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Abstract

This paper looks at the development of dynamic hedging strategies for typical pen-
sion plan liabilities using longevity-linked hedging instruments. Progress in this area
has been hindered by the lack of closed-form formulas for the valuation of mortality-
linked liabilities and assets, and the consequent requirement for simulations within
simulations. We propose use of the probit function along with a Taylor expansion
to approximate longevity-contingent values. This makes it possible to develop and
implement computationally efficient, discrete-time Delta hedging strategies using
q-forwards as hedging instruments.

The methods are tested using the model proposed by Cairns, Blake and Dowd
(2006a) (CBD). We find that the probit approximations are generally very accurate,
and that the discrete-time hedging strategy is very effective at reducing risk.
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1 Introduction

This paper considers the question of how to hedge a portfolio of pension liabilities
where cashflows are exposed to longevity risk: that is, contingent on the development
of uncertain aggregate mortality rates over a period of years. In many countries,
pension plans are increasingly opting to hedge their pension liabilities. This might be
done by simply paying a premium to an insurer in order to transfer their pension lia-
bilities. Alternatively, the pension plan can implement a comprehensive programme
of asset-liability management. It has been possible for many years to manage in-
terest rate risk through the use, for example, of interest-rate swaps. In contrast,
it has only recently become possible to hedge the plan’s exposure to longevity risk
through the use of customised longevity swaps and index-based hedging instruments
such as q-forwards (see, for example, Blake et al., 2006, Dahl et al., 2008, Cairns et
al., 2008, 2011b, Li and Hardy, 2011, Dowd et al., 2011b).

With the exception of Dahl et al., these previous studies have focused on the assess-
ment of static hedging strategies using longevity-linked hedging istruments. In part,
this reflects the realities of a market that is in its infancy. However, it also reflects
the fact that for realistic, discrete-time mortality models, it is difficult to model how
the values of longevity-contingent contracts evolve over time without resorting to
the use of simulations within simulations: a difficulty that has hindered the develop-
ment of dynamic hedging strategies. Theoretically, this can be avoided through the
use of market models (see, for example, Cairns et al., 2006b, 2008, Cairns, 2007, and
Zhu and Bauer, 2010) but such models are less realistic, at present, than the more
popular class of “short-rate” models such as those considered in Cairns et al. (2009).
However, if technical difficulties can be overcome and more realistic market models
developed, the market-model approach provides a good setting for the development
of hedging strategies.

The groundbreaking paper by Dahl et al. (2008) is the exception to this. By using
a simplified, continuous-time stochastic mortality model, they are able to derive
closed-form solutions for longevity-contingent contracts and derive delta-hedging
strategies. Additionally, this is achieved within the context of a two-population
model, so the authors are able to assess the effectiveness of a dynamic hedging
strategy in the presence of population basis risk.

Here, we attempt – at least in some regards – to make Dahl et al.’s analysis more
realistic by proposing an approach that can be applied to a wide range of more
realistic, discrete-time models, and with a requirement only for annual rather than
continuous rebalancing of the hedge portfolio. In other regards we are less ambitious:
for example, by leaving an analysis of the impact of dynamic hedging in the presence
of population basis risk for future work.
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1.1 Connection to Solvency II

The impending introduction of Solvency II allows for the use of internal models
that include stochastic modelling of mortality rates (see, for example, Olivieri and
Pitacco, 2009; Plat, 2010; and Börger, 2010). A key use of an internal model is
the calculation of solvency capital requirements (SCR). The methodology described
in this paper can be used in two ways. First, the avoidance of simulations within
simulations will make calculation of the contribution of mortality risk to the SCR
feasible. Second, the annual hedging methodology in the paper can be used to
manage the magnitude of the SCR.

1.2 Outline of paper

In Section 2 we outline the Cairns, Blake and Dowd (2006a) (CBD) model and
calibration as well as other notation that will be used throughout the paper. In
Sections 3 to 5 we present the analytical functions that we propose as approximations
for the valuation of q-forward contracts and annuity-type liabilities and provide
numerical examples to demonstrate their accuracy. In Section 6 we then use these
to derive approximations for the so-called “deltas” of the various liabilities and
hedging instruments. These are then deployed in a numerical experiment that we
report on in Section 7. Finally, in Section 8, we provide some further discussion of
possible extensions of this work.

2 Model and notation

In order to illustrate both the approximations and the Delta-hedging strategy pro-
posed in this paper, we will use the CBD 2-factor model (Cairns et al., 2006a) as an
example. We define q(t, x) to be the probability, as measured at time t + 1, that an
individual aged x at time t survives to time t + 1. Under the CBD model we have

q(t, x) =
exp [K1(t + 1) + K2(t + 1)(x− x̄)]

1 + exp [K1(t + 1) + K2(t + 1)(x− x̄)]

(or logit q(t, x) = K1(t + 1) + K2(t + 1)(x − x̄)) where K(t) = (K1(t), K2(t))
′ is a

two-dimensional random walk with drift:

K(t + 1) = K(t) + ν + CZ(t + 1).

Z(t+1) = (Z1(t+1), Z2(t+1))′ is a standard bivariate normal random vector under
the real-world probability measure P. Using England and Wales males data, ages
60 to 89 from 1981 to 2008, and the methodology described in Cairns et al. (2009)
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estimate that (taking the end of 2008 as time t = 0) K(0) = (−3.2717, 0.1079)′,

ν =

( −0.02534
0.0004604

)
, and V = CC ′ =

(
0.0004538 0.00001585
0.00001585 0.000001256

)
. (1)

The survivor index is defined as

S(T, x) = (1− q(0, x))× (1− q(1, x))× . . .× (1− q(T − 1, x)) , (2)

and represents the ex post probability that an individual aged x at time 0 would
have survived to time T .

A number of survivor and financial functions are non-linear functions of the future
path of K(t) that can only be computed using simulation. This includes spot sur-
vival probabilities (see, for example, Cairns et al., 2006b), p(τ, τ + T, x− τ, k): the
probability that an individual aged aged x−τ at time 0, and still alive at time τ (age
x), survives until time τ + T , based on the information about aggregate mortality
at time τ , as summarised by the vector K(τ) = k. We have

p(τ, τ + T, x− τ, k) = EP

[
S(τ + T, x− τ)

S(τ, x− τ)

∣∣∣∣ K(τ) = k

]
. (3)

(In a traditional actuarial context, with no mortality improvements, p(τ, τ + T, x−
τ, k) can be replaced by the standard actuarial function T px.) The non-linear de-
pendence of S(u, x) on the q(t, x) means that this expectation can, as mentioned
above, only be calculated by simulation or other numerical methods. Expectations
in (3) are taken under P, but, where we are concerned with pricing and valuation,
expectations will be taken under the risk-neutral pricing measure, Q, as proposed
in Cairns et al. (2006a) (CBD). As suggested in CBD, we will assume that, under
Q, K(t+1) = K(t)+ ν̃ +CZ̃(t+1), where ν̃ is the risk adjusted drift, and Z̃(t+1)
is a standard bivariate normal random vector under Q. Risk neutral spot survival
probabilities calculated under Q (i.e. EQ in (3) instead of EP) will be denoted by
pQ(τ, τ + T, x− τ, k).

