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Abstract

The paper introduces a new framework for modelling the joint development over time
of mortality rates in a pair of related populations by combining a number of recent
and novel developments in stochastic mortality modelling. First, we develop an
underlying stochastic model which incorporates a mean-reverting stochastic spread
that allows for different trends in mortality improvement rates in the short-run, but
parallel improvements in the long run in line with the principles of biological rea-
sonableness. Second, we fit the model using a Bayesian framework that allows us to
combine estimation of the unobservable state variables and the parameters of the
stochastic processes driving them into a single procedure. This procedure employs
Markov chain Monte Carlo (MCMC) techniques, permitting us to analyse uncer-
tainty in the estimates of the historical age, period and cohort effects, and this helps
us to smooth out noise in parameter estimates attributable to small populations.

Mortality rates arising from this framework provide consistent forecasts for the two
populations. Further, estimated correlations based on the simulated mortality im-
provement factors for two populations are consistent with historical data.

The framework is illustrated using two-population extensions of the Age-Period-
Cohort and Lee-Carter models on the following populations: England & Wales
national and CMI assured lives males and females, and US and California males.
The approach is designed for large populations coupled with a small sub-population,
but is easily adaptable to other combinations.

A key application of the modelling framework would be to allow longevity risk
hedgers to model the basis risk that exists between mortality rates in two populations
in the case where the hedger wishes to hedge the risk in one population using a
hdging instrument based on the second population.
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parameter uncertainty.
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1 Introduction

Recent years have seen considerable developments in the modelling and forecasting
of mortality rates. Pioneering work by Lee and Carter (LC, 1992) has been supple-
mented by a variety of alternatives that might be considered improvements on the
single-factor LC model according to a variety of criteria (see, for example, Currie
et al. (2004), Renshaw and Haberman (2003, 2006), Cairns et al. (2006a,b, 2008b,
2009)). Most work has focused on stochastic mortality models for single popula-
tions. For a variety of reasons, however, it is important to be able to model two or
more populations simultaneously.

First, we might simply want to impose consistency between projections of two related
populations. As an example, consider Figure 1. This shows forecasts of mortality
rates for England & Wales males and females aged 65, using data from 1961 to 2005.
Forecasts are based on the LC model fitted to each population separately. We see
that after 40 or so years, the central projection for the female mortality rates crosses
over that of males, a consequence of the lower improvement rates over the last 45
years for females. To some, this cross-over might seem unreasonable: it seems more
plausible that the relationship between male and female mortality rates remains
approximately stable, with rates for females remaining below male rates at most
ages. This issue can be resolved through the use of some subjective interventions
such as calibrating the models over different ranges of years, or by directly making
manual adjustments to the future mortality improvement rates using in making
forecasts. This paper seeks to address the problem of inconsistent projections in
related populations using more objective means.

Second, we need to consider the correlation and long-term cointegration between
mortality improvements in different populations in order to have a thorough as-
sessment of longevity risk, building on the non-parametric, historical analysis of
Coughlan et al. (2009b). To illustrate, a typical life assurer covers assured lives
and annuitants, two populations with potentially different patterns of mortality im-
provements. As another example, a large pension plan might wish to model blue-
and white-collar workers separately, before aggregating longevity risk to the plan
level. Other examples include smokers and non-smokers, and multinational assurers
and pension plans.

Third, we might be concerned with mortality improvements in a small population.
Data availability might be limited for such a population, for example, due to a small
numbers of deaths, a limited number of calendar years of data or age range, or,
simply, poor quality data. Any model fitted solely to this data will have highly un-
reliable parameter estimates, whereas a model fitted jointly to the small population
and a much larger, linked population (for example, national population mortality)
allows the small-population mortality forecasts to be linked to and be consistent
with those of the larger population.
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Figure 1: Single population projections for England & Wales males (grey) and
females (red) mortality at age 65 using the Lee-Carter model. Both projections
use data from 1961 to 2005 and ages 60 to 89. Dots: historical crude mortality
rates. Fans: prediction intervals showing 5%, 10%, ..., 90%, 95% quantiles for
future mortality rates.

Fourth, entities seeking to hedge their exposure to longevity risk using longevity
index-based hedging instruments need to be able to determine hedge ratios and to
assess the degree of basis risk between their own population and the reference pop-
ulation underlying the longevity index. A good model will help identify situations
where basis risk is considered too high, resulting in a need for alternative index-based
instruments with lower basis risk or bespoke over-the-counter agreements that come
much closer to the full indemnification of longevity risk, as in traditional reinsurance
contracts.

From the hedger’s point of view, basis risk1 can take a number of forms. The core
source of basis risk comes from the fact that the hedging instrument’s reference

1Here we interpret basis risk as being the difference between the value of the liability being
hedged and the value of the hedge portfolio.
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population might be imperfectly correlated with the hedger’s own population (see,
for example, Dahl et al (2008, 2009), Jarner and Kryger (2009) and Li and Hardy
(2009)). However, there are additional, secondary sources of basis risk to bear in
mind:

• Actual numbers of deaths differ to some extent from expected numbers (Dahl
et al., 2008, 2009). Death rates are, therefore, random and will be different
from the true underlying death rate due to sampling variation.2 Where a
mortality-linked derivative is related to the underlying death rate, this type of
basis risk will be of greater significance to small populations than large.

• Life assurance mortality data sometimes contains information about amounts
assured, as well as deaths and exposures. Currie et al. (2004) analysed the
evolution of death rates using both simple counts of lives and weighting by
amounts, and found differences in the pattern of improvements. The use of
a derivative based solely on lives-only data would therefore lead to basis risk
relative to liabilities based on both lives and amounts. To get round this
problem, Currie et al. proposed a simple method to model lives- and amounts-
based data jointly by introducing a time-invariant, age-specific spread.

• Basis risk is increased by factors such as inadequate liquidity, transaction costs,
market incompleteness, data frequency, and time lags in data availability.

Basis risk is discussed further and analysed by, amongst others, Blake et al. (2006),
Cairns et al. (2006a, 2008a), Coughlan et al. (2007a,b, 2009b), Dahl et al. (2008,
2009), Jarner and Kryger (2009), Loeys et al. (2007) and Li and Hardy (2009).
A key element in the consideration of basis risk is hedge effectiveness (Coughlan
et al., 2004, 2007a, 2009a). When potential hedgers are considering the relative
merits of potential longevity index-based hedging instruments versus, say, over-the-
counter agreements, the way in which an index-based instrument is used is just as
important as its basic design. A poorly thought-out hedging strategy might have low
hedge effectiveness causing a rational hedger to favour an over-the-counter solution,
whereas a well-designed, practical-to-implement and robust strategy might tip the
balance in favour of the index-based instrument.

One of the key aims of this paper is to investigate the first form of basis risk, namely
imperfect correlation between underlying mortality rates in different populations.
The framework developed in this paper allows hedgers to conduct a comprehensive
analysis of basis risk between two populations’ future mortality rates, covering both
uncertainty in the parameter estimates of the state variable dynamic processes and
uncertainty in the future projections of the state variables.

2Often this will be referred to as sampling risk, but its inclusion here is consistent with our
broad definition of basis risk.
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A number of authors have considered multi-country comparisons. Oeppen and Vau-
pel (2002) chart the progress of period life expectancy (PLE) in developed countries
over the last 100 or more years. The headline observation is the near linear growth
of the maximum PLE over time (maximised over the countries considered). From
time to time, one country drops out of the lead position and another comes in, sug-
gesting, perhaps, some form of linear growth of the PLE with periodic overtaking
by a new healthier population. This is a plausible hypothesis, with the healthi-
est representing the current optimal combination of lifestyle factors, healthcare and
medical advances. Macdonald et al. (1998), Tuljapurkar et al. (2000) and Booth
et al. (2006) make some qualitative comparisons of various countries using single-
population models, with the latter focusing on the robustness of conclusions based
on the LC model applied to different countries. Li et al. (2004) consider countries
that have limited data availability and introduce the important idea that parame-
ter estimates might be imported from countries with better quality data. For two
similar, but closely linked populations, Currie et al. (2004) propose a piggyback
model that treats the second population (e.g. one with poorer quality data) as
piggybacking off the data for the first population.

Full joint modelling of two or more populations has been considered by Li and Lee
(2005) and Jarner and Kryger (2009). The former extend the LC model by intro-
ducing the idea of a global improvement process plus idiosyncratic variations for
each country that are mean reverting. In the long run, the global improvement pro-
cess dominates, resulting in consistent long-term developments in different countries.
The latter focus on modelling a small population’s mortality (Denmark) alongside
a much larger supranational (Europe-wide) population. The large population is
assumed to follow some form of deterministic trend over time. The relationship
between the large and the small population log mortality rates is described by a
multifactor, mean-reverting spread (a VAR(1) process). The mean reversion level
is set at zero, reflecting the assumed similar nature of the two populations (that
is, there is no a priori reason why Danish mortality should be higher or lower than
supranational mortality in the long run).3

1.1 Bayesian framework

A key element of the proposed framework is our single-stage approach to model
fitting and process parameter estimation.

In much of the existing stochastic-mortality literature (building, for example, on

3It can be argued that mean reversion to zero is not necessarily appropriate, even at the national
level. For example, Richards (2008) shows that regional differences in mortality within the UK are
primarily due to socio-economic and lifestyle differences (for example, differences in the percentages
of professional and unskilled workers). Where the social mixtures of different countries is expected
to persist, we would therefore expect differences to persist in aggregate mortality: that is, non-zero
mean reversion.
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Brouhns et al., 2002), a two-stage approach is taken to model fitting. In the first
stage, the underlying state variables are estimated without reference to their as-
sumed dynamic properties. The second stage then fits a time-series model to the
stochastic period and cohort effects. These two stages can be combined in either
a likelihood-based setting or by adopting the Bayesian paradigm. Both of these
single-stage approaches result in improved (i.e., more consistent) estimates of the
unobservable period and cohort effects. The benefits of this improved consistency
are greatest for small populations where the single-stage approach dampens the
impact of small population noise in the crude mortality data.

Of the two, we choose to adopt the single-stage Bayesian approach for two reasons.
First, it helps us to take account of parameter uncertainty in a more natural way.
Second, the careful specification of a limited number of prior distributions helps us to
avoid unreasonable model parametrisations. We implement the Bayesian approach
using Markov chain Monte Carlo (MCMC).

Countering these advantages, it is much easier under the two-stage approach to
try out different time series models for random period and cohort effects. This
can be done in the single-stage approach but it would require considerably more
programming effort. In this paper, the choice of time series models has been heavily
influenced by what we have learned from our extensive modelling work on single
populations using the two-stage approach.

The use of Bayesian methods is not new in this general context. Czado et al. (2005)
and Pedroza (2006) provided the first Bayesian analyses using MCMC of the LC
model, with further work by Kogure et al. (2009). Prior to this, Bray (2002)
used the Age-Period-Cohort (APC) model in a medical statistics context with an
ARIMA(0,2,0) model underpinning each of the age, period and cohort effects. More
recently, Reichmuth and Sarferaz (2008) have applied MCMC to a version of the
Renshaw and Haberman (2006) model. All of these studies considered the modelling
of a single population. So far as we are aware, this paper represents the first attempt
to model jointly two populations within a Bayesian setting.

1.2 Models considered in this paper

Amongst the single-population models analysed previously by Cairns et al. (2009),
we have chosen to focus on two of the simpler models: the APC model (labelled M3
by Cairns et al. (2009); see also Osmond and Gardner (1982), Osmond (1985), Bray
(2002) and Jacobsen et al. (2002)) and the LC (1992) model (labelled M1). The
relative simplicity of these two models allows us to focus on the key contribution of
this paper, namely combining Bayesian methods, smoothing, and coupling of two
populations. The series of papers by Cairns et al. (2008b, 2009) and Dowd et al.
(2008 a, b) found that other models might be preferred to LC or APC, depending
on the dataset being considered and the criteria used for model selection. However,
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the effort in dealing with the additional factors in these models might cause too
much distraction from the key contributions mentioned above, so we have chosen to
avoid this.

