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ABSTRACT

We compare quantitatively eight stochastic models explaining improvements in mortality rates in
England and Wales and in the United States. On the basis of the Bayes Information Criterion (BIC),
we find that, for higher ages, an extension of the Cairns-Blake-Dowd (CBD) model that incor-
porates a cohort effect fits the England and Wales males data best, while for U.S. males data, the
Renshaw and Haberman (RH) extension to the Lee and Carter model that also allows for a cohort
effect provides the best fit. However, we identify problems with the robustness of parameter
estimates under the RH model, calling into question its suitability for forecasting. A different ex-
tension to the CBD model that allows not only for a cohort effect, but also for a quadratic age
effect, while ranking below the other models in terms of the BIC, exhibits parameter stability
across different time periods for both datasets. This model also shows, for both datasets, that
there have been approximately linear improvements over time in mortality rates at all ages, but
that the improvements have been greater at lower ages than at higher ages, and that there are
significant cohort effects.

1. INTRODUCTION

It has become increasingly clear that mortality improvements in countries where reliable data exist are
driven by an underlying process that is stochastic. Since the early 1990s a number of stochastic models
have been developed to analyze these mortality improvements. These include the Lee-Carter model and
its extensions (Lee and Carter 1992; Brouhns, Denuit, and Vermunt 2002; Renshaw and Haberman
2003, 2006; Continuous Mortality Investigation Bureau [CMI] 2005, 2006); the P-splines model (Cur-
rie, Durban, and Eilers 2004; Currie 2006; CMI 2005, 2006), and the Cairns-Blake-Dowd (CBD 2006b)
model (a stochastic version of the Perks 1932 model). A number of recent papers have sought to
compare different mortality models, including Wong-Fupuy and Haberman (2004), Renshaw and Ha-
berman (RH, 2006), and CMI (2005, 2006, 2007). Renshaw and Haberman (2006), for example, com-
pare models in a quantitative fashion by analyzing the pattern of standardized residuals against age,
year of observation, and year of birth. However, so far as we are aware, no studies have used formal
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model selection criteria to compare and rank a variety of nested and non-nested models. This study
undertakes such a comparison.

We consider a range of both existing and new models.! In the early part of the paper, we compare
these on the basis of a set of desirable, qualitative properties: parsimony, transparency, ability to gen-
erate sample paths, incorporation of cohort effects (see Willets 1999, 2004; Richards, Kirkby, and
Currie 2006), and ability to produce a nontrivial correlation structure. The study then pays considerable
attention to two important quantitative criteria that can be evaluated only when each model is fitted
to the data: consistency with historical data, and robustness of parameter estimates relative to the
range of data employed.?

Our analysis focuses on mortality at higher ages (60-89), given our interest in pension-related ap-
plications where the risk associated with longer-term cash flows is primarily linked to uncertainty in
future rates of mortality at higher ages. For models M5-MS8, the focus on this higher age range allows
us to exploit the relatively simple log-linear structure of the mortality curve resulting in a family of
multifactor models that have parsimonious age effects.

We find that no single model dominates on the basis of all the above criteria. If we rank models
using an objective model selection criterion based on the statistical quality of fit, then an extension of
the GBD (2006b) model fits the England and Wales data best, while the RH (2006) model fits the U.S.
data best. However, if we take the robustness of parameter estimates into account, then the preferred
model is a different extension of the CBD model that allows for both a cohort effect and a period effect
that is quadratic in age.

1.1 Notation
We consider eight models in this paper, and it is important that we use consistent and clear notation
throughout:

e Calendar year t is defined as running from time ¢ to time ¢t + 1.
e We define m,(t, x) to be the crude (i.e., unsmoothed) death rate for age x in calendar year t. More
specifically,

Number of deaths during calendar year t aged x last birthday

me(t, X) Average population during calendar year t aged x last birthday
The average population is usually approximated by an estimate of the population aged x last birthday
in the middle of the calendar year. The underlying death rate is then m(t, x), which is equal to the
expected deaths divided by the exposure.

e A second measure of mortality is the mortality rate (¢, x). This is the probability that an individual
aged exactly x at exact time t will die between t and ¢ + 1.

e A third measure is the force of mortality, w(t, x). This is interpreted as the instantancous death rate
at exact time t for individuals aged exactly x at time t. For these individuals, for small dt, the prob-
ability of death between t and ¢t + dt is approximately w(t, x) X dt.

* For individuals who die aged «x last birthday, in year ¢ we use the convention that ¢ — x is the year
of birth. However, the precise date of birth might be any time between January 1 in calendar year
t — x — 1 and December 31 in calendar year t — x. For notational compactness we will sometimes
usec =t — «x.

T All models are described in the paper at the outset. However, the new models (labeled M6-M8) were developed in response to perceived
problems with the original five models (M1-M5) as well as building on the strengths of these models.

2 An earlier version of this paper, with the same title, looked in more detail at the underlying data and empirical illustrations of the cohort
effect. See http://www.ma.hw.ac.uk/~andrewc/papers/.
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1.2 Relationship between m(t, x) and q(t, x)

The death rate, m(t, x), and the mortality rate, q(t, x), are typically very close to one another in value.
With a simple assumption, we can formalize this relationship more precisely:

Assumption 1: For integers t and x, and for all 0 = s, u < 1, n(t + s, & + u) = p(t, x): that is, the force of
mortality remains constant over each year of integer age and over each calendar year.

This implies the following:

a. m(t, x) = w(t, x)
b. q(t,x) =1 — exp[—p(t, ®)] =1 — exp[-m(t, x)].

Relationship (a) is often used in the analysis of death rate data (see, e.g., Brouhns, Denuit, and Vermunt
2002). Relationship (b) is useful in the analysis of parametric models for mortality that are formulated
in terms of q(t, x).

Assumption 1 does not normally hold exactly, but the resulting relationship between m(t, x) and
q(t, x) is generally felt to provide an accurate approximation.

2. DATA

We now discuss the general characteristics of both the England and Wales and the U.S. male data. The
primary motivation for this study is to compare various mortality models and determine which are best
suited to forecasting mortality at higher ages. This reflects a concern with longevity risk—the risk that
realized survival rates might be higher than anticipated—to which pension plans and annuity providers
are exposed. As a consequence, we use data at higher ages only (ages 60-89 inclusive) when we make
our comparisons of the different models.

2.1 England and Wales: Crude Death Rates

In this paper we use crude mortality rates for England and Wales (EW) males between 1961 and 2004 .°
As “stylized facts” we can observe that over this period mortality rates have been declining at all ages,
they have been declining at different rates at different ages, and they have been declining erratically
(see, e.g., Cairns, Blake, and Dowd 2006a, Fig. 1.2).

A typical dataset consists of numbers of deaths, D(t, x), and the corresponding exposures, E(t, x),
over a range of years t and ages x. Numbers of deaths are normally regarded as being reasonably
accurate, although the recorded age at death is believed to be less accurate at very high ages. The
exposure E(t, x) represents the average, during calendar year t, of the number of people alive who were
aged «x last birthday. This quantity is normally not known with a high degree of accuracy, even in census
years, and has to be estimated by the Office for National Statistics (ONS) (or its equivalent in other
countries), taking account of recorded births and deaths and net immigration.

In the analysis that follows we shall exclude a number of seemingly unreliable data points (¢, x):

* The 1886 cohort (i.e., t — & = 1886). Death rates for this cohort became markedly out of line with
neighboring cohorts during the 1960s. This might be the result of poorly calculated exposures (i.e.,
estimates of average population size at each age).

3 Data for this period were provided by the United Kingdom'’s Office for National Statistics. The Human Mortality Database (www.mortality.org)
and LifeMetrics (www.lifemetrics.com) also provide useful sources of data. Both web sites include thorough technical documentation to support
the data. In their analyses of the Lee and Carter (1992), Renshaw and Haberman (2006), and P-splines (Currie, Durban, and Eilers 2004)
models, CMI (2005, 2006, 2007) look at females as well as males data, and life-office assured lives’ data as well as national population data.
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* Death rates at and above age 85 in the years up to and including 1970. Accurate exposures were not
estimated by the ONS (or its predecessors) at these ages until 1971.