3 Approximating spot survival probabilities

Many financial functions at time τ derive their value from the spot survival prob-
abilities at time τ evaluated under Q, pQ(τ, τ + T, x − τ, k) (since these probabil-
ities determine the mortality table, incorporating mortality projections, that will
be in use at time τ for pricing annuities). In the paragraphs that follow, we there-
fore propose a method for approximating accurately the full range of spot survival
probabilities, pQ(τ, τ + T, x − τ, k). In doing so, we provide ourselves with a flex-
ible framework that can be easily applied without recalibration to any portfolio of
survivorship-linked cashflows and under any given model for the term structure of
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interest rates. This contrasts with the q-duration or q-duration-convexity approx-
imations proposed by Li and Luo (2011) and Plat (2010) respectively which are
potentially faster computationally, but which are also dependent on the structure of
the portfolio of liabilities.

If our problem is based on a known starting point K(0) = k then simulation under
Q or P is not a problem. However, we might wish to ask the question: what is the
distribution of p(τ, τ+T, x−τ,K(τ)): the probability that an individual alive and aged
x at time τ survives until time τ +T? Now this depends upon the simulated value of
K(τ) at time τ , so, for each simulated K(τ) we need to conduct further simulations
to establish the value of p(τ, τ + T, x − τ, K(τ)) or pQ(τ, τ + T, x − τ,K(τ)). This
requirement for simulations within simulations is computationally very expensive
and points, therefore, to the need for some simple numerical approximations.

The Markov, time-homogeneous nature of the random walk, K(t), and the depen-
dence of q(t, x) on K(t + 1), means that

p(τ, τ + T, x− τ, k) = p(0, T, x, k).

Thus, although our usual starting point K(0) is known, there is no reason why we
cannot evaluate spot survival probabilities at time 0 using other initial conditions.

Now p(0, T, x, k) lies between 0 and 1, and so it is common in the statistical litera-
ture to transform this onto the interval (−∞,∞) using either the logistic or probit
transforms before making any approximations. Here we choose to apply the probit

transform as our first step: that is, we define f(T, x, k) = Φ−1
(
p(0, T, x, k)

)
, where

Φ−1 is the inverse of the standard normal distribution function. We propose the
following approximations to f(T, x, k). Let k̂ = (k̂1, k̂2)

′ = E[K(τ)]. Then, a linear
approximation (based upon the Taylor expansion around k̂) is

f(T, x, k) ≈ D0(T, x) + D1(T, x)′(k − k̂)

or, if a more accurate quadratic approximation is required,

f(T, x, k) ≈ D0(T, x) + D1(T, x)′(k − k̂) +
1

2
(k − k̂)′D2(T, x)(k − k̂)

where D0(T, x) is a scalar function of (T, x), D1(T, x) is a 2 × 1 vector of first
derivatives, and D2(T, x) is a 2 × 2 matrix of second derivatives. Specifically, with
k = (k1, k2)

′:

D0(T, x) = f(T, x, k̂),

D1,i(T, x) =
∂f

∂ki

(T, x, k)

∣∣∣∣
k=k̂

, and D2,ij(T, x) =
∂2f

∂ki∂kj

(T, x, k)

∣∣∣∣
k=k̂

.

The functions D0, D1 and D2 will depend on whether we wish to calculate spot
survival probabilities under P or Q.
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The probit transformation was chosen here for two reasons. First and foremost,
the probit transformation, in combination with the first and second-order Taylor
approximations, was found to produce accurate estimates of the spot survival prob-
abilities that compare favourably with alternative transformations such as the log
or logistic transforms (see Appendix A), or no transform at all (as used by Plat,
2010, at the portfolio level).1 Second, we exploit, later in this paper, a distributional
property of the first-order probit-Taylor approximation (in contrast to the logistic
transform) to derive closed-form expressions for hedging strategies. The logit and
log transforms were considered as alternatives to the use of the probit transform
(see Appendix A). The log transform was relatively poor. The logit and probit
transforms produced reasonably similar qualities of approximation, the probit being
better over a wide range of values for K(τ) at approximating longer maturity spot
survival probabilities and annuity values, while the logit was better for shorter ma-
turity spot survival probabilities. On balance the probit was considered to be better
suited for the problems being considered in this paper including dynamic hedging.

Other approximations have been proposed by Denuit and Dhaene (2007), Denuit et
al. (2010) for single-factor mortality models such as Lee-Carter, and by Cairns et
al. (2011b).

This approximation is computed by making N simulations of S(T, x) given K(0) =
k̂, and then repeating (after first having reset the random seed) for K(0) = k̂+(h1, 0)′

and K(0) = k̂ + (0, h2)
′ for small h1 and h2. For the second and third sets of

simulations we subtract the expected value for S(T, x) from the baseline (K(0) = k̂)
and divide by h1 and h2 respectively to get the first derivatives. Additional values
are required for the second derivatives, but the principle is the same. (See appendix
B for further details.)

In Table 1 we present, for initial age x = 65 and k̂ = (−3.7785, 0.11699)′ =
EP[K(20)], values for D0(T, x), D1(T, x) and D2(T, x) for a selection of values for T .
All spot probabilities used in the evaluation of the D’s have been calculated under
P. We can comment as follows:

• The D0(T, x) become more negative with T reflecting the gradually lower
probability of survival to T .

• The D1,1(T, x) are all negative, indicating that a higher value of K1(τ) means
mortality rates will generally be higher at all future ages and therefore survival
rates will be lower. Since all future mortality rates will be higher then there
will be a proportionately bigger negative impact on survival probabilities to
higher ages.

