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Abstract

We consider situations where a pension plan has opted to hedge its longevity risk
using an index-based longevity hedging instrument such as a q-forward or deferred
longevity swap. The use of index-based hedges gives rise to basis risk, but ben-
efits, potentially, from lower costs to the hedger and greater liquidity. We focus
on quantification of optimal hedge ratios and hedge effectiveness and investigate
how robust these quantities are relative to inclusion of recalibration risk, parame-
ter uncertainty and Poisson risk. We find that strategies are robust relative to the
inclusion of parameter uncertainty and Poisson risk. In contrast, single-instrument
hedging strategies are found to lack robustness relative to the inclusion of recali-
bration risk at the future valuation date, although we also demonstrate that some
hedging instruments are more robust than others. To address this problem, we de-
velop multi-instrument hedging strategies that are robust relative to recalibration
risk.

Keywords: Robust hedging, recalibration risk, hedge ratios, hedge effectiveness,
Delta hedging, Nuga hedging.
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1 Introduction

Pension plans and annuity providers have recently begun to focus greater attention
on the measurement and management of longevity risk. This reflects a variety
of factors including low risk-free interest rates, changes in accounting regulations,
changes in the regulatory environment (e.g. Solvency II; see, for example, Olivieri
and Pitacco, 2009), and the rise of enterprise risk management in general terms.

In this paper, we will consider some of the options available to a pension plan or
annuity provider (hereafter referred to as the ‘hedger’) that has decided to reduce
its exposure to longevity risk.

If the hedger has liabilities exceeding around £100 million then it has the possibility
to arrange a customised longevity swap that indemnifies them against unexpected
changes in their own mortality experience. Index based longevity hedging instru-
ments such as q-forwards (see www.llma.com) provide an alternative to a customised
transaction. They provide one of the more limited range of options for smaller
hedgers, but they will also be of interest to larger hedgers who are prepared to ac-
cept some degree of basis risk in return for a standardised contract that potentially
offers better value for money.

This paper builds on the recent work of Cairns et al. (2013) and will address various
issues relating to robustness of various quantities connected to a given financial
transaction that are derived from a stochastic or other model for mortality and
longevity risk. For a customised longevity swap, the only quantity that might involve
use of a model is the price of the transaction (that is, the specification of the fixed
leg of the swap). In contrast, with an index based hedge, the measurement of hedge
effectiveness, the determination of the appropriate quantities of hedging instruments,
and the prices for these instruments are all quantities that are dependent on the
underlying stochastic mortality model. We seek to investigate how robust these
quantities are relative to various uncertainties in the underlying stochastic model
and parameterisation. In other words: how confident are we in a stated hedge
effectiveness, hedge ratio or price?

1.1 Structure of the paper

In Section 2 we introduce the preliminaries, the model, the data, and the potential
hedging objectives, and summarise recent work on this topic. Section 3 outlines
the questions about robustness that underpin the present paper. Section 4 provides
some answers to the robustness questions through the use of empirical results and
theoretical reasoning. Section 5 shows how strategies can be made more robust
through the use of the new concept of Nuga hedging. Section 6 adds additional
remarks about lesser risk factors affecting robustness. Section 7 concludes.
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2 Hedging

2.1 Data and notation

• There are two, potentially overlapping, populations: k = 1 representing Eng-
land and Wales (EW) males mortality; k = 2 representing the UK Continuous
Mortality Investigation (CMI) assured lives males mortality. The CMI popu-
lation is used as a proxy for a typical pension plan.

• Time t = 0 represents the end of 2005, the last year for which we have data for
both the EW and CMI populations. We use data for 1961 to 2005 inclusive
over the ages 50 to 89.

• mk(t, x) = death rate in year t for males aged x last birthday at the date of
death and belonging to population k.

• qk(t, x) = corresponding population k mortality rate (probability of death) for
individuals aged x exactly at the start of year t.

• We assume that qk(t, x) = 1− exp(−mk(t, x)).

• ak(T, x) = value at time T of a level annuity of 1 per annum payable annually
in arrears to an individual aged x at time T in population k.

2.2 The static value hedging problem

We follow Cairns et al. (2013) in considering a simple setting in which the hedger
(a) puts in place a static hedge and (b) wishes to assess the financial outcome of the
hedge at a specific future valuation date, T (a so-called value hedge).

Other approaches to hedging that complement that in the present paper include
Cairns et al. (2008) (static cashflow hedging), Dahl et al. (2008) (who employ
value hedging in a dynamic, parameters-certain context to develop a dynamic Delta-
hedging strategy using a continuous-time two-population mortality model), Cairns
(2011) (discrete-time dynamic Delta-hedging), Li and Luo (2012) (who develop the
concept of q-duration – Coughlan et al., 2007 – for estimating hedge quantities), and
Dowd et al. (2011c) (static value hedging under a different two-population model).

Keeping things simple, the hedger has a liability at time T = 10 years (i.e. the
end of 2015) that is equal to a2(T, x0) where x0 = 65. The value of the liability is
dependent, therefore, on the cohort life table that is in use for population 2 (CMI)
at the end of 2015 that will be used for valuing the hedger’s liability.

We consider two potential hedging instruments, both index hedges with EW males
as the reference population. The first is a deferred longevity swap (as employed by
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Cairns et al., 2013) in which the floating leg of the swap is linked to the survivorship
of EW males aged 65 at the end of 2015, and the fixed leg is set at the end of
2005 and might be an estimate at time 0 of the future cashflows. The second is
a simplified version of a q-forward that swaps a fixed estimate of a mortality rate,
set at time 0, for a floating mortality rate linked to year T mortality rates and a
specific age x. As a variant on this we will also consider use of a q-forward that
has a longer-dated maturity date of T + U for some U > 0. To distinguish between
these we will refer to the maturity T q-forward simply as a q-forward, and to the
latter as a long maturity q-forward.

The values at T of these three contracts are:

a1(T, x)− âF1 (0, T, x) (1)

q1(T, x)− qF1 (0, T, x) (2)

e−rU
(
EQ[q1(T + U, x)|MT ]− qF1 (0, T + U, x)

)
(3)

where âF1 (0, T, x) is the value at T of the fixed leg of the deferred longevity swap,
qF1 (0, T, x) is the fixed leg of the q-forward, and EQ refers to expectations taken
under a risk-neutral pricing measure.

In equation (3), we have assumed, for simplicity, that interest rates are constant with
r being the continuously compounding risk free rate to allow us to focus on hedging
longevity risk. This can easily be extended to allow for stochastic interest rates and
time-dependent yield curves. Also in equation (3) (and implicit in the annuity value,
a1(T, x), equation (1)) is the use of MT which represents the information provided
by the mortality data up to time T .

The valuation model underpinning equations (1) and (3) is outlined in Section 2.4.2.

2.3 Hedging objective

Let L = a2(T, x) represent the value of the liability at T and H represent the value
at T of the index-linked derivative (assuming, initially, a single hedging instrument
is used). Again, keeping things simple, the only other asset class available to the
hedger between 0 and T is a cash account that pays r per annum, continuously
compounding.

As our hedging objective, we will assume that the hedger wishes to minimise the
variance of L − hH, where h is the hedge ratio, or number of units held of the
hedging instrument.1 Solving this is straightforward (see, for example, Coughlan et

1The use of variance as our objective function is consistent with recent transactions in the UK
and, perhaps, elsewhere, where defined benefit pension plans are attempting to derisk: indicating
that they have no appetite for risk if it can be avoided. Alternatives to the minimisation of variance,
of course, might be used by the hedger such as the minimisation of the standard deviation, value-
at-risk or expected shortfall (see, for example, Dowd et al., 2006), or expected utility (see Appendix
A).



5

al., 2004, or Cairns et al., 2013) and we find that the optimal hedge ratio is

h =
Cov(L,H)

Var(H)
= ρ

S.D.(L)

S.D.(H)
,

where ρ is the correlation between L and H, and the optimal hedge effectiveness is

1− Var(L− hH)

Var(L)
= ρ2.

