α2μ2
. (36)

This follows fromEquation (32), by taking the denominator, βλ(1−λ), inside
the second term in the numerator and noting that β > 1. Recall that for
highly elastic demand, equilibrium is achieved when only high risks buy
insurance at the equilibrium premium π0 = μ2, which explains the above
result. The left-hand plot of Figure 3 shows that the limiting LCR increases
with increasing weight (1 − w) of high risks’ contribution to loss coverage



INSURANCE LOSS COVERAGE UNDER RESTRICTED RISK CLASSIFICATION 17

under fair premiums. When the population structure and relative risks are
such that the high risks and low risks each contribute equal weight to the
loss coverage under fair premiums, the limiting LCR is 0.5.

c. For λ > 0,
λ � 1 ⇒ C(λ) � 1. (37)

The proof of this result is outlined in Appendix B. The result implies that
pooling produces higher loss coverage than fair premiums if demand elas-
ticity is less than 1.

d.

max
w,λ

C = 1
2

(
4

√
μ2

μ1
+ 4

√
μ1

μ2

)
= 1

2

(
4
√

β + 1
4
√

β

)
. (38)

The proof of this result is also provided in Appendix B. As can be seen
from the right-hand plot of Figure 3, for a given value of relative risk, β,
the LCR attains its maximum when λ = 0.5 and w = 0.5. Moreover, the
maximum LCR increases with increasing relative risk. This implies that a
pooled premiummight be highly beneficial in the presence of a small group
with very high risk exposure. Hoy (2006) obtained a similar result based on
social welfare, so there are at least two different normative justifications for
pooling very different insurance risks.

6.2. Different demand elasticities

In the general case, where the demand elasticities are allowed to be different, the
LCR is given by

C(λ1, λ2) =
α1μ1

(
π0
μ1

)−λ1 + α2μ2

(
π0
μ2

)−λ2

α1μ1 + α2μ2
, (39)

whereπ0 is an equilibriumpremium satisfyingEquation (19).Using the relation-
ship between λ1, λ2 and π0 in Equation (19), we can express LCR in Equation
(39) in either of these two alternative forms

logC = −λ1 log
(

π0

μ1

)
+ log k1, where k1 = α1(μ2 − μ1)π0

(α1μ1 + α2μ2)(μ2 − π0)
,

(40)

logC = +λ2 log
(

μ2

π0

)
+ log k2, where k2 = α2(μ2 − μ1)π0

(α1μ1 + α2μ2)(π0 − μ1)
.

(41)

Equations (40) and (41) show that given an equilibrium premium, π0, the
LCR can be expressed as a log-linear function of either λ1 or λ2. Figure 4 shows
the graphical representations of Equations (40) and (41), for different values of
α1 when (μ1, μ2) = (0.01, 0.04). We make the following observations:
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FIGURE 4: Loss coverage ratio (log scale) as functions of λ1 and λ2 for different values of equilibrium
premiums, when (μ1, μ2) = (0.01, 0.04) and α1 = 90% and 99%.

a. Given an equilibrium premium, π0, the LCR is an increasing function of λ2
and, consequently, a decreasing function of λ1. Recall that Equation (19)
implies that, in order to keep the equilibrium premium constant, increasing
λ2 would require decreasing λ1. But both increasing λ2 or decreasing λ1
have the same effect of increasing demand from the respective risk-groups,
leading to an overall increase in the LCR.

b. As a consequence, given an equilibrium pooled premium, π0, the LCR is:
1. maximum when λ1 = 0 and takes the value k1 ; and
2. minimum when λ2 = 0 and takes the value k2.
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c. For a given value of λ2, the LCR is a decreasing function of λ1. This can
be obtained as follows:

d
dλ1

logC = ∂

∂λ1
logC +

(
∂

∂π0
logC

)(
dπ0

dλ1

)
< 0, since (42)

∂

∂λ1
logC = − log

(
π0

μ1

)
< 0, by Equation (40), (43)

∂

∂π0
logC = −λ2

π0
− μ1

π0(π0 − μ1)
< 0, by Equation (41), (44)

dπ0

dλ1
> 0, provided the equilibrium premium is unique. (45)