1.3 Outline of the paper

The remainder of this paper is as follows. Section 2 outlines the datasets that we
will use to investigate two-population mortality modelling. We focus mainly on Eng-
land & Wales (EW) versus Continuous Mortality Investigation (CMI) assured lives
data (both males and females), before turning to US versus California males mor-
tality data. In Section 3, we outline the core hypothesis concerning non-divergence
of mortality rates. In Section 4, we outline the two-population APC model, and
this is followed, in Section 5, by a detailed account of the Bayesian estimation ap-
proach used to fit this model.4 In Sections 6 to 12, we fit the model to the various
datasets, and discuss aspects of the initial MCMC output before going on to analyse
forecasting results incorporating full parameter uncertainty. Section 13 concludes.

A glossary is provided at the end which lists the main notation used throughout the
paper.

2 Data

In general terms, our datasets will have a three-dimensional structure: two pop-
ulations, ny calendar years of observation, and na ages. The age range will be
x0, . . . , x1 = x0+na−1, and the range of years covered will be y0, . . . , y1 = y0+ny−1.
The corresponding cohort years of birth are c0, . . . , c1, where c0 = y0 − x1 and
c1 = y1 − x0.

Our data will consist of deaths, Di(t, x), and exposures, Ei(t, x), for each population,
i, year, t, and age, x. From this, we derive the crude death rates, m̂i(t, x) =
Di(t, x)/Ei(t, x).

2.1 Missing data

For the MCMC approach described in this paper, we have the option of allowing
for missing data in certain circumstances. Specifically, we allow for partially or
completely missing calendar years or cohorts in either of the populations’ data.5

4Section 5 is more technical in nature, and some readers might choose to skip forward to Section
6.

5Missing data means that the exposures and deaths are recorded as 0’s. Cells that have non-zero
exposures, but zero deaths are quite acceptable, and should not be recorded as missing data.
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Individual cells might be deemed missing if data are considered to be unreliable
(as is the case for the EW 1886 cohort, see Cairns et al. 2009) or unrecorded (for
example, data for one population might be available for fewer years than the other
population6).7

The possibility to record some cells as missing data allows us to make greater use
of other data either in the same population or in the second population: data that
otherwise might have to be excluded entirely. In some cases, being able to use this
additional data8 allows us to improve, refine or make more accurate forecasts of
mortality. This line of reasoning is discussed further in Section 10.

2.2 Specific datasets

We consider three pairs of datasets:

• EW and CMI assured lives males from 1961 to 2005, ages 60 to 89.

• EW and CMI assured lives females from 1983 to 2003, ages 60 to 89.

• USA and California males from 1980 to 2003, ages 60 to 84 (California data
are only available with sufficient detail from 1980).

We also consider augmentation of the EW/CMI datasets listed above, where addi-
tional years of data exist for the EW population.

The first pair has 186 million life-years for EW males and 21 million for CMI males.
However, this masks the fact that the CMI exposures have fallen substantially over
the last 15 years reflecting a decline in demand in the UK for traditional life as-
surance products. The second pair has 124 million life-years for EW females and
only 3.0 million for CMI females. In contrast to the CMI males’ data, the females
exposures were rising up to 2000 with a small decrease since then. The third pair of
populations has a total exposure of 404 million life-years for the US and 41 million
for California.

In each case, the second population is a sub-population of the larger and about 10%
in size or less. The CMI assured lives datasets are made up of people who are willing
and able to buy life assurance. These will generally be wealthier and healthier than

6For example, at the time of writing, CMI data are currently available for males up to 2005,
whereas EW population data are available up to 2007. The MCMC approach allows us to include
years 2006 and 2007, but treat CMI data for those years as missing. The inclusion of the 2006/7
EW data allows us to improve the forecasts for both populations.

7The current version of the model does not allow for complete missing ages in one or other of
the populations.

8For example, the EW data for 2006 and 2007, against missing CMI data for the same two
years.



9

the typical EW male or female. Similarly, the Californian population is, in general,
qualitatively different from the rest of the US: it is wealthier, healthier, fitter, enjoys
better weather and has a different pattern of immigration by age than much of the
rest of the US.

We would argue that if our methodology works on these population pairs, this will
give us good grounds for thinking it will work well on other datasets.

2.3 Age definitions

Most of the datasets with which we work report deaths during a calendar year
grouped by age last birthday. Similarly, exposures are also recorded by age last
birthday. In contrast, the CMI dataset records deaths and exposures according
to age nearest birthday. Strictly, therefore, CMI death rates for age x should be
compared with, for example, the average of the EW death rates at ages x and x+1.
In acknowledging this difference, we note that it does not cause us any problems,
as we treat the forecast and historical death rates in a consistent way within each
population and between populations.

When we receive the output forecasts, however, we must remember to use the sim-
ulated death rates in the correct way. For example, for a male aged exactly 65 at
the start of 2015, the probability of survival to the end of 2015 is:

• EW: exp[−mEW (2015, 65)]

• CMI: exp [−(mCMI(2015, 64) + mCMI(2015, 65))/2]

3 Two-Population Modelling: Core Hypothesis

Before we focus on a two-population analysis of a specific dataset, we will introduce
the key idea that underpins two-population modelling. We have two populations
i = 1, 2. Let qi(t, x) be the underlying mortality rate at age x in calendar year t for
population i.

We know from numerous papers and analyses that genuine differences exist between
populations. Often, one population has significantly lower mortality than another.
For example, the CMI assured lives dataset consists of a subset of the UK population
that, as previously mentioned, is, on average, wealthier and healthier than the UK
average. We expect that this sub-population to remain wealthier and healthier in
the future. It seems reasonable, therefore, to assume that the CMI mortality (and,
also, central forecasts) will remain correspondingly lower in the future than that
of the national population. At the very least, we would expect the mortality rates
in two related populations not to diverge over time (see, for example, Li and Lee
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(2005), and Jarner and Kryger (2009)). We translate this qualitative expectation
into the following mathematical hypothesis: for each age x, the ratio q1(t, x)/q2(t, x)
will not diverge as t →∞. These qualitative and quantitative criteria fall under the
heading of biological reasonableness in the sense discussed by Cairns et al. (2006a,
2008a, b).

The above hypothesis allows the CMI mortality rates to remain below the EW rates
in the long term, while at the same time allowing for random fluctuations. However,
whatever the model for random fluctuations is, it needs to involve some form of
mean reversion.

Model formula

M1 log m(t, x) = β
(1)
x + β

(2)
x κ

(2)
t

M2 log m(t, x) = β
(1)
x + β

(2)
x κ

(2)
t + β

(3)
x γ

(3)
t−x

M3 log m(t, x) = β
(1)
x + n−1

a κ
(2)
t + n−1

a γ
(3)
t−x

M5 logit q(t, x) = κ
(1)
t + κ

(2)
t [x− x̄]

M6 logit q(t, x) = κ
(1)
t + κ

(2)
t [x− x̄] + γ

(3)
t−x

M7 logit q(t, x) = κ
(1)
t + κ

(2)
t [x− x̄] + κ

(3)
t [(x− x̄)2 − σ̂2

x] + γ
(4)
t−x

Table 1: Formulae for the six mortality models considered by Cairns et al. (2008b):

The functions β
(k)
x , κ

(k)
t , and γ

(k)
t−x are age, period and cohort effects, respectively. x̄

is the mean age over the range of ages being used in the analysis. σ̂2
x is the mean

value of [x− x̄]2. na is the number of ages.

This hypothesis has different consequences depending on the stochastic mortality
model being considered. Consider, for example, the six models considered by Cairns
et al. (2008b) and listed in Table 1. We generalise the notation in this table to

include reference to the population: thus, the β
(ki)
x are population i age effects, the

κ
(ki)
t are population i period effects, and the γ

(ki)
t−x are population i cohort effects.

For non-divergence in a stochastic model of the age x mortality rates, we require
the following for each model:

• M1 (Lee-Carter, 1992): β
(21)
x = β

(22)
x for each x, and κ

(21)
t −κ

(22)
t must be mean

reverting. (See, for example, the discussion in Li and Lee (2005).)

• M2 (Renshaw-Haberman, 2006): As M1 plus β
(31)
x = β

(32)
x for each x, and
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γ
(31)
c − γ

(32)
c must be mean reverting in some way as we simulate forward.9

• M3 (Age-Period-Cohort model): κ
(21)
t − κ

(22)
t and γ

(31)
c − γ

(32)
c must both be

mean-reverting.

• M5 (Cairns et al., 2006b, 2009, CBD1): κ
(11)
t − κ

(12)
t and κ

(21)
t − κ

(22)
t must be

mean reverting.

• M6 (Cairns et al., 2009, CBD2): As M5 plus γ
(31)
c − γ

(32)
c must be mean-

reverting.

• M7 (Cairns et al., 2009, CBD3): As M5 plus κ
(31)
t −κ

(32)
t and γ

(41)
c −γ

(42)
c must

both be mean-reverting.

Aside from longer-term mean reversion, we might also expect to see some correlation
between the year-on-year changes in both the period and the cohort effects.10 For
example, if population 2 is a subset of population 1, we might expect that envi-
ronmental fluctuations (e.g., flu epidemics, extreme weather, etc.) will affect both
populations in similar ways. The accumulation of environmental factors during a
cohort’s lifetime (e.g., exposure in early life to certain viruses, changes in diet, gov-
ernment health policy) might not result in high short-term correlations between the
cohort effects of the two populations, but we might expect to see higher correlations
over longer horizons.11

4 The Two-Population Age-Period-Cohort Model

We will focus on the APC (M3) Model, in Table 1. For the two populations, we
have underlying death rates modelled as follows

log m1(t, x) = β(11)
x + n−1

a κ
(21)
t + n−1

a γ
(31)
t−x

log m2(t, x) = β(12)
x + n−1

a κ
(22)
t + n−1

a γ
(32)
t−x

for given age, period and cohort effects, β
(1i)
x , κ

(2i)
t and γ

(3i)
t−x.

9For M1 and M2 only, the non-divergence requirements mean that we must fit the model
simultaneously to both populations to estimate the common ages effects β

(2i)
x and β

(3i)
x . For all

other models, we can choose whether or not to fit the model to each population separately as a
first step.

10This hypothesis builds on the empirical results of Coughlan et al. (2009b). In their analysis,
mortality rates in each calendar year were first subjected to non-parametric smoothing. They then
observed that annual changes in historical mortality rates at specific ages in two populations were
positively correlated at most, although not all ages.

11One possibility is that the cohort effect might actually be a random process that is relatively
smooth in the short term.
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Figure 2: Single population estimates for period (left) and cohort (right) effects for
England & Wales males (dots) and CMI males (lines) using the Age-Period-Cohort
model (M3) discussed by Cairns et al. (2009). Data from 1961 to 2005 and ages 60
to 89.

In previous work on single populations (Cairns et al. 2008b), we modelled each pe-

riod effect, κ
(2i)
t , as a random walk and each cohort effect, γ

(3i)
t−x, as an ARIMA(1,1,0)

model. However, both features might result in divergence of the death rates in the
two populations over time. To prevent this, we require that the following are both
mean reverting: κ

(21)
t − κ

(22)
t and γ

(31)
t−x − γ

(32)
t−x .