Hedgers might have alternative, and less extreme attitudes to risk and seek to
optimise alternative objectives. By way of example, therefore, we present in Ap-
pendix A a stylised account of how the annuity hedging problem might be tackled
if the hedger has exponential utility. We see that the minimum variance portfolio
plays a key role even in the situation where the hedger has some appetite for risk.
Utility-based optimisation is developed further in Zhou et al. (2011) in a longevity
context and Cairns (2001) in a more general insurance context. We leave the issue
of robustness in a utility-based setting for further work.

In some settings we might seek to construct a static hedge using n > 1 hedging
instruments with values H1, . . . , Hn at time T . The minimum variance problem
then becomes minimise Var (L−

∑n
i=1 hiHi) over h1, . . . , hn.

2.4 The stochastic mortality model

A key element of the work of Coughlan et al. (2011) and Cairns et al. (2013) is the
distinction between the model that is used to simulate mortality experience between
times 0 and T and the model that is used to value the assets and liabilities at time
T given the observable mortality experience both before time 0 and between times
0 and T .

Specifically, Coughlan et al. (2011) and Cairns et al. (2013) recognised that valuers
only have access to the observable data and not the underlying simulation model
(which, in any event, is only an approximation to a more complex reality). As a
consequence, they argue that the simulation and valuation models might differ. And
even if the true model were known, the way that the valuation model is calibrated at
T might be different from the way that the simulation model is calibrated at time 0.
Finally, the use of the same model and calibration for both simulation and valuation
might lead to an over-optimistic assessment of the benefits of hedging.2 We do not
claim that the approach taken here is perfect. However, it is a step in the direction

2For example, in equity derivative pricing and hedging, the use of the Black-Scholes model for
both pricing equity derivatives and the assessment of the effectiveness of the Delta-hedging strategy
suggests that we can eliminate risk entirely. However, we know that the model and its assumptions
are, at best, only approximately correct and that complete elimination of risk through dynamic
hedging with a single traded underlying is not possible.
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of acknowledging that we do not have perfect information about the model or its
parameters, and by doing so we reduce the bias (in an optimistic direction) that
results from using identical simulation and valuation models.

We will illustrate the methodology for assessment of robustness using the two-
population mortality model proposed by Cairns et al. (2011a), a two-population
variant of the model “M3” investigated by Cairns et al. (2009). The underlying
death rates in populations k = 1, 2 are given by

mk(t, x) = exp
[
β(k)(x) + n−1

a κ(k)(t) + n−1
a γ(k)(t− x)

]
where:

• β(1)(x) and β(2)(x) are the population 1 and 2 age effects;

• κ(1)(t) and κ(2)(t) are period effects;

• γ(1)(c) and γ(2)(c) are cohort effects; and

• na is the number of ages included in the historical dataset.

Other two or multi-population models have been proposed by Li and Lee (2005), Li
and Hardy (2011), Plat (2009), Jarner and Kryger (2011), Dowd et al. (2011a), and
Börger et al. (2012) amongst others.

2.4.1 The simulation model

In the simulation model (see Cairns et al., 2013, for more detail):

• κ(1)(t) is a random walk with drift νκ;

• the spread between the period effects, Sκ(t) = κ(1)(t) − κ(2)(t), is modelled
as an AR(1) time series model with innovations that are correlated with the
κ(1)(t) innovations;

• γ(1)(c) is modelled as an AR(2) process that is reverting to a linear trend;3

• the spread between the cohort effects, S3(c) = γ(1)(c) − γ(2)(c) is modelled
as an AR(2) time series model with innovations that are correlated with the
γ(1)(c) innovations.

• No assumptions are made about relationship between the age effects, β(1)(x)
and β(2)(x), at different ages or between populations.

3Numerical examples later in this paper focus on existing cohorts at time 0, suggesting that
simulation of γ(1)(c) and γ(2)(c) is not necessary. However, recalibration of the valuation model
at time T requires information about younger cohorts, so simulated cohort effects will have some
influence (possibly small) on the cohorts that feature prominently in our study.
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2.4.2 The time-T valuation model

Recall, now, the approximate method of Cairns et al. (2013) for calculating at time
T simulated annuity prices and long-maturity q-forward prices.4 The underlying
principle of the valuation model is that stochastic simulation beyond time T is
replaced by a single deterministic projection that potentially depends on the sample
path up to T . The most important element of this approach is that κ̂(1)(T + u) =
κ(1)(T ) + νκu and κ̂(2)(T + u) = κ(2)(T ) + νκu, with the risk-neutral drift, νκ, being
specified at time T . For annuities, we proceed as follows. Let x0 be the age at time
T of a cohort for whom we wish to price an annuity. We next take β(k)(x) as given,
along with κ(k)(T ) and γ(k)(T − x0 +1). Our deterministic approach for calculating
annuity prices then proceeds as follows:

• The cohort will be aged x0 in year T + 1, x0 + 1 in year T + 2, . . ..

• Median estimates for the cohort’s death rates in years T + 1, T + 2, . . . are

log m̂(k)(T+t, x0+t−1) = β(k)(x0+t−1)+n−1
a

(
κ(k)(T ) + νκt

)
+n−1

a γ(k)(T−x0+1).

• Define p̂(k)(T, T + u, x0) = exp
[
−
∑u

t=1 m̂
(k)(T + t, x0 + t− 1)

]
, representing

the risk neutral probability that an individual in population k aged x0 at time
T survives to time T + u.

• The value at T of a temporary annuity payable annually in arrears for a max-
imum of U years is

ak(T, U, x0) =
U∑

u=1

e−rup̂(k)(T, T + u, x0), (4)

where r is the valuation interest rate.

The equivalent valuation at T of qk(T + U, x) is

EQ[qk(T + U, x)|MT ] = 1− exp (−m̂k(T + U, x))

which is required for a long-maturity q-forward.

As we will discuss later, the random-walk drift, νκ, plays a central role in the valu-
ation at T of assets and liabilities with cashflows that fall after time T .

4Alternative approaches for approximating mortality contingent functions have been proposed
by Denuit et al. (2010), Dowd et al. (2010a, 2011b), Plat (2010) and Cairns (2011).
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Figure 1: Recalibration risk for a random-walk sample path. Left: historical data up
to time 0 and median forecast (solid and dashed lines respectively). Middle: three
simulated sample paths up to time 10 (solid lines) plus revised median forecasts for
each (dashed lines) assuming a 35-year lookback window. Right: as the middle plot
but using a 20-year lookback window.

2.5 Recalibration risk

A key element of the difference between the simulation and valuation models con-
cerns recalibration at T of the model parameters. Consider, for example, the
random-walk model for κ(1)(t). Initially, we have data up to time 0 (25 observations,
Figure 1, left). The median forecast for a random walk is a linear extrapolation of
the sample path that connects the start and the end points of the observed path
up to time 0. In Figure 1, middle and right hand plots, we have added in three
simulated paths that take the random walk from time 0 to time T . At time T we
wish to make fresh forecasts of the random walk. The middle plot shows what the
median forecasts would be for these three simulations if we used all data up to time
T = 10 (35 observations in total) to estimate the model parameters, and we can
see that the gradient of the forecasts is very much dependent on the simulated path
taken between times 0 and T . Additionally, each forecast would be quite different if
we left the drift parameter unchanged from its time 0 estimate. These observations
echo those of Li and Chan (2005), who pointed out that the principal trend in mor-
tality forecasts is critically dependent on the first and last observations of κ(1)(t).
Additionally, they point out that forecasts are exposed to potential errors if either
the start or end point is considered to be an outlier for some reason.

In Figure 1, right, we show what the median forecasts look like if we use only the last
20 observations rather than all 35 to calibrate the parameters of the random-walk
model. Comparing the middle and the right-hand plots, we can see that the choice
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of 20 or 35 years for the calibration window can make a big difference in the forecast
beyond time T , adding to the concerns expressed by Li and Chan (2005).

The visualisations portrayed in Figure 1 are also reminiscent of Figure 9 in Zhou and
Li (2010). However, there, the different forecasts are related to model risk and the
treatment of potential structural changes, for example, in the drift of the random
walk.