1The use of first and second-order Taylor expansions is reminiscent of duration and convexity
matching in interest-rate risk management (see Plat, 2010, in a mortality context). However, since
the approximations here are made to the probit transform of the spot survivor probabilities, the
analogy is, at best, a loose one.
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T D0(T, x) D1,1(T, x) D1,2(T, x) D2,11(T, x) D2,12(T, x) D2,22(T, x)
1 2.445 -0.3581 3.4016 -0.039426 0.37466 -3.5577
2 2.1676 -0.39201 3.519 -0.050061 0.4497 -4.1327
5 1.7188 -0.45808 3.3537 -0.073481 0.53907 -4.8488
10 1.2436 -0.5449 2.32 -0.10796 0.46474 -6.269
15 0.83732 -0.63316 0.51431 -0.14525 0.1348 -10.753
20 0.42457 -0.73464 -2.2025 -0.18847 -0.51742 -21.677
30 -0.54931 -1.0009 -11.47 -0.28633 -2.9862 -80.113
40 -1.8594 -1.3244 -26.925 -0.32443 -5.3987 -173.34
55 -4.3429 -1.6401 -53.802 -0.32269 -7.3065 -284.13

Table 1: Di(T, x) functions, for x = 65, for use in the approximation
Φ−1 (p(0, T, x, a)) ≈ D0(T, x) + D1,1(T, x)(k1 − k̂1) + D1,2(T, x)(k2 − k̂2). Param-

eter estimates as in equation (1). k̂ = (−3.7785, 0.11699)′. Simulations used in the
calculations exclude parameter uncertainty.

• The D1,2(T, x) change sign. A higher than expected value of K2(τ) means
that mortality rates up to age x̄ = 74.5 will be lower than anticipated and
mortality rates above 74.5 will be higher than anticipated. So for small values
of T , the survival probability will be increased, while for larger values of T the
raised mortality rates above age 74.5 eventually dominate.

A typical risk measurement problem then involves first simulating future values of
K(τ) and then, under each scenario, calculating liability values using the approxi-
mation

p(τ, τ + T, x− τ, K(τ)) ≈ p̂(τ, τ + T, x− τ, K(τ))

= Φ

[
D0(T, x) +

2∑
i=1

D1,i(T, x)(Ki(τ)− k̂i)

]
.

3.1 Approximating financial functions

Now we can see that the approximation, p̂(τ, τ + T, x − τ, K(τ)), is an analytical
formula, which means that p̂(τ, τ + T, x− τ, K(τ)) can be observed directly at time
τ without resorting to simulations within simulations.

Other life and financial functions can then be approximated as follows:

• Complete expectation of life at age x:

EFLx(τ) ≈ 0.5+
∞∑

T=1

p(τ, τ +T, x−τ,K(τ)) ≈ 0.5+
∞∑

T=1

p̂(τ, τ +T, x−τ,K(τ)).
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• Annuity payable for life annually in arrears:

Let P (τ, τ + T ) be the (zero-coupon-bond) price at τ for 1 payable at time
τ + T . Then the value at τ of 1 payable for life annually in arrears to a life
aged x at time τ is

ax(τ) =
∞∑

T=1

P (τ, τ + T )p(τ, τ + T, x− τ,K(τ))

≈
∞∑

T=1

P (τ, τ + T )p̂(τ, τ + T, x− τ,K(τ)).

Note that this expression allows us to combine the probit-Taylor approxima-
tion with any stochastic interest-rate model of our choosing. At the other
extreme, if we assume that the rate of interest is a constant rate of i then

ax(τ) ≈
∞∑

T=1

(1 + i)−T p̂(τ, τ + T, x− τ,K(τ)).

4 Numerical illustrations

The accuracy of the quadratic and linear approximations is illustrated in Figures 1
to 4.

In Figure 1 we have plotted the probit transform of the spot survival probabilities,
p(0, T, x, k), for x = 65, and T = 1, 10 and 30.2 The plots show contours of
Φ−1(p(0, T, x, k)) over a range of values of k = (K1, K2)

′. In the left-hand plots
we can see that contours for the quadratic approximation (dashed lines) are almost
indistinguishable from the true values (solid lines). The linear approximation (right
hand plots) looks reasonable although it is clearly not nearly as good as the quadratic
approximation, and the nature of the approximation results in evenly spaced, linear
contours. The broad orientation of the contours reflects the sign of D1,1(T, x).

The same comparisons are illustrated further in Figure 2. Here we plot the ra-
tio of the approximation to the true spot survival probability. A value greater
than 1 means the approximation is higher than the true value. By construction
the approximation is exact (ratio= 1) in all four cases at the centre of the plot,
k = (−3.7785, 0.11699)′. This confirms the superiority of the quadratic approxima-
tion. Both approximations are less good for T = 30 compared to T = 10, and for
T = 10 versus T = 1, although the deterioration is less important in absolute terms.

2Note that a contour plot of the untransformed spot survival probabilities reveals contours that
are much less uniformly spaced than the six plots in Figure 1. This gave a clear indication that
better approximations to the spot survival probabilities could be achieved by first transforming
the data.
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These plots also include ‘clouds’ of dots. These show simulated realisations of K(τ)
for τ = 20. By design that the approximations will be best when the approximation
is centred on the expected value of K(τ) for the correct time horizon, τ . However
(not illustrated), even if the time horizon were, say, 10 years or 40 years, the approx-
imation based on τ = 20 would still be good. Thus, if multiple time horizons are
relevant, then we can see that the quadratic approximation is generally preferrable,
the linear approximation might also be adequate. In this figure we can also see that
the linear approximation tends to overestimate the spot survival probability.

In Figure 3 we look at the expected future lifetime at age 65 as a function of K(τ).
In the left-hand plots, we show contours of the absolute value of EFL65(τ): true
values (solid black lines); approximate values (dashed red lines). In the right-hand
plots, we show contours of the ratio of the approximation to the true value of the
expected future lifetime. Again we can see that the quadratic approximation is
rather better than the linear approximation. As before, we can note that the linear
approximation tends to overestimate the expected future lifetime. However, we can
see that the linear approximation is almost always within 1% of its true value and,
in many instances, this quality of approximation will be perfectly adequate.

Figure 4 shows equivalent results for the fair price of a life annuity payable annu-
ally in arrears, a65(τ), assuming a fixed rate of interest of 4% per annum effective.
The results are generally similar to those for EFL65(τ), although the approxima-
tion errors are rather smaller. For a time horizon of τ = 20 years from 2008, the
approximate annuity price is well within 0.05% using the quadratic approximation
and significantly less than 0.5% using the linear approximation.

5 Linear approximation: further remarks

5.1 Valuing futures on spot survival probabilities: Result 1

LetMt represent the history of K(s) up to time t. This informs us about underlying
mortality rates up to time t, but does not allow us to make statements about the
history of a given individual.

