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STOCHASTIC PROCESSES: LEARNING THE LANGUAGE

By A. J. G. Cairns, D. C. M. Dickson, A. S. Macdonald,

H. R. Waters and M. Willder

abstract

Stochastic processes are becoming more important to actuaries: they underlie much of mod-
ern finance, mortality analysis and general insurance; and they are reappearing in the actuarial
syllabus. They are immensely useful, not because they lead to more advanced mathematics
(though they can do that) but because they form the common language of workers in many
areas that overlap actuarial science. It is precisely because most financial and insurance risks
involve events unfolding as time passes that models based on processes turn out to be most
natural. This paper is an introduction to the language of stochastic processes. We do not give
rigorous definitions or derivations; our purpose is to introduce the vocabulary, and then survey
some applications in life insurance, finance and general insurance.
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1. Introduction

In Sections 2 and 3 of this paper we introduce some of the main concepts in stochastic
modelling, now included in the actuarial examination syllabus as Subject 103. In Sections
4, 5 and 6 we illustrate the application of these concepts to life insurance mathematics
(Subjects 104 and 105), finance (Subject 109) and risk theory (Subject 106). Subject 103
includes material not previously included in the UK actuarial examinations. Hence, we
hope this paper will be of interest not only to students preparing to take Subject 103, but
also to students and actuaries who will not be required to take this Subject.

It is assumed that the reader is familiar with probability and statistics up to the level
of Subject 101.
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2. Familiar Territory

Consider two simple experiments:
(a) spinning a fair coin; or
(b) rolling an ordinary six sided die.

Each of these experiments has a number of possible outcomes:
(a) the possible outcomes are {H} (heads) and {T} (tails); and
(b) the possible outcomes are {1}, {2}, {3}, {4}, {5} and {6}.

Each of these outcomes has a probability associated with it:
(a) P[{H}] = 0.5 = P[{T}]; and
(b) P[{1}] = 1

6
= . . . = P[{6}].

The set of possible outcomes from experiment (a) is rather limited compared to that
from experiment (b). For experiment (b) we can consider more complicated events, each
of which is just a subset of the set of all possible outcomes. For example, we could consider
the event {even number}, which is equivalent to {2, 4, 6}, or the event {less than or equal
to 4}, which is equivalent to {1, 2, 3, 4}. Probabilities for these events are calculated by
summing the probabilities of the corresponding individual outcomes, so that:

P[{even number}] = P[{2}] + P[{4}] + P[{6}] = 3× 1

6
=

1

2

A real valued random variable is a function which associates a real number with
each possible outcome from an experiment. For example, for the coin spinning experiment
we could define the random variable X to be 1 if the outcome is {H} and 0 if the outcome
is {T}.

Now suppose our experiment is to spin our coin 100 times. We now have 2100 possible
outcomes. We can define events such as {the first spin gives Heads and the second spin
gives Heads} and, using the presumed independence of the results of different spins, we
can calculate the probability of this event as 1

2
× 1

2
= 1

4
.

Consider the random variable Xn, for n = 1, 2, . . . , 100 which is defined to be the
number of Heads in the first n spins of the coin. Probabilities for Xn come from the
binomial distribution, so that:

P[Xn = m] =

(
n

m

)
×

(
1

2

)m

×
(

1

2

)n−m

for m = 0, 1, . . . , n.

We can also consider conditional probabilities for Xn+k given the value of Xn. For
example:

P[X37 = 20 | X36 = 19] =
1

2

P[X37 = 19 | X36 = 19] =
1

2
P[X37 = m | X36 = 19] = 0 if m 6= 19, 20.
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From these probabilities we can calculate the conditional expectation of X37 given
that X36 = 19. This is written E[X37 | X36 = 19] and its value is 19.5. If we had not
specified the value of X36, then we could still say that E[X37 | X36] = X36 + 1

2
. There are

two points to note here:
(a) E[X37 | X36] denotes the expected value of X37 given some information about what

happened in the first 36 spins of the coin; and
(b) E[X37 | X36] is itself a random variable whose value is determined by the value taken

by X36. In other words, E[X37 | X36] is a function of X36.

The language of elementary probability theory has been adequate for describing the
ideas introduced in this section. However, when we consider more complex situations, we
will need a more precise language.

3. Further Concepts

3.1 Probability Triples
Consider any experiment with uncertain outcomes, for example spinning a coin 100

times. The mathematical shorthand (Ω,F , P) is known as a probability triple. The
three parts of (Ω,F , P) are the answers to three very important questions relating to the
experiment, namely:
(a) What are the possible outcomes of the experiment?
(b) What information do we have about the outcome of the experiment?
(c) What is the underlying probability of each outcome occurring?

We start by explaining the use and meaning of the terminology (Ω,F , P).

3.2 Sample Spaces
The sample space Ω is the set of all the possible outcomes, ω, of the experiment.

We call each outcome a sample point. In an example of rolling a 6 sided die the sample
space is simply:

Ω = {1, 2, 3, 4, 5, 6}

In this case there are 6 sample points. We express the outcome of a 4 being rolled as
ω = {4}.

An event is a subset of the sample space. In our example the event of an odd number
being rolled is the subset {1, 3, 5}.

3.3 σ-algebras
We denote by F the set of all events in which we could possibly be interested.

To make the mathematics work, we insist that F contains the empty set ∅, the whole
sample space Ω, and all unions, intersections and complements of its members. With
these conditions, F is called a σ-algebra of events1.

1To be more precise, the number of unions and intersections should be finite or countably infinite.
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A sub-σ-algebra of F is a subset G ⊆ F which satisfies the same conditions as
F ; that is, G contains ∅, the whole sample space Ω, and all unions, intersections and
complements of its members. For example, for the die-rolling experiment, we can take F
to be the set of all subsets of Ω = {1, 2, 3, 4, 5, 6}; then:

G1 = {∅, Ω, {1, 2, 3, 4}, {5, 6}}

is a sub-σ-algebra, but:

G2 = {∅, Ω, {1, 2, 3, 4}, {6}}

is not, since the complement of the set {6} does not belong to G2.

3.4 Probability Measure
We now come to our third question — what is the underlying probability of an

outcome occurring? To answer this we extend our usual understanding of probability
distribution to the concept of probability measure. A probability measure, P , has the
following properties:
(a) P is a mapping from F to the interval [0, 1]; that is, each element of F is assigned a

non-negative real number between 0 and 1.
(b) The probability of a union of disjoint members of F is the sum of the individual

probabilities of each element; that is:

P (∪∞i=1Ai) =
∞∑
i=1

P(Ai) for Ai ∈ F and Ai ∩ Aj = ∅, for all i 6= j

(c) P(Ω) = 1; that is, with probability 1 one of the outcomes in Ω occurs.

The three axioms above are consistent with our usual understanding of probability.
For the die rolling experiment on the pair (Ω,F), we could have a very simple measure
which assigns a probability of 1

6
to each of the outcomes {1}, {2}, {3}, {4}, {5}, and {6}.

Now consider a biased die where the probability of an odd number is twice that of an
even number. We now need a new measure P∗ where P∗({1}) = P∗({3}) = P∗({5}) = 2

9

and P∗({2}) = P∗({4}) = P∗({6}) = 1
9
. This new measure P∗ still satisfies the axioms

above, but note that the sample space Ω and the σ-algebra F are unchanged. This shows
that it is possible to define two different probability measures on the same sample space
and σ-algebra, namely (Ω,F , P) and (Ω,F , P∗).

3.5 Random Variables
A real-valued random variable, X, is a real-valued function defined on the sample

space Ω.

3.6 Stochastic Processes
A stochastic process is a collection of random variables indexed by time; {Xn}∞n=1

is a discrete time stochastic process, and {Xt}t≥0 is a continuous time stochastic
process. Stochastic processes are useful for modelling situations where, at any given time,
the value of some quantity is uncertain, for example the price of a share, and we want
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to study the development of this quantity over time. An example of a stochastic process
{Xn}∞n=1 was given in Section 2, where Xn was the number of heads in the first n spins
of a coin.

A sample path for a stochastic process {Xt, t ∈ T } ordered by some time set T , is
the realised set of random variables {Xt(ω), t ∈ T } for an outcome ω ∈ Ω. For example,
for the experiment where we spin a coin 5 times and count the number of heads, the
sample path {0, 0, 1, 2, 2} corresponds to the outcome ω = {T,T,H,H,T}.