All else being fixed, including λ2, the equilibrium pooled premium can only
increase if λ1 increases. Higher demand elasticity and higher equilibrium
pooled premium both imply a fall in low-risk demand. A higher equilib-
rium pooled premium also reduces high-risk demand. Since demand from
both risk-groups falls, the LCR falls.

d. However, for a given value of λ1, there is no monotonic relationship be-
tween the LCR and the equilibrium pooled premium, π0, as Equation (40)
gives:

∂

∂π0
logC = 0 ⇒ π0 = λ1 − 1

λ1
μ2, (46)

with positive second derivative, indicating a possible minimum for π0 in
the range μ1 < π0 < μ2. So a non-monotonic relationship between LCR
and λ2 is possible. This is illustrated in the left panel of Figure 4, where the
crossover of the lines for different equilibrium pooled premiums implies a
non-monotonic ordering of premiums by LCR for some values of λ1. This
effect arises because for high risks, an increase in premium and increase in
elasticity have opposite effects on demand. The sum of these effects plus
the fall in low-risk demand determine the change in the LCR, which can
either rise or fall.

e. Focussing on demand elasticities less than 1, Figure 5 demarcates the re-
gions where the LCR is greater than or less than 1. We make the following
observations:
1. For 0 < λ1 < λ2 < 1, LCR exceeds 1. Given λ1 < λ2, let π∗

0 be the
resulting equilibrium premium. Then by Equation (19), there exists
a common demand elasticity, λ∗, for both risk-groups, where λ1 <

λ∗ < λ2, which leads to the same equilibrium premium, π∗
0 . However,

we know that, if the demand elasticities are equal and less than 1, then
the LCR exceeds 1, i.e. C(λ∗, λ∗) > 1. But, as λ2 > λ∗, by Equation
(41), C(λ1, λ2) > C(λ∗, λ∗) > 1.

2. For 0 < λ2 < λ1 < 1, the curve showing LCR of 1 becomes increas-
ingly more convex up to certain limit, as β increases. In other words,
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as the relative risk increases, more combinations of (λ1, λ2) produce
LCR greater than 1.

As discussed below in Section 7, there is some empirical evidence that insur-
ance demand elasticities are typically less than 1 inmanymarkets. Also, any
gradient in demand elasticity from low to high risksmight be expected to be
positive, because of the income effect on demand. That is, for high risks the
cost of insurance represents a larger part of consumers’ total budget con-
straint, so their elasticity of demand for insurance might be larger. Hence,
Figure 5 suggests that for realistic levels of demand elasticities, LCR may
typically exceed one. This result gets stronger with increasing relative risks
(the curve above which the LCR is greater than one becomesmore convex).

7. SUMMARY AND CONCLUSIONS

The results in preceding sections can be summarised and interpreted as follows:
Adverse selection — at an equilibrium where the insurer just breaks even —

is always higher under pooling than under risk-differentiated premiums. On the
other hand, loss coverage can be higher or lower under pooling than under risk-
differentiated premiums. Loss coverage — the expected losses compensated by
insurance— is higher under pooling if the shift in coverage towards higher risks
more than compensates for the fall in number of risks insured.

For iso-elastic demand with equal demand elasticities in high and low risk-
groups, λ1 = λ2 = λ, the equilibrium pooled premium and LCR can be charac-
terised as follows:
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a. Under pooling, equilibrium pooled premiums increases monotonically
with λ, tending to an upper limit where the only remaining insureds are
high risks.

b. Under pooling, if λ < 1 then LCR > 1.
c. As λ increases from zero, LCR increases to a maximum at around λ = 0.5;

then decreases to 1 when λ = 1; and then flattens out at a lower limit for
high values of λ, where the only remaining insureds are high risks.

d. The maximum value of LCR, attained for λ about 0.5, depends on the
relative risk, β = μ2/μ1. A higher β gives a higher maximum value of
LCR.