4.1 Stylised facts

A number of basic analyses looking at various populations were conducted before
we proceeded to develop the full MCMC approach. These involved analysing each
population separately (as in Cairns et al., 2008b) and then considering the relation-
ship between the two populations’ period and cohort effects. These investigations
resulted in the emergence of the following stylised facts:

• Year-on-year innovations in the two populations’ period effects, κ
(21)
t and κ

(22)
t ,

are significantly positively correlated: see, for example, Figure 2, left hand plot
for the case of EW and CMI males.
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• Demonstrating the existence, statistically, of mean reversion in the spread
between the period effects, κ

(21)
t −κ

(22)
t , is typically difficult due to the relatively

modest number of years of data available.

• Correlations between year-on-year innovations in the two populations’ cohort
effects, γ

(31)
c and γ

(32)
c , where c = t−x, are relatively small and not necessarily

significant.

• For some pairs of populations, the medium- and longer-term shape of the two
fitted cohort effects are relatively similar. See, for example, Figure 2, right
hand plot for EW and CMI males: the similarity between the underlying
shapes of the respective cohort effects is particularly striking.

• Poisson randomness in the death counts for small populations results in notice-
ably more ‘noisy’ estimates compared with large populations for the age and
cohort effects: that is, the fitted age and cohort effects are much less smooth
than typical fitted age and cohort effects for large populations.

These final observations lead us to conclude that, unlike the period effects, the
cohort effects are likely to be relatively smooth functions of cohort year of birth.
Also, the Poisson noise that affects our estimates of the cohort effect results in
the lack of correlation that we observe in year-on-year innovations between the two
cohort effects. However, our stylised facts also point to stronger correlation in the
medium and longer terms between the two smooth cohort effects, indicative of local
smoothness around a random trend.

Our interpretation of the two populations period effects is different. As noted above,
we observe significant positive correlations between innovations in the stage-1 fitted
period effects. This can only happen if the true (rather than the fitted) period effects
themselves also incorporate significant randomness. In contrast, if the true period
effects were smooth, then Poisson randomness in the death count would dominate,
estimates for small population period effects would look much more noisy, and in-
novations in the two populations’ fitted period effects would not be significantly
correlated.

In addition to the above, Coughlan et al. (2009b) carried out an model-independent
analysis of the correlation between mortality improvement factors in two popula-
tions. They found that correlation rises with the time horizon (in a way that is
consistent with our core hypothesis) and, as a stylised fact, we would expect to see
a similar pattern in model-based forecasts of improvement factors.

4.2 Desirable criteria

In this section, we list potential criteria to add to our core hypothesis in Section 3
which seem reasonable from a biological point of view. These criteria are subjective
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in nature and are not typically supported by stylised facts:

• κ
(21)
t and κ

(22)
t should have similar conditional 1-year-ahead variances.

• γ
(31)
c and γ

(32)
c should have similar conditional 1-year-ahead variances.

• γ
(31)
c and γ

(32)
c should have similar unconditional variances.12

• In the long-run, γ
(31)
c and γ

(32)
c should be positively correlated.

In our initial analysis of the EW and CMI males populations (Section 6), we do not
incorporate prior distributions for these criteria. However, analysis of this initial
set of results reveals that, at least for this pair of populations, the criteria are not
satisfied for the two populations’ cohort effects. We use this, then, as motivation
for incorporating suitable priors that are consistent with the above criteria in our
second and subsequent analyses (Sections 7 onwards).13

4.3 Population 1 dominant

As a motivation for the approach taken in this paper, we have the following typical
scenario. A pension fund might be considering using a mortality-linked security or
derivative to help hedge its longevity-linked liabilities. The market in such contracts
is currently developing, and one strand involves index contracts that are linked to
national population mortality rates, leading to basis risk between the pension fund’s
own liabilities and the index being used to help hedge those liabilities. Our aim is
to develop a methodology that will help us to analyse this risk.

In this paper, therefore, we focus on situations where one population (say population
1) is much larger than the other (population 2). We therefore choose to model
population 1 using a standard one-population model, and then tackle the second
population by modelling the spreads between it and population 1. We, therefore,
define

R2(t) = κ
(21)
t

S2(t) = κ
(21)
t − κ

(22)
t

R3(c) = γ(31)
c

S3(c) = γ(31)
c − γ(32)

c .

12γ
(31)
c and γ

(32)
c are both mean-reverting processes, and so, in a long run, have a limiting

maximum or unconditional variance. Biological reasonableness suggests that these limiting vari-
ances should be similar. In contrast, κ

(21)
t and κ

(22)
t are random walks with infinite unconditional

variances; however, biological reasonableness requires similar conditional 1-year-ahead variances.
13The priors apply to the true but unobservable processes. Actual variances will be higher for

small populations because of Poisson noise in the death counts.
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Our core hypothesis in Section 3 indicates that we require the spreads, S2(t) and
S3(c), to be mean reverting.

The models used will be as follows:

• R2(t) is modelled as a random walk.

• S2(t) is modelled as an AR(1) time series.

• The innovations for R2(t) and S2(t) are modelled as i.i.d. bivariate normal
from one year to the next, allowing for non-zero correlation.

• R3(c) is modelled as an AR(2) process around a deterministic linear trend.

• S3(c) is modelled as a mean-reverting AR(2) time series.

• We allow the innovations for R3(c) and S3(c) to be correlated, although our
discussion of the stylised facts suggests that this correlation might be small.
The bivariate innovations for (R3(c), S3(c)) will be modelled as i.i.d. bivariate
normal from one year to the next.

The random walk for the central period effect, R2(t), mimics what has been done
elsewhere (for example, Lee and Carter, 1992, and Cairns et al., 2008b). For the
central cohort effect, R3(c), we previously used an ARIMA(1,1,0) model (Cairns et
al., 2008b). However, the AR(2) model around a linear trend has been found to work
just as well, and, indeed, incorporates the ARIMA(1,1,0) model as a limiting case.14

For the spread between the period effects, S2(t), the AR(1) model is a pragmatic
choice that works well when applied to the single-population period effects using the
two-stage approach. The AR(1) model, of course, also incorporates mean reversion.
The AR(2) model for the spread between the cohort effects, S3(c), is again a choice
that works well when applied to the single-population period effects using the two-
stage approach. However, choosing AR(2) rather than AR(1) (which in any event
is a special case of AR(2)) allows us to model the central cohort effect, R3(c), and
the spread, S3(c), in a more consistent way.

In previous papers (Cairns et al. 2008b, 2009), we discussed the need to incorporate
identifiability constraints. Here, we use constraints that are equivalent, but never-
theless different in concept and that have been developed to facilitate convergence
of the MCMC algorithm: namely, that

• R2(1) = 0,

14From a qualitative point of view also, an AR(2) model with autoregressive coefficients that are
relatively large in magnitude can produce results that mimic the large-scale patterns that we see
in the data, with relative smoothness in the short term and occasional shifts in the trend. This
smoothness was considered a desirable property in our section on stylised facts.
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• S2(t) is mean reverting to zero,

• R3(c) is AR(2) around zero, and

• S3(c) is AR(2) around zero.

All of these constraints can be achieved by shifting and tilting R2(t), β
(11)
x and β

(12)
x ,

without having an impact on the Poisson log-likelihood function for deaths.15 For
example, we indicated that R3(c) should be modelled as an AR(2) model around a
deterministic linear trend. However, the linear trend can be subtracted from R3(c),

with compensating adjustments to R2(t) and β
(11)
x . It is important also to remark

that the particular choice of constraints does not impact in any way on the forecast
dynamics of future mortality rates.

All of the above equates to the following mathematical statement of the model:

R2(t + 1) = R2(t) + µR2 + C211Z21(t + 1)

S2(t + 1) = µS2 + ψS2(S2(t)− µS2) + C221Z21(t + 1) + C222Z22(t + 1)

R̃3(c) = R3(c)− µR3 − δR3(c− c̄)

S̃3(c) = S3(c)− µS3

R̃3(c + 1) = (φR31 + φR32)R̃3(c)− φR31φR32R̃3(c− 1) + C311Z31(c + 1)

S̃3(c + 1) = (φS31 + φS32)S̃3(c)− φS31φS32S̃3(c− 1) + C321Z31(c + 1)

+C322Z32(c + 1).

In the third equation above, c̄ is defined as (c0 + c1 +2)/2, where (c0, c1) is the com-
plete range of years of birth covered in the dataset. The identifiability constraints
used in our specific MCMC algorithm require that µS2 = µR3 = µS3 = δR3 = 0.
Stationarity of R̃3(c) and S̃3(c) requires each of φR31, φR32, φS31 and φS32 to lie
between −1 and +1.

4.4 Population 2 carries non-zero weight

In the previous subsection, population 2 was subsidiary to population 1 and carried
no weight in dictating the main trends R2(t) and R3(c). Where the two populations
are of more equal size (for example, males and females, or two national populations),
we might define R2(t) and R3(c) to be weighted averages of the two-populations’
period and cohort effects. The methodology that we develop in this paper can be
readily generalised to incorporate this possibility. We have chosen not to investigate
this further in this paper in order to keep the length of the paper in check and to
keep the focus on the basis risk between a large national population and a small
population seeking to hedge its longevity risk.

15See section 5.2.
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5 Estimation Method

In previous work (see, for example, Cairns et al. (2008b, 2009), Lee-Carter (1992),
Brouhns et al. (2002), Booth et al. (2005)), most researchers have employed a
two-stage, non-Bayesian approach to modelling:

• Stage 1: estimate age, period and cohort effects without reference to their
underlying dynamics.

• Stage 2: fit a suitable stochastic process to the period and cohort effects.

This is a satisfactory approach, provided the population size is large. More recently,
some authors (e.g., Bray (2002), Czado et al. (2005), and Reichmuth and Sar-
feraz (2009)) have sought to combine these two stages in a Bayesian setting when
considering single populations.

For smaller populations, sample variation affects death counts, which, in turn, can
have a non-negligible impact on crude death rates and estimates of age, period and
cohort effects. Consider the LC model (M1), for example, and suppose the period
effect is a random walk. With a small population, the stage-1 fitted period effect
will turn out to be more like a random walk with additional noise. The variance of
this noise will be proportional to the population size, and this might feed through
in stage 2 to an estimate for the random-walk variance that is on the high side.

This provides one motivation for combining stages 1 and 2. A likelihood-based
approach, therefore, would combine the Poisson likelihood for the death counts with
the ARIMA likelihood function for the latent random period and cohort effects.
With a large population, the Poisson component will dominate, so that the impact
of combining stages 1 and 2 will have little impact. For a smaller population, the
ARIMA likelihood function will compete with the Poisson likelihood to produce
estimates for the latent period and cohort effects that look more like the proposed
ARIMA(p, d, q) models. For example, as noted above, if the stage-1 fitted period
effects look like a random walk plus noise,16 then a combined fitting procedure will
rein in at least some of the noise to produce a series that looks closer to a true
random walk.

A second motivation concerns the fitting of the cohort effect. Our earlier approach
(Cairns et al., 2009) excluded cohorts with four or fewer observations to avoid over-
fitting. The combined fitting procedure allows us to include cohorts with only one
observation, since the low level of information provided by one data point will be
balanced by the ARIMA likelihood for that observation. In the Bayesian setting
estimates for cohorts with fewer observations will have wider posterior distributions.
For the youngest cohorts, use of the limited amount of data gives us some precious

16If there is sufficient noise on top of a random walk, then we will observe negative lag-1 auto-
correlations in the fitted random-walk innovations.
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information about the most recent values for the two populations’ cohort effects
that would otherwise be unavailable to us. This in turn helps us to make improved
forecasts of what will happen to the cohort effects in the future.

5.1 Markov chain Monte Carlo (MCMC)

Bayesian statistics and MCMC methods provide a framework within which we can
tackle the estimation problem in a single stage:17

• MCMC will produce a Bayesian posterior distribution for the forecasting model
parameters and for the latent age, period and cohort effects.