But why would you use only 20 years rather than the full set of observations? In
a mortality setting, there is no clear initial observation date: for some countries we
have data that extends as far back as the 18th century, but we would not consider
using such a long run to calibrate a mortality model. Instead, a more subjective
judgment needs to be made to decide what length of recalibration window is appro-
priate in order to capture most closely what we think is the current trend and/or
volatility. An alternative, and more objective, approach is proposed by Booth et
al. (2002) by seeking to choose the window which has the best linear fit.

This line of thinking led Cairns et al. (2013) to argue that the parameters of the
valuation model be included as sources of risk in a risk assessment. However, we can
add that this might be regarded as a source of Knightian uncertainty (that is, a risk
that cannot easily be quantified statistically) because the length of the recalibration
window is not known, nor is it something that we can estimate from historical data.
The approach of Booth et al. (2002) to choosing the length of the lookback window
might be seen to reduce the amount of Knightian uncertainty, but their method is
not without criticism and other approaches can be justified. Additionally, not all
people involved in valuation act in such an objective way, and so we need to keep in
mind the possibility that different people will use different recalibration windows.

2.6 Initial conclusions of Cairns et al. (2013)

A principal finding of Cairns et al. (2013) was that inclusion of recalibration risk
was essential in the assessment of a longevity hedging strategy. They found that,
although total risk is much larger with the inclusion of recalibration risk, the cor-
relation between the liability and an index-linked hedging instrument also rose sig-
nificantly, and, hence, the hedge effectiveness. This was explained by the common
dependence of forecast values of κ(1)(T + s) and κ(2)(T + s) on the random-walk
drift, νκ.

Applying this to the present study of robustness, we can conclude that correlation
and hedge effectiveness are not robust relative to the inclusion or not of recalibration
risk. However, Cairns et al. (2013) made no comment on the robustness of the
corresponding hedge ratios or prices.
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3 Robustness

We now generalise our discussion of robustness to pose a range of questions.

How robust are estimates of

Q1S optimal static hedge ratios h1, . . . , hn (assuming n hedging instruments), or

Q1D optimal dynamic hedge ratios H1(t), . . . , Hn(t),

Q2 hedge effectiveness, and

Q3 initial (i.e. time 0) prices of hedging instruments π(H1), . . . , π(Hn)

relative to

R1 the treatment of parameter risk,

R2 the treatment of population basis risk,

R3 the treatment of recalibration risk in the valuation model (or, more generally,
the choice of valuation model and its calibration),

R4 the treatment of Poisson risk (sampling variation) in the simulated numbers
of deaths between times 0 and T ,

R5 the use of the most recent EW data (2006-2008), where corresponding CMI
data is not yet available, and

R6 the choice of simulation model and its calibration?

This paper will focus on quantities Q1S and Q2 and risks R1, R3, R4 and R5.

In addition to looking at a given quantity and its robustness, we can ask what are
the consequences if the quantity is not robust? For example, if our estimate of the
hedge ratio is not robust then there is a risk that we might buy too many or too few
units of the hedging instrument to achieve the targeted level of hedge effectiveness.
In particular, if we buy too much then the hedger might be paying a substantial risk
premium for excess units that are actually dragging down the hedge effectiveness,
perhaps down to zero. Additionally, (a problem that we do not consider here) a lack
of robustness in the combined assessment of hedge ratio, hedge effectiveness and
price might lead the hedger to make an inappropriate choice of hedging instrument
or reference population.
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3.1 Modelling variants

Drawing from Cairns et al. (2013) we will work our way through four variants of the
model that incorporate differing types of risk. The simulation model (Section 2.4.1)
is based on the stochastic two-population model proposed by Cairns et al. (2011a).
Model parameters are estimated under the Bayesian paradigm using Markov chain
Monte Carlo (MCMC) methods. The output from this includes information about
the joint posterior distribution for both the process parameters and the underlying
latent state variables (that is, the age, period and cohort effects).

PC: Full parameter certainty: In this case, simulations are conducted using the same
point estimate (the mean of the posterior distribution) for the process parameters
and latent state variables. In addition, the parameters of the valuation model are
calibrated using the historical data and fitted model up to 2005 (time 0), and not
recalibrated at the end of 2015 (time T = 10). There is no allowance for sampling
variation in simulated death counts between 2005 and 2015.

PC-R: Full parameter certainty but with recalibration in 2015: This case is the same
as the full PC variant except that the valuation model is recalibrated at the end of
2015. Thus, the simulation component of the exercise is unchanged from the full PC
variant, but the calibration of the valuation model at time T now depends on the
simulated sample path between times 0 and T (as well as the single historical sample
path up to time 0). There is no allowance for sampling variation in simulated death
counts between 2005 and 2015.

PU: Full parameter uncertainty with recalibration: The simulation model now in-
corporates full parameter uncertainty, drawing values for the process parameters
and the latent state variables up to the end of 2005 from the posterior distribution.
The valuation model is calibrated at the end of 2015 using simulated data up to the
end of 2015. There is no allowance for sampling variation in simulated death counts
between 2005 and 2015.

PU-Poi: Full PU with recalibration + Poisson risk: This case is the same as the
PU variant except that death counts between 2005 and 2015 now include levels of
sampling variation consistent with the historical sizes of the two populations and
with the Poisson assumption (see Cairns et al., 2011a).5 Specifically, population
1 exposures are at the same level as EW in 2005, while population 2 exposures are
1% of the CMI exposures in 2005. This means that population 2 has approximately
5900 lives across ages 50 to 89: typical of a medium/large sized pension plan that
might be considering hedging options.

The variants are summarised in Table 1.

5For alternatives to the Poisson assumption, see, for example, Li, Hardy and Tan (2009).



12

Variant Simulation Valuation Poisson
Model Model Risk

PC PC calibrated No
in 2005

PC-R PC recalibrated No
in 2015

PU PU recalibrated No
in 2015

PU-Poi PU recalibrated Yes
in 2015

Table 1: Inclusion of risk factors in the four modelling variants.

4 Numerical results

Recall from Section 2.2 that we have three options for our choice of hedging instru-
ment: deferred longevity swaps, q-forwards maturing at T , and q-forwards maturing
at some later date T + U . Initially, we will just consider the first two, but we will
then demonstrate that the use of longer-dated q-forwards offers some advantages
over contracts that mature at time T itself.
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Figure 2: Key statistics for L(T ) = a2(T, x) and H(T ) = q1(T, y) − qF1 (0, T, y) or
a1(T, y) − aF1 (0, T, y). Top left: S.D.(L(T )) against reference age x under the PC,
PC-R, PU and PU-Poi variants: dots highlight the key liability reference age of
x0 = 65. Middle row: S.D.(H(T )) against reference age y for (left) q-forwards and
(right) deferred longevity swaps. Bottow row: cor(L(T ), H(T )) for the fixed liability
reference age x0 = 65.
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4.1 Single-asset static strategies

In Figure 2 we have plotted some statistics that contribute to the hedge ratios
plotted in Figure 3. The top left plot shows how the standard deviation of the
liability at time T = 10 varies with the reference age x. The larger dots highlight
age x0 = 65 which is used for the liability in the remainder of the paper. These
standard deviations can be compared to a mean liability of around 15 (dependent
on the modelling variant). It can be seen that there is some variation with age,
as we might expect. More interesting, we can see that ignoring elements such as
recalibration risk, parameter uncertainty and even Poisson risk can significantly
understate the level of risk being carried by a pension plan, although, of these,
Poisson risk is the least important.6 Similar differences exist with the deferred
annuity as a hedging instrument (middle row, right). q-forward payoffs are not
at all dependent on recalibration at T so the PC and PC-R curves are identical
(middle row, left). Additionally, the PU and PU-Poi curves are indistinguishable
because of the large size of the EW population. The bottom row of Figure 2 shows
correlations under the four variants. q-forward correlations have been multiplied
by −1 to aid comparison.7 We can see that these curves are fairly flat, reflecting
the fact that the Age-Period-Cohort model has a single random period effect for
each population. The PC-R correlation (solid line) is much higher than the PC
correlation (lower dotted line) and this results from an additional common source
of risk (reflected most obviously in the top left and middle right plots), namely the
recalibrated improvement rate (for further discussion, see Cairns et al. 2013).8 The
addition of Poisson risk can be seen to reduce correlations significantly (the PU
dashed line drops to the PU-Poi line (upper dotted line)). However, the results in
Figure 3 indicate that, although Poisson risk causes cor (L,H) to fall, the covariance,
Cov (L,H), remains almost unchanged.9

In Figure 3 we have plotted the estimated hedge ratio (h = −Cov(L,H)/Var(H))
under the four variants PC, PC-R, PU, PU-Poi. In both plots, hedge ratios have
been calculated for a range of reference ages for the chosen hedging instrument. The
left-hand plot of Figure 3 shows hedge ratios using q-forwards, while the right-hand

6For further discussion of the impact of Poisson risk on run-off surplus, see Richards and Currie
(2009).