3.7 Information
Consider the coin spinning experiment introduced in Section 2 and the associated

stochastic process {Xn}100
n=1 . As discussed in Section 2, the conditional expectation

E[Xn+m|Xn] is a random variable which depends on the value taken by Xn. Because
of the nature of this particular stochastic process, the value of E[Xn+m|Xn] is the same
as E[Xn+m|{Xk}n

k=1]. Let Fn be the sub-σ-algebra created from all the possible events,
together with their possible unions, intersections and complements, that could have hap-
pened in the first n spins of the coin. Then Fn represents the information we have
after n spins from knowing the values of X1, X2, . . . , Xn. In this case, we describe Fn as
the sub-σ-algebra generated by X1, X2, . . . , Xn, and write Fn = σ(X1, X2, . . . , Xn). The
conditional expectation E[Xn+m|{Xk}n

k=1] can be written E[Xn+m|Fn].
More generally, our information at time t is a σ-algebra Ft containing those events

which, at time t, we would know either have happened or have not happened.

3.8 Filtrations
A filtration is any set of σ-algebras {Ft} where Ft ⊆ Fs for all t < s . So we have

a sequence of increasing amounts of information where each member Ft contains all the
information in prior members.

Usually Ft contains all the information revealed up to time t, that is, we do not
delete any of our old information. Then at a later time, s, we have more information,
Fs, because we add to the original information the information we have obtained between
times t and s. In this case Ft can be regarded as the history of the process up to and
including time t.

For our coin spinning experiment, the information provided by the filtration Ft should
allow us to reconstruct the result of all the spins up to and including time t, but not after
time t. If Ft recorded the results of the last four spins only, it would not be a filtration
since Ft would tell us nothing about the (t− 4)th spin.

3.9 Markov Chains
A Markov chain is a stochastic process {Xt} where

P(Xt = x | Fs) = P(Xt = x |Xs) for all s ≤ t

We are interested in the probability that a stochastic process will have a certain value
in the future. We may be given information as to the values of the stochastic process at
certain times in the past, and this information may affect the probability of the future
outcome. However, for a Markov Chain the only relevant information is the most recent
known value of the stochastic process. Any additional information prior to the most recent
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value will not change the probability. A consequence of this property is that if {Xn}∞n=1

is a Markov Chain and Fn = σ(X1, X2, . . . , Xn), then:

E[Xn+m | Fn] = E[Xn+m | X1, . . . , Xn]

= E[Xn+m | Xn]

For example, consider a die rolling experiment where Nr is the number of sixes in
the first r rolls. Given N2 = 1, the probability that N4 = 3 is 1

36
using a fair die. This

probability is not altered if we also know that N1 = 1.
Now consider the coin spinning experiment where Xn is the number of heads in the

first n spins. The argument used in the previous paragraph can be used in this case to
show that {Xn}∞n=1 is a Markov Chain.

3.10 The Tower Law of Conditional Expectations
Let {Ft}t∈T be a filtration for a process {Xt}. The Tower Law of conditional

expectations says that for k ≤ m ≤ n:

E[E[Xn|Fm]|Fk] = E[Xn|Fk].

In words, suppose that at time k we want to compute E[Xn|Fk]. We could do so directly
(as on the right side above) or indirectly, by conditioning on the history of the process up
to some future time m (as on the left side above). The Tower Law says that we get the
same answer. To illustrate the Tower Law, consider again the coin spinning experiment
where Xn represents the number of heads in the first n spins. It was shown in Section 2
that:

E[X37 | X36] = X36 +
1

2

Using the same argument, it can be shown that:

E[X38 | X37] = X37 +
1

2
E[X38 | X36] = X36 + 1

Since {Xn}∞n=1 is a Markov Chain, we can write:

E[X38 | F36] = E[X38 | X36]

= X36 + 1

= E[X37 | X36] +
1

2

= E[X37 +
1

2
| X36]

= E[E[X38 | X37] | X36]

3.11 Stopping Times
A random variable T is a stopping time for a stochastic process if it is a rule for

stopping this process such that the decision to stop at, say, time t can be taken only on
the basis of information available at time t. For example, let Xt represent the price of a
particular share at time t and consider the following two definitions:
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(a) T is the first time the process {Xt} reaches the value 120; or
(b) T is the time when the process {Xt} reaches its maximum value.

Definition (a) defines a stopping time for the process because the decision to set T =
t means that the process reaches the value 120 for the first time at time t, and this
information should be known at time t. Definition (b) does not define a stopping time for
the process because setting T = t requires knowledge of the values of the process before
and after time t.

More formally, the random variable T mapping Ω to the time index set T is a stopping
time if:

{ω : T (ω) = t} ∈ Ft for all t ∈ T .

3.12 Martingales
Let {Ft}t∈T be a filtration. A martingale with respect to {Ft}t≥0 is a stochastic

process {Xt} with the properties that:
(a) E(|Xt|) < ∞ for all t;
(b) E(Xt|Fs) = Xs for all s < t.

A consequence of (b) is that:

E[Xt] = E[Xs] for any t and s.

A very useful property of well-behaved martingales is that the expectation is un-
changed if we replace t by a stopping time T for the process, so that:

E[XT ] = E[Xs] for any s.

This is the so-called Optional Stopping Theorem.
Martingales are related to the concept of fair games. For example, let Xt be a gam-

bler’s funds at time t. Given the information Ft−1, we know the size of the gambler’s
funds at time t − 1 are Xt−1. For a fair game (zero expected profit), the expected value
of funds after a further round of the game at time t would equal Xt−1.

The study of martingales is a large and important field in probability. Many results
of interest in actuarial science can be proved quickly by constructing a martingale and
then applying an appropriate martingale theorem.

3.13 Further Reading
Occasionally in this section have sacrificed mathematical rigour for the sake of clarity.

Many textbooks cover the theory of stochastic processes. Two of the best are Grimmet &
Stirzaker (1992), which starts with the basics of probability and builds up to ideas such as
markov chains and martingales, and Williams (1991), which is a book specifically about
martingales, but does give a very rigorous treatment of the (Ω,F , P) terminology.
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-0 = able 1 = dead
µx

Figure 1: A two state model of mortality

4. Life Insurance Mathematics

4.1 Introduction
The aim of this section is to formulate life insurance mathematics in terms of stochas-

tic processes. The motivation for this is the observation that life and related insurances
depend on life events (death, illness and so on) that, in sequence, form an individual’s life
history. It is this life history that we regard as the sample path of a suitable stochastic
process. The simplest such life event is death, and precisely because of its simplicity it
can be modelled successfully without resorting to stochastic processes (for example, by
regarding the remaining lifetime as a random variable). Other life events are not so sim-
ple, so it is more important to have regard to the life history when we try to formulate
models. Hence stochastic processes form a natural starting point.

To keep matters clear, we will develop the simplest possible example, represented in
an intuitive way by the two-state (or single decrement) model in Figure 1. Of course, this
process — death as a single decrement — is very familiar, so at first it seems that all we
do is express familiar results in not-so-familiar language. Of itself this offers nothing new,
but, we emphasise, the payoff comes when we must model more complicated life histories.
(a) All the tools developed in the case of this simple process carry over to more compli-

cated processes, such as are often needed to model illness or long term care.
(b) The useful tools turn out to be exactly those that are also needed in modern financial

mathematics. In particular, stochastic integrals and conditional expectation
are key ideas. So, instead of acquiring two different toolkits, one will do for both.

The main difference between financial mathematics and life insurance mathematics
is that the former is based on processes with continuous paths, while the latter is based
on processes with jumps2. The fundamental objects in life insurance mathematics are
stochastic processes called ‘counting processes’.

As will be obvious from the references, this section is based on the work of Professor
Ragnar Norberg.

4.2 Counting Processes
Figure 1 represents a two-state Markov process, with transition intensity (‘force of

mortality’) µx depending on age x. For convenience, we assign the number 0 to the able

2It might be more accurate to say that, in financial mathematics, the easy examples are provided by
continuous-path processes, and discontinuities make the mathematics much harder, while in life insurance
mathematics it is the other way round. However, Norberg (1995b) suggests an interesting alternative
point of view.
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Age

0 20 40 60 80 100

0.
0

0.
5

1.
0

1.
5

Figure 2: A sample path N01(t) of a counting process: death at age 46

state, and the number 1 to the dead state. A typical sample path of this process might
then look like Figure 2, where a life dies at age 46. The sample path is a function of time;
we call it N01(t). N01(t) indicates whether death has yet occurred3. Looked at another
way, N01(t) counts the number of events that have happened up to and including time
t. Do not think that because only one type of event can occur, and that only once, this
‘counting’ interpretation is trivial: far from it. It is what defines a counting process.

