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A FAMILY OF TERM-STRUCTURE MODELS FOR LONG-TERM
RISK MANAGEMENT AND DERIVATIVE PRICING

ANDREW J. G. CAIRNS

Heriot-Watt University

In this paper we propose a new family of term-structure models based on the Flesaker
and Hughston (1996) positive-interest framework. The models are Markov and time
homogeneous, with correlated Ornstein-Uhlenbeck processes as state variables. We
provide a theoretical analysis of the one-factor model and a thorough emprical analysis
of the two-factor model. This allows us to identify the key factors in the model affecting
interest-rate dynamics. We conclude that the new family of models should provide a
useful tool for use in long-term risk management. Suitably parameterized, they can
satisfy a wide range of desirable criteria, including:

• sustained periods of both high and low interest rates similar to the cycle
lengths we have observed over the course of the 20th century in the
United Kingdom and the United States

• realistic probabilities of both high and low interest rates consistent with
historical data and without the need for regular recalibration

• a wide range of shapes of yield curves, again consistent with what we
have observed in the past and including the recent Japanese yield curve.

KEY WORDS: term-structure model, multifactor, positive interest, Ornstein-Uhlenbeck, time-
homogeneous, Japan, dynamic financial analysis

1. INTRODUCTION

We propose a new family of models for the term structure of interest rates. A primary
motivation for the development of these models was the perceived need for new models
that combine the following two characteristics:

� reasonable, arbitrage-free dynamics in the short term
� realistic dynamics in the long term.

Recent years have seen considerable research and interest-rate frameworks dealing with
the first of these characteristics; see, for example, Vasicek (1977), Cox, Ingersoll, and
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Ross (1985; hereafter CIR), Black and Karasinski (1991), Hull and White (1990), Heath,
Jarrow, and Morton (1992; hereafter HJM), Brace, Gatarek, and Musiela (1997),
Jamshidian (1997), and Duffie and Kan (1996) or the books by James and Webber (2000),
Hunt and Kennedy (2000), Rebonato (2002), and Cairns (2004). Development of these
models has been driven primarily by the need for models to price and hedge relatively
short-term interest-rate derivatives.

A number of models also have been developed—mainly in an insurance context—that
address the second characteristic (see, e.g., Wilkie 1995; Yakoubov, Teeger, and Duval
1999). These models are, strictly, arbitrage free but they are typically framed in discrete
time and were not designed for short-term risk management or derivative pricing. The
models were developed because of the clear need within life insurance and pensions to
assess long-term asset and liability risks.

Until recently, little research has been conducted on the development of models that
satisfy both of these characteristics. As interest rates in the early 2000s fell to historical
lows, this work has become very important, particularly as a result of substantial increases
in the value of interest-rate guarantees issued by some insurance companies on a variety
of contracts (e.g., see Waters, Wilkie, and Yang 2003). Besides the insurance industry’s
need for good internal models, banks have also developed a need for good long-term
interest-rate models as demand from insurers for certain long-maturity derivatives has
increased. Additionally, changes in accounting practices have led to a requirement for
interest-rate models that can deal with pricing (the so-called “fair value” of liabilities) as
well as long-term risk management.

1.1. Data

Before we describe the main contents of this paper we will take a brief look at some
historical data to provide us with some pointers toward desirable characteristics of an
interest-rate model.

In Figures 1.1 and 1.3 we have plotted the development over time of short- and
long-term interest rates in the United Kingdom and the United States of America. In
Figures 1.2 and 1.4 short-term rates are plotted against long-term rates. We can make the
following observations:
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FIGURE 1.1. U.K. interest rates 1900–2002. Bank of England base rate (short-term)
and U.K. consol’s yields (perpetual bonds) plotted against time.
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FIGURE 1.2. U.K. interest rates 1900–2002. Short-term versus long-term interest rates.
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FIGURE 1.3. U.S. interest rates 1954–2002. One-year interest rates and long-bond
yields. Long-bond yields are mostly 20-year par yields with 30-year yields to fill in
a gap in the 20-Year data in the 1980s.

� Short- and long-term interest rates are highly, but imperfectly correlated in the
medium and long term. In the shorter term the rates are still correlated, but to a
smaller extent.

� Since the short-term and long-term interest rates are not perfectly correlated
(comonotonic), the data are clearly inconsistent with the use of a one-factor, time-
homogeneous model (as considered by Chan et al. 1992).

� Short-term interest rates are more volatile.
� Short- and long-term interest rates are subject to sustained periods of both high

(e.g., 1970–1990 in the United Kingdom) and low interest rates (U.K.: 1900–1960).
We can also remark that the existence of such long cycles in interest rates makes it
essentially impossible to test for stationarity in the various series.

� Both short- and long-term interest rates have varied over a considerable range
(U.K.: 2% to 17%; U.S.A.: 1% to 17%).
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FIGURE 1.4. U.S. interest rates 1954–2002. Short-term versus long-term interest rates.

In general, although not always, continuous-time, arbitrage-free models include a degree
of mean reversion that is too strong to allow for long cycles without compromising
the short-term dynamics. A family of models that provides an exception to this is the
multifactor CIR class (e.g., see Longstaff and Schwartz 1992; Duffie 2001, Chap. 7).
However, these models have the problem that all interest rates other than the risk-free
rate, r(t), have strictly positive lower bounds, which compromises the pricing of derivatives
that come into the money when interest rates are low. Additionally, this class of models
cannot reproduce the sort of yield curve experienced in Japan in 2002 where interest rates
out to maturities of several years were very low (similar to curve F in Figure 4.1; see
Section 4).

Based on these observations we can draw up a list of desirable characteristics for a
term-structure model, supplemented by others that fit in with the aim of using a model
for long-term risk management.

1. The model should be arbitrage free to allow its use in derivative pricing and
short-term dynamic hedging.

2. All interest rates should be positive and all rates should be able to take values
arbitrarily close to zero (albeit with very small probability).

3. The model should be framed in continuous time. This allows implementation in
discrete time with any length of time step, �t, without the need to construct a
new model each time we change �t.

4. Short-term interest-rate dynamics should be consistent with what we observe in
historical data.

5. The model should permit straightforward analytical or numerical calculation of
bond and derivative prices.
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6. Interest rates should be mean reverting. This requirement reflects the percep-
tion that whenever interest rates reach extreme levels the government will inter-
vene to bring rates back to more reasonable levels rather than let rates continue
unchecked to greater extremes.

7. The model should be flexible enough (a) to give rise to a range of different yield
curve shapes (consistent with those we have observed in the past) and (b) to be
able to deal with a variety of derivative contracts.

8. The model should give rise to sustained periods of both high and low interest
rates of all maturities in a manner consistent with what we have observed in the
past.

9. Interest rates with different terms to maturity should, with reasonable probability,
be able to attain both high and low values consistent with what we have observed
in historical data (e.g., the 2% to 17% observed in the U.K. data).

The final points in this list relate to consistency with the past. If we are concerned with
long-term risk management, then it is appropriate to go beyond this by applying rigorous
statistical methods to estimate model parameters, assess the goodness of fit, and quantify
the degree of parameter uncertainty. The use of historical data alone can result in wide
confidence intervals for some parameters—intervals that can sometimes be reduced by
incorporating information from the derivatives market.

As with all modeling exercises, we are subject to both model risk and parameter un-
certainty. In general, parameter uncertainty tends to be the more important source of
error for long-term risk management (e.g., see Cairns 2000). This means that probability
statements derived from the use of a single model and parameter set should be treated
with caution. However, what is important in any modeling exercise is that the model
gives rise to a wide and realistic range of future scenarios. For example, it is important
that long cycles can occur and that interest rates can exceed 15% from time to time with
reasonable probability rather than not at all. It is much less important to be able to say
that a particular event will happen with probability exactly 0.01. It could equally be 0.005
or 0.04. The aim is then to identify which types of scenario pose the greatest risk to a
financial institution and which do not, and then act accordingly to reduce these risks.