• The method can deal effectively with missing data in our mortality dataset, or,
for example, the removal of data points that are considered to be unreliable
or out of line for some unknown reason.18 The MCMC output will allow
us to derive a posterior distribution for the relevant parameters and for the
underlying mortality rate for the missing cells.

A popular approach to this uses the Metropolis-Hastings (MH) algorithm:

• Vector θ(i) = current set of parameter and latent variable values

• D = observed data.

• p(θ|D) = posterior density for θ. The posterior distribution is sufficiently
complex that direct simulation from p(θ|D) is impossible.

• Step i + 1. In a series of substeps, j = 1, 2, ...

– Substep j updates a single element or a block of the vector θ.

– θ̃ = latest θ including accepted substep updates.

– Generate a candidate θ̂ from a distribution with density f(θ̂|θ̃)
– Accept θ̂ with probability

α = min

{
p(θ̂|D)f(θ̃|θ̂)
p(θ̃|D)f(θ̂|θ̃) , 1

}
. (1)

– At the end of this cycle of substeps, record the updated θ(i + 1).

The algorithm is such that although the θ(i) are highly autocorrelated, their sta-
tionary distribution is equal to the posterior distribution p(θ|D). It follows that if
we run the MH algorithm for a long time, then the empirical distribution of the
observed θ(i) for i = 1, . . . , N will be a good approximation to the true posterior.

17For a general introduction to MCMC, see, for example, Gilks et al. (1996).
18See, for example, the comments about the 1886 cohort in the EW males data in Section 2.1.



19

5.2 Likelihood, prior and posterior

The complete parameter vector is denoted by θ, and consists of:

• Subvector θ(2) containing the process parameters for the period effects

– µR2 = random-walk drift for R2(t)

– ψS2 = AR(1) parameter for S2(t)

– V (2) = variance-covariance matrix for the (R2(t), S2(t)) innovations.

• Subvector θ(3) containing the process parameters for the cohort effects

– φR31, φR32 parameters for the R3(c) AR(2) process

– φS31, φS32 parameters for the S3(c) AR(2) process

– V (3) = variance-covariance matrix for the (R3(t), S3(t)) innovations.

• Latent age, period and cohort effects and their spreads

– Vectors β
(11)
x , β

(12)
x , R2(t), S2(t), R3(c) and S3(c).

The log-likelihood function is made up of several components:

• l(θ) = l1(θ) + l21(θ) + l22(θ) + l31(θ) + l32(θ)

• l1(θ) = Poisson log-likelihood for the observed deaths given the β
(1i)
x , κ

(2i)
t ,

γ
(3i)
c vectors.

• l21(θ) = unconditional log-likelihood for (R2(1), S2(1)) = (0, S2(1)).

• l22(θ) = conditional log-likelihood for (R2(t), S2(t)) for t = 2, . . . , ny.

• l31(θ) = unconditional log-likelihood for X = (R3(2), S3(2), R3(1), S3(1))′.

• l32(θ) = conditional log-likelihood for (R3(c), S3(c)) for c = 3, . . . , nc.
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Specifically,

l1(θ) =
∑
i,t,x

Wi(t, x) {Di(t, x) log mi(t, x)−mi(t, x)Ei(t, x)}+ constant

where mi(t, x) = exp
[
β(1i)

x + n−1
a κ

(2i)
t + n−1

a γ
(3i)
t−x

]
.

l21(θ) = −1

2
log

(
V

(2)
22 /(1− ψ2

S2)
)
− 1

2
S2(1)2(1− ψ2

S2)/V
(2)
22 + constant.

l22(θ) = −ny − 1

2
log

∣∣V (2)
∣∣− 1

2

ny∑
t=2

Y2(t)
′V (2)−1

Y2(t) + constant,

where Y2(t) =
(
R2(t)−R2(t− 1)− µR2, S2(t)− ψS2S2(t− 1)

)′

l31(θ) = −1

2
log |Ω| − 1

2
X ′Ω−1X,

where X = (R3(2), S3(2), R3(1), S3(1))′ and Ω is the solution to the equation19

Ω = AΩA′ + Ṽ (3) (2)

A =




αR31 0 αR32 0
0 αS31 0 αS32

1 0 0 0
0 1 0 0




αR31 = φR31 + φR32

αR32 = −φR31φR32

αS31 = φS31 + φS32

αS32 = −φS31φS32

Ṽ (3) =




V
(3)
11 V

(3)
12 0 0

V
(3)
21 V

(3)
22 0 0

0 0 0 0
0 0 0 0


 .

l32(θ) = −nc − 2

2
log

∣∣V (3)
∣∣− 1

2

nc∑
t=3

Y3(c)
′V (3)−1

Y3(c) + constant,

where Y3(c) = (Y31(c), Y32(c))
′,

Y31(c) = R3(c)− αR31R3(t− 1)− αR32R3(c− 2),

Y32(c) = S3(c)− αS31S3(t− 1)− αS32S3(c− 2).

19While it is not possible to solve (2) below using standard matrix algebra, the equation is linear
in all elements of Ω and can be solved by writing Ω as a 16× 1 vector.
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5.3 Directed acyclic graph

Alongside the formal specification of the model and the likelihoods, we can present
the model in less formal way using a directed acyclic graph, Figure 3.20

5.4 The Gibbs sampler

The Gibbs sampler is a special case of the MH algorithm under which the candidate
distribution is equal to the conditional posterior distribution for a subset of the
parameters, conditional on the current values of all other parameters in the model.
Typically, it is not possible for us to know, or at least to be able to sample from the
full posterior distribution (if we could, we would not need to use the MH algorithm).
However, the conditional posterior for subsets of parameters is often a standard
distribution from which we can simulate.

Under the Gibbs sampler, the acceptance probability, α (see equation 1), is always
equal to 1. This is an advantage if it is computationally expensive to compute the
full log-likelihood function: if it is known that the acceptance probability is 1, then
the log-likelihood does not need to be computed. A bigger advantage of the Gibbs
sampler in this study, though, is that the Markov chain mixes more quickly through
the full posterior distribution. We can, therefore, obtain a more reliable sample from
the posterior in less time.

Typically, the conditional posterior distribution of a given parameter or parameters
depends upon a subset of the full set of parameters. For example, the normal
posterior for µR2 depends on the current set of (R2(1), . . . , R2(ny), S2(1), . . . , S2(ny)),
and on the process parameters V (2), and ψS2. A standard MH step is still required
for ψS2, φR31, φR32, φS31, φS32.

5.4.1 Pseudo-Gibbs sampler

Occasionally, the conditional posterior is not in a form that can be simulated easily
(see Table 2). In this case, we can simulate from a simpler distribution that is still
a good approximation to the true conditional posterior. The acceptance probability
(equation 1) will now be different from 1, and so the full likelihood needs to be
evaulated. This is still worthwhile doing as the pseudo-Gibbs sampler still results
in efficient mixing.

20The empty circle and absence of arrows in the upper left box reflect the fact that we have not
specified a model for the age effects.
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Figure 3: Directed acyclic graph for the two-population version of the Age-Period-
Cohort model. Solid lines represent probabilistic dependencies. Dashed lines: func-
tional (deterministic) relationships. Circles and ovals: unknown or unobserveable
quantities. Rectangles: observed data. Double rectangles: quantities fixed by de-
sign. Stacked sheets: repetitive components.
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5.5 The prior distribution

In general, we aim to use prior distributions in our study that are as uninformative
as possible, and therefore allow the data to speak for themselves. Therefore, un-
less otherwise stated below, all parameters (for example, the β

(11)
x ) have improper

uniform prior distributions.

The prior distribution assumes:

• V (2) has a relatively uninformative inverse Wishart prior with density propor-
tional to |V |−1.5;

• V (3) has a relatively uninformative inverse Wishart prior with density pro-
portional to |V |−2.5 exp[−trace(ΨV −1)] where the inverse scale matrix Ψ =(

0.2 0
0 0.02

)
.

• µR2 ∼ N(−0.9, 0.92);

• log(1− φR31) ∼ N(2, 0.52) distribution;

• log(1− φR32) ∼ N(2, 0.52) distribution;

• log(1− φS31) ∼ N(2, 0.52) distribution;

• log(1− φS32) ∼ N(2, 0.52) distribution;

• logit (ψS2) ∼ Gumbel(2, 0.5) distribution.21

For V (2) and V (3), the choice of prior means that the conditional posterior distribu-
tion is approximately inverse Wishart (Table 2), allowing effective use of the pseudo
Gibbs sampler. The use of a non-zero, inverse scale matrix Ψ was found to be
necessary to avoid singularities in the log-posterior distribution at V (3) = 0.22 A
zero scale matrix for the inverse Wishart prior for V (2) was not found to cause any
problems for this pair of datasets. However, a slightly stronger, but still relatively
uninformative prior might be needed for V (2) for other pairs of populations.

A normal prior for µR2 ensures a normal conditional posterior. Again the prior is
weak, but not completely uninformative. Specifically, we wish to avoid µR2 being too
negative since this might result in decreasing cohort death rates over time (that is,
decreasing m(t, x+ t)): something that we regard as being biologically unreasonable

21Let y = logit (ψS2). The density for the Gumbel(µ, σ) distribution is exp[−(y − µ)/σ] exp
(
−

exp[−(y − µ)/σ]
)
.

22The fact that the cohort effects are not directly observable means that the optimiser can
achieve an infinite maximum likelihood if R3(c) and S3(c) are linear and V (3) = 0.
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Set of parameters Conditional posterior

V (2) (approx) inverse Wishart
V (3) (approx) inverse Wishart
µR2 normal

exp(β
(11)
x1 , . . . , β

(11)
xna

, β
(12)
x1 , . . . , β

(12)
xna

) multivariate gamma
(R2(1), . . . , R2(ny), S2(1), . . . , S2(ny)) (approx) multivariate normal
(R3(1), . . . , R3(nc), S3(1), . . . , S3(nc)) (approx) multivariate normal

Table 2: Conditional posterior distributions for various components of θ.

in the long run. In practice, β
(1i)
x increases roughly linearly at higher ages with

a gradient of around 0.1 in most developed countries. It follows that we aim to
avoid µRS/na being less than −0.1, with na = 30 as we have later on. The prior of
N(−0.9, 0.92) assigns only a small prior probability of around 0.01 that µR2/na <
−0.1. As will be seen in Section 6, this prior does not seem to have a strong influence
on the posterior distribution for µR2, which has a significantly different mean and a
substantially smaller standard deviation.

As noted in Table 2, the exponentials of the age effects, β
(1i)
x , all have a gamma

distribution, since the β
(1i)
x have no time series structure and a uniform prior. The

same would be true for the period and cohort effects. However, the interplay of the
exponential-gamma structure with the time series structure of these effects means
that there is no analytical form for the conditional posterior distribution. Fortu-
nately, the exponential-gamma structure is well approximated by a multivariate
normal resulting in a multivariate normal being a good approximation overall to the
conditional posterior. This again is used to good effect as the proposal distribution
for the period effects and the cohort effects in turn.

The priors for the mean reversion parameters ψS2, φR31, φR32, φS31 and φS32 all
required some experimentation. All needed moderately informative priors: with
limited time-series data and uninformative priors, the Markov chain typically spent
too much time close to 1 (no mean reversion) to be comfortable with the core
hypothesis in this paper. The normal priors for the log(1− φ)’s were found to solve
this problem without being too prescriptive apart from avoiding values close to 1.

The double exponential in the Gumbel prior density for ψS2 was required to provide
a stronger push away from ψS2 = 1, than the log-normal priors used for the other
parameters, but otherwise the Gumbel prior is not too strong through the choice of
2 and 0.5 for the Gumbel parameters.