Additionally, because some of the models we are fitting are cohort models, we will exclude all cohorts
that have fewer than five observations (after taking account of the exclusions above).* The rationale
for including a ‘“‘cohort effect” lies in an analysis of the rates at which mortality has been improving
at different ages and in different years (see Willets 2004; Richards, Kirkby, and Kelly 2006). Cohorts
born around 1930 experienced strong rates of improvement between ages 40 and 70 relative to, say,
cohorts born 10 years earlier or 10 years later. For its part, the cohort born around 1950 seems to
have experienced worse mortality than the immediately preceeding cohorts.

2.2 United States: Crude Death Rates

This paper also analyzes data for U.S. males aged 60 to 89 over the period 1968-2003.°> We will focus
on those aspects of the U.S. data that are different from the EW data.

With the EW data in a given year, t, we have identified (CBD 2006b) that logit ¢(t, x) (i.e.,
log[q(t, x)/(1 — q(t, x))]) is reasonably linear in x. Although this is approximately true for the U.S.
data, we found that, in some years, there is a small degree of curvature in the plot of logit ¢(t, x)
against x. The curvature is not all that prominent, but it does turn out to be significant when we
compare models with and without a quadratic term in logit q(t, x), and it is an effect that changes
over time. Although a cohort effect is evident in the U.S. data, the magnitude of the effect above age
60 is much smaller than the EW cohort effect.

Accurate exposures data are not available for the period 1968-1979 for ages above 84. Consequently
we have used data for ages 85-89 only after 1979. Issues relating to the accuracy of mortality data at
higher ages are explored further by Anderson (1999).

In contrast with the EW data, the U.S. data do not appear to have any individual cohorts that have
identifiable problems. However, we found that the exposures data were, in general, less reliable as
estimates of the underlying population sizes at specific ages in specific years.® This is most apparent
if we follow the exposures data for a specific cohort over time.” Exposures data for cohorts born in
1928, 1918, 1908, and 1898 are plotted in Figure 1. We would normally expect to see a relatively
smooth progression in the exposures data from one year to the next. The decrease in the exposure
from one year to the next should reflect the numbers of deaths and net immigration from the cohort.
If net immigration is zero, this should result in a fairly smooth, downwards progression of values in
each plot. Instead, we see for each of the cohorts in Figure 1 that the pattern is somewhat erratic,
especially for the top left plot. This might be explained by a volatile pattern of net immigration. How-
ever, it could also be explained by errors in the underlying data (particularly the exposures data). The
corresponding plots for EW are much smoother.

4 The reliability of the estimates of the y{?, cohort parameters (defined later) depends on the number of observations for each cohort. At one
extreme, if we have just one observation, then the v, parameter can be chosen so that the fitted death rate is exactly equal to the observed
rate, a “quality of fit"” that can be achieved without affecting any of the other estimated death rates. In effect, the single observation allows
us to overfit the model, whereas the estimated v, parameter is, in reality, subject to substantial parameter uncertainty. With more observations
in a given cohort, the estimated {2, parameter becomes more reliable. Consequently we wish to exclude cohorts that have too few obser-
vations. However, if we exclude too many cohorts, then we are left with relatively little data. We therefore adopt a compromise and exclude
cohorts with fewer than five observations.

* Data are available for higher ages, but, as previously discussed in the case of EW, age at death is often misreported at these high ages,
resulting in unreliable estimated death rates at these ages.

6 For further explanation, see Section 3.

7 For example, if we follow exposures data for the “1920” cohort, then we look at the sequence £(1920, 0), E(1921, 1), . . ., E(1980, 60),
E(1981, 61), . ...
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Figure 1
U.S. Exposures for Different Cohorts over the Period 1968-2003: E(1967 + t, x + t)
for x = 40, 50, 60, 70
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3. ESTIMATION

We have data covering ages x,, . . ., x,, and calendar years t,, . . . , t, . For each age x and year t, we
have an exposure of E(t, x) (i.e., E(t, x) is the average size of the population aged x last birthday during
year t) and D(t, x) deaths during year t recorded as age x last birthday at the date of death.

We will model the number of deaths using the Poisson model commonly employed in the literature
on mortality modeling: we assume D(t, x) has a Poisson distribution with mean E(¢t, x) X m(t, x) (or
D(t, x) ~ Po(E(t, x)m(t, x))); see, for example, Brouhns et al. (2002).

Our analysis is complicated slightly by the fact that some of the models we consider model the death
rate m(t, x), whereas others model the mortality rate q(t, x). To ensure a valid comparison between
the different models, our analyses of the models for ¢(t, x) involve an additional step. First, for a given
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set of parameters, we calculate the q(t, x). We then transform these into death rates using the identity
m(t, x) = —log[1 — q(t, x)]. We can now calculate the likelihood for all models consistently based on
the m(t, x) values.

For a given model we use ¢ to represent the full set of parameters, and the notation for m(t, x) is
augmented to read m(t, x; ¢) to indicate its dependence on these parameters. Where we have a model
for q(t, x) = q(t, x; $) we define

m(t, x5 §) = —log[1 — q(¢, x; d)].
For all models the log-likelihood is

($; D, E) = 2 D(t, %) log[E(t, ®)m(t, x; &)] — E(t, x)m(t, x; &) — log[D(t, )!],

and estimation is by maximum likelihood.®

4. THE MoORTALITY MODELS

The data will cover the range x,, . . ., x, and ¢, ..., t, with unit increments in each case. Models
will be labeled M1, M2, etc., and are listed in Table 1. Additionally we will use the following conventions:

e The BY functions will reflect age-related effects.
* The k@ functions will reflect period-related effects.
e The vy functions will reflect cohort-related effects, with ¢ = t — «x.

All of the models that we examine, with the exception of the P-splines model, will be of the form log
m(t, x) = ZPPkPyY, or logit q(t, x) = TRk,

The method of recording the calendar year of death and the age last birthday at death means that
the death count covers individuals born on January 1 in calendar year t — x — 1 through to December
31t — x (i.e., two years). The cohort index ¢ = t — « takes its values from the second of these years.
To illustrate, the 1886 cohort discussed above in Section 2.1 covers individuals born between January
1, 1885 and December 31, 1886.

4.1 Model M1
Lee and Carter (1992) propose the following model for death rates:

log m(t, x) = BV + Bk

Table 1
Formulae for the Mortality Models
Model Formula
M1 log m(t, x) = B{¥ + Bk
M2 log m(t, x) = B{” + BPk® + BOVE,
M3 log m(t, x) = B + n, k@ + n, 'y,
M4 log m(t, x) = 2, 8;B¥(x, ©)
M5 logit g(t, x) = k¥ + k@(x — %)
M6 logit q(t, x) = kM + k@P(x — %) + v,
M7 logit g(t, x) = k" + k@(x — %) + kP((x — H? — 32 + v,
M8 logit g(t, x) = kP + k@(x — %) + v (x. —%)

Notes: The functions B9, x{, and ¥ are age, period, and cohort effects, respectively. The B (x, t) are B-spline basis functions, and the 6,; are
weights attached to each basis function. n, is the number of ages covered; X is the mean age over the range of ages being used in the analysis;
o2 is the mean value of (x — X)%.

8 Note that D(t, x)! means “D(t, x) factorial.”
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For this and some of the other models, there is an identifiability problem in parameter estimation. To
see this, note that the revised parameterization

log m(t, ») = BV + Bk,
where

BY = BY + bR,
B® = BP/a,
kP = a(k® —b)

results in identical values for log m(t, x), and this means that we cannot distinguish between the two
parameterizations. To circumvent this we need to impose two constraints on the parameters. To some
extent the choice of constraints is a subjective one, although some choices are more natural than
others. With the current model we use the following constraints:

S« = 0,
t

2 BY =1
X
The first is a natural constraint and implies that, for each x, the estimate for B{" will be equal (at

least approximately) to the mean over t of the log m(t, x). There also has to be a second constraint to
pin down unique values of parameters a and b above. However, there is no natural choice for this, and,
indeed, different choices can be seen in different applications of the Lee-Carter model in the academic
literature. The important point to note, however, is that the choice of the second constraint has no
impact on either the quality of the fit or on the forecasts of mortality.