These final statistical issues are left for future work.

1.2. Outline of the Paper

We now move on to the construction of a family of models that address all of these
desirable charateristics.

In Section 2 we review, briefly, the general positive-interest framework developed by
Flesaker and Hughston (1996; hereafter FH), Rogers (1997), and Rutkowski (1997). We
then use the FH approach to propose a general family of multifactor models for the term
structure with a multivariate Ornstein-Uhlenbeck process, X(t), as its driver. In particular,
we will see that zero-coupon bond prices can be expressed in the time-homogeneous form

P(t, T ) =
∫ ∞

T−t H(u, X(t)) du∫ ∞
0 H(u, X(t)) du

for some function H(u, x).
In Section 3 we prove certain theoretical properties of the one-factor version of the

model. In particular, we prove its asymptotic similarity to the Black and Karasinski (1991)
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model when the risk-free rate r(t) gets very small and to the Vasicek model when r(t) gets
very large.

In Section 4 we provide an extensive analysis of a two-factor version of the model. Here
we make a variety of qualitative observations based on accurate numerical calculations
of bond prices and interest rates. In particular, we aim to demonstrate that the new family
of models satisfies all of the nine desirable characteristics if we choose our parameters in
an appropriate way.

In Section 5 we propose a extension of the family of models analyzed in this paper
similar to Duffie and Kan’s (1996) exposition on affine term-structure models.

2. A MODEL FOR FIXED-INTEREST BOND PRICES

2.1. Background

We propose a family of multifactor models for the fixed-interest term structure that
makes use of the framework developed by Flesaker and Hughston (1996), and later
extended by Rutkowski (1997) and Rogers (1997).

We define P(t, T ) to be the price at time t of a zero-coupon bond that matures at time
T . Under the FH framework the dynamics of these prices are linked to the progress of a
family of martingales, M(t, s), under some reference or pricing measure P̂.

Let M(t, s), for 0 ≤ t ≤ s < ∞, be a family of strictly positive diffusion processes over
the index s which are martingales with respect to t under some probability measure P̂; that
is, given s, for t < u < s, EP̂[M(u, s) |Ft] = M(t, s). Furthermore, we define M(0, s) = 1
for all s and we assume in this paper that for each s, M(t, s) is a diffusion process adapted
to a finite (say n) dimensional Brownian motion, Ẑ(t) (under P̂).

FH proposed that zero-coupon bond prices are defined by the equation

P(t, T ) =
∫ ∞

T M(t, s) φ (s) ds∫ ∞
t M(t, s) φ (s) ds

(2.1)

for some deterministic function φ(s).
A somewhat more general and abstract form of this framework was proposed by

Rutkowski (1997) and Rogers (1997). Rutkowski defined

P(t, T ) = EP̂[A(T ) |Ft]
A(t)

,(2.2)

where A(t) is a strictly positive supermartingale under the measure P̂. For this reason we
will often refer to P̂ as the pricing measure. The FH form we use in this paper is obtained by
setting A(t) = ∫ ∞

t M(t, s)φ(s) ds. Rutkowski and Rogers each demonstrated that models
of this general type are arbitrage free. These developments were anticipated to some extent
in earlier work by Constantinides (1992) where the “pricing kernel” formula (2.2) was
introduced for the case where P̂ is implicitly identified with the real-world measure P.

Where the objective is to price a derivative contract that pays V (T ) at time T , the price
(using the Rutkowski 1997 formulation) at time t is

V(t) = EP̂[A(T )V(T ) |Ft]
A(t)

.(2.3)

We will make use of the FH formulation (eq. 2.1) in our development of the new family
of models.
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Since M(0, s) = 1 for all s we may infer that, if we choose to calibrate initial theoretical
to observed prices, we require

φ(s) = ∂

∂s
P(0, s)(2.4)

up to a constant, nonzero scaling factor.
The instantaneous forward rates are given by

f (t, T ) = − ∂

∂T
log P(t, T ) = M(t, T )φ(T )∫ ∞

T M(t, s)φ(s) ds
,(2.5)

which implies that for the short rate we have

r (t) = f (t, t) = M(t, t)φ(t)∫ ∞
t M(t, s)φ(s) ds

.(2.6)

Although we can write an expression for the short rate, r(t), in this way, it is not possible,
in general, to express the dynamics of r(t) as a simple diffusion process, as we can for the
Vasicek model and various other well-known models.

We can also write expressions for bond volatilities which enable us to link the model into
the HJM framework. Since M(t, T ) is a strictly positive martingale under P̂ for each T ,
we can write dM(t, T ) = M(t, T )σ (t, T )′ dẐ(t), where Ẑ(t) is a standard n-dimensional
Brownian motion under P̂ and σ (t, T ), for fixed T , is a previsible n × 1 vector process.
We now define the n × 1 vector

V(t, T ) =
∫ ∞

T M(t, s) φ(s)σ(t, s) ds∫ ∞
T M(t, s) φ(s) ds

.(2.7)

The dynamics of the zero-coupon bond prices can then be expressed in the form

dP(t, T )
P(t, T )

= r (t) dt + SP(t, T )′(dẐ(t) − V(t, t) dt)(2.8)

where

SP(t, T ) = V(t, T ) − V(t, t)

(see, e.g., Cairns 2004).
It follows that the vector SP(t, T ) is the price volatility function with each of its n

components defining the volatility of the price of a particular bond with respect to each
of the n sources of uncertainty.

Since we have expressed the price dynamics in the way given above, we can immediately
see that if

Z̃(t) = Ẑ(t) −
∫ t

0
V(s, s) ds,

then dP (t, T ) = P(t, T )(r (t) dt + SP(t, T )′ dZ̃(t)).
Suppose that σ (t, T ) has been defined in such a way that the Novikov condition

EP̂

[
exp

(
1
2

∫ t

0

n∑
i=1

Vi (s, s)2 ds

)]
< ∞

is satisfied (e.g., see Karatzas and Shreve 1998). Then, by the Cameron-Martin-Girsanov
(CMG) Theorem (e.g., see Karatzas and Shreve 1998), there exists a measure Q equivalent
to P̂ under which Z̃(t) is an n-dimensional Brownian motion. Given the form of dP(t, T )
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we can see that Q is the usual risk-neutral measure. In particular, if each σi(t, T ) for all
t, T > t, is bounded, then we can see from equation (2.7) that Vi(s, s) must be bounded,
so the Novikov condition is satisfied.

We can also consider the dynamics of the forward-rate curve f (t, T ) under P̂ and Q.
Since f (t, T ) = M(t, T )φ(T )/

∫ ∞
T M(t, s) φ(s) ds, a straightforward application of Ito’s

Lemma and the Product Rule gives us

df (t, T ) = f (t, T )(σ (t, T ) − V(t, T ))′{dẐ(t) − V(t, T ) dt}
= f (t, T )(σ (t, T ) − V(t, T ))′{d Z̃(t) − SP(t, T ) dt}.

2.2. A Specific Multifactor Model

We now take the general FH formulation and propose a specific model for the family
of martingales M(t, T ). For the given choice of processes this allows us to develop
straightforward formulas for bond prices.