7The two sets of correlations in the bottom row of Figure 2 look almost identical but have
small differences. The similarity follows from the fact that uncertainty in the payoffs of the two
contracts is driven primarily by uncertainty in κ(1)(T ). The correlations differ because (a) there is
a slight non-linearity in the relationship between the q-forward payoff and the deferred longevity
swap payoff, and (b) differing impacts of parameter uncertainty and Poisson risk.

8A stylised example is the following. Let X1 = µ+ Z1 and X2 = µ+ Z2 where Z1 and Z2 are
independent standard normal random variables. If µ is assumed to be known, then cor(X1, X2) = 0.
If we treat µ as an additional source of risk that is independent of Z1 and Z2, then both the variances
of X1 and X2 are higher. However, additionally, Cov(X1, X2) = Var(µ) > 0 and so cor(X1, X2) is
increased.

9We abbreviate L(T ) by L and H(T ) by H wherever this will not cause confusion.
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plot shows corresponding results for deferred longevity swaps.

We can see that, under all variants, there is significant variation using q-forwards
(left-hand plot) in the hedge ratio over the range of reference ages. Primarily, this
reflects the magnitude of the expected value of q1(T, x), whereas the estimates of
hedge effectiveness (see the correlation plots in Figure 2 as a proxy for hedge
effectiveness) are relatively insensitive to the choice of reference age. This reflects
the dependence in this stochastic model of future mortality on a single period effect.

For the deferred longevity swap, competing factors come into play that balance each
other out to some extent. For younger reference ages, the annuity price at T values
payments over a longer period of time and uncertainty in κ(1)(T ) feeds through to
greater variation in these distant cashflows. For a higher reference age, the shorter
term cashflows become subject to greater uncertainty, but this is balanced by longer
term cashflows being smaller and less significant in terms of their contribution to
the risk profile.

Both plots reveal that there is a significant change in the magnitude of the hedge
ratio linked to the inclusion of recalibration risk. However, the further inclusion of
other forms of parameter uncertainty and Poisson risk (the PC-R, PU and PU-Poi
curves are hard to distinguish) have only a small impact on the estimated hedge
ratio.

We can conclude from this that, for this model, the hedge ratio is robust relative
to the inclusion of parameter uncertainty and Poisson risk, but not robust relative
to the inclusion of recalibration risk. But, concerning the latter point, we can also
remark that deferred longevity swaps would be preferred to q-forwards maturing at
T since the the difference between the PC and PC-R/PU/PU-Poi hedge ratios is
smaller.

The conclusion that the hedge ratio is robust relative to the inclusion of parameter
uncertainty and Poisson risk contrasts with estimates of the corresponding hedge
effectiveness illustrated in Cairns et al. (2013). There, it was demonstrated that the
inclusion of parameter uncertainty and Poisson risk could have a moderate impact
on the hedge effectiveness (but less than the inclusion of recalibration risk unless
population 2 is much smaller than that considered here).

Within the constraints of an index-based hedge, this would not be a problem. How-
ever, if alternatives to the index-based hedge are also being considered, then a com-
parison of the hedge effectivenesses is appropriate, and so inclusion of parameter
uncertainty and Poisson risk is important, especially if the hedger’s population is
relatively small.
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4.2 Theoretical support

The observation, based on these numerical results, that optimal hedge ratios are
robust relative to the inclusion of parameter uncertainty and Poisson risk can be
supported by developing a theoretical argument.

The liability is approximately linear in the β(2)(y) (for y ≥ x), κ(2)(T ), γ(2)(T−x+1)
and νκ (see Cairns et al., 2013) within the likely range of these parameters.

Start with a given liability, L, and hedge instrument value, H. The optimal hedge
ratio is h = Cov(L,H)/Var(H). Now suppose we replace L by L̃ = L+ZL where ZL

is additional noise that is uncorrelated with L and H. This lack of correlation means
that Cov(L̃,H) = Cov(L,H) and so the optimal hedge ratio h̃ = h is unchanged.
On the other hand, if H is replaced by H̃ = H +ZH where ZH is uncorrelated with
L, H and ZL, Cov(L̃, H̃) will still equal Cov(L,H) but Var(H̃) will be larger and
so the optimal hedge ratio will be smaller.

The inclusion of parameter uncertainty in simulations will have a greater impact
on population 2: this population is much smaller and so Poisson variation in the
historical data up to 2005 will result in greater uncertainty in estimates of the
latent state variables.10 But, arguably, this additional parameter uncertainty will
be largely uncorrelated with the future uncertainty in κ(1)(T ) and κ(2)(T ). Thus, we
conclude that additional noise resulting from the inclusion of parameter uncertainty
contributes to approximately uncorrelated additional risks ZL and ZH to L and H
respectively. As remarked above, ZL has no impact on the optimal hedge ratio,
while the empirical results suggest that ZH is insignificant given the very small (but
nevertheless observable) decrease in the magnitude of the PU curve relative to the
PC-R curve (Figure 3).

A similar argument applies when we incorporate Poisson risk in simulated death
counts in 2006 to 2015. So long as population 1 is relatively large, the resulting
ZH additional risk will be insignificant. So long as Poisson risk results in additional
uncorrelated randomness in L, the size of population 2 does not play a role in the
setting of the hedge ratio (other than scaling up to account for the total amount
annuity payable).

Key points concerning the use of this theoretical approximation are as follows. First,
it helps us to develop an intuitive feel for the more complex numerical results.
Second, we emphasize that similar theoretical approximations can be developed for
other stochastic mortality models to help develop hedging strategies in these other
circumstances.

10See, for example, Cairns et al., 2011a, Figure 4.
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4.3 Robustness relative to the recalibration window

Figure 4 investigates robustness relative to the choice of the recalibration window:
W = 20 or 35 years under the PC-R variant (Figure 3 uses W = 20). Again we
see that the estimated hedge ratio for both hedging instruments lacks robustness
relative to the choice of W . And, again, we see that although the deferred longevity
swap strategy lacks robustness, it is still to be preferred to a q-forward strategy,
where the q-forward matures at the valuation date T .

These differences between the robustness of q-forwards and deferred longevity swaps
are linked to their dependence, and that of the underlying liability, L = −a2(T, 65),
on κ(1)(T ) and its drift parameter, νκ.

The q-forward payoff, q(T, x), is dependent on β(1)(x), κ(1)(T ) and γ(1)(T − x). In

the PC and PC-R variants, β
(1)
x , and γ(1)(T − x) are constant. In the PU and

PU-Poi variants they are subject to only modest amounts of uncertainty relative to
uncertainty in κ(1)(T ). So, as a first approximation, uncertainty in the q-forward
payoff depends solely on uncertainty in κ(1)(T ). A similar argument (see Section
2.4.2), reveals that uncertainty in the value of the deferred longevity swap at T
depends upon κ(1)(T ) and the recalibrated drift, νκ. In Figure 4, the large relative
change in the q-forward hedge ratio when W changes from 20 to 35 reflects the
q-forward’s lack of dependence on νκ and the fact that νκ (which affects the liability
valuation) depends directly on κ(1)(T ). The more modest change in the deferred
longevity swap hedge ratio reflects the different relative dependence of the liability
and the hedging instrument on κ(1)(T ) and νκ.

11

4.4 Using longer-dated q-forwards

In order to address the perceived deficiencies of the q-forward maturing at T relative
to a deferred longevity swap, we now consider the use of q-forwards that mature at
later dates than T , since their value at T will depend now on νκ. Specifically, the
revised hedging instrument will be the (T + U, 54 + T + U) q-forward: that is, as
we extend the maturity date we continue to refer to the same cohort aged 54+T in
year T .