4.2 Model M2
Renshaw and Haberman (2006) generalized the Lee-Carter model to include a cohort effect as follows:
log m(t, ) = B + Bk + BIVEL.

Model M1 is then a special case where the B and vy, are set to zero.
This model has similar identifiability problems as the previous model. We therefore impose the fol-
lowing constraints to ensure identifiability:

S =0,
t

> BY =1,
292 =0,
> BY =1 (4.1)

The first and third constraints mean that the estimate for BV will be (at least approximately) equal
to the mean over t of the log m(t, x). The second and fourth constraints are similar to the second
constraint in model M1, in that there are no natural choices, although the actual choice makes no
difference to the quality of fit.

The original RH (2006) study chose to fix estimates for B{" at n;' =, log m(t, x); the remaining
parameters were estimated using an iterative process. In contrast, we use RH’s estimate for BQ) only
as a starting value and include BV in the iterative scheme as well.
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We found that parameter values converge very slowly to their maximum likelihood estimates. This
suggests that an identifiability problem remains. It is not clear if this problem is an exact one or an
approximate one. An exact identifiability problem means that the likelihood function will be absolutely
flat in certain dimensions, whereas an approximate identifiability problem means that the likelihood
function will be close to flat in certain dimensions.

4.3 Model M3
Currie (2006) introduces the simpler Age-Period-Cohort (APC) model

1 1
log m(t, x) = B + — k@ + — 2,
n

—x)
a a

where n, is the number of ages in the dataset. The APC model has its origins in medical statistics and
predates the Lee-Carter model (see, e.g., Osmond 1985; Jacobsen et al. 2002). The model is also a
special case of model M2 with B® = 1/n, and B = 1/n,. Currie (2006) uses P-splines to fit BV,
k®, and v, to ensure smoothness, although the method is approximate. In our analysis of M3, we do
not impose any smoothness conditions.’

Without loss of generality, we impose the following constraints:

> k® =0,
t

> v = 0.
x,t

We need one further constraint, because we can otherwise add 8((t — t) — (x — &)) to y?),, subtract

3(t — t) from k@, and add 8(x — &) to B” with no impact on the two constraints above. We propose
here that the tilting parameter, 3, be chosen within an iterative scheme to minimize

S@) = 2, BV + d(x — &) — BM)?,
where B{" = n; '3, log m(t, x). This implies that

S = DB~ BY)

8 =
S (x — x)?

Given that the k@ and y®), already satisfy the first two constraints, we revise our parameter estimates
according to the following formulas:

R =k = nd -0,
VO =¥ + 13 — 0) — x — &),
BY = B + 3¢ — ).
Note that models M1 to M3 can be described as belonging to the family of generalized Lee-Carter

models.

4.4 Model M4

Currie, Durban, and Eilers (2004) propose the use of B-splines and P-splines to fit the mortality surface:

log m(t, x) = >, 0,B%(x, t),
i

? Although we use the same model, Currie (2006) incorporates a penalty for lack of smoothness. As a result, estimates for the three functions
will be different.
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with smoothing of the 6,; in the age and cohort directions. Currie also discuss the construction of B-
splines and how they are fitted.

4.5 Model M5
M5 is the original CBD model. CBD (2006Db) fitted the following model to mortality rates (¢, x):

[logit q(t, x) = log M] = Bk + BPk®.

(1 = q(t, x))

For this model simple parametric forms were assumed for (" and B®:
B = 1,
BY = (x — &),

where & = n,'2,x; is the mean age in the sample range (in our analysis, therefore, & = 74.5). Thus,
logit g(t, ) = kD + kP (x — %).

This model has no identifiability problems.

4.6 Model M6

This model is the first generalization of the CBD model to include a cohort effect:
logit q(t, x) = BVk{" + Bk + By

For this model simple parametric forms were assumed for BV, B, and BLV:

B = 1,
BY = (x — &),
B = 1.

Thus,
logit q(t, x) = kY + kP (x — &) + y&..

As with other models, we have an identifiability problem. Here we can switch from v®, to &, =
G+ b, + d,(t — x — &), and, with corresponding adjustments to k" and k), there is no impact
on the fitted values of the ¢(t, x). This requires two constraints to prevent arbitrary use of ¢, and b,.
The constraints we have used here are
2 v =0,

ceC

> ey =0,

ceC
where the C is the set of cohort years of birth that have been included in the analysis (see Section
2.1). The reason for this choice is that if we use least squares to fit a linear function ¢, + d.c to

@ the constraints ensure that &, = 0 and &, = 0. This ensures that the fitted v will fluctuate
around 0 and will have no discernible linear trend.

4.7 Model M7

This model is a generalization of model M6 that adds a quadratic term to the age effect. The inclusion
of the quadratic term is inspired by the possible curvature identified in the logit g(t, x) plots in the
U.S. data. Thus,
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logit g(t, ) = k' + kP (x — &) + kO ((x — %)% — 62) + yH.

Here the constant 62 = n,! Z,(x — &)° is the mean of (x — &)°.

As with model M6, we have an identifiability problem, and we can switch from y*, to y* = y® +
b, + bt — x — &) + b3(t — x — &)? and corresponding adjustments to kP, k@, and k¥, without
there being an impact on the fitted values of the ¢(t, x). This requires three constraints to prevent
arbitrary choices over ¢,, ¢,, and ¢;. The constraints we have used here are

S ¥ =0

ceC

> ey =0,
ceC
> e =0.

ceC

Thus, if we use least squares to fit a quadratic function ¢, + d.c + ¢ to vV, the constraints ensure
that ¢1 0, d>2 = 0 and d>3 = 0, meaning that the fitted vy will fluctuate around 0 and will have no
discernible linear trend or quadratic curvature.

4.8 Model M8

Our third generalization of the CBD model builds on our experience from fitting model M2 (see the
results in Section 6). This suggested that the impact of the cohort effect v for any specific cohort
diminishes over time (i.e., B is decreasing with x) instead of remaining constant (i.e., B¢ is constant).
This leads to

logit q(t, x) = Bél)Kz(l) + B;Z)Kt(z) + BS)V(S)

t—x

where
B =1,
BY = (x — ),

BY = (5 — )
for some constant parameter x, to be estimated. This results in
logit q(t, x) = kM + k@ (x — &) + v, (x, — x).
To avoid identifiability problems, we need to introduce one constraint:

54 = 0,

Each of models M6-MS8 is an extension of model M5 with some allowance for the cohort effect.
Consequently models M5-M8 can be described as members of the family of generalized CBD-Perks
models.

4.9 Philosophical Similarities and Differences between Models

We comment here briefly on the philosophical similarities and differences behind the structural as-
sumptions of the models. The reader can use these to help form preferences over the models in the
case where quantitative and qualitative criteria do not permit a clear-cut distinction between them.
All the models M1-M3 and M5-M8 share the same underlying assumption that the age, period, and
cohort effects are qualitatively different in nature and hence need to be modeled in different ways.
Specifically they recognize a randomness in mortality rates at each age from one year to the next,
perhaps caused by local environmental factors (such as a winter influenza outbreak or a summer heat-
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wave), which is not observed between adjacent ages. In contrast, the P-splines model, M4, assumes that
there is smoothness in the underlying mortality surface in the period effects as well as in the age and
cohort effects. Models M5-MS8 differ from M1-M3 in that the former assume a functional relationship
(and hence smoothness) between mortality rates over adjacent ages within the same year.

Depending on one’s personal beliefs about the underlying randomness in the age, period, and cohort
effects, one might attach greater weight to models that are aligned with these beliefs. For example, if
one believes that there should be an underlying smoothness in mortality rates between adjacent ages
within the same year, that there is randomness in mortality rates between cohorts, and randomness in
mortality rates from one year to the next, then greater weight might be placed on models M6-MS.