The model for M(t, T ) is governed by the following assumptions:

M(0, T ) = 1 for all T

dM(t, T ) = M(t, T )σ (t, T )′ dŶ (t) = M(t, T )σ (t, T )′C dẐ(t)

= M(t, T )
n∑

i=1

σi (t, T ) dŶ i (t),

where

dŶ (t) = C dẐ(t),

Ŷ(0) = 0,

and Ẑ1(t), . . . , Ẑn (t) are n independent Brownian motions under P̂. (For convenience of
our subsequent development, the SDE for M(t, T ) is stated slightly differently from the
previous section.) In this expression we choose the matrix C such that CC′ = (ρij)n

i,j=1 is
an instantaneous correlation matrix. It follows then that each of the Ŷi (t) is a Brownian
motion under P̂ with d〈Ŷi (t), Ŷ j (t)〉 = ρij dt.

Suppose now that σi(t, T ) = σi exp[−αi(T − t)]. Then

d log M(t, T ) = σ (t, T )′dŶ (t) − 1
2

n∑
i , j=1

σi (t, T )σ j (t, T ) d〈Ŷi (t), Ŷ j (t)〉

⇒ log M(t, T ) =
n∑

i=1

σi

∫ t

0
e−αi (T−s)dŶ i (s) − 1

2

n∑
i , j=1

ρijσiσ j

∫ t

0
e−(αi +α j )(T−s)ds

=
n∑

i=1

σi e−αi (T−t) X̂i (t) − 1
2

n∑
i , j=1

ρijσiσ j

αi + α j
e−(αi +α j )(T−t) (1 − e−(αi +α j )t

)
,

where X̂i (t) = ∫ t
0 exp[−αi (t − s)] dŶ i (s) is an Ornstein-Uhlenbeck process with X̂i (0) = 0

and dX̂ i (t) = −αi X̂i (t) dt + dŶ i (t). Because the Ŷi (t) are correlated, so too are the X̂i (t).
Instead of assuming that the function φ(s) can be arbitrarily specified (e.g., FH suggest

equation 2.4), we define

φ(s) = φ exp

[
−βs +

n∑
i=1

σi x̂i e−αi s − 1
2

n∑
i , j=1

ρijσiσ j

αi + α j
e−(αi +α j )s

]
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for some parameters φ, β, x̂1, . . . , x̂n . (Of these parameters we will see that, provided
φ �= 0, the actual value of φ is irrelevant. On the other hand β has an unambiguous
interpretation, as we will see in Section 2.3, because it is equal to the constant long-term
forward rate.) Then, for t < s,

φ(s)M(t, s) = φ exp

[
−βs +

n∑
i=1

σi e−αi (s−t) Xi (t) − 1
2

n∑
i , j=1

ρijσiσ j

αi + α j
e−(αi +α j )(s−t)

]
,

where Xi (t) = x̂i exp(−αi t) + X̂i (t). From this we can see that the complex choice for
φ(s) ensures that several terms in φ(s) and M(t, s) cancel. Xi(t) is an Ornstein-Uhlenbeck
process under P̂ with Xi(0) = x̂i and dXi (t) = −αi Xi (t) dt + dŶ i (t).

It follows that

A(t, T ) =
∫ ∞

T
φ(s)M(t, s) ds

= φe−βt
∫ ∞

T−t
H(u, X(t)) du

where

H(u, x) = exp

[
−βu +

n∑
i=1

σi xi e−αi u − 1
2

n∑
i , j=1

ρijσiσ j

αi + α j
e−(αi +α j )u

]
.

We then have

P(t, T ) = A(t, T )
A(t, t)

=
∫ ∞

T−t H(u, X(t)) du∫ ∞
0 H(u, X(t)) du

.(2.9)

Other specific models using Ornstein-Uhlenbeck processes as drivers within this
positive-interest framework have been proposed by Rogers (1997). Models of the type
given in equation (2.9) are also considered by Brody and Hughston (2001, 2002).

2.3. Forward Rates and Irredeemable Bond Yields

We will now look at forward rates for this model and demonstrate that f (t, T ) → β as
T → ∞.

Applying the general formula in equation (2.5), we see that the forward-rate curve is

f (t, T ) = H(T − t, X(t))∫ ∞
T−t H(u, X(t)) du

=
{ ∫ ∞

T−t
exp

(
−β{u − (T − t)} +

n∑
i=1

σi Xi (t)
[
e−αi u − e−αi (T−t)]

− 1
2

n∑
i , j=1

ρijσiσ j

αi + α j

[
e−(αi +α j )u − e−(αi +α j )(T−t)] )

du

}−1

=
{ ∫ ∞

0
exp

(
−βv +

n∑
i=1

σi Xi (t)e−αi (T−t)(e−αi v − 1)

− 1
2

n∑
i , j=1

ρijσiσ j

αi + α j
e−(αi +α j )(T−t) [e−(αi +α j )v − 1

] )
dv

}−1

(2.10)
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⇒ r (t) =
{ ∫ ∞

0
exp

(
−βv +

n∑
i=1

σi Xi (t)(e−αi v − 1)

− 1
2

n∑
i , j=1

ρijσiσ j

αi + α j

[
e−(αi +α j )v − 1

] )
dv

}−1

.

(2.11)

If we look more closely at the formula for f (t, T ) we can see that as T tends to infinity,
the terms in the summations tend to zero. This implies that as T tends to infinity, f (t, T )
tends to β; that is, β is the constant long-term forward rate. (This is consistent with a
result of Dybvig, Ingersoll, and Ross 1994, who established that, under the assumption of
no arbitrage, a model for the term-structure of interest rates must have a nondecreasing
long-term spot rate. For a more rigorous proof of this result, see Hubalek, Klein, and
Teichmann 2002.)

The par yield on irredeemable bonds (assuming continuous payment of coupons) is

ρ(t) =
[∫ ∞

0
P(t, t + s) ds

]−1

=
∫ ∞

0 H (u, X(t)) du∫ ∞
0 u H (u, X(t)) du

.(2.12)

We consider the process for ρ(t) in a later section when we look at the qualitative properties
of some specific models.

2.4. Equivalence of P̂ and Q

Recall that dZ̃ j (t) = dẐ j (t) − Vj (t, t) dt, where the Z̃j (t) and Ẑj (t) are Brownian
motions under the risk-neutral measure Q and the pricing measure P̂ respectively. Here

Vj (t, t) =
∫ ∞

0 H(u, X(t))σ̄ j (u) du∫ ∞
0 H(u, X(t)) du

,

where

σ̄ j (u) =
n∑

i=1

σi e−αi ucij.

Since H(u, x) > 0 for all u > 0, −∞ < x < ∞, we have Vj (t, t) <
∑n

i=1 |σi cij| < ∞ for
all t. This upper bound implies that EP̂[exp( 1

2

∫ t
0

∑n
j=1 Vj (s, s)2 ds)] < ∞ (the Novikov

condition), which means that P̂ and Q are equivalent.

2.5. Time Homogeneity

From the form of H(u, x) and X(t) = (X1(t), . . . , Xn(t))′ we can see that the P(t, T ) are
Markov and time homogeneous. As such, the model plus knowledge of X(t) gives us a set
of theoretical prices that may differ from those observed. Under the original no-arbitrage
FH framework, initial observed prices form part of the input (hence the earlier definition
of φ(s) in equation (2.4)) but this results in the loss of time homogeneity. Each approach
has its own merits. Here the intention is that the number of factors, n, should be large
enough to ensure that once the Xi(t) have been estimated there is a close correspondence
(but probably not exact) between theoretical and observed prices for all t. It can then
be argued that frictions in the market, such as transaction costs and buying and selling
spreads, prevent exploitation of the price errors. In the context of short-term derivative
pricing, the FH approach to φ(s) is more popular with practitioners. For many models,
however, recalibration is theoretically inconsistent with model assumptions (e.g., here,
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recalibration implies that φ(t) is stochastic, whereas the model assumes it is deterministic).
In other cases (e.g., market models) this inconsistency can be avoided. What is missing
at present is a general theory of calibration and updating of information.

