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Abstract

Recent years have seen the development of a number of models for the future devel-
opment of aggregate mortality rates. Amongst these the Olivier and Smith model
(Olivier and Jeffery, 2004, and Smith, 2005) was developed within the forward-rate
framework discussed by Cairns et al. (2006) and Miltersen and Persson (2005). This
model has a numbe of useful properties that make it a very good model for use in
the valuation of life insurance contracts that incorporate embedded options.

We discuss here a generalisation of the Olivier and Smith model. Dynamics of the
model in its published form are driven by a sequence of univariate gamma ran-
dom variables. We demonstrate that the model in this form does not adequately
match historical data. We discuss a generalisation of the model that uses multivari-
ate Gamma random variables as drivers. This approach potentially gives us much
greater control over the term structure of volatility of spot survival probabilities and
over the correlation term structure. We introduce a possible approach for simulation
of multivariate gamma random variables that facilitates
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1 Introduction

1.1 Stochastic mortality

It is well-understood that aggregate mortality has improving over time in most
countries and that the rates of improvement in different years and at different ages
is unpredictable. (See, for example, CMI (2005), Currie, Durban and Eilers (2004),
Richards, Kirkby and Currie (2006), and Richards et al. (2007).) This has led
to the development of a number of stochastic mortality models. Cairns, Blake
and Dowd (2006a) review the different approaches that can be taken by considering
parallels with interest-rate modelling. A variety of models have been developed with
statistical goodness of fit high on the list of criteria for a good model. Examples
include Lee and Carter (1992), Brouhns et al. (2002), Renshaw and Haberman
(2003, 2006), and Cairns, Blake and Dowd (2006b). Other approaches modelling in
continuous time have focused more on the mathematical aspects of modelling with
less emphasis on statistical validation. Examples include Dahl (2004), Biffis (2005)
and Miltersen and Persson (2005).

1.2 Two types of stochastic mortality model

The first group of models listed above can be described in interest-rate terminology
(Cairns et al, 2006b) as discrete-time short-rate models. Thus they provide a model
that moves the “qx” mortality curve forward one year at a time. The mortality
curve in a given year is normally modelled as some function of a state variable X(t)
(with one or more factors). The dynamics of mortality rates, therefore, depend on
the dynamics of X(t).

As an alternative, forward-rate approaches to modelling have been proposed by
Miltersen and Persson (2005), Olivier and Jeffery (2004) and Smith (2005). The
latter two describe the Olivier and Smith discrete-time forward-rate model. Instead
of modelling the one-dimensional mortality curve, this models the dynamics of the
two-dimensional sheet of forward survival probabilities. In a forward-rate framework
we model a hypothetical market in zero-coupon survivor bonds – often also known
as pure endowment contracts. These life insurance contracts pay a defined amount
of money on a future date T if the policyholder is still alive at time T . We have
one such contract for each current age x and for each future payment date T . The
prices of these contracts form a two-dimensional array and constitute a key is part
of the model input at time 0. Forward-rate models directly model the dynamics of
the prices of all of these contracts through time.

1.3 Short-rate versus forward-rate models

The advantages and disadvantages of taking one approach over the other are as
follows:

• Short-rate models are, in general, more straightforward to fit to historical data,
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and get a good fit.

• Short-rate models are, in general, easier to simulate.1

• Short-rate models make it straightforward to calculate zero-coupon survivor-
bond prices at time 0. In contrast, forward-rate models require these prices as
part of the input.

• For more complex life-insurance contracts (e.g. annuity guarantees) the value
of the contract at some future date T depends on the mortality table in use
at time T , including forward survival probabilities at T . With short-rate
models this table is typically not available as a simple function of the state
variable X(T ). Instead, each simulation of X(T ) requires a further bundle of
simulations from time T to evaluate forward survival probabilities. In contrast,
forward survival probabilities are a standard part of the output at time T .
Forward-rate models are therefore ideal for pricing contracts with embedded
options.