5. ALTERNATIVE WAYS OF EVALUATING AND COMPARING MORTALITY MODELS

We can evaluate and compare the eight models using a range of criteria.

5.1 Desirable Properties of the Theoretical Models

First, we can compare the main features of the models against a set of desirable model properties as
listed below and derived from CMI (2005, 2006) and Cairns, Blake, and Dowd (2006a). Table 2 assesses
each model against these properties:

e Parsimony: Other things being equal, a model with fewer parameters is preferable to a model with
more. Each of the models has a large number of parameters (see Table 3), so none could be described
as parsimonious in any absolute sense. However, some models are more parsimonious than others,
having fewer parameters.

Table 2
Desirable Model Properties
Model M1 M2 M3 M4 M5 M6 M7 M8
Parsimony ? ? ? ? ? ? ? ?
Transparency ? ? ? ? ? ? ? ?
Ability to generate sample paths Y Y Y N Y Y Y Y
Incorporation of cohort effects N Y Y Y N Y Y Y
Nontrivial correlation structure N N? N? N Y Y Y Y

Notes: The table shows whether each model satisfies each of the stated criteria. Where a criterion cannot be answered with a simple Y(es) or
N(o), the question mark indicates that the model lies somewhere in the middle, with further comments in the main text.

Table 3
England and Wales Males Aged 60-89 and
Years 1961-2004

Maximum Effective Number
Model | Log-Likelihood of Parameters BIC (Rank)
M1 -8,912.7 102 —9,275.8 (6)
M2 -7,735.6 203 —8,458.1 (3)
M3 —8,608.1 144 —9,120.6 (5)
M4 -9,245.9 74.2 -9,372.9 (7)
M5 -10,035.5 88 —10,348.8 (8)
M6 —7,922.3 159 —8,488.3 (4)
M7 —7,702.1 202 —-8,421.1 (2)
M8 -7,823.7 161 —8,396.8 (1)

Notes: Maximum likelihood, effective number of parameters esti-
mated, and Bayes Information Criterion (BIC) for each model. The
effective number of parameters takes account of the constraints on
parameters or the effect of the penalty functions in the case of model
M4. For M4 with dx = 4 and dt = 4 interknot distances, the BIC is
optimized over the penalty weights.
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Of course, other things are not equal including the value of the maximum likelihood, and so a
balance between statistical goodness of fit and parsimony is achieved through the use of the Bayes
Information Criterion (see Section 6.1.1).

In Table 2 we have placed question marks next to all eight models in respect to parsimony. To
record a “N(0)” would indicate that a model was unnecessarily complex, which we do not think is
the case with any model, whereas a “Y(es)”” would indicate that a model had a small number of
parameters, which is also not the case with any model.

e Transparency: How much of the model and its output is treated as a ‘“black box”? It is important
that the user of a given model understands the model and all of its workings, to avoid the danger
that the model might be used inappropriately. At the same time, a model that is transparent to one
person might not be transparent to someone else. Thus, rather than impose our own judgements
here, we leave question marks next to all models.

e Whether the model has the ability to generate sample paths:' The process uncertainty that generates
random sample paths is necessary for tasks such as pricing longevity-linked financial instruments and
developing related hedging strategies (see, e.g., Blake et al. 2006). Only the P-splines model, M4,
fails on this criterion. M4 assumes that there is an underlying smoothness to the mortality surface
and that the only uncertainty in forecasts (which can be substantial) is due to model and parameter
uncertainty.

e Incorporation of cohort effects: This is important if we believe that cohort effects are present and
need to be allowed for (as discussed in Section 2.1).

e Ability to produce a nontrivial correlation structure between the year-on-year changes in mortality
rates at different ages.'! The correlation structure is described as trivial when there is perfect cor-
relation between changes in mortality rates at different ages from one year to the next. This is the
case for model M1, for example, where there is a single time series process k®. For models M2 and
M3, we also have perfect correlation (for the same reason) at all ages except at the youngest age,
where there is potentially additional randomness arising from the arrival of a new cohort with an
unknown cohort effect. Models M5-M8 allow for a nontrivial correlation structure because they all
have more than one underlying period risk factor.

5.2 Desirable Properties of the Fitted Models

Important additional properties can be evaluated only when we fit the model to the data:

e A good model should provide a good fit to the historical data, produce testable predictions that are
consistent with the data, and rank well against other models by criteria such as the BIC.

* Parameter estimates should be robust relative to the range of data employed. For example, if we use
EW data for 1981-2004, we would hope to see similar parameter estimates to those found using data
for 1961-2004.

* Where a model is used for forecasting future rates of mortality, individual scenarios should exhibit
“biologically reasonable” behavior. For example, forecast mortality rates should both be increasing
in age in any given forecast year and change smoothly over time (see, e.g., Cairns, Blake, and Dowd
2006a). The quantitative and qualitative forecasting properties of models are considered only briefly
in this paper (Sections 6.3 and 7.3). These issues are considered in detail elsewhere (Cairns et al.
2008; Dowd et al. 2008a,b).

10'We refer here to sample paths for the underlying (and unobservable) death rates m(t, x). A different type of sample path can be constructed
when we look at crude (observable) death rates under the Poisson model: m(t, x) = D(t, x)/E(t, x), where D(t, x) ~ Po(m(t, x)E(t, X)).

1 Statistical analysis of mortality rates points to changes in the m(t, x) at different ages being imperfectly correlated. The existence of a
nontrivial correlation structure implies, for example, that hedging of longevity-linked liabilities, such as annuities, requires more than one
hedging instrument. See also Cairns, Blake, and Dowd (2008) for further discussion of the evidence for imperfect correlation.
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6. ANALYSIS OF MODELS UsSING ENGLAND AND WALES DATA

6.1 Model Selection Criteria

In this section we conduct formal model comparisons based on England and Wales data. For each
model we estimate (as appropriate) the B?, k?, and y? for each factor, i, age, x, year, t, and cohort,
¢ =t — x, by maximizing the log-likelihood function. Estimates of the B?, k?, and y® are plotted in
Figures 3-9.

Values for the maximum likelihood, effective number of parameters (or degrees of freedom in esti-
mation), and the Bayes Information Criterion (BIC) for each model are given in Table 3.

6.1.1 Bayes Information Criterion

If one simply compares the maximum likelihoods attained by each model, then it is natural for models
with more parameters to fit the data “better.” Such improvements are almost guaranteed if models
are nested: if one model is a special case of another, then the model with more parameters will typically
have a higher maximum likelihood, even if the true model is the model with fewer parameters.

To avoid this problem, we need to penalize models that are overparameterized. Specifically, for each
parameter that we add to a model, we need to see a ‘‘significant” improvement in the maximum
likelihood rather than just an increase of any size. A number of such penalties have been proposed.
Here we focus on the Bayes Information Criterion (BIC; see, e.g., Hayashi 2000; Cairns 2000).

A key point about the use of the BIC is that it provides us with a mechanism for striking a balance
between quality of fit (which can be improved by adding in more parameters) and parsimony. A second,
and equally important point about the BIC, is that it allows us to compare models that are not nec-
essarily nested. For example, M1 and M3 are nested within M2, but M1 is not nested within M3 and
vice versa. A final point is that the BIC makes no assumptions about ‘“prior”” model rankings: that is,
all models have equal status in terms of how we rank them. In contrast, hypothesis tests start from a
null hypothesis that favors one specific model over the others.

The BIC for model r is defined as'?

BIC, = 1) = 5 v, Tog N,

where ¢, is the parameter vector for model r, (’j\)r is its maximum likelihood estimate, l((lj\)r) is the
maximum log likelihood, N is the number of observations (not counting those cells that have been
excluded from the analysis), and v, is the effective number of parameters being estimated.