2.6. Practical Considerations

The structure of this model is such that only a limited number of random factors (Xi(t)
for i = 1, . . . , n) need to be recorded in order for us to be able to reconstruct the evolution
of the term structure through time, to calculate prices, returns on assets, and so on. From
the computational point of view this offers an advantage over some models (e.g., some
based on the HJM framework) that require a record of the entire forward rate curve at all
times. This advantage is, of course, shared with many other models but it is important to
record this fact. The time homogeneity of the model also results in computational gains,
although mainly in the programming phase.

It is necessary to carry out numerical integration in order to compute bond prices and
interest rates on a given date and given X̃1(t); see equation (2.9). However, this step can
be done in a straightforward and accurate way because it only involves one-dimensional
integration even for the multifactor version of the model.

Investigation of the properties of the model reveals that the inclusion of correlation
(the ρ ij) between the dXi(t) does not significantly affect the range of possible yields curves
on a given date. Consequently the quality of fit on any given date is not substantially
enhanced. It is only when we consider the dynamics of the model that the correlations
come into play. First, when we analyze historical data, the estimated values of the dXi(t)
may (and, indeed, do) exhibit cross-correlation. Second, such correlations will affect the
future distribution of X(T ) and therefore will, for example, shift the balance of proba-
bilities between certain shapes of yield curve. This final point is particularly important
when we are considering derivative pricing, as in equation (2.3).

The Xi(t), for i = 1, . . . , n, follow standard, correlated Ornstein-Uhlenbeck processes
under P̂ (in particular, X(t) is a multivariate Gaussian process under P̂). It follows that,
for low-dimensional models (e.g., n = 1 or 2), straightforward and accurate numerical
computations are possible for—for example, European- and Bermudan-style derivative
prices. Equally, for higher dimensional models, the multivariate normality of X(t) makes
the process particularly simple to simulate accurately under P̂. The nature of the changes
of measure for each of the Xi(t) means that the Xi(s) given Xi(t) are no longer normally
distributed under Q, making pricing under P̂ much more attractive. For risk management
purposes, we are often interested in the real-world measure P. If a constant market
price of risk is employed relative to Q, then the same problem exists (that Xi(s) is not
normally distributed—although over a one-month period the normal approximation is
reasonable). As an alternative we can employ (as we propose in Section 4) a constant
change of drift between Ẑ(t) and Z(t), the P-Brownian motion. This ensures that the
Xi(t) still follow Ornstein-Uhlenbeck processes under P (now with nonzero means). A
less desirable consequence, though, is that this does allow risk premia to become negative
from time to time. The frequency of this clearly depends on the parametrization of the
model and the size of the change of measure, with a low frequency being tolerable for the
sake of ease of simulation of the Xi(t).

3. PROPERTIES OF THE ONE-FACTOR MODEL

In Section 4 we will investigate the properties of multifactor (especially two-factor) models
from an empirical perspective, with a view to establishing whether the model satisfies
various desirable criteria.
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In this section we look at theoretical properties of the one-factor model. We have as
our driver the one-dimensional process X(t) with SDEs

dX(t) = −αX(t) dt + dẐ(t), under P̂,

and

dX(t) = −αX(t) dt + dZ̃(t) + V(t, t) dt, under Q,

where V (t, t) is given below.
We first define the functions (for k = 0, 1, . . . )

Ik(x) = ∂k

∂xk

∫ ∞

0
H(u, x) du =

∫ ∞

0
H(u, x)σ ke−kαu du,

where

H(u, x) = exp
(

−βu + σ xe−αu − σ 2

4α
e−2αu

)
.

Then we have

r (t) ≡ r (X(t)) = H(0, X(t))∫ ∞
0 H(u, X(t)) du

= H(0, X(t))
I0(X(t))

and

V(t, t) =
∫ ∞

0 H(u, X(t))σe−αu du∫ ∞
0 H(u, X(t)) du

= I1(X(t))
I0(X(t))

.

By application of Ito’s lemma it is straightforward to show that

dr (t) = m̂(X(t)) dt + ŝ(X(t)) dẐ(t), under P̂,(3.1)

or

dr (t) = m̃(X(t)) dt + s̃(X(t)) dZ̃(t), under Q,(3.2)

where

ŝ(x) = s̃(x) = r (x)
(

σ − I1(x)
I0(x)

)
,(3.3)

m̂(x) = r (x)
[
−ασ x + 1

2
σ 2 + αx

I1(x)
I0(x)

− 1
2

I2(x)
I0(x)

+ I1(x)2

I0(x)2
− σ

I1(x)
I0(x)

]
,(3.4)

and

m̃(x) = m̂(x) + V(t, t)ŝ(x) = r (x)
[
−ασ x + 1

2
σ 2 + αx

I1(x)
I0(x)

− 1
2

I2(x)
I0(x)

]
.(3.5)

We will now consider how the dynamics of r(t) depend on X(t) when X(t) tends to its
extremes at −∞ and +∞. Although this means considering extremely rare events, the
results allow us to compare the model with others that have known properties. This
permits us then to “guess” at certain properties of the new model which depend on tail
events.

First consider the limit as x → −∞. In order to make inferences about the drift and
the volatility of r(t) for large and negative X(t) we need to understand the behavior of the
Ik(x) as x → −∞.
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By substitution of exp(−αu) = v we have

Ik(x) = σ k

α

∫ 1

0
vk+ β

α
−1 exp

[
σ xv − σ 2

4α
v2

]
dv.

Now we make further substitutions: y = −x and w = σyv. Hence,

Ik(−y) = σ k

α(σ y)k+ β

α

∫ σ y

0
wk+ β

α
−1 exp

[
−w − w2

4αy2

]
dw .

It follows that

αyk+ β

α σ
β

α Ik(−y) →
∫ ∞

0
wk+ β

α
−1e−w dw as y → +∞

= �

(
k + β

α

)
.

(3.6)

From this we can infer first that

Ik(x) ∼ �
(
k + β

α

)
ασβ/α(−x)k+β/α

as x → −∞(3.7)

and second that

Ik(x)
I0(x)

∼ ασβ/α(−x)β/α

ασβ/α(−x)k+β/α
× �

(
k + β

α

)
�

(
β

α

)
= 1

(−x)k

k−1∏
i=0

(
β

α
+ i

)
as x → −∞,

(3.8)

since �(z + 1) = z�(z) for all z ≥ 1.
Now recall that r(x) = H(0, x)/I0(x) = exp(σx − σ 2/4α)/I0(x). From (3.7), log I0(x) =

O(log(−x)) as x → −∞. It follows that

log r (x) = σ x − σ 2

4α
− log I0(x)

∼ σ x as x → −∞.