In practical applications, the impact of these moderate priors for the autoregressive
parameters tends to be modest except for long time horizons. For shorter time
horizons, it is the correlations embedded in V (2) and V (3) that matter.

These particular parameterisations might need to be adjusted to suit the specific



25

characteristics of a given pair of populations. However, all pairs of populations
considered so far in this paper (EW versus CMI males and females) and elsewhere
(EW versus Scottish males) work with the same priors as listed.

6 Analysis 1: EW/CMI Males, Ages 60-89, Years

1961-2005

We begin our analyses by looking at EW versus CMI males using data from 1961
to 2005 and ages 60 to 89. The benchmark Analysis 1 uses the APC model plus the
priors described in the previous section.

Let θ(i, j) be the j’th element of the Markov chain θ(i) after i iterations. The burn-in
period is the initial phase of the iterative scheme where we move from the initial θ(0)
towards the posterior distribution of θ. After iB iterations, we consider the burn-in
period to be complete and that further iterations are cycling around the posterior
distribution. After iB, we record every 50th iteration θ(iB + 50), θ(iB + 100), . . ..
Taking every 50th observation results in efficient use of memory, but it also reduces
substantially the degree of autocorrelation between successive recorded observations.

When we wish to simulate one future sample path of the two-population APC model
we choose one of the θ(iB +50k) at random and then use this to specify the process
parameters and historical state variables for simulating that sample path.

The MCMC output includes values for the log-posterior. If we were just considering
a simulation from the underlying distribution, then, by analogy with the likelihood
ratio statistic, the maximum log-density minus the log-density for the simulated
value of the random parameter set will produce a random variable that is approxi-
mately 0.5 times a chi-squared random variable. The variance that we observe for
the log-posterior is consistent with this asymptotic theory (it is higher, but of the
right order of magnitude).

We now illustrate the results in a series of figures, and comment as follows:

• Figure 4 plots output from the MCMC algorithm for the time-series process
parameters. Values have been stored for every 50th iteration out of a to-
tal of 50,000 iterations. The results are consistent with observations drawn
independently from the posterior distribution, or in some cases with low au-
tocorrelation (that is, there is no evidence in the plots that we are still within
the burn-in period). For each sub-plot, the range of values on the y-axis has
been chosen so that the 1000 points plotted fill the available space vertically.
The plots reveal that many of the process parameters (for example, ψS2) have
highly skewed posterior distributions.

• Figure 5 shows corresponding plots for selected latent age, period and cohort
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effects. In most cases, there does not seem to be significant persistence in
values in the simulated Markov chain. The only plots that show a noticeable
pattern are for the S2(t). However, we can see from these plots that the run
of 50,000 iterations is more than long enough for us to have sampled from the
full posterior distribution.

• Figure 6 provides fan charts for historical and forecast mortality at ages 65, 75
and 85 for EW and CMI males. For the years 1961 to 2005, the outer limits of
the fans provide us with 90% credibility intervals for the underlying mortality
rate qi(t, x) in each year.23 In contrast with the original two-stage approach
to model fitting and projection, the underlying historical qi(t, x) are no longer
simply point estimates. Instead, we can see the degree of uncertainty that
is associated with each qi(t, x). Importantly, we can see that the credibility
intervals for the CMI data (grey fans) up to 2005 are significantly wider than
for the EW data (red fans), reflecting the smaller size of the dataset.

For age 85, the EW fan widens out in the 1960’s. This reflects the fact that
we do not have data for ages 85-89 for 1961-1970, and so what we see here is a
backwards extrapolation to age 85 that learns from EW ages 85-89 after 1970
and from ages 60-84 between 1961 and 1970.

Looking beyond 2005, the fans spread out reflecting growing future uncer-
tainty. We can see that the CMI fans (especially at age 65) move closer to the
EW fan, but the spread is maintained and stabilises after 30 years. The aver-
age gap in 2050 (right-hand end) is similar to what it was in 1961 (left-hand
end).

• In Figure 7, we compare fan charts produced using the MCMC two-population
model with fan charts produced individually for the two populations using the
old two-stage approach, with no allowance for parameter uncertainty, and an
ARIMA(1,1,0) model for the cohort effect.

The left-hand plots (EW top; CMI bottom) show fans for age 75 using the
MCMC approach. We can see the relatively smooth central forecasts in each
case. The left hand plots illustrate the impact of including parameter uncer-
tainty (PU). The parameter certain (PC) case (green fans) takes the means
of all process parameters and state variables from the MCMC output and
takes these as point estimates for conducting simulations. Central forecasts
are about the same, but the PU fans are significantly wider.

In the right-hand plots, the underlying red and green fans are the same as
on the left. These now have superimposed on them grey fans produced using
the single-population models. For the EW data, the grey fan is reasonably
smooth and the results are consistent with the EW forecasts. However, the

23The 90% credibility interval is made up of the 5% and 95% quantiles of the marginal posterior
distribution for each qi(t, x).
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red fan is wider, reflecting the allowance for parameter uncertainty (parameter
uncertainty being a by-product of the MCMC output). For the EW data, both
of the PC cases (grey and green) have fans of similar width.

The CMI plot (bottom right) differs in three important ways. First, the single-
population grey fan is much less smooth. For age 75, the first 15 years of
projections include values for the cohort effect that have been derived from
the historical data. The small size of the CMI population results in noisy es-
timates of the cohort effect and this feeds through, in an unreasonable way, to
the forecasts. The red and green fans, by contrast (bottom left), are smoother
and much more plausible. Second, for the CMI data there is a greater differ-
ence between the central trends in the red and grey fans. This reflects mean
reversion in the spread between the two populations when modelled simultane-
ously. The greater size of the EW population means that the mean-reversion
has a greater impact on the CMI projections. Third, consider the width of the
parameter certain fans (green and grey). For EW, these were about the same
width, while, for the CMI data, the green fan is narrower. In Figure 2, we
saw that the single-population model resulted in rather noisy estimates for the
cohort effect for the CMI data. This fed through to greater noise in the fore-
casts. A key contribution of the approach to modelling two populations using
a single-stage estimation procedure is that it substantially dampens the noise
observed in Figure 2 which results in narrower fans and hence more confident
predictions.

• In Figure 8, we have plotted fans (90% credibility intervals) for age, period
and cohort effects for the two populations. Before plotting, outputs from
the MCMC program were adjusted to satisfy the following identifiability con-
straints: ∑

c

R3(c) = 0

∑
c

R3(c)(c− c̄) = 0

∑
c

S3(c) = 0

∑
t

R2(t) = 0

∑
t

S2(t) = 0.

This involves shifting and tilting relevant outputs, and also making correspond-
ing adjustments to the random process parameters. For example, shifting and
tilting R3(c) to satisfy the first two constraints means that we must make a

corresponding tilt to R2(t), an identical shift and tilt to β
(11)
x and β

(12)
x , and

adjustments to µR2, µR3 and δR3.



28

For each of the age, period and cohort effects, we can see that the CMI credibil-
ity intervals are rather wider, reflecting the smaller size of the CMI population.

For the cohort effects, we see that both the EW and CMI fans widen out
towards both ends. This reflects the number of cells available for estimating a
given cohort effect: for example, we have just one cell linked to the 1945 birth
cohort, compared with 30 cells for the 1915 cohort. The EW fan widens out
more on the left than on the right, reflecting the missing data for ages 85-89
and years 1961-1970.

In the bottom right plot, we consider the central cohort effect, R3(c), and
its linear trend, µR3 + δR3(c − c̄). The grey fan on top provides credibility
intervals for R3(c) (a repeat from the bottom left plot). The wide blue fan in
the background provides credibility intervals for the trend, µR3 + δR3(c − c̄).
Clearly, there is considerable uncertainty in this trend, reflecting the relatively
modest number of (latent) observations of R3(c). In the short run, this does
not cause significant problems24 as there is only gentle mean reversion to this
long-term linear trend. In the long run (say, 40 or 50 years), this will result in
some additional uncertainty in the overall level of mortality.

24The fans in Figure 6, for example, would, otherwise, widen out rapidly.
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• In Figure 9, we focus on the correlation between future mortality improvement
factors for the two populations 10 years ahead in 2015. We look at 1000
simulations of the 10-year-ahead improvement factors (IF ) for ages 65, 75
and 85 plotted on a logarithmic scale

IFi(2015, x) =
qi(2015, x)

qi(2005, x)

for T = 2015.

Correlations between the simulated improvement factors are relatively high
at around 0.86 for ages 75 and 85, but slightly lower (0.79) at age 65 for
2015. The lower correlation for age 65 reflects the fact that this mortality
rate relies on the cohort effect for 1950. Our historical dataset takes us up
to 1945 and so we need to simulate forward to 1950. For ages 75 and 85 in
2015, we use previously fitted cohort effects for 1940 and 1930, respectively.
The added uncertainty in the cohort effects for populations 1 and 2 reduces
the correlation between the age-65 simulated improvement factors.

With a 10-year horizon, the main driver of correlation is the correlation be-
tween annual innovations in the period effect. For longer time horizons, the
correlations increase as the mean-reversion in the spreads between the period
and cohort effects become more significant. This is useful information when it
comes to hedging.

• Correlation is investigated further in Figure 10, where we plot the simulated
correlation between the simulated improvement factors at ages 65, 75 and 85
as a function of the time horizon. For reference, we also plot the correlation
between the period effects, κ

(21)
t and κ

(22)
t (the uppermost line in both plots).

Correlations that reflect full allowance in the simulations for parameter un-
certainty are given in the left-hand plot of Figure 10. To help understand the
structure in the left-hand plot, however, it is more straightforward to consider
first the PC case (right-hand plot). In this case, we took the MCMC output
and used the mean of each process parameter and also the mean of each of
the latent effects. For time horizons of up to 5 years, the age 65, 75 and 85
correlations are all equal: since randomness in each depends only on random-
ness in the period effects. After 5 years, the age 65 mortality rate includes
randomness in the cohort effect that requires simulation beyond the cohorts in
our historical dataset. This additional randomness results in a different and,
here, lower correlation for age 65 compared with ages 75 and 85.25 After 15
years, the age 75 mortality also includes simulated cohort effects, so the age

25The additional randomness contributed by the cohort effect could push the overall correlation
being measured here up or down. Here, it goes down because the short-term correlation between
the EW and CMI cohort effects is lower than the short-term correlation between the respective
period effects.
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75 and 85 correlations also diverge. In the long run, the correlation between
κ

(21)
t and κ

(22)
t dominates as mean reversion in the cohort effects reduces their

relative impact over time. Finally, mean reversion in the spread between κ
(21)
t

and κ
(22)
t means that the correlation between the simulated improvement fac-

tors will tend to 1 as the forecast time horizon increases. The right-hand plot
also shows us that the correlations follow quite closely the correlations between
κ

(21)
t and κ

(22)
t , with deviations only when the cohort effect is uncertain.

The PU case allows for uncertainty in both the process parameters and in the
values of the historical latent period and cohort effects (left-hand plot). For
the final year of birth in our historical dataset, we only have one observation
(age 60 in 2005 for the 1945 cohort), leading to a relatively large amount of
uncertainty in the estimate of the 1945 cohort effect. In more general terms,
there is growing uncertainty in the cohort effect as we approach 1945 (recall
Figure 8). The correlation between estimates of the cohort effect for these
years is quite small and has the immediate effect of dragging down the age
65 correlation plot (Figure 10, left) relative to its PC counterpart (Figure 10,
right). In the longer run, this uncertainty in estimates of historical latent
effects is replaced by uncertainty in the process parameters such as µR2. This
can push correlation up or down. Here, the parameter uncertainty pushes
correlation down initially, but for longer maturities, the correlation is slightly
higher in the PU plot reflecting the common dependence of κ

(21)
t and κ

(22)
t on

the random-walk drift µR2.