In Figure 5 we investigate how the hedge ratio varies with outstanding term to ma-
turity, U , when the recalibration window W is 20 or 35 years. As in Figure 3, the
decreases in magnitude of the hedge ratio simply reflect the increasing magnitude
and riskiness in absolute terms of the q-forward as the reference age increases. How-
ever, we also see that the ratio between the W = 35 and W = 20 curves narrows
as U increases (an extra 28% when U = 0, compared with an extra 11% when

11The greater sensitivity of the deferred longevity swap hedge ratio to W for higher reference
ages reflects the fact that the underlying annuity price becomes relatively more sensitive to changes
in κ(1)(T ) and less sensitive to νκ.
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Figure 5: Optimal hedge ratios using a single long-maturity q-forward as the hedging
instrument under the PC-R modelling variant. Lookback window isW = 20 (dashed
line) orW = 35 (solid line) years. Plotted shows hedge ratio against the outstanding
maturity, U , after time T = 10 of the q-forward. The U = 0 dots correspond to the
x = 65 dots in Figure 4 (left-hand plot).

U = 10), and this reflects the increasing relative dependence of the value at time T
of the q-forward on νκ.

Thus, for the liability L = a2(T, 65), a q-forward with a maturity of more than
T + U = 20 years seems to be comparable with a deferred longevity swap.12 For
example, it might be linked in some way to the duration of the liabilities. This is
helpful, since the q-forward contract is a simpler contract and much more likely to
find a place in the index-based longevity market.

12We leave for future work an investigation of whether a general rule of thumb can be developed
for choosing the most appropriate value of U .
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5 Improving robustness: Nuga hedging

5.1 Motivation

In the model with recalibration at T , νκ is equal to (κ(1)(T )− κ̂(1)(T −W ))/W . It
follows that if T −W is in the past (that is, not after time 0), and if we know the
value of W , then uncertainty in νκ can simply be represented by a linear function
of κ(1)(T ). The liability at T can then be decomposed into an approximate linear
function of κ(1)(T ) plus additional uncorrelated risks, and the hedge instrument
value at T will, approximately, be primarily a linear function of κ(1)(T ). So, if W
is known, then it will be sufficient in the context of this stochastic model, to use a
single hedging instrument and to calculate hedge ratios using a methodology that
incorporates recalibration risk.

In reality, W is not known, and the valuation νκ might even be calculated using other
unknown methods. Thus, W and νκ can be regarded as being exposed to sources of
Knightian uncertainty, since there is no data that we can use to make the calculation
of νκ precise: it is a matter of judgment in the hands of those who value and price
the liabilities and hedging instruments. So we have an additional source of risk on
top of κ(1)(T ), suggesting that the use of a second hedging instrument might help
us to find a more robust solution to the hedging problem.

We will use the expression Nuga hedging13 to refer to strategies that aim to min-
imise our exposure to risk associated with the choice of W and the method used to
recalibrate the random-walk drift νκ. The idea behind Nuga hedging is similar in
concept to Vega hedging in equity derivatives. Specifically, we aim to reduce the risk
associated with recalibration of a model parameter that is supposed to be constant.
Since Vega hedging refers to a volatility parameter rather than a drift parameter we
have chosen to refer to hedging against the risk in νκ using a different name.

5.2 Delta and Nuga

The hedging strategies employed in Section 4 can be regarded as Delta hedging
strategies on the assumption that νκ is an explicit linear function of κ(1)(T ). We
will now introduce Delta hedging in its proper form where we aim to hedge against
uncertainty in the state variable κ(1)(T ) on the assumption that all other parameters
and state variables in the model remain unchanged.

The valuation model outlined in Section 2.4.2 allows us to simulate annuity prices
at future dates. Specifically, let x0 be the age at time T of a cohort for whom we
wish to price an annuity.

Now suppose that we have data up to time 0 and that we seek to hedge the risk at

13The name Nuga is derived from the drift parameter, νκ.
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time T . Assume, also, that we already have estimates for γ(k)(T − x0 + 1): that is,
our dataset up to time 0 includes age x0 − T − 1. This means that, at least in a
parameters certain world, there is no future uncertainty in the value of the cohort
effect for the cohort aged x0 at time T . For hedging purposes, therefore, ak(T, U, x0)
is a function of κ(k)(T ) and νκ.

Using the deterministic approach to valuation and formulae in Section 2.4.2, we
have:

∂p̂(k)(T, T + u, x0)

∂κ(k)(T )
= −p̂(k)(T, T + u, x0)

u∑
t=1

m̂(k)(T + t, x0 + t− 1)/na

and

∂p̂(k)(T, T + u, x0)

∂νκ
= −p̂(k)(T, T + u, x0)

u∑
t=1

tm̂(k)(T + t, x0 + t− 1)/na

⇒ ∂ak(T, U, x0)

∂κ(k)(T )
= −

U∑
u=1

e−rup̂(k)(T, T + u, x0)
u∑

t=1

m̂(k)(T + t, x0 + t− 1)/na

and

∂ak(T, U, x0)

∂νκ
= −

U∑
u=1

e−rup̂(k)(T, T + u, x0)
u∑

t=1

tm̂(k)(T + t, x0 + t− 1)/na.

We now use the first order Taylor approximation to write

L = a2(T, x) ≈ L0 +∆L(κ
(2)(T )− κ̂(2)(T )) +NL(νκ − ν̂κ), (5)

where

∆L =
∂a2(T, U, x0)

∂κ(2)(T )
and NL =

∂a2(T, U, x0)

∂νκ
.

All Deltas and Nugas are evaluated at the best estimates of κ(1)(T ), κ(2)(T ) and νκ
using data available at time 0, since the static hedging strategy must be determined
at time 0.

Similarly, we have two hedging instruments with value at T ,

Hi ≈ Hi0 +∆Hi(κ
(1)(T )− κ̂(1)(T )) +NHi(νκ − ν̂κ). (6)

For notational convenience, write ϵi = κ(i)(T )− κ̂(i)(T ) and ϵν = νκ − ν̂κ.

5.3 Delta hedging only

Simple Delta hedging ignores the risk associated with ϵν meaning that hedging can
be done with a single asset, in other words mimicking the PC variant in Section 4.
Thus, hedging with hedging instrument 1, we adopt a hedge ratio of

h =
∆L

∆H1

Cov(ϵ1, ϵ2)

Var(ϵ1)
.
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In this way Var(L− hH1) would be minimised under the PC variant.

5.4 Delta and Nuga hedging

Next we seek to choose h1 and h2 to minimise Var(L−h1H1−h2H2) without making
any assumptions about the distribution of νκ (i.e. ϵν) or its dependence on ϵ1 and
ϵ2.

First, we choose to write ϵ2 = αϵ1+ϵ̃2, where the specific choice of α = Cov(ϵ1, ϵ2)/Var(ϵ1)
results in Cov(ϵ1, ϵ̃2) = 0. We will also make the assumption that Cov(ϵ̃2, ϵν) = 0
(consistent with the assumption that, whatever the method of recalibration is, νκ is
set with reference to population 1 only). Then,

L ≈ L0 +∆Lαϵ1 +∆Lϵ̃2 +NLϵν ,
H1 ≈ H10 +∆H1ϵ1 +NH1ϵν ,
H2 ≈ H20 +∆H2ϵ1 +NH2ϵν .

(7)

For Delta and Nuga hedging we recognise that nothing can be done about the
residual risk ϵ̃2, so we seek to neutralise ∆Lαϵ1 and NLϵν through holding h1 and
h2 units respectively of H1 and H2. This is achieved through solving:

h1∆H1 + h2∆H2 = α∆L (8)

and h1NH1 + h2NH2 = NL. (9)

It then follows that the revised deficit at T is

P = L− h1H1 − h2H2 ≈ L0 +∆Lϵ̃2.

In other words, the only risk we are left with is the uncorrelated population 2 specific
risk, ∆Lϵ̃2.