(3.9)

Next consider the volatility of r(X(t)) as X(t) → −∞. From (3.8) we know that
I1(x)/I0(x) → 0 as x → −∞. It follows that ŝ(x)/r (x) = s̃(x)/r (x) → σ as x → −∞ or

s̃(x) = ŝ(x) ∼ σr (x) as x → −∞.(3.10)

Finally, consider the drift of r(X(t)) as X(t) → −∞. In equation (3.5) the dominant
term in the brackets is −ασx as x → −∞ since αxI1(x)/I0(x) = O(1) and 1

2 I2(x)/I0(x) =
O((−x)−2) as x → −∞. For similar reasons, the dominant term in the brackets in equa-
tion (3.4) is also −ασx as x → −∞. Since, in addition, σx ∼ log r(x) as x → −∞
(equation 3.9) we conclude that the dominant term in both m̂(x) and m̃(x) is
−αr(x) log r(x) as x → −∞. That is,

m̂(x) ∼ −αr (x) log r (x)(3.11)

m̃(x) ∼ −αr (x) log r (x) as x → −∞.(3.12)

It follows from equations (3.10) and (3.12) that for values of r(t) close to zero the dynamics
of r(t) are similar to those of the Black and Karasinski (1991) model.
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We next look at the dynamics of r(t) for large, positive values of X(t). This time we use
the substitution v = σx(1 − e−αu), which gives us

Ik(x) = σ k−1eσ x

αx

∫ σ x

0

(
1 − v

σ x

) β

α
+k−1

exp

[
−v − σ 2

4α

(
1 − v

σ x

)2
]

dv.

If we focus on the integral in this expression, we see that, as x → ∞,

∫ σ x

0

(
1 − v

σ x

) β

α
+k−1

exp

[
−v − σ 2

4α

(
1 − v

σ x

)2
]

dv →
∫ ∞

0
e−v−σ 2/4αdv = e−σ 2/4α.

Hence,

Ik(x) ∼ σ k−1eσ x−σ 2/4α

αx
as x → ∞.(3.13)

It follows trivially that

Ik(x)
I0(x)

→ σ k as x → ∞.(3.14)

We now note that, by reorganization of equation (3.4),

m̂(x) = r (x)
[

(I1(x) − σ I0(x))
I0(x)

(
αx + I1(x)

I0(x)

)
+ 1

2

(
σ 2 I0(x) − I2(x)

)
I0(x)

]
.(3.15)

From equation (3.14) we observe that (Ik(x) − σ kI0(x))/I0(x) → 0 as x → ∞. This means
that we need something more precise than we have in (3.14) to make useful inferences
based on (3.15). In particular, (3.15) implies that it is appropriate to investigate the
asymptotics of Ik(x) − σ kI0(x). Thus,

I1(x) − σ I0(x) = eσ x

ασ x

∫ σ x

0

(−v
x

)(
1 − v

σ x

) β

α
−1

× exp

[
−v − σ 2

4α

(
1 − v

σ x

)2
]

dv

∼ − eσ x

ασ x2

∫ ∞

0
v exp

[
−v − σ 2

4α

]
dv as x → ∞

= −eσ x−σ 2/4α

ασ x2
.

(3.16)

Similarly,

I2(x) − σ 2 I0(x) = eσ x

αx

∫ σ x

0

(
−2v

x
+ v2

σ x2

)(
1 − v

σ x

) β

α
−1

× exp

[
−v − σ 2

4α

(
1 − v

σ x

)2
]

dv

∼ −2eσ x−σ 2/4α

αx2
as x → ∞.

(3.17)
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From (3.13) (k = 0) and (3.16) we can infer that

x(I1(x) − σ I0(x))
I0(x)

→ −1 as x → ∞

and from (3.13) (k = 0) and (3.17) we see that

x
(
I2(x) − σ 2 I0(x)

)
I0(x)

→ −2σ as x → ∞.

Combining these asymptotics with equation (3.15), it follows that

m̂(x)/r (x) → −α as x → ∞.(3.18)

Also

m̃(x)
r (x)

= m̂(x)
r (x)

− I1(x)
I0(x)

(
I1(x) − σ I0(x)

I0(x)

)
.

But I1(x)/I0(x) → σ and (I1(x) − σ I0(x))/I0(x) → 0 as x → ∞. Thus we also have

m̃(x)/r (x) → −α as x → ∞.(3.19)

Finally, consider the volatility of r(t) (see equation (3.3)) for large, positive X(t). Recall
that

r (x) = H(0, x)
I0(x)

= eσ x−σ 2/4α

I0(x)
.

Incorporating (3.13) (k = 0) this implies that

r (x) ∼ ασ x as x → ∞,

which is consistent with (3.18) and (3.19).
Therefore,

ŝ(x) = s̃(x) = r (x)
(

σ I0(x) − I1(x)
I0(x)

)
→ ασ as x → ∞.

So we can see that at its extremes the one-factor model can act like the Black and
Karasinski (1991) model when r(t) is small and like the Vasicek (1977) model when
r(t) is large. The latter observation suggests that the present model does not share the
problem that the Black and Karasinski model has with infinite futures prices (see, e.g.,
Hunt and Kennedy 2000, p. 322) and infinite expected values for the accumulated value
of a cash investment (see, e.g., James and Webber 2000, p. 231).

4. MULTIFACTOR MODELS

In this section we discuss a variety of aspects of the model including qualitative issues
relating to calibration of the model parameters. In particular, we aim to establish that
the new family of models is suitable for a variety of applications including long-term risk
management.

We argue that the αi are central to the validity of the family of multifactor mod-
els. In particular, the smallest of the αi serves two key purposes. First, it allows long-
dated bond yields to take a wide range of values with reasonable probability. Second, a
small value of αi means that Xi(t) reverts very slowly. The consequent long cycles expe-
rienced by Xi(t) feed through to sustained periods of both high and low interest rates.
Both of these characteristics can be clearly observed in historical data. For example, in
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Figure 1.1 we can see that long-dated bond yields have, over a period of 100 years, ranged
from below 2.5% to over 15%. Additionally, in many countries there have been periods
of several decades when interest rates were low and stable and other sustained periods
when interest rates were high and more volatile.

In the numerical examples that follow we will concentrate on the two-factor version of
the model. This allows us to visualize certain features of the multifactor version of the
model through the use of contour plots. However, it should be borne in mind that other
analyses (e.g., Cairns 1998; Feldman et al. 1998; Rebonato 1998) suggest that three or
more factors might be appropriate.

4.1. Yield Curves

A wide variety of yield curve shapes can be generated depending on the number of
factors. As an example consider the two-factor model with

α1 = 0.6, α2 = 0.06, σ1 = 0.6, σ2 = 0.4, ρ12 = −0.5, β = 0.04.(4.1)

In Figure 4.1 we can see typical spot-rate curves (i.e., R(t, T ) = −(T − t)−1log P(t, T ))
for this model and parameter set. Thus we have the classic rising and falling yield curves
along with humped, dipped, and flat curves. Of particular note, perhaps, is curve F,
which starts and remains close to 0 for some time before gradually picking up. This sort
of curve is similar to that which has been typical in Japan for some time (2002). This is a
feature that some other positive-interest models, such as the positive affine term-structure
models, cannot produce. The key to this type of behavior was indirectly highlighted in
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FIGURE 4.1. Two-factor model. Sample spot-rate curves at time t, R(t, T ) for six
sets of values for X(t) = (X1(t), X2(t)). Parameter values are α = (0.6, 0.06)′, σ =
(0.6, 0.4)′, ρ12 = −0.5, and β = 0.04. Curve. A: X(t) = (1, 3)′; curve B: X(t) = (−1, 5)′;
curve C: X(t) = (0, 3)′; curve D: X(t) = (−2, 3)′; curve E: X(t) = (1, −1)′; curve F:
X(t) = (−8, −4)′. We can see that the two-factor model can produce a wide range of
shapes for the spot-rate curve.
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our analysis of the one-factor model, where, as r(t) gets small, both its drift and volatility
decline to zero. Besides the present model, it is similar to the Black-Karasinski model.

We can also observe from Figure 4.1 that even though all of the spot-rate curves
converge ultimately to 4% (β) they still show considerable diversity at T − t = 30 years.
This is a direct consequence of the low choice of α2 = 0.06. The smaller this value is the
greater the variation we see in spot rates and other rates of interest at long maturity dates.
Long-dated par yields tend to show up a greater degree of variation, and, indeed, do
not converge to the same value. This amount of variation is exactly what we observe in
historical data (e.g., see Figures 1.1 and 1.3).