We pay close attention to the increments of the sample path N01(t). They are
very simple. If the process does not jump at time t, the increment is 0. We write this
as dN01(t) = 0. If the process does jump at time t, the increment is 1. We write this
as dN01(t) = 1. (Sometimes you will see ∆N01(t) instead of dN01(t); here it does not
matter.)

Discrete increments like dN01(t) are, for counting processes, what the first derivative
d/dx is for processes with differentiable sample paths. Just as a differentiable sample path
can be reconstructed from its derivative (by integration) so can a counting process be
reconstructed from its increments (also by integration). That leads us to the stochastic
integral.

4.3 The Stochastic Integral
Begin with a discrete-time counting process, say one which can jump only at integer

times. Then by definition, dN01(t) = 0 at all non-integer times, and dN01(t) = 1 at no

3Strictly speaking, our sample space Ω is the space of all functions like Figure 2, beginning at 0 and
jumping to 1 at some time, and the particular sample path in Figure 2 is a point ω ∈ Ω.
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more than one integer time. Can we reconstruct N01(t) from its increments dN01(t)? To
be specific, can we find N01(T )? (T need not be an integer). Let J(T ) be the set of all
possible jump times up to and including T (that is, all integers ≤ T ). Then:

N01(T ) =
∑

t∈J(T )

dN01(t). (1)

Suppose N01(t) is still discrete-time, but can jump at more points: for example at the
end of each month. Again, define J(T ) as the set of all possible jump times up to and
including T , and equation (1) remains valid. This works for any discrete set of possible
jump times, no matter how refined it is (years, months, days, minutes, nanoseconds . . .).
What happens in the limit?
(a) the counting process becomes the continuous-time version with which we started;
(b) the set of possible jump times J(T ) becomes the interval (0, T ]; and
(c) the sum for N01(T ) becomes an integral:

N01(T ) =
∫

t∈J(T )

dN01(t) =

T∫
0

dN01(t). (2)

The integral in equation (2) is a stochastic integral. Regarded as a function of T , it is
a stochastic process4. This idea is very useful; it lets us write down values of assurances
and annuities.

4.4 Assurances and Annuities
Consider a whole life assurance paying £1 at the moment of death. What is its

present value at age x (call it X)? In Subjects A2 and 104, one way of writing this down
is introduced: define Tx as the time until death of a life aged x (a random variable) and
then the present value of the assurance is X = vTx = e−δTx (in the usual notation).

We can also write this as a stochastic integral. The present value of £1 paid at time
t is vt. If the life does not die at time t, the increment of the counting process N is
dN01(t) = 0, and the present value of the payment is vtdN01(t) = 0. If the life does die
at time t, the increment of N is dN01(t) = 1, and the present value of the payment is
vtdN01(t) = vt. Adding up (integrating) we get:

X =

∞∫
0

vtdN01(t). (3)

Annuities can also be written down as stochastic integrals, with a little more notation.
Consider a life annuity of 1 per annum payable continuously, and let Y be its present value.
Define a stochastic process I0(t) as follows: I0(t) = 1 if the life is alive at time t, and
I0(t) = 0 otherwise. This is an indicator process; it takes the value 1 or 0 depending
on whether or not a given status is fulfilled. Then:

4The stochastic integrals in this section are stochastic just because sample paths of the stochastic
process N01(t) are involved in their definitions. Given the sample path of N01(t), these integrals are
constructed in the same way as their deterministic counterparts. The stochastic integrals needed in
financial mathematics, called Itô integrals, are a bit different.
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Y =

∞∫
0

vtI0(t)dt. (4)

Given the sample path, this is a perfectly ordinary integral, but since the sample path
is random, so is Y . Defining X(T ) and Y (T ) as the present value of payments up to time
T , we can write down the stochastic processes:

X(T ) =

T∫
0

vtdN01(t) and Y (T ) =

T∫
0

vtI0(t)dt. (5)

4.5 The Elements of Life Insurance Mathematics
Guided by these examples, we can now write down the elements of life insurance

mathematics in terms of counting processes. This was first done surprisingly recently
(Hoem & Aalen, 1978; Ramlau-Hansen 1988; Norberg 1990, 1991). We start with payment
functions:
(a) if N = 0 at time t (the life is alive), an annuity is payable continuously at rate a0(t)

per annum; and
(b) if N jumps from 0 to 1 at time t (the life dies), a sum assured of A01(t) is paid.

Noting the obvious, premiums can be treated as a negative annuity, and these definitions
can be extended to any multiple state model. Also without difficulty, discrete annuity
or pure endowment payments can also be accommodated, but we leave them out for
simplicity.

The quantities a0(t) and A01(t) are functions of time, but need not be stochastic
processes. They define payments that will be made, depending on events, but they do not
represent the events themselves. In the case of a non-profit assurance, for example, they
will be deterministic functions of age. The payments actually made can be expressed as
a rate, dL(t):

dL(t) = A01(t)dN01(t) + a0(t)I0(t)dt. (6)

This gives the net rate of payment, ‘during’ the time interval t to t + dt, depending on
events. We suppose that no payments are made after time T (T could be ∞). The
cumulative payment is then:

L =

T∫
0

dL(t) =

T∫
0

A01(t)dN01(t) +

T∫
0

a0(t)I0(t)dt (7)

and the value of the cumulative payment at time 0, denoted V (0), is:

V (0) =

T∫
0

vtdL(t) =

T∫
0

vtA01(t)dN01(t) +

T∫
0

vta0(t)I0(t)dt (8)

This quantity is the main target of study. Compare it with equation (5); it simply allows
for more general payments. It is a stochastic process, as a function of T , since it now
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represents the payments made depending on the particular life history (that is, the sample
path of N01(t)).

We also make use of the accumulated/discounted value of the payments at any time
s, denoted V (s):

V (s) =
1

vs

T∫
0

vtdL(t) =
1

vs

T∫
0

vtA01(t)dN01(t) +
1

vs

T∫
0

vta0(t)I0(t)dt. (9)

4.6 Stochastic Interest Rates
Although we have written the discount function as vt, implicitly assuming a constant,

deterministic interest rate, this is not necessary at this stage. We could just as well
assume that the discount function was a function of time, or even a stochastic process.
For simplicity, we will not pursue this, but see Norberg (1991) and Møller (1998).

4.7 Bases and Expected Present Values
In terms of probability models, all we have defined so far are the elements of the

sample space Ω (the sample paths N01(t)) and some related functions such as L and V (s).
We have not introduced any σ-algebras, filtrations or probability measures, nor have we
carried out any probabilistic calculation, such as taking expectations. We now consider
these:
(a) Our filtration is the ‘natural’ filtration generated by the process N01(t), which is easily

described. At time t, the past values N01(s) (s ≤ t) are all known, and the future
values N01(s) (s > t) are unknown (unless N01(t) = 1, in which case nothing more
can happen). This information is summed up by the σ-algebra Ft.
To picture this filtration, cover Figure 2 with your hand, and then slowly reveal the
life history. Before age 46, all possible future life histories are hidden by your hand;
the information Ft is the combination of the revealed life history and all these hidden
possibilities.

(b) Our ‘overall’ σ-algebra F is the union of all the Ft.
(c) The probability measure corresponds to the mortality basis. As is well known,

the actuary will choose a different mortality basis for different purposes, and we
suppose that nature chooses the ‘real’ mortality basis. In other words, the sample
space and the filtration do not determine the choice of probability measure; nor is the
choice of probability measure always an attempt to find nature’s ‘real’ probabilities
(that is the estimation problem). This point is of even greater importance in financial
mathematics, where it is often misunderstood.