The models can then be ranked, with the top model having the highest BIC. Values for the BIC are
given in Table 3, and we see that model M8 comes out on top in the BIC rankings with M7 second.!*

6.1.2 Standardized Residuals

A second model selection criterion relates to the standardized residuals:

D(t, x) — E(t, x)n(, x; )

Z(t, x) = A
(&%) VE(, x)i, x; d)

(6.1)

Embedded within our modeling hypothesis is an assumption that the death counts are independent
Poisson random variables for each age and year (Section 3). If our hypothesis is true, therefore, the

2 Some authors define the BIC as —2/(&3,) + v, log N: that is, —2 times our definition. The two definitions are equivalent and have no impact
on our analysis.

3 For example, model M1 requires estimates for 30 values of B{"’, 30 values of B, and 44 values of k{?, totaling 104, but we then deduct 2
from this total to reflect the two constraints =, k? = 0 and =, B® = 1. For the P-splines model the concept of the effective number of
parameters is more abstract; see Currie, Durban, and Eilers (2004) and references therein for further details.

™ This is no accident. We searched across a range of new functional forms to achieve this outcome (see also note 1).
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Table 4
Sample Variances of Standardized Residuals
for Models M1-M8

Model
M1 | M2 | M3 | M4 | M5 | M6 | M7 | M8
Var[Z(t, x)] | 41 | 22 | 3.7 | 43 | 59 | 24 | 2.1 | 2.3

standardized residuals (eq. [6.1]) will be approximately i.i.d. standard normal random variables.

Models that have higher likelihood have a lower variance of the standardized residuals. However, for
each model discussed in this paper, the variance of the standardized residuals is significantly greater
than one (see Table 4). This “‘overdispersion’ seems to be a general feature of mortality data in many
countries. A possible source of this overdispersion lies in the fact that the exposures data are estimated.
We conjecture that this overdispersion does not have a significant impact on our estimates of the
future dynamics of the underlying mortality rates ¢(t, x). Nevertheless, a Poisson model might under-
estimate the future variability of the actual death rates relative to the true underlying rates.

A simple means of considering the validity of the i.i.d. assumption of the Z(¢t, x) is to look at the
pattern of positive and negative standardized residuals (see Koissi, Shapiro, and Hognis 2006): the
pattern should be random under the i.i.d. hypothesis. For models M1, M3, and M5 (see Fig. 2), the
plots of the residuals show a strong clustering of positives and negatives. Models M1 and M5 do not
incorporate a cohort effect, and there are diagonal clusters of positive and negative residuals: this
provides strong evidence for the existence of a cohort effect. M6 also shows some clustering, but much
less than M1, M3, and MS5. The standardized residuals in M4, at first glance, look reasonably random,
but closer inspection reveals distinct vertical bands that suggest that there is a genuine random period
effect that is being smoothed out too much under M4. M2, M7, and M8 all look reasonably random,
and so all pass the test on a visual inspection.!®

6.1.3 Comparison of Nested Models

Some models are nested within one of the others: that is, they are special cases of more general models.
For example, model M1 is nested within model M2, being a special case of M2 with B® = 0 for all «x,
and v&Y = 0 for all ¢ = t — x. In such circumstances we can use the likelihood ratio test to test the
null hypothesis that the nested or restricted model is the correct model versus the alternative hypoth-
esis that the more general model is correct. For the nested model, let l be the maximum log likelihood

for model M1 and 12 be the maximum likelihood for model M2. Model M1 requires the estimation of
v, = 102 parameters, while M2 requires v, = 203. The likelihood-ratio test statistic is 2(Z\2 - lAl). If
the null hypothesis is true, this should have approximately a chi-squared distribution with v, — v,
degrees of freedom (d.f.). Thus we reject the null hvpothesm in favor of the more general model if the
test statistic is too large: specifically, if 2(l 1) > X5, 100 Where o is the significance level. Alter-
natively, we can calculate the p-value for this test asp = 1 — X§2_v1_1(2(f2 —_ D).

The eight models considered here include seven nested pairs. Each pair is considered in Table 5. In
each case, the null hypothesis is rejected overwhelmingly in favor of the more general model. These
results support our earlier findings based on the BIC. Additionally, the decisive rejection of models M1
and M5, in particular, gives a clear indication that the cohort effect is a key feature of EW males
mortality data.

5 Complementing these plots, one can plot standardized residuals against age, year of observation, and year of birth as in RH (2006). We do
not include such plots here, but simply note that these plots reveal the same information, but in different ways, to Table 4 and Figure 2.
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Figure 2
England and Wales Males: Standardized Residuals Z(t, x) for Models M1-M8

Model M1 Model M2

1970 1980 1990 2000 1970 1980 1990 2000
Model M3 Model M4

1970 1980 1990 2000 1970 1980 1990 2000
Model M5 Model M6

1970 1980 1990 2000 1970 1980 1990 2000
Model M7 Model M8

1970 1980 1990 2000 1970 1980 1990 2000

Notes: Gray cells mean Z(t, x) > 0, black cells mean Z(t, x) < 0, and white cells mean the cell was excluded from the analysis.
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Table 5
England and Wales Data: Likelihood Ratio Test Results for Various Pairs of General
and Nested Models

H,: Restricted Model H,: General Model LR Test Statistic d.f. p-Value
M1 M2 2,354.3 101 <0.000001
M3 M2 1,745.0 59 <0.000001
M5 M6 4,226.5 71 <0.000001
M5 M7 4,666.8 114 <0.000001
M6 M7 440.3 43 <0.000001
M5 M8 4,423.7 74 <0.000001
M6 M8 197.2 2 <0.000001

6.2 Parameter Estimates and Their Robustness

In Figures 3-9, we have plotted the maximum-likelihood estimates for the various parameters in all
models, except M4, using EW males data, aged 60-89.1° In this section we will focus on the parameter

Figure 3
England and Wales Data: Parameter Estimates for Model M1
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16 See Section 2.1 for exclusions.
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Figure 4
England and Wales Data: Parameter Estimates for Model M2
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estimates based on data from the period 1961 to 2004, represented by dots in the figures.

For those models that incorporate a cohort parameter, we can see a distinctive cohort effect. In
model M2, for example, we can see from the second kink in y®), that cohort mortality was falling at a
faster rate for males born after 1920. The same feature can be seen in models M3 and M6.
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Figure 5
England and Wales Data: Parameter Estimates for Model M3
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Notes: Derived from (a) data from 1961-2004 (dots) or (b) data from 1981-2004 (solid lines). Crosses in the bottom left plot correspond to
excluded cohorts. B? = 4 and B = 5.

For models M7 and M8, the cohort effect follows a different pattern. In M7 part of the cohort effect
has been substituted by the additional quadratic age effect. The M8 cohort effect seems to follow a
similar pattern except for the fact that it has been tilted slightly.

6.2.1 Robustness

An important property of a model is the robustness of its parameter estimates relative to changes in
the period of data used to fit a given model.

For each model, except M4, we have plotted (Figs. 3-9) parameter estimates based on data from
1961 to 2004 (represented by dots) and from 1981 to 2004 (solid lines). We focus our comments here
on the four highest BIC-ranked models M2, M6, M7, and M8. The plots reveal that, out of the four
models, M7 seems to be the most robust relative to changes in the period of data used: that is, the
parameter estimates hardly change even when we use a much shorter data period.

M2, on the other hand, seems to produce results that lack robustness, because the parameter esti-
mates jump to a qualitatively quite different solution when we use less data. For example, consider the
BY plot in Figure 4. Here B is strictly positive and declining when we use data from 1961 to 2004.
In contrast, for the 1981-2004 data, B is flat and negative initially, but then becomes positive and
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Figure 6
England and Wales Data: Parameter Estimates for Model M5
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increases steeply: a shape that cannot, qualitatively, be reconciled (e.g., by changing the identifiability
constraint, eq. [4.1]) with the 1961-2004 shape for BY. This lack of robustness brings into question
the reliability of any projections made using M2. Reinforcing this concern, CMI (2007, Section 7)
observed a similar lack of robustness in M2 when different age ranges are used.

