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Abstract

In this paper we consider models for pension plans which contain a stochastic element. The em-
phasis will be on the use of stochastic interest models, although we will also consider stochastic
salary growth and price inflation. The paper will concentrate primarily on defined benefit pen-
sion plans. In doing so we will look at how the size of the fund and the contribution rate vary
through time and examine how these are influenced by factors which are within the control of a
plan’s managers and advisers. These factors include the term over which surplus is amortized;
the period between valuations; the delay between the valuation date and the implementation of
the new contribution rate; and the asset allocation strategy.

The paper will stress the importance of having a well defined objective for a pension plan:
optimal decisions and strategies can only be made when a well defined objective is in place.

The paper will also consider, briefly, defined contribution pension plans. The primary decision
here relates to the construction of suitable investment strategies for individual members. Again,
a well defined objective must be formulated before a sensible strategy can be designed.

Finally, computer simulation methods will be discussed.
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1 Introduction

In this paper we will consider stochastic pension plans. Pension plans generally fall into one of
two categories: defined benefit plans; and defined contribution plans. Both of these are common
in countries such as Canada, the USA, the UK and Australia. In all of these countries defined
contribution plans are growing significantly in number at the cost of defined benefit plans as
employers shift the burden of investment risk over to employees.

In this work we consider how the effects of investment risk can be reduced by making effective
use of factors which are within the control of the scheme. These are

� Defined benefit: the method and period of amortization; the intervaluation period; the de-
lay in implementing a recommended contribution rate; the funding method; the valuation
basis; the asset allocation strategy.

� Defined contribution: the asset allocation strategy (age dependent); the contribution rate.

In the following sections we will look at each of these factors and consider the effects which
each has on levels of uncertainty. In attempting to analyse such problems, a stochastic frame-
work is the only sensible one to use. Within a deterministic framework there is no concept of
uncertainty: the very thing we are attempting to quantify and control. For some factors the
effect is the intuitive one, while in others the effect may not be known until some sort of exact
or numerical analysis can be carried out.

2 Defined Benefit Pension Plans

Defined benefit pension plans provide benefits to members which are defined in terms of a
member’s final salary (according to some definition), and the length of membership in the plan.
For example,

Annual pension =
N
60
�FPS

where N = number of years of plan membership

FPS = final pensionable salary

In defined benefit pension plans pension and other benefits do not depend on past investment
performance. Instead the risk associated with future returns on the funds assets is borne by the
employer. This manifests itself through the contribution rate which must vary through time as
the level of the fund fluctuates above and below its target level. If these fluctuations are not
dealt with (that is, if the contribution rate remains fixed) then the fund will ultimately either run
out of assets from which to pay the benefits or grow exponentially out of control.

2.1 A simple model

A number of the factors which we will look at can be first investigated by looking at a very
simple stochastic model. By doing so we are able to focus quite quickly on the problem and to
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give ourselves a good feel for what might happen when we look at more realistic and complex
models. This approach follows that of Dufresne (1988, 1989 a,b, 1990), Haberman (1992, 1993
a,b, 1994), Zimbidis and Haberman (1993), Cairns (1995) and Cairns and Parker (1995).

Suppose, then, that we have a fund which has a stable membership and a stable level of benefit
outgo. Assuming that all benefits and contributions are paid at the start of each year we have
the following relationship:

AL(t +1) = (1+ i0v)(AL(t)+NC(t)�B(t))

where

AL(t) = actuarial liability at timet

B(t) = benefit outgo at timet

NC(t) = normal contribution rate at timet

and i0v = valuation rate of interest

Suppose that salary inflation is at the rates per annum and that benefit outgo increases in line
with salaries each year. Then

B(t) = B:(1+s)t

AL(t) = AL:(1+s)t

NC(t) = NC:(1+s)t

giving

AL(1+s) = (1+ i0v)(AL+NC�B)

or AL = (1+ iv)(AL+NC�B)

whereiv = (1+ i0v)=(1+s)�1= (i0v�s)=(1+s) is the real valuation rate of interest. Hence

NC= B� (1�vv)L

wherevv = 1=(1+ iv).

For convenience we will work in real terms relative to salary growth. In effect this means that
we may assume thats= 0, without losing any level of generality.

Now let F(t) be the actual size of the fund at timet. Then

F(t +1) = (1+ i(t +1))(F(t)+C(t)�B)

wherei(t +1) is the effective rate of interest earned on the fund during the periodt up tot +1,
andC(t) is the contribution rate at timet.

C(t) can be split into two parts: the normal contribution rate,NC; and an adjustmentADJ(t) to
allow for surplus or deficit in the fund relative to the actuarial liability. Thus
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C(t) = NC+ADJ(t)

We will deal with the calculation of this adjustment in the next two sections.

The deficit or unfunded liability at timet is defined as the excess of the actuarial libility over
the fund size at timet. Hence we define

UL(t) = unfunded liability at timet

= AL�F(t)

In North America it is common also to look at the loss which arises over each individual year.
This is defined as the difference between the expected fund size (based on the valuation as-
sumptions) and the actual fund size at the end of the year given the history of the fund up to the
start of the year. This gives us

L(t) = loss in yeart

= E[F(t)]�F(t) given the fund history up to timet�1

= UL(t)�E[UL(t)] given the fund history up to timet�1

We will make use ofUL(t) andL(t) in the next section.