All concrete calculations depend on the choice of probability measure (mortality ba-
sis). We will illustrate this using expected present values. Suppose the actuary has chosen
a probability measure P (equivalent to life table probabilities tpx). Taking as an example
the whole life assurance benefit, for a life aged x, say, EP [X] is:

EP


 ∞∫

0

vtdN01(t)


 =

∞∫
0

vtEP [dN01(t)] =

∞∫
0

vtP[dN01(t) = 1] =

∞∫
0

vt
tpxµx+tdt (10)
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Figure 3: An illness-death model

which should be familiar5. If the actuary chooses a different measure P ∗, say (equivalent
to different life table probabilities tp

∗
x), we get a different expected value:

EP ∗ [X] =

∞∫
0

vt
tp
∗
xµ
∗
x+tdt. (11)

Expected values of annuities are also easily written:

EP [Y ] =

∞∫
0

vt
tpxdt. (12)

4.8 More Examples of Counting Processes
Figure 3 shows the well-known illness-death model. A precise formulation begins with

the state S(t) occupied at time t; a stochastic process.
Figure 4 shows a single sample path from S(t): a life who has a short illness at age

40, recovers at age 42, then has a longer, ultimately fatal illness starting at age 49. In
the 2-state mortality model, the stochastic process S(t), representing the state occupied,
coincided with the counting process N01(t) representing the number of events6: here it is
not so. In fact we can define 4 counting processes, one for each transition, for example:

N01(t) = No. of transitions able to ill

N02(t) = No. of transitions able to dead

N10(t) = No. of transitions ill to able

N12(t) = No. of transitions ill to dead

or, regarding them as one object, we have a multivariate counting process with 4 com-
ponents. We can also define stochastic processes indicating presence in each state, Ij(t),

5The last step in equation (10) follows because the event {dN01(t) = 1} is just the event ‘survives to
just before age x + t, then dies in the next instant’, which has the probability tpxµx+tdt.

6We did not introduce S(t) for the 2-state model: we do so now, it is the same as N01(t).
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Figure 4: A sample path of an illness-death process S(t): 0=able, 1=ill, 2=dead

annuity payment functions aj(t) for each state, and sum assured functions for each possi-
ble transition, Ajk(t). Then all of the life insurance mathematics from the 2-state model
carries over with only notational changes.

4.9 Where are the Martingales?
We have not yet mentioned any martingales associated with counting processes, but

they are very simple, and central to both data analysis and applications. In the 2-state
model, the martingale is:

M01(t) = N01(t)−
t∫

0

I0(s)µsds. (13)

M01(t) is called the compensated counting process, and the integral on the right hand
side is called the compensator of N01(t). It is easy to see that M01(t) is a martingale
from its increments:

dM01(t) = dN01(t)− I0(t)µtdt (14)

EP [dM01(t)] = EP [dN01(t)]− EP [I0(t)µtdt] = 0 (15)

We have been careful to specify the probability measure P in the expectation. If
we change the measure, for example to P ∗, corresponding to probabilities tp

∗
x, we get a

different martingale:
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M∗
01(t) = N01(t)−

t∫
0

I0(s)µ
∗
sds (16)

and EP ∗ [dM∗
01(t)] = 0. Alternatively, given a force of mortality µ∗t , we can find a probabil-

ity measure P ∗ such that M∗
01(t) is a P ∗-martingale; P ∗ is simply given by the probabilities

tp
∗
x = exp(− ∫ t

0 µ∗sds). This is true of any (well-behaved) force of mortality, not just na-
ture’s chosen ‘true’ force of mortality7.

An idea of the usefulness of M01(t) can be gained from equation (13). If we con-
sider an age interval short enough that a constant transition intensity µ is a reasonable
approximation, this becomes:

M01(t) = N01(t)− µ

t∫
0

I0(s)ds. (17)

But the two random quantities on the right are just the number of deaths N01(t), and the
total time spent at risk

∫ t
0 I0(s)ds, better known as the central exposed to risk. All the

properties of the maximum likelihood estimate of µ, based on these two statistics (summed
over many independent lives) are consequences of the fact that M01(t) is a martingale (see
Macdonald (1996a, 1996b)).

For more complicated models, we get a set of martingales, one for each possible
transition (from state j to state k) of the form:

Mjk(t) = Njk(t)−
t∫

0

Ij(s)µ
jk
s ds (18)

which have all the same properties.

4.10 Prospective and Retrospective Reserves
We now return to equation (9): V (s) = v−s

∫ T
0 vtdL(t). Recall that the premium is

part of the payment function a0(t); setting the premium according to the equivalence
principle simply means setting EP [V (0)] = 0 and solving for a0(t), where P is the
probability measure corresponding to the premium basis.

For convenience, we will use the same basis (measure) for premiums and reserves, as
is common in other European countries.

Reserves follow when we consider the evolution of the value function V over time, as
information emerges. We start from the conditional expectation; for s < T :

EP [V (s)|Fs] = EP


 1

vs

T∫
0

vtdL(t)

∣∣∣∣∣ Fs


 (19)

7This is exactly analogous to the ‘equivalent martingale measure’ of financial mathematics, in which
we are given the drift of a geometric Brownian motion (coincidentally, also often denoted µt) and then
find a probability measure under which the discounted process is a martingale.
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= EP


 1

vs

s∫
0

vtdL(t)

∣∣∣∣∣ Fs


 + EP


 1

vs

T∫
s

vtdL(t)

∣∣∣∣∣ Fs


 (20)

The second term on the right is the prospective reserve at time s. If the information
Fs is the complete life history up to time s, it is the same as the usual prospective
reserve. However, this definition is more general; for example, under a joint-life second-
death assurance, the first death might not be reported, so that Fs represents incomplete
information. Also, it does not depend on the probabilistic nature of the process generating
the life history; it is not necessary to suppose that the process is Markov, for example.
If the process is Markov (as we often suppose) then conditioning on Fs simply means
conditioning on the state occupied at time s, which is very convenient in practice.

The first term on the right is minus the retrospective reserve. This definition of the
retrospective reserve is new (Norberg, 1991) and is not equivalent to ‘classical’ definitions.
This is a striking achievement of the stochastic process approach: for convenience we also
list some of the notions of retrospective reserve that have preceded it:
(a) The ‘classical’ retrospective reserve (for example, Neill (1977)) depends on a deter-

ministic cohort of lives, who share out a fund among survivors at the end of the
term. However, this just exposes the weaknesses of the deterministic model: given
a whole number of lives at outset, lx say, the number of survivors some time later,
lxtpx is usually not an integer. Viewed prospectively this can be excused as being a
convenient way of thinking about expected values, but viewed retrospectively there
is no such excuse.

(b) Hoem (1969) allowed both the number of survivors, and the fund shared among
survivors, to be random, and showed that the classical retrospective reserve was
obtained in the limit, as the number of lives increased to infinity.

(c) Perhaps surprisingly, the ‘classical’ notion of retrospective reserve does not lead to a
unique specification of what the reserve should be in each state of a general Markov
model, leading to several alternative definitions (Hoem, 1988; Wolthius & Hoem, 1990;
Wolthius, 1992) in which the retrospective and prospective reserves in the initial state
were equated by definition.

(d) Finally, Norberg (1991) pointed out that the ‘classical’ retrospective reserve is “. . .
rather a retrospective formula for the prospective reserve . . .”, and introduced the def-
inition in equation (20). This is properly defined for individual lives, and depends on
known information Fs. If Fs is the complete life history, the conditional expectation
disappears and:

Retrospective reserve =
−1

vs

s∫
0

vtdL(t) (21)

which is more akin to an asset share on an individual policy basis. If Fs represents
coarser information, for example aggregate data in respect of a cohort of policies, the
retrospective reserve is akin to an asset share with pooling of mortality costs.

We have spent some time on retrospective reserves, because it is an example of the
greater clarity obtained from a careful mathematical formulation of the process being
modelled, in this case the life history.
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4.11 Differential Equations
The chief computational tools associated with multiple-state models are ordinary

differential equations (ODEs). We mention three useful systems of ODEs:
(a) The Kolmogorov forward equations can be found in any textbook on Markov

processes (for example, Kulkarni (1995)) and have been in the actuarial syllabus for
some time. They allow us to calculate transition probabilities in a Markov process,
given the transition intensities, which is exactly what we need since transition inten-
sities are the quantities most easily estimated from data. We give just one example,
the simplest of all from the 2-state model:

∂

∂t
tpx = −tpxµx+t. (22)

(b) Theile’s equation governs the development of the prospective reserve. For example,
if tV x is the reserve under a whole life assurance for £1, Theile’s equation is:

d

dt
tV x = δtV x + P x − (1− tV x)µx+t (23)

which has a very intuitive interpretation. In fact, it is the continuous-time equivalent
of the recursive formula for reserves well-known to British actuaries. It was extended
to any Markov model by Hoem (1969).

(c) Norberg (1995b) extended Theile’s equations for prospective policy values (that is,
first moments of present values) to second and higher moments. We do not show
these equations, as that would need too much new notation, but we note that they
were obtained from the properties of counting process martingales.