M8 appears reasonably robust, and the differences that we do see are, in fact, consequences of the
constraint that =, v}, = 0 when we are summing over different years. However, we did find that, for
some datasets, the M8 fitting program was very slow to converge. We found a similar problem with M2
and put this down to the possible existence of multiple maxima in the likelihood function and the
consequential risk of parameter instability. In our extensive testing, we found no such problems with
M1, M3, M5, M6, or M7. M6 also appears reasonably robust, and again the bigger differences that we
see are due to the identifiability constraints being applied over a different range of years.

The question of robustness is explored further and at length elsewhere (Cairns et al. 2008; Dowd et
al. 2008a,b).

6.3 Model Forecasting Properties

We will now carry out a number of tests to assess the impact of model choice on key outputs associated
with projections of mortality rates into the future. We focus, for illustrative purposes, on models M2,
M6, M7, and MS8: these are the four top-ranked models for the EW males dataset (Table 3).

6.3.1 Survivor Index Projections

We first consider the impact of model choice on projected values of the survivor index S(t, 65): the
proportion out of the cohort aged 65 (and still alive) in 2004 who are still alive in year 2004 + ¢.'" In
Figure 10 (top), we have plotted the mean and 90% prediction interval for the survivor index S(t, 65)
for a cohort aged 65 in 2004. It can be secen that these forecasts are little affected by the choice
between models M7 and M8. M6 is slightly different, but consistent with M7 and M8. M2 is more out
of line. This is connected to the qualitatively different shape of the parameter estimates under M2

17 Projections are based on parameters fitted to data from 1981 to 2004 and use a multivariate random walk model in simulations based on
the historical estimates of the k. Further details are given in the Appendix.
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Figure 7
England and Wales Data: Parameter Estimates for Model M6
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using data from 1981 to 2004 versus those using data from 1961 to 2004 (Fig. 4). Figure 11 compares
projections of the survivor index for M2 using data from 1961 to 2004 (dashed lines)'® and 1981 to
2004 (dotted lines). The former is much closer to the projections under M6, M7, and M8 in Figure 10,
and the substantial differences reinforce the concern expressed in Section 6.2.1 that M2 is not robust.

In Figure 10 (bottom) we have plotted the variance of log S(t, 65) over time. Again the differences
are relatively small between M6, M7, and M8, although some differences emerge close to 25 years. M2
(1981-2004 data) stands out as having a much higher variance, suggesting that model risk might be
an issue. A possible implication is that the choice of model might have a significant effect on quantities
that rely, to some extent, on the variance of S(t, x). For example, the price of a financial option that
has S(t, x) as its underlying quantity is strongly dependent on the variance of S(t, x): everything else
being equal, the higher the variance, the higher the value of the option.

We have concentrated here on the contribution of model risk to forecast uncertainty. However, it is
appropriate to allow for parameter uncertainty to provide a more complete picture of the level of risk

8 M2 is fitted to data from 1961 to 2004, but for greater consistency with the 1981-2004 data projections are based on the last 24 observations
of k and the last 45 observations of y&.
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Figure 8
England and Wales Data: Parameter Estimates for Model M7

Kappa_1(t) Kappa_2(t)
N 2
C}i ° o o® =
(0 .. R ..0.... o .
© o‘o. T
[V o
| (S
o
«©
(oI 1 L)
| e G
o o o
g4
o 4 .
(? 4 o ] ° o .o
L]
N S |
Cfl) T T T T O T T T T
o
1960 1970 1980 1990 2000 1960 1970 1980 1990 2000
Year Year
Kappa_3(t) Gamma_4(t—x)
S s
o ©
O_ 4
a | o
®
4 Y [aV]
gl * . ..o. g
o 4
L]
‘r o o .o. ]
16 o
.« 9
i L]
[s2] °
?‘I) 2 T T T T § T T T T
- T
11960 1970 1980 1990 2000 1880 1900 1920 1940

Year Year of birth

Notes: Derived from (a) data from 1961-2004 (dots) or (b) data from 1981-2004 (solid lines). Crosses in the bottom right plot correspond to
excluded cohorts. BV =1, B@ = x — % P = (x — X2 — 62 and P = 1.

associated with, for example, future longevity-linked cash flows. The impact of parameter uncertainty
is explored in more depth by Czado, Delwarde, and Denuit (2005), Cairns, Blake, and Dowd (2006b),
and Dowd, Cairns, and Blake (2006), who take Bayesian approaches, and Koissi, Shapiro, and Hognas
(2006) and CMI (2005), who use a bootstrapping methodology. These analyses suggest that parameter
uncertainty can significantly increase the overall level of measured uncertainty, particularly for more
distant longevity-linked cash flows.

6.3.2 Projecting Annuity Values

As a second projection exercise, we calculated the value in 2004 of an annuity payable until age 90
(the maximum age in our projection model) for males aged 60, 65, 70, and 75 in 2004 at a constant
interest rate of 4% p.a.:

90—

a,(2004) = > e "UE[S(t, x)].

Projections of S(t, x) are based on EW males data from 1981 to 2004.
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Figure 9
England and Wales Data: Parameter Estimates for Model M8
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For ages 65, 70, and 75, we have already estimated the cohort effect for models M2, M6, M7, and
M8 from the historical data. For age 60, v{¥,) is not known (i.e., the value of y&, or vy, for the cohort
born in t — & = 1944). Because a single value is required, we adopt a subjective approach and consider
two possible values for y{¥}}) for each model with the aim of assessing the sensitivity of the results to
this parameter. The two values that we consider lie at the upper and lower ends of the plausible range
of outcomes for the 1944 cohort based on the historical estimates for earlier cohorts. In taking this
subjective approach we are able, in a very simple, model-free way, to gauge how sensitive the value of
an annuity might be to the value of the cohort effect. For M2, Figure 4 (solid line) suggests that a
plausible range of values for v{3),, is approximately 4.3 to 6.7. Similarly, under M6, Figure 7 (solid line)
suggests a range of —0.14 to 0.11 for y{3),,; under M7 (Fig. 8, solid line) a range of —0.031 to 0.049
for v{%,,; and under M8 (Fig. 9, solid line) a range of —0.012 to 0.008 for v{3),,.

Values for ages 60, 65, 70, and 75 are given in Table 6. From this, we can observe the following:

e At age 60, differences are slightly larger, reflecting the inclusion of uncertainty in the value of
v{3,, in addition to model risk. The uncertainty in v{¥,, under M6 has the largest impact. From this
we conclude that, although the cohort effect is statistically significant (in the sense of Table 3), it
has an economically small effect (M6 excepted) on the pricing of annuities considered here.
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Figure 10
England and Wales Data: Top: 5% and 95% Quantiles for Survivor Index 5(t, 65) for Models M2,
M6, M7, and M8, with Mean of $(t, 65) Running Down the Middle. Bottom: Var[log 5(t, 65)] for
Models M2, M6, M7, and M8

S(t,x): Mean and 90% CI’s
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Notes: Projections based on parameters estimated from data from 1981-2004.

e Differences between models M6, M7, and M8 at ages 65, 70, and 75 are relatively modest.
* Values under M2 are consistently lower, reflecting the shape of the survivor curve in Figure 10.

7. ANALYSIS OF MoODELS UsING U.S. DATA

7.1 Model Selection Criteria

The U.S. males’ mortality data were analyzed using models M1-M3 and M5-M8' using the data from
1968 to 2003 and for males aged 60-89. Over the period 1968-1979, ages 85-89 were excluded on
the basis that the data at those ages in those years are not reliable.

2 Model M4 is currently popular in the United Kingdom, but not in the United States. Our earlier analysis of the EW data did not find that
M4 fitted very well in comparison with M2, M7, and M8. We have therefore not used it in our analysis of the U.S. data.
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Figure 11
England and Wales Data: Top: 5% and 95% Quantiles for Survivor Index 5(t, 65) for Model M2
with Mean of $(t, 65) Running Down the Middle
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Notes: Projections based on parameters estimated from data from 1981-2004 (dotted lines) or from 1961-2004 (dashed lines).