In this paper we will take a close look at the one-factor forward-rate model proposed
by Olivier and Smith (see Olivier and Jeffery, 2004, and Smith, 2005). We will
describe their original version in detail, but then demonstrate informally that the
model does not fit historical data particularly well. Instead, we observe that more
than one source of randomness is required in both the age and maturity dimensions,
and that there is a non-trivial volatility and correlation term structure.

We discuss how the original Olivier and Smith model can, in theory, be generalised
to address these statistical issues. Practical implementation of the generalised model
requires simulation of dependent (but not identical) Gamma random variables. The
challenge is that pairs if Gamma random variables need to satisfy a constraint that
looks simple on paper, but which is difficult to implement.

2 Basic notation and the forward-mortality frame-

work

In this section we will briefly review the basic notation used in the review of Cairns,
Blake and Dowd (2006a).

We begin be defining two fundamental quantities

• the cash account, C(t) = the accumulated value of an investment in the short-
term money markets, and

• the survivor index S(t, x) = exp
[∫ t

0
−µ(u, x + u)du

]
,

where µ(u, y) is the force of mortality at time u for individuals aged y at that time.

1The Olivier and Smith model is an exception to this, as we shall see later.
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In our probabilistic world we let Mt represent the filtration generated by the evo-
lution of the force of mortality up to and including time t, and we let Ht represent
the augmented filtration that includes both mortality and interest rates up to time
t. It follows that, given Mt, S(t, x) represents the probability that an individual
aged x at time 0 survived to age x + t.

We now adapt the approaches to forward mortality modelling of Cairns, Blake and
Dowd (2006a) and Miltersen and Persson (2005). First, we will work in discrete
time rather than continuous time. Second, we consider as our core assets:

• cash, C(t);

• a set of unit-linked, zero-coupon longevity bonds that pay C(T )S(T, x) at time
T , for T = 1, 2, . . . and for x ∈ Z (we refer to this as the (T, x) bond).2

The price at time t for the (T, x) bond is denoted by D(t, T, x) and we define in
addition the discounted asset price processes D̃(t, T, x) = D(t, T, x)/C(t).

We make the fundamental assumption that this market is arbitrage free and now
apply the Fundamental Theorem of Asset Pricing. The assumption of no arbitrage
then means that there exists a probability measure Q under which the prices of all
assets discounted by the cash account are martingales: that is, the D̃(t, T, x) are all
Q-martingales.

This fundamental result means that3

D(t, T, x) = EQ

[
C(t)

C(T )
C(T )S(T, x)

∣∣∣∣ Ht

]

= C(t)EQ [S(T, x)|Mt]

= C(t)S(t, x)pQ(t, t, T, x). (1)

In this equation we used the notation for market-implied forward survival probabil-
ities

pQ(t, T0, T1, x) = PrQ [τx > T1|τx > T0,Mt] =
EQ[S(T1, x)|Mt]

EQ[S(T0, x)|Mt]
(2)

where τx is the future lifetime of an individual aged x at time 0. That is, pQ(t, T0, T1, x)
is the probability, based on information available at time t, that, if the individual
survives to time T0, he will then survive to time T1. Here T0 might be before or
after time t. Specifically if T0 < t and T1 > t then the forward survival probability
is interpreted as the product of two parts: the survival probability from time T0 to
time t, which is measurable at time t, and an estimate of the probability of survival
from time t to time T1.

2A simpler equivalent is to assume that interest rates are zero.
3In this expression note that the filtration Mt tells us about the development of µ(u, x + u)

over time. It does not tell us about the future lifetimes of specific individuals. The formula
for the implied forward survival probabilities in (2) assumes that PrQ[τx > T1|τx > T0,MT1 ] =
S(T1, x)/S(T0, x): that is, there is no market price of risk for individual-specific mortality risk.
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Now in general EQ[S(T, x)|Mu] is a martingale under Q. We might decompose it
in the following way:

EQ[S(T, x)|Mt+1] = pQ(t, 0, t, x)× pQ(t + 1, t, t + 1, x)× pQ(t + 1, t + 1, T, x). (3)

In this equation pQ(u, 0, t, x) is known by time u = t and will not change after time
t: that is, pQ(u, 0, t, x) = pQ(t, 0, t, x) for all u > t. Second, pQ(u, t, t + 1, x) will
change between u = t and u = t + 1 but will remain fixed thereafter (u > t + 1).
After time u = t + 1, pQ(u, t, t + 1, x) is the observed value of S(t + 1, x)/S(t, x).
The third component of (3) will still vary after time t + 1.