Most systems of ODEs do not admit closed-form solutions, and have to be solved nu-
merically, but many methods of solution are quite simple8, and well within the capability
of a modern PC. So, while closed-form solutions are nice, they are not too important,
and it is better to seek ODEs that are relevant to the problem, rather than explicitly
soluble. We would remind actuaries of a venerable example of a numerical solution to an
intractable ODE, namely the life table.

4.12 Advantages of the Counting Process Approach
(a) First and foremost, counting processes represent complete life histories. In practice,

not all this information might be available or useable, but it is best to start with a
model that represents the underlying process, and then to make whatever approxi-
mations might be needed to meet the circumstances (for example, data grouped into
years).

(b) The mathematics of counting processes and multiple-state models is easily introduced
in terms of the 2-state mortality model, but carries over to any more complicated
model, thus solving problems that defeat life-table methods. This is increasingly
important in practice, as new insurances are introduced.

(c) Completely new results have been obtained, such as an operational definition of ret-
rospective reserves, and Norberg’s differential equations.

8Numerical solution of ODEs is one of the most basic tasks in numerical analysis.
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(d) The tools we use are exactly those that are essential in modern financial mathematics,
in particular stochastic integrals and conditional expectations. For a remarkable syn-
thesis of these two fields, see Møller (1998). An alternative approach, in which rates
of return as well as lifetimes are modelled by Markov processes, has been developed
(Norberg, 1995b) extending greatly the scope of the material discussed here.

(e) We have not discussed data analysis, but mortality studies are increasingly turning
towards counting process tools, for exactly the same reason as in (a). It will often be
helpful for actuaries at least to understand the language.

5. Finance

5.1 Introduction
In this section we are going to illustrate how stochastic processes can be used to price

financial derivatives.
A financial derivative is a contract which derives its value from some underlying

security. For example, a European call option on a share gives the holder the right, but
not the obligation, to buy the share at the exercise date T at the strike price of K. If the
share price at time T , ST , is less than K then the option will not be exercised and it will
expire without any value. If ST is greater than K then the holder will exercise the option
and a profit of ST −K will be made. The profit at T is, therefore, max{ST −K, 0}.

5.2 Models of Asset Prices
Much of financial mathematics must be based on explicit models of asset prices,

and the results we get depend on the models we decide to use. In this section we will
look at two models for share prices: a simple binomial model which will bring out the
main points; and geometric Brownian motion. Throughout we make the following general
assumptions9.
(a) We will use St to represent the price of a non-dividend-paying stock at time t (t =

0, 1, 2, . . .). For t > 0, St is random.
(b) Besides the stock we can also invest in a bond or a cash account which has value Bt

at time t per unit invested at time 0. This account is assumed to be risk free and we
will assume that it earns interest at the constant risk-free continuously compounding
rate of r per annum. Thus Bt = exp(rt). (In discrete time, risk free means that we
know at time t − 1 what the value of the risk-free investment will be at time t. In
this more simple case, the value of the risk-free investment at any time t is known at
time 0.)

(c) At any point in time we can hold arbitrarily large amounts (positive or negative) of
stock or cash.

5.3 The No-Arbitrage Principle
Before we progress it is necessary to discuss arbitrage.

9These assumptions can be relaxed considerably with more work.
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Suppose that we have a set of assets in which we can invest (with holdings which can
be positive or negative). Consider a particular portfolio which starts off with value zero
at time 0 (so we have some positive holdings and some negative). With this portfolio,
it is known that there is some time T in the future when its value will be non-negative
with certainty and strictly positive with probability greater than zero. This is called an
arbitrage opportunity. To exploit it we could multiply up all amounts by one thousand
or one million and make huge profits without any cost or risk.

In financial mathematics and derivative pricing we make the fundamental assumption
that arbitrage opportunities like this do not exist (or at least that if they do exist, they
disappear too quickly to be exploited).

5.4 A One-Period Binomial Model
First we consider a model for stock prices over one discrete time period. We have

two possibilities for the price at time 1 (see Figure 5):

S1 =

{
S0u if the price goes up
S0d if the price goes down

with d < u (strictly, it is not necessary that d < 1).
In order to avoid arbitrage we must have d < er < u. Suppose this is not the case:

for example, if er < d. Then we could borrow £1 of cash and buy £1 of stock. At time 0
this would have a net cost of £0. At time 1 our portfolio would be worth d− er or u− er

both of which are greater than 0: an example of arbitrage.
Suppose that we have a derivative which pays fu if the price of the underlying stock

goes up and fd if the price of the underlying stock goes down. At what price should this
derivative trade at time 0?

In this model (and also in the multi-period model that we consider later) we will
assume:
(a) there are no trading costs;
(b) there are no minimum or maximum units of trading;
(c) stock and bonds can only be bought and sold at discrete times 1, 2, ...

As such the model appears to be quite unrealistic. However, it does provide us with good
insight into the theory behind more realistic models. Furthermore it provides us with an
effective computational tool for derivatives pricing.

At time 0 suppose we hold φ units of stock and ψ units of cash. The value of this
portfolio at time 0 is V0. At time 1 the same portfolio has the value:

V1 =

{
φS0u + ψer if the stock price goes up
φS0d + ψer if the stock price goes down

Let us choose φ and ψ so that V1 = fu if the stock price goes up and V1 = fd if the
stock price goes down. Then:

φS0u + ψer = fu

and φS0d + ψer = fd
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Figure 5: One-period binomial model for stock prices

Thus we have two linear equations in two unknowns, φ and ψ. We solve this system of
equations and find that:

φ =
fu − fd

S0(u− d)

ψ = e−r(fu − φS0u)

= e−r

(
fu −

(fu − fd)u

u− d

)

= e−r

(
fdu− fud

u− d

)

⇒ V0 = φS0 + ψ

=
(fu − fd)

u− d
+ e−r (fdu− fud)

u− d

= fu

(
1− de−r

u− d

)
+ fd

(
−1 + ue−r

u− d

)

= e−r (qfu + (1− q)fd)

where q =
er − d

u− d

1− q =
u− er

u− d
= 1− er − d

u− d

Note that the no-arbitrage condition d < er < u ensures that 0 < q < 1.
If we denote the payoff of the derivative at t = 1 by the random variable f(S1), we

can write:

V0 = e−rEQ(f(S1))

where Q is a probability measure which gives probability q to an upward move in prices
and 1 − q to a downward move. We can see that q depends only upon u, d and r and
not upon the potential derivative prices. In particular, Q does not depend on the type of
derivative; it is the same for all derivatives on the same stock.
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The portfolio (φ, ψ) is called a replicating portfolio because it replicates, precisely,
the payoff at time 1 on the derivative without any risk. It is also a simple example of a
hedging strategy: that is, an investment strategy which reduces the amount of risk carried
by the issuer of the contract. In this respect not all hedging strategies are replicating
strategies.

Up until now we have not mentioned the real-world probabilities of up and down
moves in prices. Let these be p and 1−p where 0 < p < 1, defining a probability measure
P .

Other than by total coincidence, p will not be equal to q.
Let us consider the expected stock price at time 1. Under P this is:

S0(pu + (1− p)d) = EP (S1)

and under Q it is:

EQ(S1) = S0(qu + (1− q)d) = S0

(
u(er − d)

u− d
+

d(u− er)

u− d

)
= S0e

r.

Under Q we see that the expected return on the risky stock is the same as that on
a risk-free investment in cash. In other words under the probability measure Q investors
are neutral with regard to risk: they require no additional returns for taking on more risk.
This is why Q is sometimes referred to as a risk-neutral probability measure.

Under the real-world measure P the expected return on the stock will not normally
be equal to the return on risk-free cash. Under normal circumstances investors demand
higher expected returns in return for accepting the risk in the stock price. Thus we would
normally find that p > q. However, this makes no difference to our analysis.

5.5 Comparison of Actuarial and Financial Economic Approaches
The actuarial approach to the pricing of this contract would give:

V a
0 = e−δEP [f(S1)] = e−δ(pfu + (1− p)fd)

where δ is the actuarial, risk-discount rate. Compare this with the price calculated using
the principles of financial economics above:

V0 = e−rEQ(f(S1)) = e−r(qfu + (1− q)fd).

If forwards are trading at V a
0 , where V a

0 > V0, then we can sell one derivative at the
actuarial price, and use an amount V0 to set up the replicating portfolio (φ, ψ) at time
0. The replicating portfolio ensures that we have the right amount of money at t = 1 to
pay off the holder of the derivative contract. The difference between V a

0 and V0 is then
guaranteed profit with no risk.