For each model we estimated the BY, k®, and y® parameters by maximum likelihood using data
covering the period 1968-2003. Maximum likelihoods are given in Table 7. Estimates of the parameters
themselves are plotted in Figures 12-18. In these plots the dots are parameter estimates based on
data from 1968 to 2003, and lines are based on data from 1980 to 2003.

7.1.1 Bayes Information Criterion
The BIC for each model is given in the final column in Table 7. In contrast with the results in Table 3

for the EW (EW) data, model M2 now comes out significantly better than the other models. However,
in the subsections that follow, we will discuss graphical diagnostic tests that suggest M2 might be

Table 6
England and Wales Data: Annuity Values
(Payable in Arrears until Death or Age 90) for
Males of Various Ages Based on Data from
1981 to 2004

Annuity Value
Model 4 x=60|x=65|x=70|x=75
M2 | v, = 6.7 13.183 | 11.164 | 9.040 | 6.950
M2 | v, = 4.3 13.148 | 11.164 | 9.040 | 6.950
M6 | v, = 0.11 13.212 | 11.592 | 9.594 | 7.396
M6 | v, = —0.14 | 13.883 | 11.592 | 9.594 | 7.396
M7 | v9,, = 0.049 | 13.386 | 11.509 | 9.469 | 7.289
M7 | ¥, = —0.031 | 13.607 | 11.509 | 9.469 | 7.289
M8 | v, = 0.008 | 13.463 | 11.497 | 9.336 | 7.194
M8 | v, = —0.012 | 13.579 | 11.497 | 9.336 | 7.194

Note: Values for v{¥3) are estimated.
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Table 7

U.S. Males Aged 60-89 and Years 1968-2003

Maximum Effective Number
Model | Log-Likelihood of Parameters BIC (Rank)
M1 —12,265.4 94 —12,590.0 (6)
M2 —9,737.4 187 -10,383.2 (1)
M3 -11,854.2 128 -12,296.3 (3)
M5 -16,121.3 72 -16,370.0 (7)
Mé6 -11,948.4 135 —12,414.7 (5)
M7 -11,631.7 170 —-12,218.9 (2)
M8 -11,841.1 137 -12,314.3 (4)

Notes: Maximum likelihood, effective number of parameters esti-
mated, and Bayes Information Criterion (BIC) for each model. The
effective number of parameters takes account of the constraints on

parameters.

Figure 12

U.S. Data: Parameter Estimates for Model M1
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Notes: Derived from (a) data from 1968-2003 (dots) or (b) data from 1980-2003 (solid lines).
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Figure 13
U.S. Data: Parameter Estimates for Model M2
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Notes: Derived from (a) Data from 1968-2003 (dots), (b) Data from 1980-2003 (solid lines). Crosses in the bottom left plot correspond to
excluded cohorts.
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Figure 14
U.S. Data: Parameter Estimates for Model M3
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Notes: Derived from (a) Data from 1968-2003 (dots), (b) Data from 1980-2003 (solid lines). Crosses in the bottom left plot correspond to
excluded cohorts.

Figure 15
U.S. Data: Parameter Estimates for Model M5
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Notes: Derived from (a) Data from 1968-2003 (dots), (b) Data from 1980-2003 (solid lines).
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Figure 16
U.S. Data: Parameter Estimates for Model M6
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Notes: Derived from (a) Data from 1968-2003 (dots), (b) Data from 1980-2003 (solid lines). Crosses in the bottom left plot correspond to
excluded cohorts.

overfitting the data (especially when it is suspected—as discussed in Section 2.2—that the exposures
data contain significant errors), and lead us to doubt its robustness.

7.1.2 Standardized Residuals

The variances of the standardized residuals for the U.S. data are very much higher than for EW (Table
4). Using 1968-2003 data, the variance is around 7.5 for model M2 and 11.5 for models M7 and MS.
Using data from 1980 to 2003, these fall to about 3.3 and 7.5, respectively. As discussed before, if the
data were wholly reliable, the Poisson assumption the right one, and the model the correct one, then
this variance should be around 1. The high values we see here, therefore, lend weight to our earlier
remarks concerning inaccuracies in the exposures data.

The plots of standardized residuals (not presented here) exhibit some degree of clustering. Out of
these M2 looks the most random, but comparison of this with its EW counterpart suggests that M2
fits the U.S. data less well in terms of the i.i.d. assumption.
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Figure 17
U.S. Data: Parameter Estimates for Model M7
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Notes: Derived from (a) Data from 1968-2003 (dots), (b) Data from 1980-2003 (solid lines). Crosses in the bottom right plot correspond to
excluded cohorts.

7.1.3 Comparison of Nested Models

We carried out likelihood ratio tests on models that are nested, as an alternative to model selection
using the BIC.

Test results for all seven nested pairs are presented in Table 8. These results support our earlier
conclusions based on the BIC: namely, that the more complex models succeed in fitting the data better
than the simpler models.

One can compare Tables 5 and 8 to investigate the relative importance of specific model features.
For example, compare M6 with M7. With the U.S. data, the test statistic is larger than the EW test
statistic with fewer degrees of freedom, and this indicates that the quadratic age effect is more prom-
inent in the U.S. data.

7.2 Parameter Estimates and Their Robustness

Parameter estimates for the seven models are plotted in Figures 12-18. For those that incorporate a
cohort effect, this effect is quite prominent. However, the form of the effect does seem to vary from
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Figure 18
U.S. Data: Parameter Estimates for Model M8
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Table 8
U.S. Data: Likelihood Ratio Test Results for Various Pairs of General and Nested Models
H,: Restricted Model H,: General Model LR Test Statistic d.f. p-Value
M1 M2 5,056.0 93 <0.000001
M3 M2 4,233.8 59 <0.000001
M5 Mé6 8,345.7 63 <0.000001
M5 M7 8,979.2 98 <0.000001
M6 M7 633.4 35 <0.000001
M5 M8 8,560.5 66 <0.000001
Mé M8 214.7 2 <0.000001
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one model to another (e.g., M3 versus M7). We will focus our remaining remarks on models M2, M7,
and MS.

Comparing Figure 13 with its EW counterpart, Figure 4, the patterns for M2 are quite different. The
strong, almost linear trend in v is rather indicative of a steady period effect that is independent of
the k@ period effect.? Consequently, although M2 scores the highest BIC, Figure 13 suggests that a
variation on M2 with an additional period factor might be better.

A further concern about the suitability of M2 arises when we look at estimates for 3 and BS. These
display a much higher degree of randomness than we saw in the EW data. As we have discussed in
Section 4.9, we would expect to see smoothness in each of the age effects: it is difficult to think of
any biological or environmental factors that would result in this level of randomness in B* and .
Rather, the randomness suggests M2 might be overfitting the U.S. data.?!

Now compare Figure 17 (model M7) with its EW counterpart Figure 8. The pattern of development
of the various parameters in M7 is fairly consistent between the two countries. The main qualitative
difference that we can identify under model M7 is that vy has a less well-defined pattern in the U.S.
results, and a greater degree of randomness. This suggests that cohort-related trends in mortality are
less important in the United States than in EW. What remains of a cohort effect in the U.S. data might
be the result of overfitting or perhaps due to genuine environmental factors that affect each cohort in
their year of birth and that vary randomly from year to year (e.g., influenza epidemics).

For model M8 (Fig. 18), the trend in vy, is similar to the M2 cohort effect (Fig. 13). As with M2,
therefore, it suggests that the model might be improved by the inclusion of an additional period effect.

7.2.1 Robustness

Figures 12-18 also include parameter estimates for each model based on data from 1980 to 2004
(solid lines in the plots). If we compare these with the original parameter estimates based on data
from 1968 to 2003 (dots), we can make similar observations about each model as in the case of EW
data. The simpler models, M1, M3, and M5, tend to show greater robustness.??> M7 again seems to be
the most robust out of M2, M7, and M8, while M2 again has problems, leading us to question its
reliability as a means of projecting mortality rates.