Remark 5.4.1

Assume exact, rather than approximate, linearity in equations (7). Additionally,
assume that νκ = (κ(1)(T ) − κ(1)(T − W ))/W for a known value of W , implying
that ϵν = ϵ1/W , cor(ϵ1, ϵν) = 1 and Cov(ϵν , ϵ̃2) = 0. Since W is known, one
hedging instrument would be sufficient. Here we have two, and so there are many
different combinations of (h1, h2) that minimise risk. Furthermore, these pairs of risk
minimising (h1, h2) lie on a straight line that depends upon the known W . Different
W ’s will result in different straight lines, but all of these lines will intersect at the
same point: the Delta and Nuga hedged portfolio.

Remark 5.4.2

With the same assumptions as Remark 5.4.1, the minimum residual risk will always
be ∆2

LVar(ϵ̃2) and the optimal hedge effectiveness

R2 = 1− ∆2
LVar(ϵ̃2)

Var(L)
.
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However, note that Var(L) and, hence, the optimal R2 depend on the method of
calibrating νκ.

5.5 Numerical example 1: hedging with deferred longevity
swaps

In our first example, we assume that the hedger wishes to use deferred longevity
swaps that are linked to two cohorts aged 65 and 85 at time T , payable until some
high age (we have assumed age 130). So

H1 = a1(T, 65)− aF1 (0, T, 65), and H2 = a1(T, 85)− aF1 (0, T, 85).

We compare four strategies using these two hedging instruments.

• Strategy A: no hedging.

• Strategy B: h1 = 0.8775, h2 = 0. This strategy is optimal if we know that νκ
is recalibrated using a W = 20-year window.

• Strategy C: h1 = 0.8291, h2 = 0. This strategy is optimal if we know that νκ
is recalibrated using a W = 35-year window.

• Strategy D: h1 = 1.3376 and h2 = −0.7199. This is the Delta-Nuga hedge
solving equations (8) and (9).

The calculation of all of these hedge ratios uses simulated data and, therefore, is
subject to simulation error. For strategy B the standard error of the estimate of h1

is 0.0088 and strategy C 0.0110. For strategy D, simulation error only affects the
solution to equations (8) and (9) through the parameter α = Cov(ϵ1, ϵ2)/V ar(ϵ1) =
Cov

(
κ(1)(T ), κ(2)(T )

)
/V ar

(
κ(1)(T )

)
. This leads, in strategy D, to standard errors

of 0.0103 and 0.0299 for the estimates for h1 and h2 respectively. In all cases,
potential errors in the hedge ratios have been verified to have no material impact
on the conclusions that we draw below.

We now look at the performance of these three strategies if, in reality, W = 20 or
W = 35. Results are given in Table 2.

These results are based on 1000 simulated scenarios in each of the two cases for
W . For W = 20 (upper half of Table 2), strategy B is the best for these 1000
scenarios and so C and D cannot be any better. Theoretically, strategy D would
be just as good, but because it has been determined using a numerical method not
involving the simulated scenarios, and because of slight non-linearities with respect
to the κ(k)(T ) and νκ in the annuity functions, strategy D is not quite as effective
as strategy B. However, we see that although strategy C is worse, the differences
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H1 H2 Var(Surplus) Hedge Rank
Strategy h1 h2 Effectiveness

W = 20
A 0 0 0.3481 0
B 0.8775 0 0.03202 0.9080 (1)
C 0.8291 0 0.03298 0.9052 (3)
D 1.3376 -0.7199 0.03209 0.9078 (2)

W = 35
A 0 0 0.2233 0
B 0.8775 0 0.03353 0.8498 (3)
C 0.8291 0 0.03289 0.8527 (1)
D 1.3376 -0.7199 0.03298 0.8523 (2)

Table 2: Description and outcome of hedging strategies A, B, C and D, using deferred
longevity swaps, under the PC-R variant with lookback windows of W = 20 (upper
half of table) or W = 35 (lower half) years. H1 = a1(T, 65) − aF1 (0, T, 65), and
H2 = a1(T, 85)− aF1 (0, T, 85).

between the hedge effectiveness of strategies B, C and D are all very small. So, in
this case, the benefits of Delta-Nuga hedging are not that great.

When W = 35 (lower half of Table 2), strategy C is now best by definition, but
again the differences between strategies B, C and D are minimal.

The reason for these small differences is linked to the results displayed in Figure 4.
The moderate difference in the hedge ratios 0.8775 and 0.8291 converts into a much
smaller reduction in hedge effectiveness (which is quadratic in the hedge ratio). The
key point is that for strategies B and C, if νκ decreases, then the values of both the
liability and the hedge instrument will react in similar ways. This contrasts with
the use of a q-forward maturing at time T which we will see in our next example.
In this case, changing νκ will have an impact on the liability, but there will be no
impact on the q-forward payoff at T .

5.6 Numerical example 2: hedging with q-forwards

In our second example we switch to the use of q-forwards for hedging. Instrument
1 is a q-forward maturing at time T = 10 linked to age 64, and instrument 2 is
a q-forward maturing at time 35 linked to age 89 (so both are linked to the same
cohort, but mature 25 years apart).

We compare four strategies using these two hedging instruments.

• Strategy A: no hedging.
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• Strategy B: h1 = −500.7 (S.E.=5.2), h2 = 0. This strategy is optimal if we
know that νκ is recalibrated using a W = 20-year window.

• Strategy C: h1 = −391.0 (S.E.=5.2), h2 = 0. This strategy is optimal if we
know that νκ is recalibrated using a W = 35-year window.

• Strategy D: h1 = −33.2 (S.E.= 5.1) and h2 = −34.8 exp(25r) = −94.5 (S.E.=
014) (where r = 0.04 is the discount rate). This is the Delta-Nuga strategy.

H1 H2

Strategy h1 h2 Var(Deficit) Hedge Eff.

W = 20
A 0 0 0.3481 0
B -500.7 0 0.03435 0.9013 (1)
C -391.0 0 0.04940 0.8581 (3)
D -33.2 -94.5 0.04012 0.8848 (2)

W = 35
A 0 0 0.2233 0
B -500.7 0 0.04882 0.7714 (3)
C -391.0 0 0.03392 0.8481 (1)
D -33.2 -94.5 0.03516 0.8426 (2)

Table 3: Description and outcome of hedging strategies A, B, C and D, using deferred
longevity swaps, under the PC-R variant with lookback windows of W = 20 (upper
half of table) or W = 35 (lower half) years. H1 = q1(T, 64) − qF1 (0, T, 64), and
H2 = exp(−25r)

{
EQ[q1(T + 25, 89)|MT ]− qF1 (0, T + 25, 89)

}
.

Table 3 shares many basic characteristics with Table 2. In a perfectly linear world,
strategy B in the W = 20 case would deliver the same optimal hedge effectiveness in
both Tables 2 and 3. The result in Table 3 is slightly less good, indicating that the
minor non-linearities in a2(T, 65) are slightly better matched by the non-linearities
in a1(T, 65) than q1(T, 64). In contrast to Table 2, we see that, when W = 20,
strategy C has a significantly lower hedge effectiveness than strategy B, and, when
W = 35, B is much worse than C. However, in both cases, strategy D, the Delta-
Nuga hedging strategy, produces results that are robust in the sense that its hedge
effectiveness is very close to the optimal value.

Again, in all cases, potential errors in the hedge ratios have been verified to have no
material impact on the conclusions that have been drawn, including in Strategy D
where the standard error of h1 seems quite large.

14Standard errors for strategy D depend only on uncertainty in our estimate of the parameter
α in the solutions to equations (8) and (9). For our chosen hedging instruments, NH1 = 0 and so
h2 = −NL/NH2, which is not dependent on α. So the standard error of h2 is zero.
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5.7 Further remarks

In the second numerical example, we also considered hedging with 10-year and 20-
year q-forwards (instead of 10 and 35 years). In this case the Delta-Nuga hedge
required h1 = 279.6 and h2 = −382.5 units. A long-short position like this might
give rise to additional counterparty risk and also greater exposure to model risk.

The 10 and 35 year maturities for the q-forwards were chosen to straddle the relative
sensitivity of the liability to uncertainty in κ1(T ) and νκ.