Similarly if V a
0 < V0 we can also make arbitrage profits.

(In fact neither of these situations could persist for any length of time because demand
for such contracts trading at V a

0 would push the price back towards V0 very quickly. This is
a fundamental principle of financial economics: that is, prices should not admit arbitrage
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opportunities. If they did exist then the market would spot any opportunities very quickly
and the resulting excess supply or demand would remove the arbitrage opportunity before
any substantial profits could be made. In other words, arbitrage opportunities might
exist for very short periods of time in practice, while the market is free from arbitrage
for the great majority of time and certainly at any points in time where large financial
transactions are concerned. Of course, we would have no problem in buying such a
contract if we were to offer a price of V a

0 to the seller if this was greater than V0 but we
would not be able to sell at that price. Similarly we could easily sell such a contract if
V a

0 < V0 but not buy at that price. In both cases we would be left in a position where we
would have to maintain a risky portfolio in order to give ourselves a chance of a profit,
since hedging would result in a guaranteed loss.)

For V a
0 to make reasonable sense, then, we must set δ in such a way that V a

0 equals
V0. In other words, the subjective choice of δ in actuarial work equates to the objective
selection of the risk-neutral probability measure Q. Choosing δ to equate V a

0 and V0

is not what happens in practice and, although δ is set with regard to the level of risk
under the derivative contract, the subjective element in this choice means that there is
no guarantee that V a

0 will equal V0. In general, therefore, the actuarial approach, on
its own, is not appropriate for use in derivative pricing. Where models are generalised
and assumptions weakened to such an extent that it is not possible to construct hedging
strategies which replicate derivative payoffs then there is a role for a combination of the
financial economic and actuarial approaches. However, this is beyond the scope of this
paper.

5.6 Binomial Lattices
Now let us look at how we might price a derivative contract in a multiperiod model

with n time periods. Let f(x) be the payoff on the derivative if the share has a price of x at
the expiry date n. For example, for a European call option we have f(x) = max{x−K, 0},
where K is the strike price.

Suppose now that over each time period the share price can rise by a factor of u or
fall by a factor of d = 1/u: that is, for all t, St+1 is equal to Stu or Std. This means
that the effect of successive ‘up and down’ moves is the same as successive ‘down and up’
moves. Furthermore the risk-free rate of interest is constant and equal to r, with, still,
d < er < u. Then we have:

St = S0u
Ntdt−Nt

where Nt is the number of up-steps10 between time 0 and time t. This means that we
have n+1 possible states at time n. We can see that the value of the stock price at time t
depends only upon the number of up and down steps and not on the order in which they
occurred. Because of this property the model is called a recombining binomial tree
or a binomial lattice (see Figure 6).

The sample space for this model, Ω, is the set of all sample paths from time 0 to time
n. This is widely known as the random walk model.There are 2n such sample paths since
there are two pssible outcomes in each time period. The information F is the σ-algebra

10In this sense, Nt can also be regarded as a discrete-time counting process; see Section 4.
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Figure 6: Recombining binomial tree or binomial lattice

generated by all sample paths from time 0 to n while the filtrations Ft are generated by
all sample paths up to time t. (Given the sample space Ω, each sample path up to time t
is equivalent to 2n−t elements of the sample space, each element being the same over the
period 0 to t. Nt and St are random variables which are functions of the sample space.)

Under this model all periods have the same probability of an up step and steps in
each time period are independent of one another. Thus the number of up steps up to
time t, Nt, has under Q a binomial distribution with parameters t and q. Furthermore,
for 0 < t < n, Nt is independent of Nn−Nt and Nn−Nt has a binomial distribution with
parameters n− t and q.

Let us extend our notation a little bit. Let Vt(j) be the fair value of the derivative
at time t given Nt = j for j = 0, . . . , t. Also let Vn(j) = f (S0u

jdn−j). Finally we write
Vt = Vt(Nt) to be the random value at some future time t.

In order for us to calculate the value at time 0, V0(0), we must work backwards one
period at a time from time n making use of the one-period binomial model as we go.

First let us consider the time period n − 1 to n. Suppose that Nn−1 = j. Then, by
analogy with the one-period model we have:
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Vn−1(j) = e−r [qVn(j + 1) + (1− q)Vn(j)]

= e−rEQ [Vn | Fn−1]

= e−rEQ [f(Sn) | Nn−1 = j]

= e−rEQ [f(Sn) | Fn−1]

where q =
er − d

u− d
.

Equivalently we can write this as Vn−1 = e−rEQ[f(Sn) | Fn−1].
As we work backwards we have:

Vt−1 = e−rEQ[Vt | Ft−1]

= e−rEQ

[
e−rEQ (Vt+1 | Ft) | Ft−1

]
= e−2rEQ [Vt+1 | Ft−1] (using the Tower Law)
...

...
...

= e−(n−t+1)rEQ [Vn | Ft−1]

= e−(n−t+1)rEQ [f(Sn) | Ft−1] .

Finally we get to:

V0 = e−nrEQ [f(Sn) | F0] = e−nrEQ [f(Sn) | S0] .

The price at time t of the path-dependent derivative is thus:

Vt = e−r(n−t)EQ

[
f

(
Stu

Nn−Ntd(n−t)−(Nn−Nt)
)
| Nt

]

= e−r(n−t)
n−t∑
k=0

f
(
Stu

kdn−t−k
) (n− t)!

k!(n− t− k)!
qk(1− q)n−t−k.

We have noted before that EQ(S1) = S0e
r giving rise to the use of the name risk-

neutral measure for Q. Similarly in the n-period model we have (putting f(s) = s):

EQ[St|F0] = S0e
rt.

So the use of the expression risk-neutral measure for Q is still valid. Alternatively we
can write:

EQ

[
e−rT ST | Ft

]
= e−rtSt.

In other words, the discounted asset value process Dt = e−rtSt is a martingale under Q.
This gives rise to another name for Q: equivalent martingale measure.
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In fact we normally use this result the other way round, as we will see in the next
section. That is, the first thing we do is to find the equivalent martingale measure Q, and
then use it immediately to price derivatives.

5.7 A Continuous Time Model
Let us now work in continuous time. Let St be the price of the non-dividend-paying

share for 0 ≤ t ≤ T . Suppose that a derivative pays f(s) at time T if the share price at
time T is equal to s.

The particular model we are going to look at for St is called geometric Brownian
motion: that is, St = S0 exp[(µ− 1

2
σ2)t + σZt] where Zt is a standard Brownian motion

under the real-world measure P . (For the properties of Brownian motion see Appendix
A.) This means that St has a log-normal distribution with mean S0 exp(µt) and variance
exp(2µt). [exp(σ2t)− 1]. By application of Itô’s lemma (see Appendix B) we can write
down the stochastic differential equation (SDE) for St as follows:

dSt = µStdt + σStdZt.

By analogy with the binomial model there is another probability measure Q (the
risk-neutral measure or equivalent martingale measure) under which:
(a) e−rtSt is a martingale

(b) St can be written as the geometric Brownian motion S0 exp
[(

r − 1
2
σ2

)
t + σZ̃t

]
where

Z̃(t) is a standard Brownian motion under Q

By continuing the analogy with the binomial model (for example, see Baxter & Rennie
(1996)) we can also say that the value at time t of the derivative is:

Vt = e−r(T−t)EQ [f(ST ) | Ft] = e−r(T−t)EQ [f(ST ) | St] .

With a bit more work we can also see that, under this model, if we invest Vt in the
right way (that is, with a suitable hedging strategy), then we can replicate the payoff at
T without the need for extra cash.

Suppose that we consider a European call option, so that f(s) = max{s−K, 0}. Then
we can exploit a well known property of the log-normal distribution to get the celebrated
Black-Scholes formula:

Vt = StΦ(d1)−Ke−r(T−t)Φ(d2)

where d1 =
log St

K
+

(
r + 1

2
σ2

)
(T − t)

σ
√

T − t

and d2 = d1 − σ
√

T − t.