A significant difference between the left- and right-hand plots in Figure 10 is
that on the left the correlation between κ

(21)
t and κ

(22)
t is substantially above

the age 65, 75 and 85 correlations. This tells us that uncertainty in estimates
of the historical age and cohort effects has a significant downwards effect on
correlation.

The unambiguous conclusion from this plot is that corelations are rising with
the time horizon. Additionally, though, the shape of the curve and the values
that we see here based on our very specific model are consistent with the
model-free findings of Coughlan et al. (2009b).
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Figure 4: APC model, EW/CMI males. Metropolis-Hastings algorithm output:
process parameters. 1000 values have been stored out of a Markov chain of length
50,000.
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Figure 5: APC model, EW/CMI males. Metropolis-Hastings algorithm output: age,
period and cohort parameters. 1000 values have been stored out of a Markov chain
of length 50,000. Age effects are plotted for ages x =65, 71, 77, 83 (left to right).
Period effects are plotted for years t =1969, 1978, 1987, 1996. Cohort effects are
plotted for years of birth c =1885, 1900, 1915, 1930.
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Figure 6: APC model. Mortality fan charts for ages 65, 75 and 85 for EW males (red
fans) and CMI males (grey fans). Left-hand plots: fan charts constructed using the
single-population models with no parameter uncertainty (PC). Right-hand plots:
fan charts constructed using the joint-population model (MCMC) with parameter
uncertainty (PU).
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Figure 7: APC model, EW/CMI males. Comparison of fan charts based on (a) the
new MCMC algorithm (red fans) using AR(2) cohort effects (left-hand panel) and
(b) the original two-stage method using ARIMA(1,1,0) models for the cohort effect
(right-hand panel).



35

60 65 70 75 80 85 90

−
4.

5
−

4.
0

−
3.

5
−

3.
0

−
2.

5
−

2.
0

−
1.

5

EW

CMI

Age Effects

Age
1960 1970 1980 1990 2000

−
20

−
10

0
10

20

Period Effects

Year

1880 1900 1920 1940

−
10

−
5

0
5

Cohort Effects

Year of Birth
1880 1900 1920 1940

−
10

−
5

0
5

Cohort Effect Trend

Year of Birth

Figure 8: APC model. Age, period and cohort effects for EW males (grey fans) and
CMI males (red fans). Bottom right: EW cohort effect (grey) and its underlying
linear trend (blue fan). Age, period and cohort effects have been adjusted to sat-
isfy identifiability constraints:

∑
c R3(c) = 0,

∑
c R3(c)(c − c̄) = 0,

∑
c S3(c) = 0,∑

t R2(t) = 0,
∑

t S2(t) = 0. R3(c) is modelled as an AR(2) process around the lin-
ear trend µR3+δR3(c−c̄). Bottom right shows credibility intervals for µR3+δR3(c−c̄)
(blue fans).
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Figure 9: APC model. Correlation between EW males and CMI males pro-
jections. Simulated improvement factors over the period 2005 to 2015 (i.e.
q(2015, x)/q(2005, x)). Correlations between improvement factors are 0.79, 0.86 and
0.86 for ages 65, 75 and 85 respectively.
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Figure 10: APC model. Correlation between simulated improvement factors in EW
males and CMI males mortality rates as a function of the time horizon beyond 2005
– Age 65 (solid black line), 75 (dashed red line) and 85 (dotted green line) – and

correlation between period effects κ
(21)
t and κ

(22)
t as a function of the time horizon

(blue dot-dashed line). Left: simulations incorporating parameter uncertainty (PU).
Right: simulations with no parameter uncertainty (PC).
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Figure 11: APC model, EW/CMI males. Left: Cumulative posterior distribution

function (CPDF) of the ratio of the short-term volatility of γ
(32)
c to the short-term

volatility of γ
(31)
c . Middle: CPDF of the ratio of the long-term (stationary) variance

of γ
(32)
c to the long-term variance of γ

(31)
c . Hypothesis: both ratios should be close

to 1. Right: Long-term correlation between γ
(32)
c and γ

(31)
c . Hypothesis: long-term

correlation should be reasonably strong. Solid black lines: without the use of the
enhanced prior distributions (analysis 1). Dashed red lines: with the use of the
enhanced prior distributions (analysis 2).
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7 Analysis 2: EW/CMI Males, Ages 60-89, Years

1961-2005, Enhanced Priors

In Section 4.2, we discussed biologically reasonable criteria for the relationship be-
tween the short- and long-term variances of the two populations’ cohort effects and
their correlation. In Figure 11, we plot the posterior distribution for the relevant
quantities.

In the left-hand panel, we plot the CDF corresponding to Analysis 1 (Section 6)
(solid black line) of the ratio of the short-term (one-step-ahead conditional) vari-
ances of the population 1 and 2 cohort effects.26 In the middle panel, we plot the
CDF of the ratio of the long-term (unconditional) variances between the two cohort
effects.27 The right-hand panel shows the corresponding long-term correlation,28

under Analysis 1 (solid black line).

We infer from these plots that a typical draw from the posterior distribution results
in:

(a) γ
(32)
c being very much more volatile in the short term compared with γ

(31)
c

(left-hand panel in Figure 11);

(b) γ
(32)
c being significantly more variable in the long term compared with γ

(31)
c

(middle panel);

(c) reasonably strong correlation between γ
(32)
c and γ

(31)
c in the long term (right-

hand panel).

Observations (a) and (b) are contrary to what we considered to be biologically
reasonable in Section 4.2.

Consequently, we repeated our analysis using enhanced priors as follows:

• A Gamma(100, 100) prior for the ratio of the conditional 1-step-ahead variance

of γ
(32)
c to the conditional 1-step-ahead variance of γ

(31)
c .

• A Gamma(100, 100) prior for the ratio of the unconditional variance of γ
(32)
c

to the conditional 1-step-ahead variance of γ
(31)
c .

26The short-term ratio is defined as V ar(γ(32)
c |Gc−1, V

(3))/V ar(γ(31)
c |Gc−1, V

(3)), where Gc−1 is
the history of R3(u) and S3(u) up to time c− 1, and V (3) is sampled at random from the posterior
distribution of θ. Hence, V ar(γ(32)

c |Gc−1, V
(3)) = V

(3)
11 − 2V

(3)
21 +V

(3)
22 , and V ar(γ(31)

c |Gc−1, V
(3)) =

V
(3)
11 .
27The long-term variance ratio is V ar(γ(32)

c )/V ar(γ(31)
c ).

28Defined as cor(γ(32)
c , γ

(31)
c ).
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• A Beta(20, 2) prior (scaled to cover the interval (−1, +1)) for the unconditional

correlation between γ
(32)
c and γ

(31)
c .

These might seem relatively strong, but, as we discuss below, their impact is limited
primarily to precisely those factors that we seek to make more biologically reason-
able. For each prior, the important elements are the mean and standard deviation of
the prior, and the domain. Thus, for example, the Gamma priors properly restricts
variances to be positive real numbers, and have a mean of 1 and standard devia-
tion of 0.1. The log-normal as a prior with the same mean and standard deviation
is almost identical to the Gamma and would give similar results. The scaled Beta
properly restricts the unconditional correlation to the range (−1, +1), and has mean
of 0.82 and standard deviation of 0.06.

The dashed red lines in Figure 11 show the posterior distributions of the variance
ratios and the long-term correlation when we incorporate these enhanced priors. We
can see that the two populations now have similar levels of variability in the cohort
effect in both the short and long term and that the long-term correlation is higher
than before. Further analysis reveals that balancing the two variances is achieved
partly by reducing the volatility of γ

(32)
c and partly by γ

(31)
c = R3(c) becoming more

volatile.

In Figure 12, we compare mortality fan charts using the enhanced priors (red) with
the equivalent results without the use of enhanced priors. We can see that the
introduction of these priors has little impact on the headline emergence of risk over
time.

Figure 13 shows the correlation plots based on the enhanced priors with and without
parameter uncertainty in the joint-population model. Comparing this with Figure
10, we see that correlations are slightly lower when we use enhanced priors. For age
65 in the PC case, the dip after 5 years when the simulated cohort effects kick in is
more prominent. This is because the central cohort effect, R3(c), is more volatile.

Figure 14 focuses on the impact of using an enhanced prior on the fitted CMI cohort
effect, γ

(32)
c . Again we can see that the impact of the enhanced prior is relatively

modest. In the right-hand plot (enhanced priors), close inspection of the details
does reveal some damping down of volatility compared with the left-hand plot. So,
although we have obtained more consistent volatility estimates, this has not been
at the expense of allowing the data to speak for themselves.

Enhanced priors were not felt to be necessary for modelling the period effects. Specif-
ically, the 1-year-ahead variances of κ

(21)
t and κ

(22)
t resulting from Analysis 1 were

found already to be reasonably close and, therefore, biologically reasonable. How-
ever, variants of the framework might include an enhanced prior along the same
lines as for the cohort effect.
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Figure 12: APC model. Mortality fan charts for ages 65, 75 and 85 with (red
fans) and without (grey fans) the enhanced priors. Left-hand plots: EW males.
Right-hand plots: CMI males.
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Figure 13: APC model with enhanced priors. Correlation between simulated im-
provement factors as a function of the time horizon – Age 65 (solid black line), 75
(dashed red line) and 85 (dotted green line) – and correlation between period ef-

fects κ
(21)
t and κ

(22)
t as a function of the time horizon (blue dot-dashed line). Left:

simulations incorporating parameter uncertainty (PU). Right: simulations with no
parameter uncertainty (PC).

1880 1900 1920 1940

−
8

−
6

−
4

−
2

0
2

4

Year of Birth

C
oh

or
t E

ffe
ct

CMI Cohort Effect
Non−Enhanced Priors

1880 1900 1920 1940

−
8

−
6

−
4

−
2

0
2

4

CMI Cohort Effect
Enhanced Priors

Year of Birth

C
oh

or
t E

ffe
ct

Figure 14: APC model. Cohort effect for CMI males without enhanced priors (left-
hand plot), and with enhanced priors (right-hand plot).
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8 Analysis 3: EW/CMI Males, Ages 60-89, years

1961-2005, Enhanced Priors, ARIMA(1,1,0)

Model for the Main Cohort Effect

In previous work (Cairns et al. 2008b), we modelled the cohort effect using an
ARIMA(1,1,0) process. In Analysis 3, we replace the AR(2) model for R3(c) with an
ARIMA(1,1,0) model (in programming terms, this is achieved by fixing φR31 = 0.999
in the AR(2) version of the model).

Results are very similar to the analysis 2 results for the AR(2) cohort model with
enhanced priors. Although the correlation plot (Figure 15) differs slightly from the
benchmark (Figure 10), we see it is quite close to the analysis 2 correlation plot
(Figure 13) which also uses an enhanced prior.
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Figure 15: APC model, enhanced priors, ARIMA(1,1,0) model for R3(c). Correla-
tion between simulated improvement factors as a function of the time horizon. Age
65 (solid black line), 75 (dashed red line) and 85 (dotted green line).
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9 Analysis 4: EW/CMI Females, Ages 60-89,

Years 1983-2003, Enhanced Priors

In our next analysis, we move on to consider EW versus CMI females, applying the
MCMC approach with enhanced priors.

In contrast with the males data, data for CMI females are only available for the
period 1983 to 2003. Additionally, the size of the females’ CMI population is much
smaller than that of CMI males. The small size of the data mainfests itself in two
ways and both are linked to parameter estimation error. For the MCMC approach,
we see in Figure 16 that credibility intervals for the age, period and cohort effects
are much wider for the CMI females (and much wider than for CMI males, which
has a larger population). We have also plotted parameter estimates (dots) using the
single-population, two-stage approach. Here, the small CMI population results in
very noisy estimates, particularly for the cohort effect.