No mention has been made so far of the interest rate processi(t). Initially we will assume that
i(1); i(2); : : : form an independent and identically distributed sequence of random variables with

i(t) > �1 with probability 1

E[i(t)] = i

Var[i(t)] = Var[1+ i(t)] = σ2

) E[(1+ i(t))2] = (1+ i)2+σ2

For notational convenience we will define

v1 =
1

E[1+ i(t)]
=

1
1+ i

v2 =
1

E[(1+ i(t))2]
=

1
(1+ i)2+σ2

These will be made use of in later sections.

2.2 Two methods of amortization

The Spread Method: This is in common use in the UK. The adjustment to the contribution
rate is just a fixed proportion of the unfunded liability: that is,
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ADJ(t) = k:UL(t)

where k =
1

äm
at rateiv

and m = the period of amortization.

The period of amortization is chosen by the actuary, and commonly ranges from 5 years to over
20 years. For accounting purposes in the UKmmust be set equal to the average future working
lifetime of the membership.

The Amortization of Losses Method: This is in common use in the USA and Canada. The
adjustment is calculated as the sum of the losses in the lastmyears divided by the present value
of an annuity due with a term ofm years calculated at the valuation rate of interest: that is,

ADJ(t) =
1

äm

m�1

∑
j=0

L(t� j)

The interpretation of this is that the loss made in years is recovered by payingm equal instal-
ments ofL(s)=äm over the nextm years. Thesem instalments have the same present value as
the loss made in years.

Dufresne (1989b) showed that the unfunded liabilities and the losses are linked in the following
way:

UL(t) =

m�1

∑
j=0

λ jL(t� j)

where λ j =
äm� j

äm

Intuitively this makes sense, sinceλ jL(t� j) is just the present value of the future amortization
instalments in respect of the loss made at timet� j. HenceUL(t) is equal to the present value
of the outstanding instalments in respect of all losses made up until timet.

The Spread Method can also be defined in terms of the loss function. Whereas the Amortiza-
tion of Losses Method recovers the loss at timet by taking inm equalinstalments ofL=äm ,
the Spread Method recovers this by making a geometrically decreasing, infinite sequence of
instalments which starts at the same level.

We are now in a position to calculate the long term mean and variance of the fund size and
of the contribution rate. Details of these are provided in Dufresne (1989) (in the case when
the valuation and the true mean rate of interest are equal) and Cairns (1995) (covering the case
wheni 6= iv). For the Spread method we find that
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E[F(t)] =
(1�k�vv)AL
(1�k�v1)

E[C(t)] = B� (1�k�vv)(1�v1)AL
(1�k�v1)

Var[F(t)] =
(1�k�vv)

2(v2
1�v2)

(1�k�v1)
2(v2� (1�k)2)

AL2

Var[C(t)] = k2 (1�k�vv)
2(v2

1�v2)

(1�k�v1)
2(v2� (1�k)2)

AL2

Wheni = iv these simplify to

E[F(t)] = AL

E[C(t)] = B� (1�v1)AL

Var[F(t)] =
(v2

1�v2)

(v2� (1�k)2)
AL2

Var[C(t)] = k2 (v2
1�v2)

(v2� (1�k)2)
AL2

Now v1 > v2 and we must haveVar[F(t)] andVar[C(t)] greater than 0. Hence we must have
(1� k)2 < v2 ) k > 1�pv2. This then automatically implies thatk > 1� v1 and if this is
combined withk> 1�vv it ensures that the mean fund size is also positive.

Looking at the Amortization of Losses Method we have, wheni = iv,

Var[L(t)] =
σ2(1+ i)�2AL2

1�σ2(1+ i)�2∑m�1
j=1 λ2

j

=V∞ say

Var[F(t)] = V∞
m�1

∑
j=0

λ2
j

Var[C(t)] =
m:V∞
(äm )2

2.3 The period of amortization

We now consider the first factor which we have within our control: the period of amortization,
m.

For the time being, assume thati = iv: we will look at the more general case in a later section.
The following results can be shown to hold for the Spread Method (for example, see Dufresne,
1989b)

� Var[F(t)] increases asm increases.
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Figure 1: The effect of the period of amortization on the variance of the contribution rate with
E[i(t)] = 0:05 andVar[i(t)] = 0:04.

� Var[C(t)] decreases initially asm increases from 1 up to some valuem� and then increases
asm increases beyondm�. The optimal value,m�, is such that
k� = 1=äm� = 1�v2.

Looking at the Amortization of Losses Method no such analytical results have been proved but
numerical examples show that the same qualitive behaviour holds, as illustrated in the following
example.

SupposeE[i(t)] = i = 0:05 andVar[i(t)] = σ2 = 0:22. Figure 1 illustrates how the variance of
the contribution rate (withAL= 1) depends onm. The Spread Method has its minimum at about
10 while the Amortization of Losses Method has its minimum at about 16, and this minimum
is higher.