A more detailed development of pricing and hedging of derivatives in continuous time
can be found in Baxter & Rennie (1996).
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5.8 Guaranteed annuity contracts: a cautionary tale
A more complex example, where stochastic processes (randomness is perhaps more

important than the time element) must be used is the problem of guaranteed annuity
contracts. We can state the problem quite simply. A contract of this type will convert the
policyholder’s fund at maturity, F (T ), into an annuity at the lower of the market rate,
a(T ) (which takes into account current market rates of interest and mortality rates), and a
minimum guarantee, amin. The value at maturity is max{F (T )/a(T ), F (T )/amin}. More
simply we can write this as max{X,Y } where X = F (T )/a(T ) and Y = F (T )/amin are
dependent random variables. Ignoring the time value of this contract the expected value
of this contract is E[max{X,Y }]. This is greater than max{E[X], E[Y ]} by a simple
application of Jensen’s inequality. By implication this in turn exceeds E[X] and E[Y ].
Twenty years ago actuaries took E[X] as the value of this contract assuming that interest
rates would never fall far enough for the guarantee to lock in. Now that interest rates
have fallen, many actuaries are taking the value as max{E[X], E[Y ]}. It is important to
understand the distinction between this and E[ max{X,Y} ]. When you see this then you
will see why an understanding of the underlying randomness is essential to the accurate
pricing of this type of contract.

6. Risk Theory

6.1 Introduction
In this section we show how stochastic processes can be used to gain insight into the

pricing of general insurance policies. In particular, we will make use of the notion of a
martingale, Brownian motion and also the optional stopping theorem.

Suppose we have a general insurance risk, for example comprehensive insurance for
a fleet of cars or professional indemnity insurance for a software supplier, for which cover
is required on an annual basis. We want to answer the question: “In an ideal world,
how should we calculate the annual premium for this cover?” Let us denote by Pn the
premium to be charged for cover in year n, where the coming year is year 1.

The starting point is to consider the claims which will arise each year. Since the
aggregate amount of claims is uncertain, we model these amounts as random variables.
Let Sn be a random variable denoting the aggregate claims arising from the risk in year n.
We might also take into consideration, particularly for a large risk, the amount of capital
with which we are prepared to back this risk. We denote this initial capital, or ‘initial
surplus’, U . In practice, we would also take into consideration many other factors, for
example, expenses and the premium rates charged by our competitors. However, to keep
things simple, we will ignore these other factors.

Throughout this section we will assume that the random variables {Sn}∞n=1 are inde-
pendent of each other, but we will not assume they are identically distributed. To be able
to calculate Pn we need to be able to calculate, or at least estimate, the distribution of
Sn. If we have information about the distributions of claim numbers and claim amounts
in year n, we may be able to use Panjer’s celebrated recursion formula to calculate the
distribution of Sn. See, for example, Klugman et al (1997). In some circumstances, for
example when Sn is the sum of a large number of independent claim amounts, it may be
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reasonable to assume that Sn has, approximately, a normal distribution. In what follows
we will occasionally make the following assumption:

Sn ∼ N(µn, σ
2
n) (24)

for some parameters µn and σn.

6.2 The Standard Deviation Principle
Suppose we decide that each year Pn should be set at a level such that the probability

that aggregate claims exceed the premium in that year should be suitably small, say 1−p.
Formally, this criterion can be expressed as follows:

P[Sn < Pn] = p. (25)

Making the additional assumption that Sn is normally distributed, that is, assumption
(24), it is easy to see that:

Pn = µn + γpσn (26)

where γp is such that:

Φ(γp) = p

and Φ(.) is the cumulative distribution function of the N(0, 1) distribution.
Formula (26) says that in year n, Pn should be calculated as the mean of the aggregate

claims for that year plus a loading proportional to the standard deviation of the aggregate
claims. Notice that the proportionality factor, γp, does not depend on n. In the actuarial
literature, formula (26) is known as the standard deviation principle for the calculation
of premiums, and γp is referred to as the loading factor. See Goovaerts, De Vylder, &
Haezendonck (1984).

6.3 Utility Functions and the Variance Principle
Now suppose that our attitude to money is summarised by a utility function, u(x).

Intuitively, u(x) is a real-valued function which expresses ‘how much we like an amount
of money x’. Mathematically, we require the following two conditions to hold:

d

dx
u(x) > 0 and

d2

dx2
u(x) < 0.

The first of these conditions says that “we always prefer more money”. The second
condition says that “an extra pound is worth less, the wealthier we are”. See Bowers et
al. (1997) for more details.

We can use this utility function to calculate Pn from the following formula:

u(W ) = E[u(W + Pn − Sn)] (27)

where W is our wealth at the start of the n-th year. The rationale behind this formula
is as follows: if we do not insure this risk, the utility of our wealth is u(W ); if we do
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insure the risk, our expected utility of wealth at the end of the year is E[u(W +Pn−Sn)].
Formula (27) says that for a premium of Pn we are indifferent between insuring the risk
and not insuring it. In this sense the premium Pn is ‘fair’. See, for example, Bowers et
al. (1997) for details.

Now assume that u(x) is an exponential utility function with parameter α > 0,
so that:

u(x) = 1− e−αx. (28)

Using (28) in (27) and solving for Pn, we have:

Pn = α−1 log (MSn(α)) (29)

where the notation MZ(.) denotes the moment generating function of a random variable
Z, so that MZ(α) = E[eαZ ]. Notice that in this special case Pn does not depend on W ,
our wealth at the start of the n-th year.

Finally, let us assume that Sn has a normal distribution, as in (24). Then:

MSn(α) = exp{µnα +
1

2
α2σ2

n}

and so (29) becomes:

Pn = µn +
1

2
ασ2

n. (30)

Thus, Pn is calculated according to the variance principle.

6.4 Multi-period Analysis — Discrete Time
Formulae (26) and (30) provide two alternative ways of calculating Pn in an ideal

world. They have some features in common:
(a) in each case Pn is the sum of the expected value of Sn and a positive loading; and
(b) in each case we arrived at a formula for Pn by considering the n-th year in isolation

from any other years.

A major difference in the development so far is that for (26) the loading factor γp has an
intuitive meaning, whereas in (30), or (29), the parameter α is not so easily understood
or quantified. To fill in this gap, we need to consider our surplus at the end of each year
in the future.

Let Un denote the surplus at the end of the n-th year, so that:

Un = U +
n∑

k=1

(Pk − Sk)

for n = 1, 2, 3, . . ., with U0 defined to be U . Now define:

ψ(U) = P[Un ≤ 0 for some n, n = 1, 2, 3, . . .]
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to be the probability that at some time in the future we will need more capital to back
this risk, that is, in more emotive language, the probability of ultimate ruin in discrete
time for our surplus process. Let us assume that Pn is calculated using (29).

Consider the process {Yn}∞n=0, where Yn = exp{−αUn} for n = 0, 1, 2, ... . Then
{Yn}∞n=0 is a martingale with respect to {Sn}∞n=1. To prove this, note that:

Un+1 = Un + Pn+1 − Sn+1

implies that:

E [Yn+1|S1, . . . , Sn]

= E [exp{−α (Un + Pn+1 − Sn+1) |S1, . . . , Sn}]
= E [exp{−α(Pn+1 − Sn+1)}|S1, . . . , Sn] exp{−αUn}.

Since {Sn}∞n=1 is a sequence of independent random variables it follows that:

E [exp{−α(Pn+1 − Sn+1)}|S1, . . . , Sn]

= E[exp{−α(Pn+1 − Sn+1)}]
= exp{−αPn+1}E [exp{αSn+1}]
= 1

where the final step follows from (29). Hence:

E [Yn+1|S1, ..., Sn] = exp{−αUn} = Yn,

and so the proof is complete.
We can now use this fact to find a bound for ψ(U). To do so, let us introduce the

positive constant b > U , and define the stopping time T by:

T = min(n: Un ≤ 0 or Un ≥ b) :

Thus, the process stops when the first of two events occurs: (i) ruin; or, (ii) the surplus
reaches at least level b. The optional stopping theorem tells us that:

E [exp{−αUT}] = exp{−αU}.

Let pb denote the probability that ruin occurs without the surplus ever having been
at level b or above. Then, conditioning on the two events described above:

E [exp{−αUT}] = E [exp{−αUT}|UT ≤ 0] pb

+E [exp{−αUT}|UT ≥ b] (1− pb) (31)

= exp{−αU}.
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Now let b →∞. Then pb → ψ(u), the first expectation on the right hand side of (31)
is at least 1 since it is the moment generating function of the deficit at ruin, evaluated at
α, and the second expectation goes to 0 since it is bounded above by exp{−αb}. Thus:

exp{−αU} = ψ(U)E [exp{−αUT}|UT ≤ 0]

giving:

ψ(U) =
exp{−αU}

E [exp{−αUT}|UT ≤ 0]
≤ exp{−αU}. (32)

This gives us a simple bound on the probability of ultimate ruin. It also suggests an
appropriate value for the parameter α in formula (29). For example, if the initial surplus
is 10, and we require that the probability of ultimate ruin is to be no more than 1%, then
we require α such that exp{−10α} = 0.01, giving α = 0.461.