15 The use of 10 and 20-year
maturities does not satisfy this requirement.

We have assumed here that valuation models are calibrated using a version of the
Age-Period-Cohort model. In this case, Delta-Nuga hedging will deal with a range
of mechanisms for calibrating the νκ parameter. We leave for further work an anal-
ysis of robustness relative to the choice of valuation model. However, one might
conjecture that hedging instruments that share fewer characteristics with the un-
derlying liability (such as q-forwards relative to deferred longevity swaps) are less
robust relative to model risk.

6 Robustness relative to other factors

The paper has focused mainly on the inclusion of recalibration risk. However, we
have also discussed how results for hedge ratios appear to be robust relative to the
inclusion of other forms of parameter risk and Poisson risk. At the same time, we
remarked earlier that hedge effectiveness is slightly less robust relative to these same
two risk factors.

6.1 Poisson risk

Consider Poisson risk a bit further. Intuition might suggest that the smaller the
pension plan, the less useful an index-linked hedging instrument might be. But
we have demonstrated empirically with support from general reasoning, that the
optimal hedging strategy should not be affected disproportionately by the size of
the pension plan, if we take it as given that an index-based hedge is to be used.
Additionally, in the context of exponential utility, we provide an argument in Ap-
pendix A that the price that a plan should be prepared to pay per unit of hedging
instrument should not be sensitive to the size of the plan, provided large and small
plans have the same exponential utility function at time T .

15A helpful analogy lies in interest-rate risk management. If we are hedging against parallel
shifts in the yield curve and have a positive liability with a duration of DL years, then if we hedge
with two zero-coupon bonds, one with a maturity less than DL and one with a higher duration,
then the duration matched position will have positive holdings of both of the zero-coupon bonds.
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On the other hand, the results of Cairns et al. (2013) and Li and Luo (2012) both
point to a reduction in hedge effectiveness when we move from a large pension plan to
a small plan. From our remarks above on the robustness of the index-based hedging
strategy itself, we conclude that a small plan should only consider adoption of a
different strategy if there is an alternative to non-index-based hedging that results
in a higher hedge effectiveness or at lower cost. As remarked at the beginning of this
paper, customised longevity swaps are only available to large pension plans. But
small pension plans do have access to the individual annuities market. These will
be significantly more expensive than a longevity swap or an index-based hedge, but
would result in a much higher reduction in risk (e.g. variance) for a small pension
plan compared with an index-based hedge. So there will be a tradeoff, and, even
though the index-based hedge is robust relative to plan size, we would argue that
there will be a threshold plan size, below which individual annuitisation would be
preferred to an index-based hedge.

6.2 Using the latest EW data

The analysis so far has used EW and CMI data up to 2005, this being the lat-
est year for which we have CMI data. But EW data is available up to 2008
(www.mortality.org).

The Bayesian methodology of Cairns et al. (2011a) allows the 2-population model
to be fitted using EW data up to 2008 while treating CMI data for 2006-2008 as
missing data. Once implemented, it allowed us to refine estimates of the joint distri-
bution of all relevant state variables at the end of 2015 (especially the distribution of
(κ(1)(T ), κ(2)(T ))). We found empirically that a single instrument hedge (assuming
W = 20) was robust relative to the incorporation of EW data for 2006-2008. If
(κ(1)(t), κ(2)(t)) was a bivariate random-walk with correlated innovations, it can be
demonstrated that additional knowledge of κ(1)(t) for, say, t = 1, 2, 3, would not
alter the optimal hedge ratio,16 while the optimal hedge effectiveness would fall. In
our model, however, (κ(1)(t), κ(2)(t)) is not a bivariate random walk and so there
is not a theoretical argument to support our empirical observation of robustness.17

However, it is probably the slow rate of mean reversion of the spread between κ(1)(t)
and κ(2)(t) that results in something close to a bivariate random walk up to time T ,
and, hence, empirically we see that the hedging strategy is robust.

Finally, we note that, although we have not evaluated it, the price would change to
reflect the altered mean and covariance matrix for (κ(1)(T ), κ(2)(T )).

16Individually, Cov(L,H) and Var(H) are both scaled by a factor of (10 − 3)/10 = 0.7, so the
hedge ratio h = −Cov(L,H)/Var(H) remains unchanged.

17That is, Cov(L,H) and Var(H) are scaled by different factors.
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7 Conclusions

In this paper we reinforce the earlier conclusions of Cairns et al. (2013) in finding
that simple hedging strategies are not robust relative to the inclusion of recalibration
risk. In contrast, hedging strategies are found to be robust relative to the inclusion
of parameter uncertainty, Poisson risk and the latest EW data.

We have found that the use of index-based q-forwards that mature on our target
valuation date, T , are less robust than contracts (q-forwards or deferred longevity
swaps) that have longer maturities. Since a market in q-forwards is more likely
than deferred longevity swaps, we recommend that participants in the market give
consideration to the issuance of long-dated q-forwards.

We have introduced the notion of Nuga hedging, and we have demonstrated how
the use of Delta-Nuga hedging results in strategies that are robust relative to un-
certainties in the calibration of the key drift parameter, νκ.

As remarked earlier, these are just the first steps in the direction of developing
robust hedges in the presence of (Knightian) recalibration methodology risk and
model risk.18 We leave the latter for more detailed analysis in further work.

An additional direction for further research would involve a comparison of dynamic
hedging with the results for static hedging in this paper. Dynamic hedging should,
in general, be better than static hedging, as, for example, demonstrated in Cairns
(2011). However, for the problem being considered here (that is, a path-independent
value hedging problem where the outcome at time T depends only on the mortality
curve at T ) the linearisation outlined in equations (5) and (6) turns out to be highly
accurate as an approximation to the unlinearised output from the valuation model.
As a consequence, we conjecture that, in this case, dynamic hedging would result in
only a modest improvement over static hedging.
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A Optimal hedge ratios under exponential utility

We consider here a very simple model to highlight some basic ideas in deriving a
hedge ratio.

• It is a one-period model.

• Initial wealth at time 0 is w0.

• The hedger has an existing liability to pay an amount L(T ) at time T (e.g.
L(T ) = a2(T, 65)).

• The hedger can invest from time 0 to time 1 in cash earning a risk-free rate
of interest of r (continuously compounding), or in a hedging instrument that
costs H(0) to buy per unit at time 0 and returns H(T ) at time T .

If the hedger buys h units of the hedging instrument at time 0 then her wealth
at time 1 is WT (h) = w0e

r − L(T ) + h (H(T )−H(0)er).

• (H(T ), L(T )) is assumed to be bivariate normal and we write it as

H(T ) = µ1 + σ11Z1

L(T ) = µ2 + σ21Z1 + σ22Z2

where Z1 and Z2 are independent standard normal random variables, σ2
11 =

V ar(H(T )), σ11σ21 = Cov (H(T ), L(T )) and σ2
21 + σ2

22 = V ar(L(T )).

Assume (without loss of generality) that σ11 > 0, σ21 > 0 and σ22 > 0.

• The hedger has an exponential utility function:

u(w) = − exp(−γw), where γ > 0.

It follows that

E[u(W1(h))] = − exp

[
−γ (w0e

r − µ2 − h (µ1 −H(0)er)) +
1

2
γ2

(
(hσ11 − σ21)

2 + σ2
22

)]
.

The hedger wishes to maximise her expected utility, and this is equivalent to min-
imising

f(h) = h(H(0)er − µ1) +
1

2
γ(hσ11 − σ21)

2.

The optimal hedge ratio, h∗, is then19

h∗ =
σ21

σ11

(
1− (H(0)er − µ1)

γσ11σ21

)
.

19This matches equation (2.3) of Zhou et al. (2011) . Zhou et al. develop this idea further to
derive the equilibrium price, x1, at which supply equals demand. In a non-mortality context, and
in a more general setting with multiple investors and additional risky assets, the problem has also
been considered by Cairns (2001).



30

Thus h∗ consists of two parts. σ21/σ11 is the hedge ratio that minimises the variance
of the hedger’s wealth at time 1. However, this is scaled back depending on:

• The hedger’s risk aversion parameter, γ. The higher γ is, the higher is the
hedger’s risk aversion and the closer the hedge ratio will be to the variance
minimising σ21/σ11.