In Figure 2 we compare the variance of the fund size against the variance of the contribution rate.
We do this because we may be interested in controlling the variance of both the contribution
rateand the fund size. Asm increases each curve moves to the right, first decreasing and then
increasing asm passes throughm�. Abovem� both the variance of the fund and the variance of
the contribution rate are increasing. It is clear then that no value ofmabovem� can be ‘optimal’
because the use of some lower value ofm (say,m�) can lower the variance of both the fund size
and the contribution rate. The range 1�m�m� is the so-calledefficientregion: that is, given
a value ofm in this range there is no other value ofm which can lower the variance of both the
fund size and the contribution rate. There is therefore a trade-off between variability in the fund
size and the contribution rate and settling on what we regard as an optimal spread period can
only be done with reference to a more specific objective than ‘minimize variance’.

It is significant that the Amortization of Losses Method curve always lies above the Spread
Method curve. This means that the Spread Method is certainly more efficient than the Amorti-
zation of Losses Method: that is, for any value ofm in combination with the Amortization of
Losses Method there is a (different) valuem0 for which the variance of both the fund size and
the contribution rate can be reduced by switching to the Spread Method.
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Figure 2:E[i(t)] = 0:05 andVar[i(t)] = 0:04. Comparison ofVar[F(t)] with Var[C(t)]. Notes:
Var[F(t)] increases asm increases; the efficient frontier for the Spread Method is always more
efficient than that for the Amortization of Losses Method.

2.4 The intervaluation period

The time between valuations is nominally a factor which is within the control of the scheme.
We have so far considered the case where valuations are carried out on an annual basis. Such
an approach is common amongst larger funds but this is often felt to be uneconomic for smaller
funds to carry out such frequent valuations. Instead smaller funds often opt for a three year
period between valuations (31

2 years being the statutory maximum in the UK).

The effects of changing from annual to triennial valuations have been considered by Haberman
(1993b). He finds that under the Spread Method of amortization

� the optimal spread period forVar[C(t)], m�, increases by about 1 year;

� the variances of bothF(t) andC(t) are increased for most values ofm below aboutm�.

Continuing the example of the previous section we looked at 1 and 3 year intervaluation periods.
Figure 3 plotsVar[C(t)] againstm. For low values ofm lengthening the intervaluation period
has the effecct of increasing the variance ofC(t): the intuitive effect. For higher values ofm,
however, the reverse is true. This perhaps reflects the fact that over each three year periodC(t)
is being held fixed thereby reducing the overall variance.

Comparing the variances ofF(t) andC(t) (Figure 4) we see that, in this example at least, the
efficient range for annual valuations lies below that for triennial valuations. We conclude that
annual valuations are preferrable, although for values ofm close tom� there is little difference
in the variances, so the benefit of annual valuations is marginal.

2.5 The delay period

The original analysis asumes that the new contribution rate can be implemented at the valuation
date. In reality the results of a valuation are often not known until 6 or even 12 months after the
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Figure 3:E[i(t)] = 0:05 andVar[i(t)] = 0:04. Var[C(t)] plotted againstm for annual and trien-
nial valuations.
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Figure 4:E[i(t)] = 0:05 andVar[i(t)] = 0:04. Comparison ofVar[F(t)] with Var[C(t)]. Note:
the efficient frontier for the annual valuation case is, for most values ofm less thanm�, below
that for the triennial valuation case.
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Figure 5:E[i(t)] = 0:05 andVar[i(t)] = 0:04. Var[C(t)] plotted againstm for delay periods of
0, 1, 2 and 3 years.

valuation date. The new recommended contribution rate is therefore typically not implemented
until one year later. There is a delay period of 1 year.

This problem has been investigated by Zimbidis and Haberman (1993). In the example under
consideration each extra year’s delay increases the variance ofF(t) andC(t) by at least 20% and
by much more substantial amounts for small values ofm. Figures 5 and 6 illustrate the results
for this example. One point to note is that where there is a delay period thenVar[F(t)] initially
decreases withm before increasing as in the no-delay case. This has the effect of reducing the
efficient range form. For example, with a delay of 3 years the efficient range is 5�m� 11 as
compared with 1�m� 10 when there is no delay.

In view of the substantial increases in variance caused by a delay it is felt that the delay should
be kept as short as possible and perhaps that allowance should be made in the current rate even
if the final results of a valuation are not known.
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Figure 6:E[i(t)] = 0:05 andVar[i(t)] = 0:04. Comparison ofVar[F(t)] with Var[C(t)]. Increas-
ing the delay period increases the variance of bothF(t) andC(t).

2.6 The funding method

Recall the equilibrium equation relatingAL to NC

AL= (1+ iv)(AL+NC�B)

If we increaseAL thenNCbalances this by falling (this is because benefits are paid from contri-
butions plus surplus interest on the fund, which has increased). Furthermore,AL is determined
by the funding method. The normal ordering which we find is

ALCUC < ALPUC < ALEAN

where the subscripts represent the Current Unit Credit (CUC), Projected Unit Credit (PUC) and
Entry Age Normal (EAN) methods, these being the three main funding methods appropriate for
a stable membership.

The Attained Age Method has the same actuarial liability as the Projected Unit Credit Method
but normally has a higher normal contribution rate which is appropriate for a closed fund, but
which will give systematic rise to surplus when the fund has a stable membership. In such a case
the equilibrium equation is, therefore, not satisfied. Instead the system has a higher equilibrium
fund size which depends on the method and period of amortization.