Let pFUT (s, t, t+T, x− t,K(0)) = EQ[p(t, t+T, x− t,K(t))|Ms] be the futures price
at time s < t for the spot survival probability p(t, t + T, x− t,K(t)) (also evaluated
under Q) due at time t.

Result 1

We claim that if, using the linear approximation,

p(t, t + T, x− t,K(t)) ≈ Φ
(
D0(T, x) + D1(T, x)′(K(t)− k̂)

)
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Figure 1: Plots show the probit transform of the spot survival probability,
Φ−1(p(0, T, x, k)) for k = (K1, K2)

′. All plots show contours of the true
Φ−1(p(0, T, x, k)) (solid black lines) and the approximation Φ−1(p̂(0, T, x, k)) (dashed
lines). x = 65 throughout; T = 1 (upper plots), T = 10 (middle plots) and T = 30
(lower plots). Left-hand plots use the quadratic approximation. Right-hand plots
use the linear approximation. The cloud of dots shows 1000 simulated values of the
pair (K1(τ), K2(τ))′ for τ = 20 years after 2008.
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then

pFUT (0, t, t + T, x− t,K(0)) ≈ Φ

(
D0(T, x) + D1(T, x)′(K(0) + ν̃t− k̂)√

1 + D1(T, x)′V D1(T, x)t

)
(4)

where ν̃ and V , recall, are the drift vector (under Q) and the variance-covariance
matrix of the random walk process for K(t).

For a proof of (4) see Appendix C.

In other words, the probit-Taylor approximation for a spot survival probability can
also be used, in a straightforward manner, to price (approximately) futures contracts.

5.2 Pricing q-forward contracts: Result 2

We now consider q-forward contracts (see, for example, www.llma.com and Coughlan
et al., 2007). A simplified version of the q-forward contract is as follows. The crude
mortality rate, q(t, x), represents the probability, measured retrospectively, that an
individual aged x at time t would have survived to time t + 1. We assume that
q(t, x) is known at time t + 1 but not before. Under the (t, x) q-forward contract:

• the forward price qF (0, t, x) is set at time 0;

• the contract has zero value at time 0;

• no money exchanges hands between times 0 and t+1 (for example, we assume
there are no margin payments between times 0 and t + 1);

• at time t + 1 the holder of the long position pays a fixed amount of qF (0, t, x)
and receives the floating q(t, x);

• qF (s, t, x) = EQ[q(t, x)|Ms] represents the forward price at time s, 0 ≤ s ≤ t.

No arbitrage dictates that, with one year remaining, the q-forward price must equal
1 minus the 1-year-ahead spot survival probability: that is,

qF (t, t, x) = 1− p(t, t + 1, x− t; K(t)) ≈ 1− Φ
(
D0(1, x) + D1(1, x)′(K(t)− k̂)

)
. (5)

In Figures 1 and 2 we noted that the approximation for a 1-year-ahead spot sur-
vival probability was the most accurate of the linear approximations for various
maturities. However, we can remark further that the retrospective mortality rate,
q(t, x), can be evaluated accurately using the probit transform as an approximation
to CBD’s use of the logistic function. See Appendix D for further details.

Result 2
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Using the probit-Taylor approximation at time t, it follows that

qF (0, t, x; K(0)) ≈ 1− Φ

(
D0(1, x) + D1(1, x)′(K(0) + ν̃t− k̂)√

1 + D1(1, x)′V D1(1, x)t

)
. (6)

Remark

Appendix D, additionally, discusses how D0(1, x) and D1(1, x) can be calculated
analytically as an alternative to the simulation approach used in the generation of
Table 1.

5.3 The approximation as a market model

Superficially, having a sequence of spot and forward survival probabilities and q-
forward prices suggests that we have what might be termed a market model. How-
ever, this is not true in the same theoretical sense of Olivier and Jeffery (2004) and
Smith (2005) which would require the exact relationship

pQ(t, t + T, x− t,K(t)) = EQ [(1− q(t, x)) p(t + 1, t + T, x− t,K(t + 1))|K(t)]

to hold. While this result is approximately correct, it is not true as a theoretical
result. Even if it were true, the approximations can, in extreme scenarios, give rise
to biologically unacceptable results (for example, for extreme values of K(t), the
spot survival curve p(t, t + T, x− t,K(t)) might not be a decreasing function of T ).
This contrasts with the underlying CBD model which has no such problems.

Finally, a true market model would need the initial spot survival probabilities to
be calibrated to market data rather than be derived from an underlying spot-rate
model such as CBD. The currently methodology could be easily adapted to satisfy
this requirement.

6 Calculating approximate Deltas

In this section we develop the key quantities required for dynamic Delta hedging
of a portfolio of liabilities exposed to longevity risk. We will focus on the use of
q-forwards as the hedging instrument, and use these to hedge liabilities linked to
the survivor index.

6.1 Deltas for q-forward prices

First we consider the partial derivatives of q-forward prices with respect to the
stochastic state variables K1 and K2, which can then be used to develop Delta
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hedging strategies for longevity-linked liabilities. Specifically,

∆1 =
∂qF (0, t, x; k)

∂k1

and ∆2 =
∂qF (0, t, x; k)

∂k2

.

Using Result 2, equation (6), it follows that, with k = K(0),

∆1 =
∂qF (0, t, x; K(0))

∂k1

= − D1,1(1, x)√
1 + D1(1, x)′V D1(1, x)t

φ (z) ,

∆2 =
∂qF (0, t, x; K(0))

∂k2

= − D1,2(1, x)√
1 + D1(1, x)′V D1(1, x)t

φ (z) ,

where z =
D0(1, x) + D1(1, x)′(K(0) + ν̃t− k̂)√

1 + D1(1, x)′V D1(1, x)t

and φ(z) is the density function of the standard normal.

Alternative approximations for qF (s, t, x) and its Deltas are presented in Appendix
E. Although these are not used in our subsequently analysis, the underlying method-
ologies been used elsewhere and might be found to be useful in a variety of other
circumstances.

6.2 Deltas for spot survival probabilities

Here we calculate the Deltas using the single approximation

pQ(τ, τ + T, x, k) = Φ (z)

where z = D0(τ, T, x + τ, k̂(τ)) + D1(τ, T, x + τ, k̂(τ))′(k − k̂(τ)).

In this equation, we have augmented our notation so that we properly record the
fact that D0 and D1 depend on the future valuation time τ , the age of the cohort
at time τ , x + τ , the maturity, T , of the payment after time τ , and the value k̂(τ)
around which the approximation is centred. We assume that k̂(τ) = EP[K(τ)|K(0)],
and, therefore, can be calculated once in advance of any simulation exercise.