Since pQ(u, 0, t, x) remains fixed from t to t + 1, the martingale property under Q
means that for all t we have

pQ(t, t, T, x) = EQ [pQ(t + 1, t, T, x)|Mt] . (4)

This equation gives us the fundamental requirement for dynamics under Q in a
discrete-time arbitrage-free model.

3 The Olivier-Smith model

The presentation by Olivier and Jeffery (2004) describes a model developed by
Olivier and Smith (O-S) in which, for all x and for all T = t, t + 1, . . .,

pQ(t + 1, T, T + 1, x) = pQ(t, T, T + 1, x)b(t+1,T,T+1,x)G(t+1) (5)

where G(1), G(2), . . . is a sequence of independent and identically distributed Gamma
random variables with both shape and scaling parameters equal to some constant
α. Hence EQ[G(t)] = 1 and V arQ[G(t)] = 1/α. The b(t + 1, T, T + 1, x) are Mt-
measurable bias-correction factors that are defined below.

In the O-S model, for t < T + 1, pQ(t, T, T + 1, x) is still an estimate of the survival
probability pQ(T +1, T, T +1, x) that is not observed until time T +1. This survival
probability can be written in terms of the survivor index, S(u, x), or using the
observed force of mortality process, µ(u, y): that is, S(T + 1, x)/S(T, s) = exp

[ −∫ T+1

T
µ(u, x + u)du

]
. It follows that, for t ≥ T + 1, pQ(t, T, T + 1, x) is constant

and equal to the observed value of S(T + 1, x)/S(T, s). Thus, we stress that the
updating equation (5) applies only when t ≤ T . Once t > T , the updating ceases.

For the market to be arbitrage free we require for all T > t, x

pQ(t, t, T, x) = EQ [pQ(t + 1, t, T, x)|Mt] . (6)

Using standard properties of the Gamma distribution, (e.g. Olivier and Jeffery,
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2004, Smith, 2005)

T−1∏
u=t

pQ(t, u, u + 1, x) = EQ

[
T−1∏
u=t

pQ(t + 1, u, u + 1, x)

∣∣∣∣∣ Mt

]

= EQ

[
T−1∏
u=t

pQ(t, u, u + 1, x)b(t+1,u,u+1,x)G(t+1)

∣∣∣∣∣ Mt

]

= EQ

[
exp

(
G(t + 1)

T−1∑
u=t

b(t + 1, u, u + 1, x) log pQ(t, u, u + 1, x)

) ∣∣∣∣∣ Mt

]

=
αα

(
α−∑T−1

u=t b(t + 1, u, u + 1, x) log pQ(t, u, u + 1, x)
)α . (7)

To evaluate at time t the bias correction factors b(t + 1, u, u + 1, x) we proceed in
a recursive fashion. Thus we start by solving equation (7) for u = t and then solve
recursively for u = t + 1, t + 2, . . .. To this effect we have, first,

b(t + 1, t, t + 1, x) = −α(pQ(t, t, t + 1, x)−1/α − 1)

log pQ(t, t, t + 1, x)
.

For T > t solving equation (7) gives us

T−1∑
u=t

b(t + 1, u, u + 1, x) log pQ(t, u, u + 1, x) = −α
(
pQ(t, t, T, x)−1/α − 1

)
. (8)

However, since in our recursive scheme we already know that

T−2∑
u=t

b(t + 1, u, u + 1, x) log pQ(t, u, u + 1, x) = −α
(
pQ(t, t, T − 1, x)−1/α − 1

)

we find that (Olivier and Jeffery, 2004, Smith, 2005)

b(t + 1, T − 1, T, x) log pQ(t, T − 1, T, x)

= −α
(
pQ(t, t, T, x)−1/α − pQ(t, t, T − 1, x)−1/α

)

⇒ b(t + 1, T − 1, T, x) = −αpQ(t, t, T − 1, x)−1/α
(
pQ(t, T − 1, T, x)−1/α − 1

)

log pQ(t, T − 1, T, x)
.