• The risk premium demanded by the hedge provider, H(0)er − µ1. The higher
the risk premium, the smaller the optimal hedge ratio: that is, the hedger will
wish to buy less.

• If the covariance, σ11σ21, is larger, then the hedge ratio will be closer to the
variance minimising σ21/σ11. Thus for a given price, H(0), the hedger will be
prepared to buy more units of H(T ) if the correlation between H(T ) and L(T )
is larger.

We can also see that the hedger will only adopt the minimum risk portfolio (i.e.
minimum variance) if either the risk premium is zero (H(0) = µ1e

−r) or the hedger
is infinitely risk averse.

The marginal price at which the hedger will begin to go long in the hedging asset is
the value of H(0) at which the optimal h∗ is equal to 0: that is,

H(0)M = e−r (µ1 + γσ11σ21) .

If the actual price is below H(0)M , then the hedger will have a positive position
(h∗ > 0). Thus, the hedger will be willing to remain long up to a higher upper limit,
H(0)M , if either the hedger is more risk averse or if the covariance between H(T )
and L(T ) is higher (equivalently, correlation, if the variances are fixed) so that the
benefits of hedging are greater.

Important points (assuming exponential utility):

• h∗ does not depend on the extent of the unhedgeable risk σ22Z2, nor does the
minimum variance hedge ratio, σ21/σ11.

• The marginal price below which hedgers will take a long position, H(0)M , is
also not dependent on the extent of the unhedgeable risk σ22Z2.

In other words, if H(T ) is the only available asset for hedging and, in the context of
exponential utility, if γ is fixed, then the optimal strategy for a small hedger with
more unhedgeable risk would be the same as for a large hedger.



31

References

Blake, D., Cairns, A.J.G., and Dowd, K. (2006) Living with mortality: Longevity
bonds and other mortality-linked securities. British Actuarial Journal, 12: 153-197.

Börger, M., Fleischer, D., and Kuksin. N.2012 Modeling mortality trend under
modern solvency regimes. Working paper, University of Ulm.

Booth, H., Maindonald, J., and Smith, L. (2002) Applying Lee-Carter under condi-
tions of variable mortality decline. Population Studies, 56: 325-336.

Cairns, A.J.G. (2001) From financial economics to fair valuation. In Proceedings
of the 11th International AFIR Colloquium, Toronto, September 2001, Volume 1,
pp135-166.

Cairns, A.J.G. (2011) Modelling and management of longevity risk: approximations
to survival functions and dynamic hedging. Insurance: Mathematics and Economics,
49: 438-453.

Cairns, A.J.G., Blake, D., and Dowd, K. (2008) Modelling and management of
mortality risk: A review. Scandinavian Actuarial Journal, 108: 79-113.

Cairns, A.J.G., Blake, D., Dowd, K., Coughlan, G.D., Epstein, D., Ong, A., and
Balevich, I. (2009) A quantitative comparison of stochastic mortality models using
data from England & Wales and the United States. North American Actuarial
Journal, 13: 1-35.

Cairns, A.J.G., Blake, D., Dowd, K., Coughlan, G.D., and Khalaf-Allah, M. (2011a)
Bayesian stochastic mortality modelling for two populations, ASTIN Bulletin, 41:
29-59.

Cairns, A.J.G., Blake, D., Dowd, K., and Coughlan, G.D. (2013) Longevity hedge
effectiveness: A decomposition. To appear in Quantitative Finance.

Coughlan, G.D., Emery, S. and Kolb, J. (2004) HEAT (Hedge Effectiveness Analysis
Toolkit): A consistent framework for assessing hedge effectiveness under IAS 39 and
FAS 133, Journal of Derivatives Accounting, 1(2): 221-272.

Coughlan, G., Epstein, D., Sinha, A., and Honig, P. (2007) q-forwards: Derivatives
for transferring longevity and mortality risk. Available at www.lifemetrics.com.

Coughlan, G.D., Khalaf-Allah, M., Ye, Y., Kumar, S., Cairns, A.J.G., Blake, D.
and Dowd, K., (2011) Longevity hedging 101: A framework for longevity basis risk
analysis and hedge effectiveness. North American Actuarial Journal, 15: 150-176.

Currie, I.D. (2011) Modelling and forecasting the mortality of the very old. ASTIN
Bulletin, 41: 419-427.

Dahl, M., Melchior, M., and Møller, T. (2008) On systematic mortality risk and
risk minimisation with survivor swaps. Scandinavian Actuarial Journal, 2008(2-3):



32

114-146.

Dahl, M., Glar, S., and Møller, T. (2009) Mixed dynamic and static risk minimiza-
tion with an application to survivor swaps. 19th International AFIR Colloquium,
Munich, September 2009.

Denuit, M., Haberman, S., and Renshaw, A.E. (2010) Comonotonic approximations
to quantiles of life annuity conditional expected present values: Extensions to general
ARIMA models and comparison with the bootstrap. ASTIN Bulletin, 40: 331-349.

Dowd, K., Blake, D., and Cairns, A.J.G. (2006) Mortality-dependent financial risk
measures. Insurance: Mathematics and Economics, 38: 427-440.

Dowd, K., Blake, D., and Cairns, A.J.G. (2010a) Facing up to uncertain life ex-
pectancy: The longevity fan charts. Demography, 47: 67-78.

Dowd, K., Cairns, A.J.G., Blake, D., Coughlan, G.D., and Khalaf-Allah, M. (2011a)
A gravity model of mortality rates for two related populations. North American
Actuarial Journal, 15: 334-356.

Dowd, K., Blake, D., and Cairns, A.J.G. (2011b) A computationally efficient al-
gorithm for estimating the distribution of future annuity values under interest-rate
and longevity risks. North American Actuarial Journal, 15: 237-247.

Dowd, K., Blake, D., Cairns, A.J.G., Coughlan, G.D. (2011c). Hedging pension risks
with the age-period-cohort two-population gravity model. Seventh International
Longevity Risk and Capital Markets Solutions Conference, Frankfurt, September
2011.

Jarner, S.F., and Kryger, E.M. (2011) Modelling adult mortality in small popula-
tions: The SAINT model. ASTIN Bulletin, 41: 377-418.

Li, S.H., and Chan, W.S. (2005) Outlier analysis and mortality forecasting: the
United Kingdom and Scandinavian countries. Scandinavian Actuarial Journal, 2005(3):
187-211.

Li, J.S.-H., Hardy, M.R., and Tan, K.S. (2009) Uncertainty in model forecasting:
An extension to the classic Lee-Carter approach. ASTIN Bulletin, 39: 137-164.

Li, J.S.-H., and Luo, A. (2012) Key q-duration: A framework for hedging longevity
risk. ASTIN Bulletin, 42: 413-452.

Li, J.S.-H., and Hardy, M.R. (2011) Measuring basis risk in longevity hedges. North
American Actuarial Journal, 15: 177-200.

Li, N., and Lee, R. (2005) Coherent mortality forecasts for a group of populations:
An extension of the Lee-Carter method. Demography, 42(3): 575-594.

Olivieri, A. and Pitacco, E. (2009) Stochastic mortality: The impact on target
capital. ASTIN Bulletin, 39: 541-563.

Plat, R. (2009) Stochastic portfolio specific mortality and the quantification of mor-



33

tality basis risk. Insurance: Mathematics and Economics, 45: 123-132.

Plat, R. (2010) One-year value-at-risk for longevity and mortality. Pensions Institute
Working Paper PI-1015.

Richards, S.J., and Currie, I.D. (2009) Longevity risk and annuity pricing with the
Lee-Carter model. British Actuarial Journal, 15: 317-343.

Zhou, R., and Li, J.S.H. (2010) A cautionary note on pricing longevity index swaps.
To appear in Scandiavian Actuarial Journal.

Zhou, R., Li, J.S.H., and Tan, K.S. (2011) Economic pricing of mortality-linked
securities in the presence of population basis risk. Geneva Papers on Risk and
Insurance: Issues and Practice, 36: 544-566.