For iso-elastic demand with different demand elasticities λ1 and λ2 in low
and high risk-groups, respectively, equilibrium pooled premium and LCR can
be characterised as follows:
a. At a given equilibrium pooled premium, there is a linear relationship be-

tween all the feasible pairs of demand elasticities (λ1, λ2).
b. Given λ2, LCR is a decreasing function of λ1.
c. On the other hand, given λ1, LCR is not necessarily a monotonic function

of λ2.
d. For λ1 < λ2 < 1, LCR is always greater than 1.
e. For other values of λ1 and λ2, LCR > 1 if λ1 is “sufficiently low” compared

with λ2. The value of λ1 which is “sufficiently low” may be greater or less
than λ2.We did not find any general conditions on (λ1 , λ2) that guaranteed
LCR > 1.

f. As relative risk β increases, more combinations of (λ1, λ2) result in LCR >

1.
g. Multiple equilibria are theoretically possible, but they arise only for ex-

treme population structures combined with implausible elasticity parame-
ters, where both (i) the fair-premiumdemand-share α1 of the low risk-group
is in a narrow range of high values and (ii) λ1 is substantially higher than
λ2. Therefore, multiple equilibria are not likely to be a practical concern.

We suggest loss coverage — the expected losses compensated by insurance
for the whole population — as a reasonable metric for the social efficacy of
insurance. If this is accepted, and if our iso-elastic model of insurance demand
is reasonable, then pooling will be beneficial:
a. in the equal elasticities case, whenever λ < 1; and
b. in the different elasticities case, if λ1 is sufficiently low, compared with λ2.

There is some empirical evidence that insurance demand elasticities are typ-
ically less than one in many markets. We defined demand elasticity as a positive
constant in Equation (5), but the estimates in empirical papers are generally
given with the negative sign, and so we quote them in that form. For exam-
ple, for yearly renewable term insurance in the US, an estimate of −0.4 to −0.5
has been reported (Pauly et al., 2003). A questionnaire survey about life insur-
ance purchasing decisions produced an estimate of −0.66 (Viswanathan et al.,
2007). For private health insurance in the US, several studies estimate demand
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elasticities in the range of 0 to −0.2 (Chernew et al., 1997; Blumberg et al.,
2001; Buchmueller and Ohri, 2006). For private health insurance in Australia,
Butler (1999) estimates demand elasticities in the range −0.36 to −0.50. These
magnitudes are consistent with the possibility that loss coverage might some-
times be increased by restricting risk classification.

Our model considers only two possibilities for risk classification, fully risk-
differentiated premiums or complete pooling. In practice, it is common to see
partial restrictions on risk classification, where particular risk factors such as
gender or genetic test results or family history are banned. Our model does not
explicitly consider such scenarios. However, we note that in our model, loss cov-
erage is maximised when there is an intermediate level of adverse selection, not
too low and not too high. It is possible that in some markets, complete pooling
generates too much adverse selection; but partial restrictions on risk classifica-
tion generate an intermediate level of adverse selection, and hence higher loss
coverage than either pooling or fully risk-differentiated premiums.

Thus, from a public policy perspective, the concept of loss coverage offers a
possible rationale for some degree of restriction on risk classification. Loss cov-
erage also provides a metric for assessing, in particular cases, whether the degree
of restriction produces a good or bad result for the population as a whole. In-
surers typically take a different view, arguing against any and all restrictions on
risk classification. However, note that from the insurance industry’s perspective,
maximising loss coverage is equivalent to maximising premium income. Our
model assumes that insurers make zero profits in equilibrium under all risk clas-
sification schemes, but in practice insurers hope to earn profits. If these profits
are proportional to premiums, restrictions on risk classification whichmaximise
loss coverage could be advantageous to the insurance industry. In other words,
the concept of loss coverage suggests that adverse selection is not always a bad
thing, even for insurers.

We recognise that loss coverage is one among many possible measures of the
benefit that insurance markets may bring to society. An alternative perspective
(suggested by a referee) is that actuarially fair pricing reveals preferences, and
therefore when we move to pooling, more value is lost by those who cease to
buy insurance than is gained by those who now choose to buy insurance. Each
measure will have its merits and demerits.