We can see, of course, that this last equation can be applied directly without ref-
erence to a recursive scheme, and that it applies to the case T = t + 1 since then
pQ(t, t, T − 1, x)−1/α = 1.

Simulation of this model can be implemented accurately in discrete time without
approximation.4 For each timestep t to t+1 we start with the full term-structure of
forward survival probabilities pQ(t, T, T +1, x). These allow us to calculate the bias-
correction terms, the b(t+1, T, T +1, x). We then simulate the single Gamma(α, α)
random variable G(t+1) and update the forward survival probabilities to time t+1.

4This assumes that an accurate method os simulating Gamma random variables is used. For
example, in the statistics package R, the function rgamma can be used to simulated gamma random
variables with an arbitrary shape parameter.
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4 Discussion of the O-S model

The O-S model provides us with an elegant approach to simulating stochastic mor-
tality which exploits well-known properties of the Gamma distribution function. No
approximations are required: that is, we can simulate exactly in discrete time.

There are, however, two potential drawbacks to the model. First, the model only
accommodates a single source of randomness through the simulated G(t + 1). In
contrast, historical data suggests that more than one factor may be appropriate (see,
for example, Cairns, Blake and Dowd, 2006b): specifically, changes in mortality rates
at different ages are not perfectly correlated. Second, there is no flexibility in how
we specify the volatility term structure once α has been set. For example,

V ar[pQ(t + 1, u, u + 1, x)|Mt] = (b(t + 1, u, u + 1, x) log pQ(t, u, u + 1, x))2 /α

≈ (log pQ(t, u, u + 1, x))2 /α

since b(t, u, u + 1, x) is usually quite close to 1.

4.1 Empirical statistical analysis

We will now present evidence that will argue that the one-factor Olivier and Smith
model with a fixed value of α for all ages and maturity dates is inadequate from a
statistical perspective.

We have an immediate problem with data: specifically there is no liquid market in
zero-coupon survivor bonds that we can use to extract forward survival probabilities
from. We, therefore, propose a compromise that looks one year ahead only (which
is sufficient to demonstrate that the model needs generalising).

• pQ(t, t− 1, t, x− t+1) represents the most-recently-observed one-year survival
probability for individuals aged x at time t− 1 (age x− t + 1 at time 0).

• The data were smoothed over age for each calendar year to calculate the
pQ(t, t− 1, t, y) survival probabilities.

• We predict, at time t, the one-year survival probability for an individual aged x
based on pQ(t, t−1, t, x−t+1). Specifically, we assume that pQ(t, t, t+1, x−t) =
pQ(t, t− 1, t, x− t + 1)θ(x) for some age-specific improvement factors θ(x).

• For each age x we can calculate approximate Gamma random variates by
assuming first that the bias-correction factors, b(t + 1, T − 1, T, x), are equal
to 1. Thus

G(t + 1, x) =
logpQ(t + 1, t, t + 1, x− t)

log pQ(t, t, t + 1, x− t)
.

If the 1-factor Olivier and Smith model is accurate then we should find that
the G(t+1, x) over the observed range of x’s are all perfectly correlated, while
over time we should find that the Gamma distributions for different ages are
the same: Gamma(α, α).
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Figure 1: Estimated Gamma random variates, G(t, x), for ages x = 45 and x = 85,
for t = 1960 to 2002.

Various ways of illustrating the output from this exercise are plotted in Figures 1
to 4.

• Figure 1 provides a first indication that at different ages (here 45 and 85) the
variances of the Gamma random variables are not equal, and that there is not
perfect correlation.

• Figure 2 takes cross sections in the other dimension. The plots look quite dif-
ferent from Figure 1 being, here, rather smooth as a result of having smoothed
the survival probabilities in each calendar year. This shows the high degree
of correlation between similar ages, but it also reveals that correlation is not
perfect and declines are the age gap widens.