The variances ofF(t) andC(t) are both proportional toAL2. This means that a more secure
funding method (higherAL) gives rise to greater variability, suggesting that a method with a
low actuarial liability is to be preferred. Clearly this is not a prudent strategy. It jeopardizes
member’s security and is more likely to violate statutory solvency requirements.

This problem can be overcome by a number of methods, including:

� the use of the normalized variancesVar[F(t)]=E[F(t)]2 andVar[C(t)]=E[F(t)]2;

� the use of further fund objectives (for example, by conditioning on the mean fund size
being at a specified level).

11



2.7 The strength of the valuation basis

So far we have concentrated on the case where the valuation rate of interest,iv, is equal to the
mean long term rate of interest,i. It is common, however, for valuations to be carried out on
a strong (occasionally weak) basis: that is, to setiv < i (or iv > i). This gives rise to a wider
variety of results.

Recall that

E[F(t)] =
(1�k�vv)AL
(1�k�v1)

E[C(t)] = B� (1�k�vv)(1�v1)AL
(1�k�v1)

Var[F(t)] =
(1�k�vv)

2(v2
1�v2)

(1�k�v1)
2(v2� (1�k)2)

AL2

Var[C(t)] = k2 (1�k�vv)
2(v2

1�v2)

(1�k�v1)
2(v2� (1�k)2)

AL2

We concentrate on the variance of the contribution rate and look for the existence of a minimum
with respect to the period of amortization,m. There are a number of cases to consider.

1. Strong basis: iv < i (vv > v1)

(these are currently observations, and not proved)

(a) E(Ct) is an increasing function ofk for k> 1�pv2.

(b) Var(Ct) has a minimum for some 1�pv2 < k� < 1.

(c) Var(Ft) is a decreasing function ofk.

From this we can see that fork > k� both the expected value and the variance of the
contribution rate are increasing so that increasingk abovek� is not worthwhile. Ifk is
decreased then we trade off a lower contribution rate for a higher variance. The optimal
value therefore depends on the pension fund’s utility function or objectives. This goes
slightly against the conclusions of Dufresne who indicates thatk� would be theminimum
acceptable value ofk.

For some values ofk the mean contribution rate will be negative, indicating that the fund
is large enough to pay for itself and at times requiring refunds to the employer. Although
this seems an ideal situation, the reality is that the company must first have built up the
fund to this level. It would also be likely to violate statutory surplus regulations.

It is possible to have smaller expected fund levels and higher contribution rates, but these
do not arise if the projected unit method is used in the calculation of the funding rate and
using a conservative valuation rate of interest.

2. Best estimate:iv = i (vv = v1)

The results of Dufresne (1989) hold.

(a) E(Ct) is a constant function ofk for k> 1�pv2.

(b) Var(Ct) has a minimum for some 1�pv2 < k� < 1.

(c) Var(Ft) is a decreasing function ofk.
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Figure 7: E[i(t)] = 0:05 andVar[i(t)] = 0:04. Var[C(t)] plotted againstE[C(t)] for different
valuation rates of interest. Moving from left to right the curves represent:iv = 0:03;0:04 (type
1, strong basis);iv = 0:05 (type 2, best estimate basis);iv = 0:06 (type 3, weak basis);iv = 0:07
(type 4, very weak basis). The dotted line is the efficient frontier.

3. Weak basis: i < iv <
p

(1+ i)2+σ2�1 (v1 > vv >
p

v2)

(a) E(Ct) is a decreasing function ofk for k> 1�pv2.

(b) Var(Ct) has a minimum for some 1�pv2 < k� < 1.

(c) Var(Ft) is a decreasing function ofk.

This time we find that it may be acceptable to increasek abovek�, trading off lower
contributions for higher variability.

4. Very weak basis:
p

(1+ i)2+σ2�1< iv (
p

v2 > vv)

(a) E(Ct) is a decreasing function ofk for k > 1� vv at which point it equalsB and the
scheme is funded on a pay as you go basis. For 1� vv > k > 1�pv2 E(Ct) is still a
decreasing function.

(b)Var(Ct) has a minimum equal to zero atk= 1�vv. This is because the scheme is now
funded on a pay as you go basis and contributions equal the constantB.

(c) Var(Ft) has a local minimum atk = 1, a maximum at some 1� vv < k� < 1 and a
global minimum equal to zero atk= 1�vv when the fund stays constant at zero.

The efficient frontier

Pooling these results together we can determine a curvem(µc) where

m(µC) = minfVar(Ct) : E(Ct) = µC;1> k> max(1�vv;1�
p

v2);vv < 1g

That is,m(µC) gives us the minimum variance attainable for a given mean contribution rate. In
fact, it can be shown thatm(µC) is convex (quadratic).

These different types of outcome are illustrated in Figure 7, withi = 0:05 andσ2 = 0:22.
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Figure 8: E[i(t)] = 0:05 andVar[i(t)] = 0:04. Var[C(t)] plotted againstm for different long
term rates of return. The valuation rate of interest is fixed.