In Figure 4.2 we give contour plots for the risk-free rate, r(t), the 20-year spot and
forward rates, R(t, t + 20) and f (t, t + 20), and the par yield on consols (irredeemable
bonds), ρ(t). In each plot, the ellipses centered on (0, 0) give the 90% and 99% uncon-
ditional confidence regions for X(t) under P̂. This figure tells us how the four rates of
interest depend on X1(t) and X2(t). We can see that f (t, t + 20) depends almost entirely
on X2(t). In contrast, r(t) is most dependent on X1(t) although it also depends to some
extent on X2(t). In between these two we can see that R(t, t + 20) and ρ(t) are primarily
determined by X2(t) but have a small dependence on X1(t).

4.2. Short- and Long-Term Variability: Approximations

Recall that f (t, T )(X(t)) = H(T − t, X(t))/
∫ ∞

T−t H(u, X(t)) du and the consols’ yield
is ρ(t)(X(t)) = ∫ ∞

0 H(u, X(t)) du/
∫ ∞

0 u H(u, X(t)) du. Without loss of generality suppose
that t = 0 and define

I0(T, x) =
∫ ∞

T
H(u, x) du

and

I1i (T, x) = ∂ I0

∂xi
(T, x) =

∫ ∞

T
σi e−αi u H(u, x) du.

Also note that

∂ H
∂xi

(T, x) = σi e−αi T H(T, x).

Then

∂ f
∂xi

(0, T )(x) = I0(T, x)−2
[

∂ H
∂xi

(T, x)I0(T, x) − H(T, x)
∂ I0

∂xi
(T, x)

]
(4.2)

= f (0, T )(x)σi e−αi T − f (0, T )(x)
I1i (T, x)
I0(T, x)

.(4.3)

Now we will make a crude approximation by ignoring the ρijσiσj terms in H(T, x),
I0(T, x), and I1i(T, x). Thus, for x = 0,

H(T, 0) ≈ e−βT

I0(T, x) ≈
∫ ∞

T
e−βu du = e−βT

β

I1i (T, x) ≈
∫ ∞

T
σi e−αi ue−βu du = σi e−(β+αi )T

β + αi
.
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FIGURE 4.2. Dependence of different interest rates on X1(t) and X2(t) for the param-
eters α = (0.6, 0.06)′, σ = (0.6, 0.4)′, ρ12 = −0.5, and β = 0.04. Interest rates consid-
ered are the risk-free rate, r(t); the 20-year spot rate, R(t, t + 20); the 20-year forward
rate, f (t, t + 20); and the par yield on consols (irredeemable bonds), ρ(t). Each graph
is a contour plot with lines connecting pairs of points (X1(t), X2(t)) with the same rate
of interest. The ellipses give 90% and 99% confidence regions for X(t) under P̂; r(t) has
a strong dependence on both X1(t) and X2(t); f (t, t + 20) has almost no dependence
on X1(t). The consols’ yield and R(t, t + 20) depend more on X2(t) than on X1(t).

It follows that

∂ f
∂xi

(0, T )(0) ≈ f (0, T )(0)

[
σi e−αi T − σi e−(β+αi )T/(β + αi )

e−βT/β

]

= f (0, T )(0)
αiσi e−αi T

β + αi
.

(4.4)
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If we apply the same approximation to f (0, T )(0), we have f (0, T )(0) ≈ β.
It follows that, as a crude approximation,

f (t, T )(X(t)) ≈ β

(
1 +

n∑
i=1

di (T − t)Xi (t)

)

where

di (τ ) = αiσi e−αi τ

β + αi
.(4.5)

Now recall that the local volatility of each Xi(t) is 1 with correlations ρ ij, so the local
variance of f (t, T ) if X(t) ≈ 0 will be approximately

β2
n∑

i , j=1

di (T − t)d j (T − t)ρij.(4.6)

The unconditional covariance of Xi(t) and Xj(t) is ρij/(αi + αj). It follows that the uncon-
ditional variance of f (t, T )(X(t)) will be approximately

β2
n∑

i , j=1

di (T − t)d j (T − t)ρij

αi + α j
.(4.7)

Suppose that α1 > α2 > · · · > αn > 0. The effect of the 1/(αi + αj) components means
that the process Xn(t) (smallest αi) will have proportionately a greater effect on long-term
variability than on short-term variability.

We can also see from the definitions of the di(τ ) that the process Xn(t) will have pro-
portionately a greater effect on long-dated interest rates than on short-dated rates.

We can show in a similar fashion that the par yield on irredeemable bonds is approxi-
mately

ρ(t) ≈ β

[
1 +

n∑
i=1

ei Xi (t)

]
,(4.8)

where

ei = αiσiβ

(β + αi )2
.

Hence its short-term variance will be approximately

β2
n∑

i , j=1

ei e jρij

and its unconditional variance will be approximately

β2
n∑

i , j=1

ei e jρij

αi + α j
.

As a final comment, refer to equations (4.4) and (4.5), which show that, at least as a
first approximation, changes in the forward rate curve are made up of a combination of
exponentials with rates α1, . . . , αn. This means that over the short term we can generate
the usual range of changes in the shape of the forward-rate curve, such as changes in
slope, humps, and twists (depending on how many factors there are).

We have stressed that these are crude approximations. However, they are useful as
part of a subjective calibration of the model. For example, we can specify the level of
variability in short- and long-dated interest rates in both the short term and the long
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term. These approximations can be used to get a first estimate of the parameter values
that will achieve these aims.

4.3. The Volatility Term Structure

We now consider the full term structure of volatility.
Recall from equation (4.3) that the volatility of f (t, T ) with respect to changes in Xi(t)

is

vi (t, T )(x) = ∂ f
∂xi

(t, T )(x) = f (t, T )(x)
[
σi e−αi (T−t) − I1i (T − t, x)

I0(T − t, x)

]
.(4.9)

Now the Xi(t) will be correlated, so that these volatility curves can be thought of as
dependent. Recall that we defined the matrix C so as to satisfy CC′ = (ρij). In particular,
we now choose C to be lower triangular (thus defining C uniquely), resulting in, for each i,

dXi (t) = −αi Xi (t) dt +
i∑

j=1

cij dẐ j (t).

We can then see that the independent volatility curve for f (t, T ) corresponding to dẐ j (t)
is

ṽ j (t, T )(x) =
n∑

i= j

cijvi (t, T )(x).

We will now illustrate the volatility curves for the parameter set given in equation (4.1).
In Figure 4.3 we plot volatility curves for a typical rising yield curve (with a slight hump)
and an inverted yield curve.

We can make the following empirical observations:

� Volatility is higher when interest rates are higher. This is merely a reflection of the
common factor of f (t, T ) in equation (4.9).

� Changes in X2(t) have, proportionately, a greater effect on longer dated forward
rates. This backs up earlier observations.

� The independent volatility curves are, perhaps, more informative. Typically, for
the chosen decomposition for C, ṽ2(t, T ) provides us with a change in the slope
or level of f (t, T ), whereas ṽ1(t, T )(x) provides us with a twist or a hump.

4.4. Bond Volatilities

In equation (2.8) we noted that the SDE for P(t, T ) is

dP(t, T ) = P(t, T )[r (t) dt + SP(t, T )′(dẐ(t) − V(t, t) dt)],

where here we have

SP(t, T ) = V(t, T ) − V(t, t),

Vj (t, T ) =
∫ ∞

T−t H(u, X(t))σ̄ j (u) du∫ ∞
T−t H(u, X(t)) du

=
∑n

i=1 cij I1i (T − t, X(t))
I0(T − t, X(t))

,

n∑
k=1

cikc jk = ρij,

σ̄ j (u) =
n∑

i=1

cijσi e−αi u .