It is straightforward to see that

∆1 =
∂p(τ, τ + T, x, k)

∂k1

= D1,1(τ, T, x + τ, k̂(τ))φ (z)

∆2 =
∂p(τ, τ + T, x, k)

∂k2

= D1,2(τ, T, x + τ, k̂(τ))φ (z) ,

and φ(z) is the density of the standard normal.
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Figure 5: Fan chart of the present value, discounted to time 0, of the annuity
portfolio as a function of mortality information available up to time t: PV (t).

7 Example: Delta hedging of an annuity portfolio

Suppose we have a liability to pay S(t, 65) (equation 2) at times t = 1, 2, . . . 55.3 In
order to focus on the hedging of longevity risk we will assume that interest rates are
constant and that the bank account pays 4% per annum.

In Figure 5 we have plotted a fan chart4 showing how the present value of this liability
evolves over time, PV (t), based on 1000 simulated scenarios of K(t). Under each
scenario, at time t we value future cashflows after time t and then discount these
along with all known cashflows at times 1 to t back to time 0. In our simulations
we have, for simplicity assumed that the real-world and risk-neutral probability
measures are the same. If there were no approximations then PV (t) would be a
martingale. Figure 5 appears to be consistent with this property, and further checks
on the detail of the simulated PV (t) − PV (t − 1) bear this out, adding weight to
the usefulness of the probit-Taylor approximations. After about 35 years, all sample

3t = 0 corresponds to the end of 2008 and age 65. Time 55 corresponds to age 120 which we
use as a high cutoff age for a portfolio of life annuities.

4The shaded part of the fan chart covers the 5% to 95% quantile range of the distribution at t,
and is divided up into 5% quantile bands.
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paths of PV (t) remain almost constant as the outstanding payments are usually
very small after age 100. The distribution of PV (55) is the same as the distribution
of

∑55
t=1 S(t, 65)/1.04t.

We now show one approach to how the uncertainty in PV (t) can be hedged.

The key points are as follows:

• We will carry out Delta hedging with rebalancing at annual intervals.

• At each date t, three financial instruments can be used: cash paying 4% inter-
est; and two q-forwards both with 10-years to maturity, with reference ages 65
and 75 and zero value at time t, so that the forward rate on each is qF (t, t+9, x).

• Deltas are calculated using the probit-Taylor approximations. They are based
on immediate (i.e. still at time t) small changes in K1(t) and K2(t) and
measure the impact of these changes on the value of cashflows that fall after
t.

• At the end of each period [t, t + 1), any q-forward positions set up at time t
are closed out and return 1.04−9(qF (t+1, t+ 9, x)− qF (t, t+ 9, x)) per unit to
be reinvested in the cash account.5 q-forward prices are calculated using the
probit-Taylor approximations.

Deltas for the liability values, PV (t), are plotted in Figure 6. ∆1 (top left plot) can
be seen to decline steadily in magnitude, albeit with growing uncertainty over the
first 20 years. However, this decline is entirely attributable to the gradually falling
value of the outstanding liabilities after t. If we normalise ∆1 by dividing by the value
of the outstanding liabilities (bottom left plot) then we see that, in relative terms,
the outstanding liabilities become more sensitive over time to changes in K1(t). This
is explained by the fact that we are valuing survivorship-linked payments rather than
mortality-linked payments. For younger ages and smaller t, survivorship will always
be close to 1 regardless of the likely variation in underlying mortality rates, whereas,
at higher ages, a 1% relative change (say) in a mortality rate has a relatively bigger
impact on short-term survivorship. The lower plot reveals that, for values of t up to
about 35, the relative values of ∆1 do not contain significant levels of uncertainty
around a determinstic trend.

Absolute and normalised values for ∆2 are given in the top right and bottom right
plots in Figure 6. The pattern for the absolute values is more interesting than ∆1,
but still benefits from being normalised by the outstanding present value. The nor-
malised value of ∆2 (bottom right plot) indicates that, initially, K2(t) has relatively

5This assumes that the contract operates as a forward contract rather than a futures contract.
Under the latter, there would be a margin payment of qF (t+1, t+9, x)−qF (t, t+9, x) immediately
at time t + 1. Under a forward contract qF (t + 1, t + 9, x)− qF (t, t + 9, x) represents the change in
the expected payout at time t + 10.
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Figure 6: Top row: Fan charts for ∆1(t) and ∆2(t) respectively for the annuity
portfolio, PV (t). Bottom row: Fan charts for ∆1(t) and ∆2(t) divided by the
present value of the outstanding liabilities at time t respectively.

little impact suggesting that the average time to payment is about 9.5 years (i.e.
the difference between the pivotal age x̄ = 74.5 years and the initial x = 65). How-
ever, as t increases, the average time to payment plus the current time, t, increases
steadily above 9.5, and so changes in K2(t) become, relatively, more and more im-
portant. Again (bottom right plot), over the first 40 years the normalised value of
∆2 follows its deterministic trend very closely.

In Figure 7 we have plotted:

• Fan charts for the age 65 and age 75 q-forward prices, qF (t, t + 9, x) (top left
and top right respectively);

• Fan charts for the age 65 and age 75 q-forward relative ∆1’s, ∆1(x)/qF (t, t +
9, x) (middle left and middle right respectively);
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• Fan charts for the age 65 and age 75 q-forward relative ∆2’s, ∆2(x)/qF (t, t +
9, x) (middle left and middle right respectively).

The upper plots show how the q-forward prices steadily improve over time (improve-
ment rates of 2% to 3% per annum depending on reference age x). The relative Delta
plots look reasonably stable over time. This should not be surprising. If we approx-
imate q(t, x) by exp[K1(t + 1) + K2(t + 1)(x− x̄)] then the relative Deltas would be
1 and x− x̄, and these levels are, approximately, what we see in the relative Delta
plots: namely approximately 1 in the middle and bottom lect plots, 65− x̄ = −9.5
in the middle right plot, and 75− x̄ = 0.5 in the bottom right plot.

Under the Delta-hedging strategy, the optimal hedge ratios are u65(t) and u75(t) for
the age 65 and 75 q-forwards (i.e. the number of units of each q forward to be held
from time t to time t + 1 that allow the asset and liability Deltas to be matched).6

The hedge ratios are plotted in Figure 8.

Both u65(t) and u75(t) become more uncertain over time as we might expect, before
declining to zero as the value of outstanding liabilities declines to 0. Figure 7 revealed
that the age 65 q-forward would be relatively much better at headging the K2(t)
risk. Thus, as the portfolio ages and the ∆2 for the liability increases in magnitude
(Figure 6, right), we need increasing quantities of the age-65 q-forward. The pattern
taken by u75(t) then reflects the balancing act in terms of matching the ∆1(t) values.