2.8 Sensitivity testing

In carrying out such analyses it is important to realize that the model for the rate of return
including its parameter values are uncertain. First, the model we use here is only one of a
range of possible models of varying complexity which all fit past data reasonably well. All of
these models are, however, only an approximation to a much more complex reality. Second,
the parameter values which we have used (herei = 0:05 andσ2 = 0:04) are not known with
certainty: for examplei could equally well be 0.04 or 0.06.

In fact this can have a very significant effect on level the variability. Figures 8 and 9 illustrate
this point.i is allowed to take the values 0.04, 0.05 and 0.06. In Figure 8 the effect onVar[C(t)]
is very significant, particularly for larger values ofm. However, these results are distorted by
the fact that wheni 6= iv the mean fund size (E[F(t)]) depends onm. The normalized variance
of C(t) is plotted in Figure 9 and the effect can be seen to be reduced but still significant.

A change in the value ofi of 1% makes a difference inm� of about 2 years (for example, moving
from i = 0:05 to i = 0:06 changesm� from 10 to 8).

The result of these changes is not as significant as might first appear. For example, suppose
we settled uponm� = 10 on the basis thati = 0:05. If in fact the long term mean turned out
to bei = 0:06 then amortizing over 10 years would only turn out to have been only marginally
worse than if the true optimumm� = 8 had been used. The fact that the actual variance of the
contribution rate was perhaps 20% higher than that expected is irrelevant since the lower value
would never, in fact, have been attainable.

Figure 10 shows the effects of uncertainty inσ2 (with σ2 taking the values 0.03, 0.04 and
0.05). The effect is again substantial, but much more uniform over the whole range of values
for m. This is becauseσ2 has a much more direct effect on the variance of the fund size and
the contribution rate. However, as with uncertainty ini, the normalized variance is relatively
stable over a range of values about the minimum, so choosing the wrong value ofm will only
marginally increase the long term variance.

The point to take in from this section is that we need to take care in ensuring that we look at the
right quantities. We therefore need to compare theactualoutcome based on the decision which
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Figure 9:E[i(t)] = 0:05 andVar[i(t)] = 0:04.Var[C(t)]=E[F(t)]2 plotted againstm for different
long term rates of return. The valuation rate of interest is fixed.

was based on incorrect assumptions with the outcome which would haveactuallyhappened had
the decision been based on the correct assumptions. Here the differences have been shown to
be minimal but if we were to find that they were significant then we may need to look carefully
at our estimates to see if they can be refined and improved upon.

2.9 Objectives

We have already discussed that within the efficient region form (1� m� m�) there is a trade
off between higher variance ofF(t) and higher variance ofC(t). To settle on an optimal spread
period therefore requires a specific objective or utility function. For example, we may be con-
cerned about containing the fund size within a specified band (bounded below, say, by the
minimum solvency level and above by a statutory surplus limit). We could accomodate this by
specifying thatE[F(t)] lie in the middle of this band and that the standard deviation ofF(t) be
no more than 10% of this mean fund size. In this case the optimum would bem�� which pushes
the variance ofF(t) up to the maximum level allowable orm� if this is lower.

If a proper optimum is to be found then the fund must have a well defined objective which will
allow optimization to take place. Examples of some objectives are:

� Minimize Var[C(t)] subject toVar[F(t)]�Vmax;

� Minimize Var[C(t)] subject toE[F(t)] = µF ;

� Minimize the variance of the present value of all future contributions (that is,∑∞
t=0vtC(t))

subject to ......;

� MaximizeE[u(F(t))] whereu( f ) is utility function which depends on the fund size. For
example, ifu( f ) =�( f � f0)2 thenE[u(F(t))] =�Var[F(t)]� (E[F(t)]� f0)

2, the sec-
ond term being a penalty for deviation of the mean from the target off0.
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Figure 10:E[i(t)] = 0:05 andVar[i(t)] = 0:04.Var[C(t)]=E[F(t)]2 plotted againstm for varying
levels of volatility in the rate of return. The valuation rate of interest is fixed.

Care should be taken when formulating an objective. For example, the last of these makes less
sense ifE[F(t)] is constant for all values ofm (that is if iv = i); and constraints should have
reasonable rather than extreme values.

2.10 Other stochastic investment models

We have used the simplest stochastic interest model here (independent and identically dis-
tributed returns) which allows us to obtain some intuitively appealing analytical results. A
wide variety of more complex models are used in practice for which analytical results are not
possible. However, it is expected that similar qualitative results should be available.

Autoregressive time series models:Haberman (1993a) has investigated the use of the AR(1)
time series model:

δ(t) = δ+α(δ(t�1)�δ)+νZ(t)

where δ(t) = log(1+ i(t))

Z(t) � N(0;1)

jαj < 1 is the autoregressive parameter

δ = long term mean rate of return

ν2 = variance parameter

Hence E[δ(t)] = δ

Var[δ(t)] = σ2 =
ν2

1�α2

E[1+ i(t)] = eδ+ 1
2σ2

Var[1+ i(t)] = e2δ+σ2
�

eσ2�1
�

It has been found thatα > 0 (positively correlated returns) decreases the value ofm� (for ex-
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ample, withE[i(t)] = 0:05 andVar[i(t)] = 0:22 m� falls from 10 to 5 whenα is changed from 0
(independent and identically distributed returns) to only 0.1). More likely is the caseα < 0 (a
high return one year is followed by a low return the next year) which increases the value ofm�.