Figure 17 shows fan charts for mortality at age 75, for the single-population PC
model, the two-population PC model and the two-population PU model. As with
EW males, the PC fans for EW females (upper right-hand plot, grey and green fans)
are quite similar, while the PU fan (red) is rather wider. For the CMI data (lower
plots), there is a rather bigger difference between the single-population model and
the two-population model, the latter’s fan being much narrower. Again this tells
us that the MCMC approach is very effective at dampening the impact of small
population noise.

The two right-hand plots in Figure 17 also reveal a further benefit of using the
two-population model. When we compare the single-population projections for the
EW and CMI populations (grey fans in both plots), we see that the EW and CMI
forecasts cross over around 2050. Historically, CMI females’ mortality has been
lower than EW females reflecting the wealthier and healthier status of the insured
lives. We might reasonably expect this to continue in the future, but this is not
reflected in the single-population forecasts. This might be mitigated by altering
the length of the lookback window or, perhaps, by making a subjective adjustment
to the CMI drift parameters. The two-population model takes a more objective
approach. The key assumption of non-divergence over time of the two populations,
along with the relatively very large size of the EW population and the 0/1 weights in
the spreads model, ensures that the EW projection dominates and the CMI forecasts
move roughly in parallel in the long term. As a consequence, the two-population
forecasts for CMI females (green and red fans) are significantly lower than the single-
population forecast (grey fan).

Correlations are plotted in Figure 18. The PC correlations are a bit lower than
the corresponding correlations for males reflecting different values for the process
parameters governing the dynamics of κ

(21)
t and κ

(22)
t . There is also a bigger difference
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between the PC and PU cases, which is the result of the wider credibility intervals
for the CMI females’ age, period and cohort effects (Figure 16).
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Figure 16: APC model, enhanced priors, 1983-2003. Age, period and cohort effects
for EW females (grey fans) and CMI females (red fans). Bottom right: EW cohort
effect (grey) and its underlying linear trend (blue fan). Age, period and cohort effects
have been adjusted to satisfy identifiability constraints:

∑
c R3(c) = 0,

∑
c R3(c)(c−

c̄) = 0,
∑

c S3(c) = 0,
∑

t R2(t) = 0,
∑

t S2(t) = 0. R3(c) is modelled as an AR(2)
process around the linear trend µR3 + δR3(c − c̄). Bottom right shows credibility
intervals for µR3 + δR3(c − c̄) (blue fans). The black (EW) and red (CMI) dots

show corresponding point estimates for κ
(i2)
t and γ

(i3)
c effects using the two-stage

single-population model.
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Figure 17: APC model, enhanced priors, 1983-2003. Comparison of fan charts for
EW and CMI females based on (a) the new MCMC algorithm (red fans) using AR(2)
cohort effects and (b) the original two-stage method using ARIMA(1,1,0) models
for the cohort effect.
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Figure 18: APC model, enhanced priors, EW/CMI females, 1983-2003. Correlation
between simulated improvement factors as a function of the time horizon – age 65
(solid black line), 75 (dashed red line) and 85 (dotted green line) – and correlation

between period effects κ
(21)
t and κ

(22)
t as a function of the time horizon (blue dot-

dashed line). Left: simulations incorporating parameter uncertainty (PU). Right:
simulations with no parameter uncertainty (PC).

10 Analysis 5: EW/CMI Females, Ages 60-89,

Years 1983-2003 versus 1961-2003 and 1961-

2007

CMI females data are currently only available for years 1983-2003. In contrast, EW
females data are currently available from 1961 to 2007. Here, we consider augment-
ing the basic 1983-2003 dataset with this additional EW data. A key advantage
of the MCMC approach is that it allows us to include missing data: in this case,
CMI data from 1961-1982 and 2004-2007. Missing data are dealt with by assigning
a weight of zero to the relevant cells: just as we did for certain parts of the EW
males dataset (Section 3). We do this in two steps: first, we add the extra data
from 1961-1982 and, second, we add the extra data from 2004-2007.
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We just consider one plot here, Figure 19. This plot allows us to compare forecasts
for ages 65, 75 and 85 based on the basic and then the augmented datasets. The grey
fans show projections based on the combined 1983-2003 dataset. The red fans are
based on data from 1961-2003. The green fans are based on data from 1961-2007.
We can comment as follows:

• The main impact of including data from 1961-1982 is to tilt slightly the cen-
tral trajectory of both the EW and CMI projections. The average mortality
improvement rate over 1961-2003 was lower than the 1983-2003 average and
this results in a lower forecast improvement rate. The change in the width of
the grey and red fan charts reflects a more complex combination of factors.
Amongst these, the red fan will be narrower because there is less parameter
uncertainty in the µR2 drift term.

• When we include data from 2004-2007, we see a significant impact on the EW
fans. The fan now starts to widen out only after 2007, and, for a given future
year, the prediction interval is narrower, reflecting the shorter out-of-sample
forecasting period. In general, the fans have been shifted down slightly.

• The impact of the inclusion of the 2004-2007 EW data on the CMI forecasts
is more difficult to unravel. The most obvious impact is a shift down from the
red to the green fan in the central projection mimicking the shift in the EW
forecasts. In the longer term, the width of the fans is also narrowed slightly,
in line with changes in the EW fans. The impact of the additional data in
the shorter term is more difficult to see and this is because of the considerable
uncertainty in estimates of the historical age, period and cohort effects as
reflected in the width of the CMI mortality fans up to 2003.

In conclusion, the major impact on CMI projections comes from the basic coupling
of this population to the EW females dataset (Figure 17). Using greater amounts of
EW data (the most recent data, in particular) has a noticeable but less significant
impact.
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Figure 19: APC model, enhanced priors, EW/CMI females. Comparison of mor-
tality fan charts for ages 65, 75 and 85 based on years 1961-2003 (grey), 1961-2005
(red), and 1961-2007 (green) and age range 60-89.
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11 Analysis 6: EW/CMI Males, Ages 60-89, Years

1961-2005, Lee-Carter Model

In this section, we use the same dataset as Analysis 1 (Section 6), but now we use
the LC model instead of the APC model.

The basic model here is

log mi(t, x) = β(1i)
x + β(2i)

x κ
(2i)
t

with the constraint that, for all x, β
(21)
x = β

(22)
x . The time-series model for κ

(21)
t and

κ
(22)
t is the same as before for the two-population version of the APC model. Priors

are also as before for those parameters relating to κ
(21)
t and κ

(22)
t . The structure is

represented in Figure 20.

With APC, the pseudo-Gibbs samplers for κ
(21)
t and κ

(22)
t took advantage of the

fact that the implicit β
(2i)
x = 1/na were all constant. Now that the β

(21)
x are age

dependent, the ensuing non-linearities made the updating of the κ
(2i)
t more difficult

and we found that mixing was a bit slower than before, but still acceptable: see
Figures 22 and 21.

We can make the following observations on the results:

• Credibility intervals for the age and period effects are plotted in Figure 23.
As before, the intervals are significantly wider for the CMI population. The
common β

(21)
x = β

(22)
x function clearly declines with age, reflecting the slower

rate of improvement in mortality at higher ages over the last 45 years.

• In Figure 24, we compare forecasts for the two-population models for LC and
APC. We can see substantial differences between the two: in particular LC
has much narrower fans at high ages, as has been remarked elsewhere (see,
for example, Cairns et al. 2008b). Further, the LC fans (especially EW) have
almost linear trends because of the lack of a cohort effect, whereas the impact
of the cohort effect in APC is quite prominent. Thus at age 85, we see a
steeper downwards trend after 2005 compared with LC as the 1930 “golden”
cohorts move through.

• Figure 25 compares the one- and two-population PC and the two-population
PU forecasts. Results are similar to those discussed earlier for APC.

• Correlations over time are plotted in Figure 26. The lack of a cohort effect
means that there is very little difference between the correlations at different
ages. The correlations are slightly higher (more so for age 65) than under
APC, with a smaller difference between the PC and PU cases, suggesting
that uncertainty in in estimates of historical cohort effects in APC is quite
significant.
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model. Details as in Figure 3.
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Figure 21: LC model, EW/CMI males. Metropolis-Hastings algorithm output: age,
period and cohort parameters. 1000 values have been stored out of a Markov chain
of length 50,000. Age effects are plotted for ages x =65, 71, 77, 83. Period effects
are plotted for years t =1969, 1978, 1987, 1996.
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Figure 22: LC model, EW/CMI males. Metropolis-Hastings algorithm output. Pro-
cess parameters. 1000 values have been stored out of a Markov chain of length
50,000.
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Figure 23: LC model. Age, period and cohort effects for EW males (grey fans) and
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identifiability constraints:

∑
t R2(t) = 0,

∑
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Figure 24: LC model, EW/CMI males. Comparison of fan charts based on (a) the
MCMC algorithm for the two-population LC model (red fans) and (b) the MCMC
algorithm for the APC model without enhanced priors (grey fans).
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Figure 25: LC model, EW/CMI males. Comparison of fan charts based on (a) the
new MCMC algorithm (red fans) and (b) the original two-stage method (grey fans).
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Figure 26: LC model, EW/CMI males. Correlation between simulated improvement
factors as a function of the time horizon – age 65 (solid black line), 75 (dashed red

line), and 85 (dotted green line) – and correlation between period effects κ
(21)
t and

κ
(22)
t as a function of the time horizon (blue dot-dashed line). Left: simulations

incorporating parameter uncertainty (PU). Right: simulations with no parameter
uncertainty (PC).
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12 Analysis 7: US/California Males, Ages 60-84,

Years 1980-2003, Lee-Carter Model

Results for the application of the two-population MCMC LC model to the US/Cal-
ifornia males datasets are shown in Figures 28 to 32.

• Mortality is lower in California compared to the US (Figure 30), and divergence
of rates can be observed (bottom left) at age 84 if the two populations are
modelled in isolation.

• Compared with the equivalent EW analysis, we see that fan charts for US mor-
tality (Figures 30 and 31) are rather narrower, reflecting lower volatility in the

historical period effects in the US and California, κ
(21)
t and κ

(22)
t . A tentative

explanation for this is the the greater geographical diversity of the US leading
to a dampening of systematic annual fluctuations caused by environmental
factors.

There is a noticeable difference between the parameter certain forecasts for
California using the one- and two-population models (Figure 31) which results

largely from differences in the estimates of β
(22)
x (recall that this parameter

dictates both the central improvement rate at specific ages and also the level
of uncertainty in the LC model).

Figure 31 also suggests that parameter uncertainty has a more significant role
to play in forecasts, particularly in the µR2 parameter, and this might reflect
the shorter dataset used compared to the EW/CMI dataset.