Finally, Figure 9 demonstrates how successful our hedging strategy has been. We
let A(t) represent the value of our assets at time t discounted back to time 0. To
compare this with PV (t) (which includes the liabilities already paid at times 1 to
t before also discounting to time 0), A(t) values not just the assets in hand at t,
but needs to add in the value of the liabilities already paid. Thus, A(t) equals its
initial value, A(0) (which we take to be equal to PV (0)), plus the value in the gains
and losses on the q-forward contracts up to time t, with the liabilities S(u, 65) for
u = 1, . . . , t paid out but then added back in. The left-hand plot in Figure 9 shows
how the surplus A(t)−PV (t) develops over time. The outer fan shows results when
we do not hedge using q-forwards and simply use the cash account. Essentially this
matches what we saw in Figure 5, but centred on 0. The inner and much narrower
grey fan shows how the surplus eveolves over time when the delta hedging strategy
has been implemented. We can see a very substantial reduction in risk. Specifically,
the standard deviation of the surplus at time 55 discounted to time 0 is reduced
from 0.283 to 0.00804: representing a hedge effectiveness of about 97%. This is
confirmed when we look at the right hand plot in Figure 9 where we plot PV (55)
versus the value, A(55), of the assets at time 55 discounted to time 0. We can see
a very high correlation between the two: cor(A(55), PV (55)) = 0.9996.7

6That is we solve the two linear equations ∆(L)
1 (t) = u65(t)∆

(QF,65)
1 (t) + u75(t)∆

(QF,75)
1 (t) and

∆(L)
2 (t) = u65(t)∆

(QF,65)
2 (t) + u75(t)∆

(QF,75)
2 (t) in the unknown u65(t) and u75(t).

7The hedge effectiveness using standard deviation as a risk measure is 1−
√

1− ρ2 = 0.9717.
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Figure 7: Top row: Fan charts for qF ((t, t + 9, 65) and qF (t, t + 9, 75) respectively.
Middle row: ∆1(t) and ∆2(t) for qF (t, t + 9, 65) relative to the q-forward price,
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9, 75).
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7.1 Comparison with static hedging

Although we do not report results in detail here, we compared our dynamic hedging
results with what could be achieved using static hedging. Full static hedging used
the model-free hedge proposed by Cairns et al. (2008), which, for a 55-year annuity
requires the use of 55 distinct q-forwards with maturities in 1 year up to 55 years,
all linked to the same cohort currently aged 65. We also looked at a static hedge
of the same portfolio using (A) only seven out of the 55 q-forwards maturing in 5,
10, 15, 20, 25, 30 and 35 years and (B) two out of the 55 maturing in 11 and 22
years (these being the optimal pairing out of all possibilities). In Table 2 we report
on the standard deviation of the present value at time 0 of the surplus emerging
at time 55 under the four hedging strategies, and the resulting hedge effectiveness
relative to the case with no hedging. We can see that dynamic hedging with only
two q-forwards (hedge effectiveness equal to 0.9716) significantly outperforms even
the case with full static hedging (0.8911).8 The seven q-forwards used in hedge
(A) is a subjective choice that covers the financially more important ages. The
optimal hedge is now model dependent with hedge ratios chosen to minimise the
standard deviation of the present value of the surplus. The reduction from 55 to
7 q-forwards seems drastic, but only results in a modest, but non-trivial, reduction
in hedge effectiveness. Finally, we picked out the two best q-forwards out of the
original 55, and found that a static hedge with two q-forwards is substantially worse
than a dynamic hedge with two q-forwards.

St. Dev. Hedge
Hedge PV surplus Effectiveness
No hedging 0.2829 0
Dynamic 0.0080 0.9716
Full model-free static 0.0308 0.8911
(A) static, 7 q-fwds 0.0385 0.8639
(B) static, 2 q-fwds 0.0637 0.7747

Table 2: Hedge effectiveness under five hedging strategies.

There is not necessarily a clear conclusion from this, despite what the table suggests.
The reality is that implementation of both static and dynamic hedges are difficult in
practice, because of the limited number of contracts that we are likely to see emerging
in a traded market, a possible cap of 10 years on the duration of q-forwards, and a
lack of liquidity impeding dynamic hedging.

8For term annuities, the longer the term of the annuity, the more non-linearities in S(T, x) as a
function of the q(t, x + t) cause errors in the model-free hedge. If we wish to hedge a term annuity
with a shorter term, then the full model-free static hedge might outperform the dynamic hedge.
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8 Further discussion

The success of the hedging strategy comes in spite of the fact that we are using
approximations for the q-forward prices and hedging in discrete time. We can con-
clude from this two things. First, discrete hedging works well because the year on
year randomness in mortality rates is relatively small and, therefore, changes in
asset and liability values are approximately linear in K(t). Second, we conclude
that the probit-Taylor approximation for the liabilities works well. As a tentative,
third point, we might also conclude that the approximation also works well for the
q-forward prices, but we hesitate on that count because the subsequent gains and
losses are determined using the same approximation.

The numerical results that are presented are, of course, the best that we might
expect, and, for a variety of reasons, we would not expect hedge effectiveness not to
be quite so high. We now discuss these issues and their implications.

A key factor not considered here is the effect of population basis risk: the risk asso-
ciated with the fact that the population being hedged is different from the reference
population underpinning the hedging instrument. While this is a significant con-
sideration, it has been demonstrated elsewhere (Cairns et al., 2011b, Li and Hardy,
2011) that, at least over medium and longer-term horizons, hedge effectiveness is
still high even using static hedging. For further discussion of multipopulation mod-
elling, see Cairns et al. (2011a,b), Dowd et al. (2011a,b), Dahl et al. (2008), Li
and Lee (2005), Plat (2009), Jarner and Kryger (2011), Li and Hardy (2011). For
these models, hedge effectiveness will depend on to what extent the non-hedgeable
component of short-term mortality shocks in the hedger’s own population persist
over time.

In most cases, these models will be amenable to the use of the probit-Taylor ap-
proximation, which, in turn, will allow the development of delta-hedging strategies.