(4.10)
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FIGURE 4.3. Sample forward-rate volatility curves for the two-factor model. Param-
eter values are α = (0.6, 0.06)′, σ = (0.6, 0.4)′, and ρ12 = −0.5, and β = 0.04. State
variable X(t) in the left-hand column: X1(t) = −2, X2(t) = 3; in the right-hand col-
umn: X1(t) = 0, X2(t) = 4. Top row: forward-rate curve, f (t, T )(X(t)). Middle row:
volatility with respect to short-term changes in X1(t), and X2(t); the solid curve is the
volatility function v1(t, T )(X(t)) (see the main text); the dashed curve is v2(t, T )(X(t)).
Bottom row: independent volatility curves with solid curve ṽ1(t, T )(X(t)) and dashed
curve ṽ2(t, T )(X(t)).
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FIGURE 4.4. Sample zero-coupon price volatility curves for SP1(t, T ) (solid curve)
and SP2(t, T ) (dashed curve) for the two-factor model; see equations (4.10). Parame-
ter values are α = (0.6, 0.06)′, σ = (0.6, 0.4)′, ρ12 = −0.5, and β = 0.04. State variable
X(t) in the left-hand graph: X1(t) = −2, X2(t) = 3; in the right-hand graph: X1(t) = 0,

X2(t) = 4.

It follows that the overall squared volatility of P(t, T ) is

n∑
j=1

SPj (t, T )2 =
n∑

j=1

(Vj (t, T ) − Vj (t, t))2

=
n∑

i ,k=1

ρik�i (t, T )�k(t, T ),

where

�i (t, T ) = I1i (T − t, X(t))
I0(T − t)

− I1i (0, X(t))
I0(0)

.

As illustrative examples, the independent volatility curves SPj(t, T ) for the same two cases
as in the previous section are plotted in Figure 4.4.

We can see that typically the sign of the volatility curves is the opposite of that observed
in the corresponding forward-rate volatility curves (although the zero-coupon bond price
volatilities are more closely linked to spot-rate volatilities).

4.5. Real-World Probabilities and Risk Premiums

Earlier we defined the risk-neutral equivalent measure Q by introducing the drift
V (t, t); that is, under Q, the d Z̃j (t) = d Ẑj (t) − Vj (t, t) dt are independent standard
Brownian motions. This leaves us with the usual dynamics for the P(t, T ) under
Q: dP(t, T ) = P(t, T )[r (t) dt + SP(t, T )′ d Z̃(t)]. The nature of V (t, t) means that there is
no particular gain to be made from looking directly at Q: pricing is much easier under P̂
than under Q where the the Xi(t) are no longer normally distributed.

If the model is to be used, for example, as a tool in long-term risk management (e.g.,
in dynamic financial analysis or pension-plan asset allocation), then we need to consider
model dynamics under the real-world measure P. Therefore, we need to model the market
prices of risk which take us from the risk-neutral measure Q to the real-world measure
P. We introduce appropriate drifts γj(t), which satisfy the Novikov condition and define
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Z(t) to be a standard Brownian motion under P with d Z(t) = d Z̃(t) + γ (t)dt = d Ẑ(t) −
V(t, t) dt + γ (t) dt.

As part of our modeling assumptions we propose that γ (t) = V (t, t) + θ for some
constant vector θ . This component of the model is a pragmatic choice that gives d Z(t) =
d Ẑ(t) + θ dt and ensures that the Xi(t) are normally distributed under P as well as P̂ but
with nonzero means. Thus

d Xi (t) = −αi Xi (t) dt +
n∑

j=1

cij(dZ j (t) − θ j dt)

= αi (µi − Xi (t)) dt +
n∑

j=1

cij d Zj (t)

where

µi = −α−1
i

n∑
j=1

cijθ j .

In practical terms it is useful to specify the µi first and then derive the θ j. Thus

θ = −C−1diag(αi )µ,

where diag(αi) is the diagonal matrix with elements (α1, . . . , αn).
Let us now return to the SDE for P(t, T ).

dP(t, T ) = P(t, T )[r (t) dt + SP(t, T )′ (d Z(t) − γ (t) dt]

= P(t, T )[(r (t) − SP(t, T )′(V(t, t) + θ )) dt + SP(t, T )′ d Z(t)].

It follows that the risk premium on P(t, T ) (i.e., the excess expected return over the
risk-free rate, r(t)) is

−SP(t, T )′(V(t, t) + θ ).(4.11)

Sample contour plots for risk premiums are given in Figure 4.5 for the 30-year zero-
coupon bond. In this set of plots we illustrate how risk premiums depend on the parameter
vector µ (equivalently, θ ).

� The case where µ = (−2, 6)′ gives a reasonable outcome. By overlaying the uncon-
ditional confidence region for X(t) we can see which values are most likely under
P. Most of the time, then, the 30-year risk premium will be positive. However, from
time to time, corresponding to periods when interest rates are low, it will become
negative. This is a plausible scenario. For example, in the U.K. in 2002 low interest
rates resulted in unprecedented demand for long-dated bonds from life insurers
and pension plans in an attempt to protect guaranteed fixed liabilities.

� Other aspects of this choice for µ are reasonable by considering the confidence
region relative to lines A and B. Most of the region lies to the left of line A,
indicating that the spot-rate curve is typically (but not always) rising from 0 to
20 years. Rising curves are what we expect to see, although this is, of course,
connected to positive risk premiums. Most of the region also lies above line B,
which indicates that spot rates are typically falling between 20 and 30 years to
maturity. This decline is a feature of the study by Brown and Schaefer (2000). This
persistent decline at the long end of the yield curve reflects stronger demand for
long-dated bonds over medium-dated bonds under most interest-rate scenarios,
primarily again from life insurers and pension plans.
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FIGURE 4.5. Risk premiums on the 30-year zero-coupon bond as a function of the
state variables X1(t) and X2(t) when α = (0.6, 0.06)′, σ = (0.6, 0.4)′, ρ12 = −0.5, and
β = 0.04. The four plots show how the risk premium depends on the unconditional
mean, µ, of X(t) under the real-world measure P. The solid lines give contours (in
percentage) of points with equal risk premiums. The ellipses give the 50%, 75%, 90%,
95%, and 99% confidence regions for X(t) under P. Dashed lines A and B give an
indication of the shape of the spot-rate curve. To the left (right) of A, r(t) − R(t, t + 20)
is negative (positive). Above (below) B, R(t, t + 20) − R(t, t + 30) is positive (negative).
The risk premium can be seen to be quite sensitive to the choice of µ. Some choices for
µ give intuitively sensible risk premiums; others do not.

Other choices for µ have positive and negative aspects.

� The case µ = (−4, 4) gives more positive risk premiums. On the other hand, the
20–30 year section of the spot-rate curve is falling as often as it is rising. The nature
of the model (in particular, the low value of α2) means that X(t) could easily spend
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50 years or more above line B, giving the impression that spot rates normally fall
between 20 and 30 years. The 99% confidence region lies entirely to the left of line
A, meaning that r(t) is almost always lower than R(t, t + 20). This seems unlikely.

� The case µ = (0, 0)′ has mainly small positive risk premiums with rising spot rates
from 20 to 30 years but a significant chance that r(t) is higher than R(t, t + 20). In
general, interest rates will be relatively low. (See, also, Figure 4.2.)

� The case µ = c(1, 6)′ looks very poor. Risk premiums are all significantly negative
and, connected to this, the yield curve is typically falling.