Future work to extend and apply these results could include: investigating
equilibrium premium, adverse selection and loss coverage for other insurance
demand functions; investigation of the effects of partial restrictions on risk clas-
sification; and empirical investigations of insurance demand.
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APPENDIX

A. PROBABILISTIC FRAMEWORK OF THEMODEL

Consider a sample space 	 = {1, 2, . . . , N} of N risks. Let A1, A2, . . . , An denote a partition
of 	 (i.e. Ai ∩ Aj = ∅ for i �= j and ∪n

i=1Ai = 	), where Ai represents the i th risk-group.
Define the counting probability measure: P[{ω}] = 1/N forω ∈ 	, so that P[Ai ] = #(Ai )/N,
which will be denoted by pi for all i = 1, 2, . . . , n. Let X be any indicator random variable
on 	, taking the values 0 or 1. Then,

E[X] =
n∑
i=1

P[ Ai ] E[X | Ai ] (A1)

=
n∑
i=1

pi P[X = 1 | Ai ]. (A2)

We define the following indicator random variables:

L(ω) = I[ individual ω incurs a loss ]

Q(ω) = I[ individual ω buys insurance ].

We assume that both L and Q, restricted to the risk group Ai , are independent Bernoulli
random variables with parameters as follows:

P[L = 1 | Ai ] = μi (A3)

P[Q = 1 | Ai ] = d(μi , πi ), (A4)

where πi is the premium the insurer charges persons in risk group Ai and d(x, y) is a demand
function with 0 < d(x, y) < 1. Without loss of generality, we will assume 0 < μ1 < μ2 < . . .

< μn < 1. The conditional independence means that insurance purchase is independent of
the outcome—moral hazard is absent — although it is generally not independent of the risk
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of the outcome. Then, from (A2) above

E[L] =
n∑
i=1

μi pi (A5)

E[Q] =
n∑
i=1

d(μi , πi )pi (A6)

E[QL] =
n∑
i=1

d(μi , πi )μi pi . (A7)

Noting that the premium � as a function of ω is itself a random variable, if the same
premium πi is charged to everyone in risk group Ai , we can by similar methods show that:

E[�] =
n∑
i=1

d(μi , πi )πi pi . (A8)

Equations (A5)–(A8) provide formal justifications for Equations (1)–(4).

B. LOSS COVERAGE RATIO

The loss coverage ratio for the case of equal demand elasticity is given in Equation (31) and
can be expressed as follows:

C(λ) = 1
πλ
0

α1μ
λ+1
1 + α2μ

λ+1
2

α1μ1 + α2μ2
, where π0 = α1μ

λ+1
1 + α2μ

λ+1
2

α1μ
λ
1 + α2μ

λ
2

; (A9)

= [
wμλ−1

1 + (1 − w)μλ−1
2

]λ [
wμλ

1 + (1 − w)μλ
2

]1−λ
where w = α1μ1

α1μ1 + α2μ2
;

(A10)

= Ew

[
μλ−1

]λ
Ew

[
μλ

]1−λ
, (A11)

where Ew denotes expectation in this context and the random variable μ takes values μ1 and
μ2 with probabilities w and 1 − w respectively.

Result B.1. For λ > 0,
λ � 1 ⇒ C(λ) � 1. (A12)

Proof. Case λ = 1: It follows directly from Equation (A11) that C(1) = 1.
Case 0 < λ < 1: Holder’s inequality states that, if 1 < p, q < ∞ where 1/p + 1/q = 1,

for positive random variables X,Y with E[X]p, E[Y]q < ∞, E [Xp]1/p E [Yq ]1/q ≥ E[XY].
Setting 1/p = λ, 1/q = 1 − λ, X = μλ(λ−1) and Y = 1/X, applying Holder’s inequality

on Equation (A11) gives,

C(λ) = Ew

[
X1/λ

]λ
Ew

[
Y1/(1−λ)

]1−λ ≥ Ew[XY] = 1. (A13)

Case λ > 1: Lyapunov’s inequality states that, for positive random variable μ and 0 <

s < t, E[μt]1/t ≥ E[μs ]1/s .
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FIGURE 6: Maximum loss coverage ratio as a function of λ for specific values of β.