The delta hedging strategy assumes a liquid market in which q-forward positions
can be closed out at the end of each year at no cost. Primarily this is for compu-
tational convenience. If we assume, alternatively, that q-forwards must be held to
maturity, then a rolling programme of investment in q-forwards that continues exist-
ing positions and takes new positions in 10-year-maturity, age 65 and 75 q-forwards.
The new investments will neutralise the ∆1’s and ∆2’s taking account of the liability
Deltas and also the Deltas of the ongoing q-forwards. Assuming the initial q-forward
prices are fair, then such a strategy in an illiquid market should be just as effective
as the approach described in this paper. Computationally, the additional complexity
would be the requirement to keep track of up to 20 q-forwards rather than just two.
We leave for further work the possibility of including some form of transaction cost
which might introduce significant additional costs and reduce hedge effectiveness.

The general approach used here – both the probit-Taylor approximation and the
discrete-time delta hedging – should be applicable to a wide range of stochastic
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mortality models, including all of those considered in Cairns et al. (2009) (other than
their model M4), and the multipopulation models mentioned above. Specifically, the
approach can be adapted to models with any number of random period and cohort
effects, and models that work with the log of the death rate, log m(t, x), (e.g. Lee
and Carter, 1992) rather than logit q(t, x) as in Cairns et al. (2006a).9 Additionally,
most of the commonly used stochastic mortality models share the characteristic with
the CBD two-factor model that randomness in mortality rates builds up gradually
over time meaning that discrete-time hedging should work well in most cases. For
a given model, the probit-Taylor approximation would need to reflect the number
of random factors in the mortality model and a hedging strategy would need cash
plus as many hedging instruments as there are random factors. The accuracy of the
approximation and of the hedging strategy might be better or worse than we have
found for the CBD model, and it is difficult to anticipate which way this might go
without analysing each model individually.

We have focused in this paper on hedging “vanilla” annuity payments proportional
to S(t, x) which can be valued easily using the probit-Taylor approximation. In
contrast, suppose we seek to value an option on an annuity price, max{a(T, x)−g, 0},
where a(T, x) =

∑∞
s=1(1+i)−sp(T, T +s, x−T, K(T )). The expected value of a(T, x)

given K(t) where t < T is straight forward to calculate using the probit-Taylor
approximation, but the expected value of max{a(T, x) − g, 0} is not. So it will be
necessary to develop further approximations to deal with the non-linearity of the
payoff at T .

We also leave for further work consideration of robustness of the Delta hedging
strategy. For example, what if the parameters of the CBD model have been miscal-
ibrated, or what if the model itself is wrong? Are there alternatives to the recurring
use of age 65 and 75 q-forwards that are more robust under these uncertainties?
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A Probit versus logistic and log transforms

The linear and quadratic approximations were each considered in conjunction with
the probit, logistic and log transforms. A sample of results are presented in Figures
10 and 11. Figure 10 plots contours of the difference between the approximate and
actual spot survival probabilities. In all cases the log transform produces worse
results than the probit and logistic transforms. In general, the probit and logis-
tic transforms produce similar results. For lower terms to maturity, the logistic
transform produces slightly more accurate results with the linear approximation,
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whereas the convese is true for higher maturities. However, for lower maturities,
the approximation errors are typically quite small (e.g. mostly less than 0.0001 for
T = 5) whereas, for higher maturities, the approximation error tends to be larger
(e.g. mostly less than 0.01 for T = 30). This might tip the balance slightly in favour
of using the probit transform although the decision is marginal based simply on the
accuracy of the approximation.

Figure 11 plots contours for the ratio of the approximate to actual annuity values
for a male aged 65 under the three transforms using both the linear and quadratic
approximations. Again the log transform is relatively poor. The probit transform
produces slightly better results than the logistic transform for both the linear and
quadratic approximations.

These observations plus the additional analytical properties associated with the
probit transform led us to prefer the probit linear approximation for developing a
delta hedging strategy.

B Numerical approximation of the derivatives of

a function

For a general, twice-differentiable function g(x1, x2), for small h1 and h2:

∂g

∂x1

(x1, x2) ≈ (g(x1 + h1, x2)− g(x1, x2)) /h1

∂g

∂x2

(x1, x2) ≈ (g(x1, x2 + h2)− g(x1, x2)) /h2

∂2g

∂x2
1

(x1, x2) ≈ (g(x1 + h1, x2)− 2g(x1, x2) + g(x1 − h1, x2)) /h2
1

∂2g

∂x2
2

(x1, x2) ≈ (g(x1, x2 + h2)− 2g(x1, x2) + g(x1, x2 − h2)) /h2
2

and
∂2g

∂x1∂x2

(x1, x2) ≈
(
g(x1 + h1, x2 + h2)− g(x1 − h1, x2 + h2)

−g(x1 + h1, x2 − h2) + g(x1 − h1, x2 − h2)
)
/4h1h2.

As approximations these formulae are not unique, but they are known to be effective
in a variety of circumstances.

C Proof of equation (4)

Let Z ∼ N(0, 1) be a standard normal random variable that is independent of the
process K(t).
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Figure 10: Approximate versus actual values for the spot survival probabilities:
p̂(0, T, x, k) − p(0, T, x, k). Top row: T = 5 years. Middle row: T = 10 years.
Bottom row: T = 30 years. Left-hand column: Probit transformation, Φ−1(x).
Middle column: Logistic transformation, log(x/(1 − x)). Right-hand column: log
transformation, log(x). The cloud of dots shows 1000 simulated values of the pair
(K1(τ), K2(τ))′ for τ = 20 years after 2008.
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Figure 11: Approximate versus actual values for the annuity function: â65(k)/a65(k).
Left-hand plots: Linear approximation. Right-hand plots: Quadratic approxima-
tion. Top row: Probit transformation, Φ−1(x). Middle row: Logistic transforma-
tion, log(x/(1 − x)). Bottom row: log transformation, log(x). The cloud of dots
shows 1000 simulated values of the pair (K1(τ), K2(τ))′ for τ = 20 years after 2008.
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Then

p(t, t + T, x− t,K(t)) ≈ p̂(t, t + T, x− t,K(t))

= Φ
(
D0(T ) + D1(T )′(K(t)− k̂)

)

= Pr
(
Z ≤ D0(T ) + D1(T )′(K(t)− k̂)

)

= E
[
IZ≤D0(T )+D1(T )′(K(t)−k̂)

∣∣∣ Mt

]

where IZ≤D0(T )+D1(T )′(K(t)−k̂) is equal to 1 if Z ≤ D0(T ) + D1(T )′(K(t) − k̂) and
0 otherwise, and Mt represents the history of the mortality process up to time t,
which here can be replaced by K(t) because of the Markov nature of the model.