Note that such models seem more appropriate to fixed interest investments: past equity data do
not show any significant signs of autocorrelation from one year to the next.

In summary the most widely used stochastic interest models are

� Independent and identically distributed returns: for example, Waters (1978), Dufresne
(1990), Papachristou and Waters (1991), Parker (1993 a,b, 1994 a,b) and Aebiet al.
(1994) give but a few examples.

� Simple autoregressive models, such as theAR(1) time series model, and the Ornstein-
Uhlenbeck process: for example, Dhaene (1989), Parker (1993 a,b, 1994 a,b) and Norberg
and Møller (1994).

� Models for the term structure of interest rates: for example, Boyle (1978, 1980), Brennan
and Schwarz (1979), Albrecht (1985), Cox, Ingersoll and Ross (1985), Beekman and
Shiu (1988), Heath, Jarrow and Morton (1990, 1992), Reitano (1991), Sercu (1991) and
Longstaff and Schwarz (1992).

� Models with several asset classes: for example, Wilkie (1987, 1992, 1994), and Chan
(1994).

The last two of these classes are the most appropriate for the purposes of making an asset
allocation decision. In an objective based setting, however, the asset allocation strategy must be
considered simulataneously with other factors which are within our control (see the example in
the next section).

Increasing complexity means that we need to resort to stochastic simulation in most of these
cases.

2.11 Example: A two asset model

Suppose that the fund has two assets in which it can invest. The return in yeart on assetj
( j = 1;2) is i j(t) with

E[i j(t)] = i j for j = 1;2

Cov[i j(t); ik(t)] = cjk = ck j j;k= 1;2

Suppose asset 1 carries a lower risk and a lower return: that is,i1 < i2 andc11 < c22.

Let i(t) be the overall return during yeart, and suppose that a proportionp of the fund is invested
in asset 1. Then
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E[i(t)] = pi1+(1� p)i2 = µ(p) say

Var[i(t)] = Var[pi1(t)+(1� p)i2(t)]

= Var[pi1(t)]+Var[(1� p)i2(t)]+2Cov[pi1(t);(1� p)i2(t)]

= p2c11+(1� p)2c22+2p(1� p)c12

= σ2(p) say

(This is following the approach of Modern Portfolio Theory.)

We now put this new mean and variance into the original equations:

E[F(t)] =
(1�k�vv)AL
(1�k�v1)

E[C(t)] = B� (1�k�vv)(1�v1)AL
(1�k�v1)

Var[F(t)] =
(1�k�vv)

2(v2
1�v2)

(1�k�v1)
2(v2� (1�k)2)

AL2

Var[C(t)] = k2 (1�k�vv)
2(v2

1�v2)

(1�k�v1)
2(v2� (1�k)2)

AL2

where v1 =
1

E[1+ i(t)]
=

1
1+µ(p)

v2 =
1

E[(1+ i(t))2]
=

1
(1+µ(p))2+σ2(p)

We now have at our disposal:

� the period of amortization;

� valuation basis;

� asset mix.

We have seen from looking at the strength of the valuation basis that a wide range of fund
sizes can be attained. Optimal choices must therefore be made with reference to some specific
objectives. For example,

minimize Var[C(t)]
subject to E[F(t)] = AL0

Var[F(t)]� (0:1AL0)2

whereAL0 is, for example, a statutory minimum plus 20%.

To find an appropriate solution one must now use numerical methods to optimize over the factors
within our control. The process of optimization may proceed as follows:

1. Fix the asset proportion and the valuation rate of interest (p andiv). Thenk (thereforem)
is determined by the constraint onE[F(t)]:
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E[F(t)] =
(1�k�vv)

(1�k�v1)
AL(iv) = AL0

2. Find the range of values ofiv for which Var[F(t)] � (0:1AL0)2, and within that range
which iv minimizesVar[C(t)]. Let this minimum beM(p).

3. MinimizeM(p) over 0� p� 1.

4. Check that the optimal values are reasonable: for exampe, isiv reasonable when com-
pared withE[i(t)] = µ(p�); is m� reasonable; isp� acceptable? If the answer to any of
these questions is no then we should ask ourselves why and reformulate the objectives
accordingly.

2.12 Constraints on strategies

We have already mentioned in Sections 2.6 and 2.9 that our optimal strategy may be influenced
by statutory funding levels. These may be

� a minimum solvency requirement;

� a maximum surplus regulation.

Different countries have different regulations for what happens when one of these limits is
breached. Typically, however, there may be a requirement to amortize the difference between
the limit and the current fund size over a shorter period than normal (in the UK and Canada this
is 5 years).

Another constraint may be a limit on the ability of the employer to take a refund from the fund.
If no refund at all is possible then ultimately the fund will reach a stage where the fund becomes
large enough to be self funding (that is, interest exceeds benefit outgo) beyond which point the
fund will grow exponentially out of control. This is a certain event in a stochastic environment.
More common is a (statutory) constraint that contribution refunds may only be made while the
asset/liability ration remains above a specified level.