• Figure 3 plots the correlation between the Gamma random variables at pairs
of ages and presents this in the form of a contour plot. This makes more
obvious the point that correlation is high at adjacent ages and falls away as
ages diverge.

• In Figure 4 we make the hypothesis that, for a fixed x, the G(t, x) are i.i.d.
Gamma random variables with mean 1 and variance 1/α(x). Using the method
of moments we estimate α(x). It is clear from Figure 4 that the α(x) vary
considerably with age, rather than remain constant.
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Figure 2: Estimated Gamma random variates, G(t, x), for ages 40 to 90, for t = 1967
to T = 2000.
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Figure 3: Estimated correlation between G(t, x) and G(t, y) for x, y = 40, . . . , 90.
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Figure 4: For each age x, estimated values for the Gamma shape parameter α(x)
based on observations of the Gamma random variable g(t, x) for t = 1961 to 2002.

4.2 Possible generalisations

From our diagnostic analysis in the preceeding section it seems that we need to
develop a model that exploits the analytical properties of the Gamma but allows for
greater richness in the dependency structure.

Where we previously had one Gamma random variable G(t + 1) covering all ma-
turities we now potentially have one Gamma random variable for each age and for
each maturity: G(t+1, T, x). Our problem is how do we simulate a two-dimensional
array of dependent Gamma random variables.

This problem would be simple if we had to simulate an array or correlated log-normal
random variables. These could be simulated relatively easily using, potentially, a
small number of i.i.d. standard normal random variables as input.

5 The generalised model

In the new approach we work with the spot survival probabilities rather than the
forward survival probabilities. Specifically their dynamics are governed by the rela-
tionship

pQ(t + 1, t, T, x) = pQ(t, t, T, x)g(t+1,T,x)G(t+1,T,x) (9)
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where for each x and for each T ≥ t + 1,

G(t + 1, T, x) ∼ Gamma
(
α(t + 1, T, x), α(t + 1, T, x)

)

and g(t + 1, T, x) = −α(t + 1, T, x)
(
pQ(t, t, T, x)−1/α(t+1,T,x) − 1

)

log pQ(t, t, T, x)
. (10)

The g(t + 1, T, x) are normalising constants for the generalised model in the same
way that the b(t + 1, T − 1, T, x) are in the original model (equation 5).

So far we have not indicated what the relationship is between the G(t + 1, T, x) for
the different values of T and x. For different values of t these sets of values are
assumed to be independent. For a given t the matrix of values for the G(t + 1, T, x)
over T > t and x are assumed to be dependent Gamma random variables that might
be generated, for example, using a suitable copula.

Remark

It is not obvious from equation (9) that the O-S model (equation 5) is a special
case, since (9) is framed in terms of the spot survival probabilities instead of the
forward survival probabilities. However, we can note that O-S is indeed a special
case provided:

• G(t + 1, T, x) ≡ G(t + 1) ∼ Gamma(α, α) for all T ≥ t + 1 and x.

• the g(t + 1, T, x) can be shown to satisfy the following relationship. For each
T = t + 1, t + 2, . . .

g(t + 1, T, x) log pQ(t, t, T, x) =
T∑

u=t+1

b(t + 1, u− 1, u, x) log pQ(t + 1, u− 1, u, x).

Now from equation (8)

T∑
u=t+1

b(t + 1, u− 1, u, x) log pQ(t + 1, u− 1, u, x) = −α
(
pQ(t, t, T, x)−1/α − 1

)
.

On the other hand equation (10) gives us

g(t + 1, T, x) log pQ(t, t, T, x) = −α
(
pQ(t, t, T, x)−1/α − 1

)
.