Let us consider the special case when {Sn}∞n=1 is a sequence of independent and iden-
tically distributed random variables, each distributed as compound Poisson with Poisson
parameter λ. Then Pn is independent of n, say Pn = P , and:

P = α−1 log E [exp{αSn}]
= α−1 log [exp{λ (MX(α)− 1)}]

where MX(.) is the moment generating function of the distribution of a single claim
amount, giving:

λ + Pα = λMX(α). (33)

This is the equation for the adjustment coefficient for this model (see, for exam-
ple, Gerber (1979)). Thus, in this particular case, the parameter α is the adjustment
coefficient, and equation (32) is simply Lundberg’s inequality.

6.5 Multi-period Analysis — Continuous Time
Formula (32) shows that when the annual premium is calculated according to formula

(29), the probability of ultimate ruin in discrete time for our surplus process is bounded
above by exp{−αU}. If, in addition, the distribution of aggregate claims each year is nor-
mal (assumption (24)) then formula (29) implies that the premium loading is proportional
to the variance of the aggregate claims.

We can gain a little more insight, particularly into formula (32), by moving from
a discrete time model to a continuous time model. In this section we assume that the
aggregate claims in the time interval [0, t] are a random variable µt + σB(t), where the
stochastic process {B(t)}t≥0 is standard Brownian motion (see Appendix A). This means
that in any year, the aggregate claims are distributed as N(µ, σ2), and are independent of
the claims in any other year. This is the continuous time version of assumption (24), but
note that we are now assuming that the mean and variance of the annual aggregate claims
do not change over time. Brownian motion has stationary and independent increments
so for any 0 ≤ s < t:
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B(t)−B(s) ∼ N
(
(t− s)µ, (t− s)σ2

)
. (34)

We assume that premiums are received continuously at constant rate P per annum,
where:

P = µ +
1

2
ασ2 (35)

which is equivalent to formula (30). The surplus at time t is denoted U(t), where:

U(t) = U + Pt− (µt + σB(t)). (36)

Now let:

ψc(U) = P[U(t) ≤ 0 for some t, t > 0]

so that ψc(U) is the probability of ultimate ruin in continuous time for our surplus process.
We will apply the martingale argument of the previous subsection to find ψc(U). First
note that:

E[exp{−α((P − µ)t− σB(t))}] = 1. (37)

This follows from formulae (34) and (35) and the formula for the moment generating
function of the normal distribution.

Next, let Y (t) = E[exp{−αU(t)}]. Then the process {Y (t)}t≥0 is a martingale with
respect to11 {B(t)}t≥0. (Since {U(t)}t≥0 is a continuous time stochastic process, {Y (t)}t≥0

is a martingale in continuous time.) This follows since for t > s:

E[Y (t)|B(u), 0 ≤ u ≤ s]

= E[exp{−αU(t)}|B(u), 0 ≤ u ≤ s]

= E[exp{−α(U(t)− U(s))} exp{−αU(s)}|B(u), 0 ≤ u ≤ s].

Hence:

E[Y (t)|B(u), 0 ≤ u ≤ s]

= E[exp{−α(U(t)− U(s))}|B(u), 0 ≤ u ≤ s]E[exp{−αU(s)}|B(u), 0 ≤ u ≤ s]

= E[exp{−α(U(t)− U(s))}] exp{−αU(s)}.

Now:

U(t)− U(s) = (P − µ) (t− s)− σ (B(t)−B(s)) .

We can then use the fact that the process {B(t)}t≥0 has stationary increments to say that
B(t)−B(s) is equivalent in distribution to B(t− s), and hence U(t)−U(s) is equivalent

11Recall that a martingale is defined with respect to a filtration: here we mean that the relevant
filtration is that generated by the process {B(t)}t≥0.



Stochastic Processes: Learning the Language 32

in distribution to U(t − s) − U . (All that stationarity implies is that the distribution of
the increment of a process over a given time interval depends only on the length of that
time interval, and not on its location. In our context, we are simply interested in the
increment of the process {B(t)}t≥0 in a time interval of length t− s.) Hence:

E[exp{−α(U(t)− U(s))}]
= E[exp{−α (U(t− s)− U)}]
= E [exp{−α ((P − µ) (t− s) + σB(t− s))}]
= 1

where the final step follows from (37). Hence:

E[Y (t)|B(u), 0 ≤ u ≤ s] = exp{−αU(s)} = Y (s)

and so {Y (t)}t≥0 is a martingale with respect to {B(t)}t≥0.
The optional stopping theorem also applies to martingales in continuous time, so we

can use the same argument as in the previous subsection. We define:

Tc = inf{t: U(t) ≤ 0 or U(t) ≥ b)

where b > U . From the optional stopping theorem we have:

E [exp{−αU(Tc)}] = exp{−αU}.

Once again defining pb to be the probability that ruin occurs without the surplus process
ever having been at level b or above, we have:

E [exp{−αU(Tc)}] = E [exp{−αU(Tc)}|U(Tc) ≤ 0] pb

+E [exp{−αU(Tc)}|U(Tc) ≥ b] (1− pb)

= exp{−αU}.

If the surplus level attains b without ruin occurring, then U(Tc) = b since the sample
paths of Brownian motion are continuous, i.e. the process cannot jump from below b to
above b without passing through b. The situation is the same if ruin occurs. Hence:

E [exp{−αU(Tc)}|U(Tc) ≥ b] = exp{−αb}

and:

E [exp{−αU(Tc)}|U(Tc) ≤ 0] = 1.

Thus:

pb + exp{−αb}(1− pb) = exp{−αU}



Stochastic Processes: Learning the Language 33

and if we let b →∞, then pb → ψc(U), and hence:

ψc(U) = exp{−αU}. (38)

Formula (38) is Lundberg’s inequality for our continuous time surplus process, but
this is now an equality. Going back to formula (32), this shows that the upper bound for
the probability of ruin in discrete time, in the special case where the mean and variance
of claims do not change over time, is just the exact probability of ruin in continuous time.
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APPENDIX A

Brownian Motion

Suppose that Zt is a standard Brownian motion under a measure P . Then we have
the following properties of Zt:
(a) Zt has continuous sample paths which are nowhere differentiable
(b) Z0 = 0
(c) Zt is normally distributed with mean 0 and variance t
(d) For 0 < s < t, Zt − Zs is normally distributed with mean 0 and variance t − s and

it is independent of Zs

(e) Zt can be written as the stochastic integral
∫ t
0 dZs where dZs can be taken as the

increment in Zt over the small interval (s, s + ds], is normally distributed with mean
0 and variance ds and is independent of Zs

APPENDIX B

Stochastic Differential Equations

A diffusion process, Xt, is a stochastic process which, locally, looks like a scaled
Brownian motion with drift. Its dynamics are determined by a stochastic differential
equation:

dXt = m(t,Xt)dt + s(t,Xt)dZt

and we can write down the solution to this as:

Xt = X0 +
∫ t

0
m(u,Xu)du +

∫ t

0
s(u,Xu)dZu.

With traditional calculus we have no problem in dealing with the first integral. How-
ever in the second integral the usual Riemann-Stieltjes approach fails because Zu is just
too volatile a function. (This is related to the fact that Zt is not differentiable.) In fact
the second integral is dealt with using Itô integration. A good treatment of this can be
found in Øksendal (1998).

Writing down the stochastic integral is not really very informative and it is useful to
have, if possible, a closed expression for Xt. An important result which allows us to do
this in many cases is Itô’s Lemma: suppose that Xt and Yt are diffusion processes with
dXt = m(t,Xt)dt + s(t,Xt)dZt and Yt = f(t,Xt) for some function f(t, x). Then:

dYt =
∂f

∂t
(t,Xt)dt +

∂f

∂x
(t,Xt)dXt +

1

2

∂2f

∂x2
(t,Xt)s(t,Xt)

2dt

For example suppose that Xt = Zt and Yt = exp[at + bXt] = f(t,Xt). Then:
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∂f

∂t
= a exp[at + bx] = af(t, x)

∂f

∂x
= bf(t, x)

∂2f

∂x2
= b2f(t, x).

Thus, by Itô’s Lemma:

dYt = aYtdt + bYtdXt +
1

2
b2Ytdt

= (a +
1

2
b2)Ytdt + bYtdZt.