When such constraints are in place exact analyses are no longer possible. Instead numerical
investigations are necessary.

2.13 Salary growth and price inflation

We have already illustrated how salary growth can be incorporated into these models. This is
done by indexing the actuarial libility, the normal contribution rate and the benefit outgo in line
with the total salary rollS(t), and treatingi(t) as a real rate of return.

Salary inflation can be adequately modelled by an autoregressive process of order 1 or alterna-
tively it can be linked to price inflation (for example, see Section 3 and Wilkie, 1994).

Problems arise when benefit outgo is not proportional to the total salary roll. For example, if
pensions are paid from the fund but linked to a prices index then benefit outgo is equal to a
mixture of past salary rolls increased in line with the appropriate price index.
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This can be approached in two ways: by carrying out a simulation study (described in the next
section); or by assuming that pensions are matched at the date of retirement by index-linked
securities. In the latter case

B(t) = B�S(t)�A(t)

where B = base pension benefit

S(t) = salary index

A(t) = real annuity rate at timet

The annuity rateA(t) is itself governed by a random process: for example,A(1);A(2); : : : may
be independent and identically distributed positive random variables.

2.14 Simulation methods

Two simulation methods are available.

Method 1: (Ergodic method)

All of the interest rate processes described are examples ofergodicprocesses (for example, see
Karlin and Taylor, 1975). A consequence of this (amongst other properties) is that the fund
process will satisfy

f̄n =
1
n

n

∑
t=1

F(t)! E[F(t)] almost surely asn! ∞

s2
n =

1
n

n

∑
t=1

�
F(t)� f̄n

�2 !Var[F(t)] almost surely asn! ∞

(If salary growth is allowed for, thenF(t) above should be replaced by the asset/liability ratio
F(t)=AL(t).)

This means that a single, long simulation run of the pension plan will give us good estimates
of the means and variances of the quantities of interest. Rough calculations suggest that this
simulation should be of at least 2000 years.

The simulation should be repeated for each combination of decisions being examined. For
consistency and efficiency the same realization of the interest rate process should be used for
each combination of decisions.

Method 2: Repeated simulation

The objective of the fund may, amongst other things, aim to minimize variance over a short
period, say 10 years, rather than over the longer term. Repeated simulation is more appropriate
here: that is, simulate the fund for 10 years, given appropriate initial conditions; and then repeat
this, say, 200 or more times. For consistency and efficiency the same 200 scenarios of the
interest rate process should be used for each combination of decisions.
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3 Defined Contribution Pension Plans

Defined contribution pension plans are becoming of ever increasing importance and as such they
require some long overdue investigation in order that their reliability as a pensions vehicle can
be improved upon. The principal distinctions with defined benefit pension plans are that benefits
are no longer based upon final salary but depend on past contribution levels and past investment
returns thereby passing investment risk from the employer to the individual members.

Whereas an employer as sponsor of a defined benefit plan is able to smooth out good and bad
years’ investment returns, defined contribution pension plan members are rather more at the
mercy of variations in returns from one year to the next. For example, Knox (1993) carried out
a simulation study using a simple model which illustrated the high degree of uncertainty in the
final amount of a defined contribution pension relative to final salary. This risk is well known
and is a major criticism of the defined contribution set-up. Further work is therefore required to
see if this risk can be reduced.

Defined contribution pension plans can be divided into two categories:

� those sponsored by an employer;

� those taken out by individuals with an insurer and with no (or only indirect) involvement
on the part of an employer (Retirement Savings Plan).

From a statistical standpoint, this is an artificial distinction. Any decision which can be applied
to one type should be applicable to the other: for example, the use of investment strategies
which depend on the age of the individual.

3.1 Objectives

Clearly defined objectives are perhaps even more important in the decision making process as-
sociated with a defined contribution pension plan than a defined benefit pension plan. Different,
member oriented objectives are required and the situation may be complicated further by the
possibility that different members may have different objectives and utility functions.

An objective is most likely to be defined in terms of the the amount of pension at retirementas
a proportion of final salaryrather than as an absolute amount. Thus we define

P(t) = pension on retirement at timet

S(t) = salary at timet

π(t) = P(t)=S(t)

= pension as a proportion of final salary

Now P(t) depends on past contributions, past investment returns and annuity rates at retirement.
If contributions are paid at the start of each year then
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P(t) =
1

A(t)

t

∑
s=0

ρ(s)S(s)
F(t)
F(s)

where ρ(s) = contribution rate at times
F(t)
F(s)

= accumulation at timet of an investment of 1 at times

A(t) = annuity factor applied on retirement at timet

Normally it will be assumed that the contribution rateρ(t) is constant through time, although
this could be used as a method of reducing uncertainty.

Each of the processesF(t), S(t) andA(t) are random. This will exaggerate the level of uncer-
tainty at retirement unless a suitable strategy can be found which can use one process to offset
the effects of another. For example, by investing in fixed interest bonds, a fall in bond prices
close to retirement will be offset by a fall in the value ofA(t), the cost of purchasing an annuity.

Objectives may be divided into two categories

(A) ones in which the member is told of his or her pension only at the date of retirement;

(B) ones in which the member is given advance notice of the (likely) future amount of pension
and then expects the final pension to be as close to this as possible (or not too much less
than).