5.1 Problem

A general simulation procedure might mean that the attainable range of values
that a specific Gamma random variable in the matrix might is (0,∞) regardless of
the values taken by the other Gamma random variables in the array. This means
that simulation algorithms will not, in general, preserve the monotonicity of pQ(t +
1, t, T, x). In the normal course of events we would expect that pQ(t + 1, t, T, x)
is decreasing in T . But this is not guaranteed using arbitrary copulas (e.g. the
Gaussian copula). Therefore an alternative approach is required to simulate the
Gamma random variables.
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5.2 Required properties of a simulation model

Any simulation model we propose must satisfy the following properties

• Property A: pQ(s, t, T, x) is a martingale under the pricing measure Q for
s, t, t + 1: that is, for all T and x, EQ[pQ(t + 1, t, T, x)|Mt] = pQ(t, t, T, x).

• Property B: 0 < pQ(s, t, T, x) < 1 for all s = t, t + 1, T and x.

• Property C: for s = t, t + 1 and for all x, pQ(s, t, T, x) is a strictly decreasing
function of T .

Let us assume that properties B and C are already satisfied at time t. The martingale
property A is satisfied by calculating the value of the normalising constant g(t +
1, T, x) at time t. Since g(t + 1, T, x) and G(t + 1, T, x) are both positive it follows
that 0 < pQ(t + 1, t, T, x) < 1 (property B).

Property C takes more care.

Define M(t, T, x) = − log pQ(t, t, T, x) so that

• pQ(t, t, T, x) = exp[−M(t, T, x)];

• pQ(t + 1, t, T, x) = exp[−g(t + 1, T, x)M(t, T, x)G(t + 1, T, x)].

For property C to be satisfied at time t + 1 we therefore require

g(t + 1, T, x)M(t, T, x)G(t + 1, T, x)

< g(t + 1, T + 1, x)M(t, T + 1, x)G(t + 1, T + 1, x) (11)

⇒ G(t + 1, T + 1, x) > φ(t + 1, T, x)G(t + 1, T, x), (12)

where φ(t + 1, T, x) = g(t + 1, T, x)M(t, T, x)/g(t + 1, T + 1, x)M(t, T + 1, x).

Note that there are no such constraints between the G(t + 1, T, x) for different
cohorts.

There remains to us the following open questions:

• Do there exist solutions to the dependent Gamma simulation problem?

• What constraints do we have on the correlation or dependency between the
Gamma random variables?

In this paper we can report on partial progress towards answering these questions.

Remark 1

One known solution is to have G(t + 1, T, x) ≡ G̃(t + 1) for all T, x where G(t +
1) is a Gamma(α, α) random variable. It is straightforward to see that Proper-
ties A and B are satisfied. Property C equates to the requirement that αG(t +
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1)(exp(M1/α)− 1) < αG(t + 1)(exp(M2/α)− 1) (*) where M1 = − log pQ(t, t, T1, x,
M2 = − log pQ(t, t, T2, x) and T2 > T1. It is easy to see that (*) is true since
exp(M/α) is an increasing function of M .

Can we move away from this extreme case?

In the discussions that follow we will focus on a single cohort, x, and two future dates
T and T + 1, which allows us to simplify the notation. Let M1 = − log pQ(t, t, T, x),
α1 = α(t + 1, T, x), G1 = G(t + 1, T, x) and g1 = g(t + 1, T, x). Similarly, let
M2 = − log pQ(t, t, T + 1, x), α2 = α(t + 1, T + 1, x), G2 = G(t + 1, T + 1, x) and
g2 = g(t + 1, T + 1, x). Finally define φ = φ(t + 1, T, x).

Remark 2

G1 and G2 cannot be independent, as there would be no guarantee that Property C
will be satisfied.

Remark 3

For Property C (12) to be satisfied (that is, G2 ≥ φG1) it is necessary that

1 ≤ α2

α1

≤ φ−1. (13)

Our proof of this assertion makes no assumotion about the form of the dependence
between G1 and G2.

Proof

Suppose that there exists dependent random variables G1 ∼ Gamma(α1, α1) and
G2 ∼ Gamma(α2, α2) that satisfy G2 ≥ φG1.

Suppose that α2 < α1. From Figure 5 (left) we can see that

Pr(A) = Pr(G2 < φu) = Pr(φ−1G2 < u)

Pr(B) = Pr(G1 < u).

We can also observe from Figure 5 that Pr(B) > Pr(A).