So Equation (A11) gives:

C(λ) = Ew

[
μλ−1

]λ

Ew [μλ]λ−1 =
[
Ew

[
μλ−1

]1/(λ−1)

Ew [μλ]1/λ

]λ(λ−1)

≤ 1, (A14)

as Ew

[
μλ−1

]1/(λ−1) ≤ Ew

[
μλ

]1/λ
for λ > 1 by Lyapunov’s inequality.

Result B.2. For 0 < λ < 1,

max
w

C(λ) = β − 1

βλ(1−λ)

(
βλ−1

λ

)λ (
β1−λ−1
1−λ

)1−λ
, where β = μ2

μ1
> 1. (A15)

Proof. Proceeding from Equation (A10), we have:

C(λ) =
[
wβ1−λ + (1 − w)

]λ [
w + (1 − w)βλ

]1−λ

βλ(1−λ)
(A16)

⇒ ∂

∂w
logC(λ) = λ(β1−λ − 1)

wβ1−λ + (1 − w)
− (1 − λ)(βλ − 1)

w + (1 − w)βλ
(A17)

⇒ ∂2

∂w2
logC(λ) = − λ(β1−λ − 1)2[

wβ1−λ + (1 − w)
]2 − (1 − λ)2(βλ − 1)2

[w + (1 − w)βλ]2
< 0. (A18)

⇒ ∂

∂w
logC(λ) = 0 ⇒ w = λ(β − 1) − (βλ − 1)

(β1−λ − 1)(β1−λ − 1)
gives the maximum. (A19)

Inserting the value of w in Equation (A16), gives the required result.

Figure 6 shows the plots of maxw C(λ) for β = 4, 5. This leads to the following result:
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Result B.3. For 0 < λ < 1,

max
w,λ

C = 1
2

(
4
√

β + 1
4
√

β

)
. (A20)

Proof. Equation (A15) can also be expressed as:

max
w

C(λ) = 1
2

(
4
√

β + 1
4
√

β

) 2
(

4
√

β − 1
4√β

)
⎛
⎝ (

√
β)

λ− 1

(
√

β)
λ

λ

⎞
⎠

λ ⎛
⎝ (

√
β)

1−λ− 1

(
√

β)
1−λ

1−λ

⎞
⎠

1−λ
, (A21)

= 1
2

(
4
√

β + 1
4
√

β

)
R( 1

2 )

R(λ)
, (A22)

where R(λ) =

⎛
⎜⎝

(√
β
)λ − 1

(
√

β)
λ

λ

⎞
⎟⎠

λ ⎛
⎜⎝

(√
β
)1−λ − 1

(
√

β)
1−λ

1 − λ

⎞
⎟⎠

1−λ

. (A23)

The result follows from R(λ) ≥ R( 1
2 ), which in turn follows from the fact that R(λ) is sym-

metric and convex over 0 < λ < 1. As symmetry is obvious, we only need to prove convexity
of R(λ).

Note that,

log R(λ) = g(λ) + g(1 − λ), where g(λ) = λ log

⎛
⎜⎝

(√
β
)λ − 1

(
√

β)
λ

λ

⎞
⎟⎠ . (A24)

If g(λ) is a convex function over (0,1), then g′′(λ) ≥ 0 and g′′(1 − λ) ≥ 0, so log R(λ) is
convex, which in turn implies R(λ) is convex. So it suffices to show that:

g(x) = x log
(
ax − a−x

x

)
(A25)

is convex over (0,1), where a = √
β > 1. Now,

g′(x) = log
(
ax − a−x

x

)
+

(
ax + a−x

ax − a−x

)
x log a − 1. (A26)

g′′(x) = (ax + a−x)x log a − (ax − a−x)
x(ax − a−x)

+ a2x − a−2x − 4x log a
(ax − a−x)2

log a ≥ 0, (A27)

as both [(ax + a−x)x log a − (ax − a−x)] and [a2x − a−2x − 4x log a] are increasing functions
starting from 0 at x = 0. Hence proved.