We wish to calculate

pFUT (0, t, t + T, x− t,K(0)) = E [p(t, t + T, x− t,K(t))|M0]

≈ E [ p̂(t, t + T, x− t,K(t))|M0]

= E
[
Φ

(
D0(T ) + D1(T )′(K(t)− k̂)

)]

= E
[
IZ≤D0(T )+D1(T )′(K(t)−k̂)

∣∣∣ M0

]

= Pr
(
Z −D0(T )−D1(T )′(K(0)− k̂) ≤ 0|M0

)
.

Now K(t) has the same distribution as K(0) + νt +
√

tCW where the 2× 1 vector
W is independent of Z and has a standard bivariate normal distribution. Hence

E
[
Z −D0(T )−D1(T )′(K(0)− k̂)

]
= −D0(T )−D1(T )′(K(0) + νt− k̂)

and V ar
[
Z −D0(T )−D1(T )′(K(0)− k̂)

]
= 1 + D1(T )′V D1(T )t

⇒ pFUT (0, t, t + T, x− t,K(0)) ≈ Φ

(
D0(T ) + D1(T )′(K(0) + νt− k̂)√

1 + D1(T )′V D1(T )t

)
.

D Probit approximation to logistic mortality rates

The CBD model states that logit q(t, x) = K1(t + 1) + K2(t + 1)(x − x̄). Viewed
from a specific start date (say time 0) and for a specific t and x, this can be written
as

q(t, x)|M0 ≡ eα+βZ

eα+βZ + 1

where Z ∼ N(0, 1), α = E[logit q(t, x)] and β =
√

V ar[logit q(t, x)].



Approximations to survivor and financial functions 32

−6 −4 −2 0 2 4 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

logit(z)

probit
approximation

z

M
or

ta
lit

y 
R

at
e

−6.0 −5.5 −5.0 −4.5 −4.0

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

logit

probit

Simulated
q(t,x)

z

M
or

ta
lit

y 
R

at
e

Figure 12: Logistic function ez/(ez + 1) and a probit approximation. Probit ap-
proximation matches the value and gradient of the logistic function at the ex-
pected value for q(t, x) for x = 65 and t = 20 (i.e. retrospective mortality rate
in 2029 for age 65). Left hand plot: logistic and probit functions over a full
range of z. Right-hand plot: detail of left hand plot with 1000 simulated values
of (K1(21) + K2(21)× (65− x̄), q(20, 65)) (crosses) given K(0).

Now let f(z) = Φ(a + bz), and define a and b to match q(t, x; z) and ∂q(t, x; z)/∂z
at z = 0: that is,

a = Φ−1

(
eα

eα + 1

)

and b =
β

φ(a)

eα

(eα + 1)2
.

The approximation is illustrated in Figure 12. The probit approximation has been
calibrated to match the expected value of q(t, x) in the year 2029 (t = 20) given
the information available at the end of 2008. From the left hand plot we can see
that the probit function does not appear to be an especially good approximation.
However, from the right hand plot where we zoom in on the left-hand tail of the
functions, we see that the approximation is very accurate in the region of interest:
that is, where we find typical simulated values of q(t, x) generated by K(t + 1) for
t = 20.

Finally, it can be noted that the values of D0(T, x), D1,1(T, x) and D1,2(T, x) for
T = 1 and x = 65 reported in Table 1 can be verified analytically and independently
by deriving appropriate values for a and b as described above and then applying
Result 1 in the main body of the paper to move from time 21 back to time 20.
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E Alternative approximations for qF (s, t, x)

E.1 Approximation 2: deteministic extrapolation

Let K(0) = k = (k1, k2)
′.

The Deltas require the calculation of the partial derivatives of qF (0, t, x; k) with
respect to k1 and k2 the components of k = (k1, k2). If we assume that K(u) equals
k + νu instead of being stochastic, then

qF (0, t, x; K(0) = k) =
exp(a′K(t + 1))

1 + exp(a′K(t + 1))
≈ exp(a′(k + (t + 1)ν))

1 + exp(a′(k + (t + 1)ν))
= q̃(t, x)

with a′ = (a1, a2) and a1 = 1 and a2 = (x− x̄). Note that this appoximation is the
median of the true distribution at t + 1 of q(t, x). Using this approximation is is
straightforward to calculate the approximate derivatives of q(0, t, x; k): that is,

∆1 =
∂q

∂k1

=
a1 exp[a′(k + (t + 1)ν)](

1 + exp[a′(k + (t + 1)ν)]
)2 = a1q̃(t, x)(1− q̃(t, x))

and ∆2 =
∂q

∂k2

=
a2 exp[a′(k + (t + 1)ν)](

1 + exp[a′(k + (t + 1)ν)]
)2 = a2q̃(t, x)(1− q̃(t, x)).

Note that the ratio of ∆1 to ∆2 under this approximation (that is, 1 to x− x̄) will
be the same as Approximation 1.

E.2 Approximation 3: series expansion

Given K(0), K(t + 1) = K(0) + ν(t + 1) +
√

t + 1CZ where V = CC ′ is the annual
variance-covariance matrix of the random walk model for K(t), and Z is a standard
bivariate normal random vector.

Now logit q(t, x) = a′K(t + 1) where a′ = (1, x− x̄). Therefore,

logit q(t, x) ∼ N(m(0, t, x), s2(0, t, x))

where m(0, t, x) = a′(K(0) + ν(t + 1)) and s2(0, t, x) = (t + 1)a′V a. We also have
the series expansion ew/(1 + ew) =

∑∞
j=1(−1)j−1ejw. Thus

E[q(t, x)|K(0)] =
∞∑

j=1

(−1)j−1 exp[jm(0, t, x) +
1

2
j2s2(0, t, x)]

≈
2M∑
j=1

(−1)j−1 exp[jm(0, t, x) +
1

2
j2s2(0, t, x)]. (7)
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Often M = 2 or M = 3 will give accurate approximations, but using, for example,
M = 5 imposes very little computational burden.10

We then have

∂

∂m(0, t, x)
E[q(t, x)|K(0)] =

∞∑
j=1

(−1)j−1j exp[jm(0, t, x) +
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and this then, with K(0) = (k1, k2)
′, allows us to compute
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since a1 = 1. Similarly,
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(Again we can note that the ratio of ∆1 to ∆2 is 1 to (x− x̄).)

Approximation 3 seems to be the preferred approach given that the forward price
and its Greeks can be calculated accurately and rapidly.

10Lower and upper bounds for the approximation in equation (7) are∑2M
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respectively and can be used to check the accuracy of the approximation. The best approximation
can be achieved when 2Mm(0, t, x) + 2M2s2(0, t, x) is minimised.