However, now compare the densities of φ−1G2 and G1. If α2 < α1 then we can find
some u > 0 such that the density of φ−1G2 is greater that the density of G1 for all
0 < y < u which implies that Pr(A) > Pr(B): that is, a contradiction. Therefore
we must have α2 ≥ α1.

A similar proof by contribution applies when α2 > φα1 where we compare the
probabilities of regions C and D in Figure 5.

Remark 4

Note that the upper bound in Remark 3 itself depends on α1 and α2. If we combine
the definition of g(t + 1, T, x) (equation 10) with the definition of φ we note that

φ =
α1(exp(M1/α1)− 1)

α2(exp(M2/α2)− 1)
.
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Figure 5: Region A (grey) ⇒ G1 ≤ u,G2 ≤ ku, G2 ≥ kG1. Region B (hatched)
⇒ G1 ≤ u,G2 ≥ kG1. Region C (grey) ⇒ G1 ≥ u,G2 ≥ ku, G2 ≥ kG1. Region D
(hatched) ⇒ G2 ≥ ku, G2 ≥ kG1.

It follows that α2/α1 = φ−1 if and only if (exp(M1/α1)− 1)/(exp(M2/α2)− 1) = 1.
From this we infer that M1/α1 = M2/α2.

The constraints in (13) are thus equivalent to

1 ≤ α2

α1

≤ M2

M1

.

Property C’:

Suppose that we relax property C to require that pQ(t, t, T, x) is a decreasing function
of T (that is, not strictly decreasing).

Remark 5

If we allow for the possibility that for some t, M(t, T, x) = M(t, T + 1, x) (which
satisfies proprty C’ but not C) then preservation of the relaxed C’ implies that
M(s, T, x) = M(s, T + 1, x) for all s > t.

This then implies that the actual mortality of this cohort will ultimately be exactly
zero between T and T + 1.

Sketch of proof

First it can be shown that we must have α(t + 1, T, x) = α(t + 1, T + 1, x).

This implies that g(t + 1, T, x) = g(t + 1, T + 1, x).

Preservation of C’ implies that we must have G(t + 1, T, x) = G(t + 1, T + 1, x).

Hence M(t + 1, T, x) = M(t + 1, T + 1, x).
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5.3 A non-trivial dependency structure

Alfred Müller (2006, personal communication) has proposed the following copula-
based approach.

Recall that G1 and G2 are our dependent Gamma distributed random variables
that are required to satisfy the constraint G2 ≥ φG1. Let F1(x) and F2(x) be the
cumulative distribution functions of G1 and G2 respectively. Let V1 = F1(G1) and
V2 = F2(G2). The constraint G2 ≥ φG1 implies that the minimum permissible value
of V2 is F2(φF−1

1 (V1)) = g(V1). Our problem is therefore transferred to a copula
simulation problem with the requirement that V2 ≥ g(V1). Müller suggests the
following algorithm.

• Let U1 and U2 be i.i.d. uniform random variables.

• Define Ū2 = max{f(U1), U2}, and let F̄ (u2) be the cumulative distribution
function of Ū2.

• Define V1 = U1 and V2 = F̄ (Ū2). Then V1 and V2 are dependent uniform
random variables. Furthermore, given V1 the minimum value taken by V2 is
V1f(V1).

• Define G1 = F−1
1 (V1) and G2 = F−1

2 (V2).

We equate vf(v) with g(v) to derive the form for f(v) required to ensure that
G2 ≥ φG1.

This algorithm establishes that there are non-trivial dependency structures that
allow simulation of a pair of Gamma random variables that satisfy the property
G2 ≥ φG1. In future work we will develop Müller’s algorithm to investigate whether
or not we can gain better control over the dependency between G1 and G2 (at
present, none). In addition, we aim to avoid having non-zero probability mass along
the φG1 boundary. The reason for this lies in Remark 5, since G2 = φG1 results
in M(t + 1, T, x) = M(t + 1, T + 1, x) which in turn implies zero mortality rates
between T and T + 1, which we consider to be biologically unreasonable.
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