• Correlations between the simulated improvement factors are plotted in Figure
32. These are lower than the equivalent correlations for EW/CMI and merely
reflect specific parameters estimated in this case (V (2)), ψS2). The PC and
PU cases are reasonably close suggesting that the large population sizes mean
that Poisson noise is not a major factor.
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Figure 27: LC model, US/California males. Metropolis-Hastings algorithm output.
Age, period and cohort parameters. 1000 values have been stored out of a Markov
chain of length 50,000. Age effects are plotted for ages x =64, 69, 74, 79. Period
effects are plotted for years t =1983, 1988, 1993, 1998.
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Figure 28: LC model, US/California males. Metropolis-Hastings algorithm output:
process parameters. 1000 values have been stored out of a Markov chain of length
50,000.
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Figure 30: LC model. Mortality fan charts for ages 65, 75 and 85 for US males (red
fans) and California males (grey fans). Left-hand plots: fan charts constructed using
the single-population models with no parameter uncertainty (PC). Right-hand plots:
fan charts constructed using the joint-population model (MCMC) with parameter
uncertainty (PU).
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Figure 31: LC model, US/California males. Comparison of fan charts based on (a)
the new MCMC algorithm (red fans) and (b) the original two-stage method (grey
fans).
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Figure 32: LC model, US/California males. Correlation between simulated im-
provement factors as a function of the time horizon – age 65 (solid black line) and

80 (dashed red line) – and correlation between period effects κ
(21)
t and κ

(22)
t as a

function of the time horizon (blue dot-dashed line). Left: simulations incorporat-
ing parameter uncertainty (PU). Right: simulations with no parameter uncertainty
(PC).
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13 Conclusions

The Bayesian Markov chain Monte Carlo approach to estimating jointly the param-
eters of stochastic mortality models for two related populations has clear advantages
over the individual modelling of the populations. First, the difference between the
two populations mortality rates (i.e., the basis) is modelled as a mean-reverting
stochastic spread, which allows for different short-term trends in improvement rates,
but parallel improvements in the long run, thereby preventing a biologically implau-
sible long-term divergence in mortality rates. Second, the approach permits us to
analyse uncertainty in the estimates of the historical age, period and cohort effects,
and this helps us to smooth out noise in parameter estimates, particularly those
relating to cohort effects, attributable to small populations: the framework is espe-
cially valuable when the population of interest is smaller with more volatile mortality
rates than the other population. Third, the forecasts of mortality rates arising from
this framework provide consistent central projections, as well as consistent distri-
butions (fans) around these central projections. The bottom right-hand panel of
Figure 7, for example, shows how the fan chart projections for the smaller popula-
tion (in this case CMI males) is “pulled” towards that of the larger population (in
this case EW males – see top right-hand panel in the figure) without any increase
in forecast uncertainty – the width of the (green) fans in the two-population case is
actually less for both populations than the (grey) fans in the single-population case.
Fourth, the correlations between the estimated mortality improvement factors for
two populations are consistent with the historical data and can actually be higher
when enhanced priors are used, although this is not a universal finding.

However, the approach remains sensitive to the underlying stochastic mortality mod-
els used and will compound any weaknesses in these models. For example, the single-
factor Lee-Carter model produces fan chart projections of mortality rates that are
“too narrow”, given the volatility of historical mortality rates (as we found in a pre-
vious study, Cairns et al. (2008b)). The approach is also very sensitive to the model
used to estimate the cohort effect. The results (e.g., correlations between mortality
rates at different ages) are also sensitive to whether a cohort effect is present. Fi-
nally, the approach is sensitive to the amount of data used, although the amount of
data is a less significant factor than the fact that two related populations are being
modelled jointly.

Some of the details internal to the model should not be regarded as cast in stone.
The 0/1 weights in the spreads model might be varied if the two populations are
more similar in size compared to those considered here. The prior distributions
might be varied from those considered here if initial results produce results that are
implausible is some way. So users of the approach must always be vigilant, analyse
results carefully, and not use the model as a black box.

Overall, we can conclude that the MCMC framework is a very useful one for mod-
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elling related populations, particularly the basis and basis risk between them. This
is especially important when we are interested in hedging the longevity risk in the
smaller population using an index hedging contract related to the larger population.
Such a hedge analysis will be the subject of future work.

Acknowledgments

We are grateful to the Continuous Mortality Investigation in the UK for providing
the assured lives data. AC wishes to thank Iain Currie and Stephen Richards for
useful discussions on multi-population mortality.

References

Blake, D., Cairns, A.J.G., and Dowd, K. (2006) Living with mortality: Longevity
bonds and other mortality-linked securities. British Actuarial Journal, 12: 153-197.

Booth, H., Hyndman, R.J., Tickle, L., and de Jong, P. (2006) Lee-Carter mortality
forecasting: A multi-country comparison of variants and extensions. Demographic
Research, 15: 289-310.

Booth, H., and Tickle, L. (2008) Mortality modelling and forecasting: A review of
methods. Annals of Actuarial Science, 3: 3-43.

Bray, I. (2002) Application of Markov chain Monte Carlo methods to projecting
cancer incidence and mortality. Applied Statistics, 51: 151-164.

Brouhns, N., Denuit, M., and Vermunt J.K. (2002) A Poisson log-bilinear regression
approach to the construction of projected life tables. Insurance: Mathematics and
Economics, 31: 373-393.

Cairns, A.J.G., Blake, D., and Dowd, K. (2006a) Pricing death: Frameworks for the
valuation and securitization of mortality risk. ASTIN Bulletin, 36: 79-120.

Cairns, A.J.G., Blake, D., and Dowd, K. (2006b) A two-factor model for stochastic
mortality with parameter uncertainty: Theory and calibration. Journal of Risk and
Insurance, 73: 687-718.

Cairns, A.J.G., Blake, D., Dowd, K., Coughlan, G.D., Epstein, D., Ong, A., and
Balevich, I. (2009) A quantitative comparison of stochastic mortality models using
data from England & Wales and the United States. North American Actuarial
Journal, 13: 1:35.

Cairns, A.J.G., Blake, D., and Dowd, K. (2008a) Modelling and management of
mortality risk: A review. Scandinavian Actuarial Journal, 2008(2-3): 79-113.

Cairns, A.J.G., Blake, D., Dowd, K., Coughlan, G.D., and Khalaf-Allah, M. (2008b)



64

Mortality density forecasts: An analysis of six stochastic mortality models. Pensions
Institute Discussion Paper PI-0801.

Coughlan, G.D., Emery, S., and Kolb, J. (2004). HEAT (Hedge effectiveness anal-
ysis toolkit): A consistent framework for assessing hedge effectiveness. Journal of
Derivatives Accounting, 1(2): 221-272.

Coughlan, G., Epstein, D., Ong, A., Sinha, A., Hevia-Portocarrero, J., Gingrich,
E., Khalaf-Allah, M., and Joseph, P. (2007a) LifeMetrics: A toolkit for measuring
and managing longevity and mortality risks. Technical document. Available at
www.lifemetrics.com.

Coughlan, G., Epstein, D., Sinha, A., and Honig, P. (2007b) q-Forwards: Derivatives
for transferring longevity and mortality risk. Available at www.lifemetrics.com.

Coughlan, G.D. (2009a). Longevity risk transfer: Indices and capital market solu-
tions. In Barrieu, P.M. and Albertini, L. (eds), The Handbook of Insurance Linked
Securities, Wiley, London.

Coughlan, G.D., Khalaf-Allah, M., Ye, Y., Cairns, A.J.G., Blake, D. and Dowd,
K., (2009b) Longevity hedging: A framework for basis risk and hedge effectiveness.
Forthcoming working paper. Presented at the Fifth International Longevity Risk
and Capital Markets Solutions Conference, New York, September 2009.

Currie I. D., Durban, M. and Eilers, P. H. C. (2004) Smoothing and forecasting
mortality rates. Statistical Modelling, 4: 279-298.

Czado, C., Delwarde, A., and Denuit, M. (2005) Bayesian Poisson log-bilinear mor-
tality projections. Insurance: Mathematics and Economics, 36: 260-284.

Dahl, M., Melchior, M., and Møller, T. (2008) On systematic mortality risk and risk
minimisation with survivor swaps. Scandinavian Actuarial Journal, 2008(2-3):114-
146.

Dahl, M., Glar, S., and Møller, T. (2009) Mixed dynamic and static risk minimiza-
tion with an application to survivor swaps. 19th International AFIR Colloquium,
Munich, September 2009.

Dowd, K., Cairns, A. J. G., Blake, D., Coughlan, G. D., Epstein, D. and Khalaf-
Allah, M. (2008a). Evaluating the goodness of fit of stochastic mortality models.
Pensions Institute Discussion Paper PI-0802.

Dowd, K., Cairns, A. J. G., Blake, D., Coughlan, G. D., Epstein, D. and Khalaf-
Allah, M. (2008b). Backtesting stochastic mortality models: An ex-post evaluation
of multi-period-ahead density forecasts. Pensions Institute Discussion Paper PI-
0803.

Gilks, W.R., Richardson, S., and Spiegelhalter, S.J. (1996) Markov chain Monte
Carlo in Practice. Chapman and Hall, New York.



65

Jacobsen, R., Keiding, N., and Lynge, E. (2002) Long-term mortality trends behind
low life expectancy of Danish women. J. Epidemiol. Community Health, 56: 205-
208.

Jarner, S.F., and Kryger, E.M. (2009) Modelling adult mortality in small popula-
tions: The SAINT model. Pensions Institute Discussion Paper PI-0902.

Kogure, A., Kurachi, Y., and Kitsukawa, K. (2009) A Bayesian evaluation of longevity
risk: Model comparison, measuring and pricing. Working paper, Keio University.

Li, J.S.-H., and Hardy, M.R. (2009) Measuring basis risk involved in longevity
hedges. Working paper, University of Waterloo.

Li, N., and Lee, R. (2005) Coherent mortality forecasts for a group of populations:
An extension of the Lee-Carter method. Demography, 42(3): 575-594.

Li, N., Lee, R., and Tuljapurkar, S. (2004) Using the Lee–Carter method to forecast
mortality for populations with limited data. International Statistical Review, 72:
19-36.

Loeys, J., Panigirtzoglou, N., Ribeiro, R.M. (2007) Longevity: A market in the
making. Available at www.lifemetrics.com.

Macdonald, A.S., Cairns, A.J.G., Gwilt, P.L., and Miller, K.A., (1998) An interna-
tional comparison of recent trends in population mortality. British Actuarial Journal
4: 3-141.

Oeppen, J., and Vaupel, J.W. (2002) Broken limits to life expectancy. Science, 296:
1029-1030.

Osmond, C. (1985) Using age, period and cohort models to estimate future mortality
rates. International Journal of Epidemiology, 14: 124-129.

Osmond, C. and Gardner, M.J. (1982) Age, period and cohort models applied to
cancer mortality rates. Statistics in Medicine, 1: 245-259.

Pedroza, C. (2006) A Bayesian forecasting model: Predicting U.S. male mortality.
Biostatistics, 7: 530550.

Reichmuth, W. and Sarferaz, S. (2008) Bayesian demographic modelling and fore-
casting: An application to US mortality. SFB 649 Discussion paper 2008-052.

Renshaw, A.E., and Haberman, S. (2003) Lee-Carter mortality forecasting with
age-specific enhancement. Insurance: Mathematics and Economics, 33: 255-272.

Renshaw, A.E., and Haberman, S. (2006) A cohort-based extension to the Lee-
Carter model for mortality reduction factors. Insurance: Mathematics and Eco-
nomics, 38: 556-570.

Richards, S.J. (2008) Applying survival models to pensioner mortality data. To
appear in British Actuarial Journal.



66

Tuljapurkar, S., Li, N., and Boe, C. (2000) A universal pattern of mortality change
in G7 countries. Nature 405: 789-792.

A Glossary of notation

β11
x : population 1 age effect

β12
x : population 2 age effect

κ
(21)
t : population 1 period effect

κ
(22)
t : population 2 period effect

γ
(31)
c : population 1 cohort effect

γ
(32)
c : population 2 cohort effect

R2(t): central period effect
S2(t): spread between population 1 and 2 period effects
R3(c): central cohort effect
S3(c): spread between population 1 and 2 cohort effects

µR2: drift of R2(t)
µS2: mean reversion level for S2(t)
ψS2: AR(1) autoregressive parameter for S2(t)
V (2): 1-step-ahead covariance matrix for (R2(t), S2(t))

(µR3, δR3): level and trend of R3(c)
µS3: mean reversion level for S3(c)

φR31, φR32, φS31, φS32: AR(2) autoregressive parameters for R3(c) and S3(c)
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