7.3 Model Forecasting Properties

7.3.1 Survivor Index Projections

It is interesting and informative to consider the differences between projections using the four models
with the top four BIC rankings (in order, M2, M7, M3, and MS8). In Figure 19 (top) we have plotted
the mean and 90% prediction intervals for the survivor index S(t, 65): that is, the proportion out of
those alive and aged 65 in 2003 surviving to year 2003 + t.2> Models M2, M3, and M7 produce relatively
similar projections, although the prediction interval for M3 is narrower—a feature that is more obvious
if we look at the variance of log S(t, 65) (Fig. 19, bottom).

M8 stands out as being substantially different. The steepening of y¥ around 1920 in combination
with the negative fitted values for ¥ (Fig. 18) implies that cohorts born after 1920 have increasingly
poor mortality relative to the k" improving trend. This form of cohort effect also appears in model
M6, but not in any of the other models. As a consequence, M8 relative to M2, M3, and M7 has sub-
stantially lower survival rates in the 2003 age-65 cohort.

20 That is, B and B are not identical.

2! A possible future refinement of M2, therefore, might be to replace the fully nonparametric 3 with a smooth function of x by applying the
method of P-splines.

22 Much of the shifts we see in models M1 and M3 could be eliminated by adjusting the constraints.

23 See the appendix for further details.
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Figure 19

U.S. Data: Top: 90% Prediction Intervals for Survivor Index 5(t, 65) for Models M2, M3, M7,
and M8, with Mean of $(t, 65) Running Down the Middle. Bottom: Var[log $(t, 65)]
for Models M2, M3, M7, and M8
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7.3.2 Projecting Annuity Values

20 25

We calculated the value of a 25-year annuity payable to a male aged 65 in 2003. Values for models M2,
M3, M7, and M8 based on 1968-2003 and 1980-2003 data are given in Table 9. Most noticeable in

Table 9

U.S. Data: 25-Year Annuity Values for a
65-Year-Old Male Calculated Using Different
Models and Based on Different Periods of Data

Model
M2 M3 M7 M8
1968-2003 11.298 11.417 11.175 10.165
1980-2003 11.656 11.351 11.198 9.981
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this table are the relatively low values for M8, which reflects the unusual cohort effect discussed in the
previous subsection. We can also see that the relative lack of robustness in parameter estimates under
M2 and M8 means that values under these two models are more sensitive to changes in the period of
data used than M3 and M7.

8. CONCLUSIONS

We have attempted to explain mortality improvements for males aged 60-89 in England and Wales
(EW) and in the United States using a number of stochastic mortality models that decompose mortality
improvements into one or more age-, period-, and cohort-related effects. No single model stands out
as being best under all the selection criteria considered. However, different models have different
strengths. For example, the Lee-Carter class of models allows for greater flexibility in the age effects,
B®  while one-dimensional P-splines can be exploited to smooth age effects if the roughness of the
BY is seen as a drawback. For their part the CBD-Perks models impose smoothness in the age effects
as an assumption, but allow for richer period effects than the Lee-Carter class. We therefore need to
balance up the strengths and weaknesses of each model to form a conclusion, and to some extent it
is up to potential users of the models to decide the weights they place on the different criteria.

If the reader looks only at the BIC ranking criterion, then model M8 for the EW data and model M2
for the U.S. data dominate. However, if the reader takes into account the robustness of the parameter
estimates, then model M7 is preferred for both datasets. This model fits both datasets well, and the
stability of the parameter estimates over time enables one to place some degree of trust in its projec-
tions of mortality rates. The lack of robustness in the other models means that we cannot wholly rely
on projections produced by them.

Model M7 shows that mortality rates in both England and Wales and the United States have the
following features in common (see Figs. 8 and 17):

e Mortality rates have been improving over time at all ages: the “level” period term (k") has been
declining over time, so that the upward-sloping plot of the logit of mortality rates against age has
been shifting downwards over time.

e These improvements have been greater at lower ages than at higher ages: the “slope” period term
(k) has been increasing over time, so that the plot of the logit of mortality rates against age has
been steepening as it shifts downwards over time. This phenomenon has been noted by the studies
surveyed in Wong-Fupuy and Haberman (2004, Sections 5.2 and 5.3), for example.

e The changes over time in k" and k® have been approximately linear, and such linear improvements
have also been noted in previous studies (e.g., Wong-Fupuy and Haberman 2004, Section 5.1).

e Mortality rates plotted on a logistic scale against age have a slight curvature over the 60-89 age
range that can be modeled using a quadratic function of age. The inclusion of a component that
combined a quadratic age effect with a stochastic period effect was found to be statistically
significant.

e There is a significant cohort effect (y(Y) in mortality improvements, although this is more prominent
and systematic in the EW than the U.S. data.

To a large extent, these commonalities are also reflected in the other models considered.

A good stochastic mortality model must take these features into account when forecasting mortality
improvements and prediction intervals around these forecasts. This is important for quantifying lon-
gevity risk, for providing benchmarks for longevity-linked financial instruments (Blake and Burrows
2001; Blake, Cairns, and Dowd 2006; Blake et al. 2006; Dowd et al. 2006; Dawson et al. 2007), for
pricing such instruments (Cairns, Blake, and Dowd 2006a,b), and for using these instruments for
hedging (Dahl and Mgller 2006; Dahl, Melchior, and Mgller 2008).

As noted above, our analysis has focused on males aged 60-89 in England and Wales and the United
States over the last 44 years. It is important to note that if the same models are applied to different
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countries, to females rather than males, to a different age range, or to a different range of years, then
the conclusions about which model is most suitable might be different.

In terms of using the models for forecasting, we have limited ourselves in this study to two brief
illustrations, one looking at the survivor index and the other at annuity prices. In companion studies
(Dowd et al. 2008a,b; Cairns et al. 2008), we investigate the goodness-of-fit, backtesting, and fore-
casting properties of the models in more detail.

APPENDIX

SIMULATION MODEL

For projection of the survivor index, S(t, x), we need to take the fitted parameter values illustrated in
Figures 3-9 and 12-18 and use these to develop a stochastic projection model.

For example, for model M5 we use the method described in Cairns, Blake, and Dowd (2006b) (CBD):
thus we fitted a two-dimensional random-walk model to (kV, k?) using the the final 21 years of data
(i.e., 20 observations of the change in (k", k). The form of B{? in this paper is different from the
original CBD paper, so parameter estimates are different.

In the main body of this paper, we report on simulation results for M2, M5, M7, and M8. For M2,
M7, and M8, the B® age effects are fixed. For each of M2, M7, and M8, we adopt the same principles
for simulation of the period k® and cohort y% effects. For model M7, for example, we take the following
approach for EW data from 1961 to 2004:

* Fit the B?, k?, and v? to the full set of data from age 60 to 89.

e Then take k", k@, and k® for years 1984-2004 inclusive, and fit a three-dimensional random walk
with drift.

e For the cohorts aged 65, 70, and 75 in 2004, we already have an estimate of the cohort effect,
V{0, Vitss, and v{¥se, s0 no model is required for these values.

* For the cohort aged 60 in 2004 (i.e., the 1944 birth cohort), we need to project the estimated vy
series. Our results clearly indicate that a random walk model is inappropriate, but the development
of a more suitable model for y* is beyond the scope of this study. If we wish to model the survivor
index, S(t, 60), for this cohort (which in turn will allow us to calculate annuity values), we need a
single value (simulated or otherwise) for y{¥,, only, and not for any other years. Based on the his-
torical development of vy, we try out two values for y{¥,, (one high and one low) to cover what we
feel is the likely range of values that might be taken by v{¥,,.

Once we have our simulation model for S(¢, x) we can calculate 4% term annuity values according to
the formula

90—

a,(2004) = >, e MOHE[S(t, x)].

In this expression, the upper age limit of age 90 is imposed to avoid the requirement to extrapolate
beyond the range of ages used in the model fitting process, thereby allowing us to focus on projection
of the period and cohort effects.
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