Possible objectives of type A are:

� maximizeE[π(t)];

� maximizeE[π(t)] subject toVar[π(t)] = σ2
π;

� maximizeVar[π(t)];

� maximizeVar[π(t)] subject toE[π(t)] = µπ;

� minimizePr(π(t)< πmin);

� maximizeE[u(π(t))] whereu(�) is some utility function.

Objectives of type B include

� minimizeE[(π(t)� π̂(t))2 j Hs] whereHs gives us the history of the fund up until timet
andπ̂(t) is the estimated future pension based onHs;

� maximizeE[u(π(t)) j Hs; π̂(t)].

It is questionable whether some such objectives may be reasonable. For example, suppose an
objective results in a strategy which locks into a given level of pension some time in advance of
retirement. The problem with this is that the level which we lock into may be just as variable as
the pension which could be obtained had the fund been left alone until the date of retirement.
So is it really in the member’s best interests to lock into a pension at too early a stage?
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3.2 Investment strategies

It may be difficult to examine all possible investment strategies. However, an appropriate start-
ing point may be to examine a small number of possibilities. For example,

� strategies which are fixed through time:

– equities only

– equities and matching options

– fixed interest bonds

– equities, fixed interest bonds and cash

– index linked bonds

– equities, matching options, fixed interest bonds and cash

– etc.

� strategies which vary through time:

– equities switching into fixed interest bonds over the last 5 years

– fixed interest bonds

– equities and matching options

– equities, matching options, fixed interest bonds and cash

– etc.

� strategies which vary through time and depend on the past history of the fund.

3.3 A simple example

Here we look at a simple example which illustrates the fallacy of an early switch into fixed
interest bonds.

We simplify the situation by considering a fund which is now of sizeF(0) and which will
receive no further contributions. We are interested in the lump sum which this fund will produce
at retirement as a proportion of final salary.

Three options are available:

� a zero-coupon fixed interest investment which provides a guaranteed lump sumL at re-
tirement;

� investment in long-term index linked bonds;

� investment in equities.

The model we will use is described in the Appendix. The model and its parameters were found
to fit UK experience reasonably well.

The measure of risk for each option (the variance of the logarithm of the lump sum as a pro-
portion of final salary) is plotted in Figure 11. We can see that although the fixed pension fares
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Figure 11: Risk relative to policyholder’s salary for three different investment strategies. Risk is
measured asVar[L(t)=S(t)] whereL(t) is the lump sum at retirement andS(t) is the final salary.

better early on the index linked option clearly becomes lower risk later on. (Note that this does
not take account of uncertainty in the initial lump sum which would arise had we been consid-
ering the situation part of the way through a policy’s lifetime.) The equity fund is, perhaps not
surprisingly, well above the other two in terms of risk, but will also attract a reasonable risk
premium. It is also likely that a fixed interest investment attracts a small risk premium over an
index-linked investment so at later durations the ordering of the risks is in the order we might
expect.
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5 Appendix

S(t) = salary at timet

Fe(t) = equities fund at timet

Fil (t) = index-linked fund at timet

δs(t) = log[S(t)=S(t�1)]

δe(t) = log[Fe(t)=Fe(t�1)]

δil (t) = log[Fil (t)=Fil (t�1)]

with δs(t) = δp(t)+δrs(t)

δe(t) = δp(t)+δrs(t)+δre(t)

δil (t) = δp(t)+δril (t)

δp(t) = force of price inflation betweent�1 andt

= δp+αp(δp(t�1)�δp)+σpZp(t)

δrs(t) = real salary growth rate

= δrs+αrs(δrs(t�1)�δrs)+σrsZrs(t)

δre(t) = real equities rate of return over salaries

= δre+σreZre(t)

δril (t) = real index linked return

= δril +αril (δril (t�1)�δril )+σril Zril (t)

whereZp(t), Zrs(t), Zre(t) andZril (t) (for t = 0;1;2; : : :) are independent and identically dis-
tributed sequences of standard Normal random variables.

Now let
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yp(t) =

t

∑
s=1

δp(s)

yrs(t) =

t

∑
s=1

δrs(s)

yre(t) =

t

∑
s=1

δre(s)

yril (t) =

t

∑
s=1

δril (s)

Then E[yp] = δp:t

Var[yp(t)] =
σ2
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We also define

Fe(t) = exp[yp(t)+yre(t)]

Fil (t) = exp[yp(t)+yril (t)]

S(t) = exp[yp(t)+yrs(t)]

We are interested in the three quantities

L1 = L=S(t)

L2 = Fil (t)=S(t)

L3 = Fe(t)=S(t)

Of particular interest is the level of risk associated with each option which we measure by taking
the variance of the logarithm of each quantity.

Var[logL1] = Var[yp(t)]+Var[yrs(t)]

Var[logL2] = Var[yrs(t)]+Var[yril (t)]

Var[logL3] = Var[yre(t)]

These variances are described in the main text.
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Parameter values

type,θ δθ αθ σ2
θ

prices,p 0.05 0.7 0:052

real salary,rs 0.02 0.4 0:032

real index-linked,ril 0.036 -0.5 0:132

real equity,re 0.036 0:262
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