In Figure 4.6 we look at the term structure of the risk premium for our standard parameter
set and µ = (−2, 6)′. Two sets of values for X(t) are given (−2, 0)′ and (1, 3)′. For reference,
the spot-rate curves, R(t, T ), are plotted (top left), so that we can see that we have one
low and rising curve and one high and falling. In the top right-hand plot we can see
how the risk premium (equation 4.11) varies with term to maturity. In general, for this
parameter set and choice for µ we find that the risk-premium term structure tends to peak
at around 5 years. We can also see that, as in Figure 4.5, the risk premium depends on
X(t). We note also that when interest rates are very low (particularly short-dated rates),
the risk premium can become slightly negative, as indicated in the earlier discussion. In
the lower plots we can see the full dependence of the 5-year and 30-year zero-coupon
bond risk premiums on X1(t) and X2(t). The pattern of dependence is similar but 5-year
risk premiums are consistently higher for this choice of parameters.

4.6. Simulation

In Section 4.5 we proposed a particular type of transformation, as part of the model,
to take us from P̂ to the real-world measure P. This choice makes simulation of sample
paths of X(t) simple because we can exploit the known distributional properties of the
correlated Ornstein-Uhlenbeck process to simulate exactly in discrete time.

As an example, a typical sample path is represented in Figure 4.7. Here we plot the
risk-free rate, r(t), and the consols’ rate, ρ(t). Also plotted are the corresponding sample
paths for X1(t) and X2(t).

Note that X2(t) has a sustained peak at A and a sustained trough at B, which are
reflected in peaks and troughs in the two interest rates. We can clearly see the link between
both interest rates and X2(t). Since X2(t), through the low value of α2, has long cycles, we
see that both rates of interest are also subject to long cycles of both high and low values.
This type of behavior is similar to that observed in both the U.K. and U.S. data in Figures
1.1 and 1.3. We can look at this simulation path by eye and can note that even with as
much as 100 years of data we could easily interpret the series as being nonstationary
when, in fact, the underlying model is stationary. This serves to highlight the fallacy of
trying to prove or disprove stationarity.

The shorter term volatility in X1(t) is mainly reflected in r(t). This volatility also affects
ρ(t) but to a lesser extent and we can consequently observe that ρ(t) is less volatile.

In Figure 4.8 we give a scatter plot of r(t) versus ρ(t) over the 400 years of the simulation,
corresponding to Figure 1.2. Most of the points lie to the left of the diagonal r(t) = ρ(t),
indicating, as we remarked earlier, that the yield curve is generally upward sloping (but
possibly with a hump). We can note that the regression slope would be less than 1. Further
empirical analysis of the model has indicated that this slope is very much dependent on
the value of ρ12, the correlation between dX1(t) and dX2(t). The more negative is ρ12, the
steeper is the regression slope.
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FIGURE 4.6. Risk premiums on zero-coupon bonds related to term to maturity. Param-
eter values are α = (0.6, 0.06)′, σ = (0.6, 0.4)′, ρ12 = −0.5, β = 0.04, and µ = (−2, 6)′.
Top left: spot-rate curves for X(t) = (−2, 0)′ (solid curve) and X(t) = (1, 3)′ (dashed
curve). Top right: corresponding risk-premium term structure for zero-coupon bonds.
Bottom left: contour plot of the risk premium for 5-year zero-coupon bonds. The
crosses mark the positions for X(t) in the upper plots. The ellipses give confidence re-
gions for X(t). Bottom right: contour plot of the risk premium for 30-year zero-coupon
bonds. (For a description of the contour plots, see the Figure 4.5 caption.)

5. EXTENSIONS TO A WIDER FAMILY: THE INTEGRATED
AFFINE (IA) CLASS

We have worked here with a pricing formula that can be expressed in the form

P(t, T ) = A(t, T )
A(t, t)

=
∫ ∞

T eB(t,u)+C(t,u)′ X(t) du∫ ∞
t eB(t,u)+C(t,u)′ X(t) du

,(5.1)
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FIGURE 4.7. Simulation example over 400 years for α = (0.6, 0.06)′, σ = (0.6, 0.4)′,
ρ12 = −0.5, β = 0.04, and µ = (−2, 6)′. In the plots for X1(t) and X2(t) the horizontal
line indicates the mean-reversion level, µi, for Xi(t) under P. In the various plots, A
and B correspond to a peak and a trough in X2(t). We can see sustained periods of
both high (at A) and low (at B) interest rates.

where

eB(t,u)+C(t,u)′ X(t) = φe−βt H(u − t, X(t)) (φ = 1, say).

Thus

B(t, u) = −βu − 1
2

∑
i , j

ρijσiσ j

αi + α j
e−(αi +α j )(u−t)
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FIGURE 4.8. Simulation example for α = (0.6, 0.06)′, σ = (0.6, 0.4)′, ρ12 = −0.5, β =
0.04, and µ = (−2, 6)′. Scatter plot of r(t) versus the consols’ rate, ρ(t). The diagonal
line is r(t) = ρ(t). Most points lie to the left of the diagonal, indicating that we generally
have a rising yield curve.

and

Ci (t, u) = σi e−αi (u−t).

This suggests an interesting extension to a much wider class of integrated affine (IA) mod-
els. For example, in the one-factor case we can propose a model for P(t, T ) as in equa-
tion (5.1) but where d X(t) = α(µ − X(t)) dt + σ

√
X(t) dẐ(t); see Brody and Hughston

2001, 2002. It is then necessary to establish the relevant functional forms for B(t, u)
and C(t, u) to ensure that exp[B(t, u) + C(t, u)X(t)] is a P̂-martingale (equivalent to
φ(u)M(t, u) in Section 2).

Equally, this can be extended to multifactor models. It is well known that the standard,
multifactor affine term-structure models P(t, T ) = exp[B̃(t, T ) + C̃(t, T )′Y(t)] exist for
a limited range of diffusion processes for Y (t) (see, e.g., Duffie and Kan 1996). In the
context of the IA models we ask the question: For what n-dimensional diffusion processes,
X(t), do there exist deterministic functions B(t, u) and C(t, u) such that exp[B(t, u) +
C(t, u)′X(t)] is a martingale for all u?

The answer to this is as we might expect: X(t) is limited to the same range of processes
established by Duffie and Kan (1996). Proof of this follows a similar argument to that of
Duffie and Kan with some small differences.

As with the affine term-structure class of models it is expected that the extension
proposed here will give access to a wider range of volatility term structures.
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6. CONCLUSIONS

We have proposed in this paper a new family of time-homogeneous multifactor models
for the term structure of interest rates.

The primary motivation for this is to provide a powerful tool for long-term risk man-
agement and the pricing of long-term interest-rate derivatives. Theoretical aspects of the
model were investigated first. More important though, we have conducted a thorough
numerical analysis of the two-factor model in order to establish the suitability of the wider
family for long-term risk management. These investigations have demonstrated that the
two-factor model, with a suitable choice of parameters, can satisfy all of the desirable
characteristics set out in Section 1. In particular, the model can

� produce sustained periods of both high and low interest rates
� produce wide ranges of values for both short- and long-term interest rates, consis-

tent with historical data
� in extreme cases, give rise to yield curves similar to those experienced in Japan in

2002.

We have not attempted statistical fitting of the model to historical and market data. This
is a a considerable piece of research in its own right and is the subject of ongoing work.

Bond and derivative prices need to be calculated numerically. However, we have shown
that bond prices require a simple one-dimensional numerical integration procedure. In
the case of derivative pricing we will be able to exploit the normal distribution of the state
variable, X(t), to develop efficient pricing procedures.
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