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Abstract

It is now an accepted fact that stochastic mortality — the risk that actual future
trends in mortality might differ from those anticipated — is an important risk factor
in both life insurance and pensions. As such it affects how fair values, premium
rates, and risk reserves are calculated.

This paper makes use of the similarities between the force of mortality and interest
rates to show how we can model mortality risks and price mortality-related instru-
ments using adaptations of the arbitrage-free pricing frameworks that have been
developed for interest-rate derivatives. In so doing, it develops a range of arbitrage-
free (or risk-neutral) frameworks for pricing and hedging mortality risk that allow
for both interest and mortality factors to be stochastic. The different frameworks
that we describe — short-rate models, forward-mortality models, positive-mortality
models and mortality market models — are all based on positive-interest-rate mod-
elling frameworks since the force of mortality can be treated in a similar way to the
short-term risk-free rate of interest.

These frameworks can be applied to a great variety of mortality-related instruments,
from vanilla survivor bonds to exotic mortality derivatives.
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1 Introduction

A large number of products in life insurance and pensions by their very nature
have mortality as a primary source of risk. By this we mean that products are
exposed to unanticipated changes over time in the mortality rates of the appropriate
reference population. For example, annuity providers are exposed to the risk that
the mortality rates of pensioners will fall at a faster rate than accounted for in
their pricing and reserving calculations, and life insurers are exposed to the risk of
unexpected increases in mortality (a recent example being those due to HIV/AIDS).
On the asset side of their balance sheets, insurance companies are also exposed
to investment risks and, since their investment portfolios are predominantly fixed
income, this means that they are heavily exposed to interest-rate risk.

However, there is a huge gap in the tools available to model these two types of risk.
On the one hand, the theory and practice of interest-rate modelling is very well
developed (see, for example, Vasicek, 1977, Cox, Ingersoll and Ross, 1985, Heath,
Jarrow and Morton, 1992, Brace, Gatarek and Musiela, 1997, Jamshidian, 1997,
Brigo and Mercurio, 2001, James and Webber, 2002, Rebonato, 2002, and Cairns,
2004b). On the other hand, the state and practice of mortality risk modelling is
primitive.

Yet there are important similarities between the force of mortality and interest rates:
most obviously, they are both positive and have term structures, but we would ar-
gue that they are also similar in being stochastic. These similarities suggest that we
should be able to model both types of risks using similar approaches. This paper
seeks to develop this insight further. In particular, it makes use of the similarities
between mortality and interest rate risks to show how we can model mortality risks
and price mortality-related instruments using adaptations of the arbitrage-free pric-
ing frameworks that have been developed for interest-rate derivatives. In so doing,
it develops a range of arbitrage-free frameworks for pricing and hedging mortality
risk that allow for both interest and mortality factors to be stochastic.

To motivate our discussion, we will first summarise some evidence that confirms that
mortality improvements are indeed stochastic. We then briefly discuss the state of
the art in mortality modelling, and go on to consider some financial instruments
whose values depend on mortality and where it is therefore important to model
mortality risk factors in an appropriate way.

The idea that mortality is stochastic is not a new one, and it has been evident for
many years that mortality rates have been evolving in an apparently stochastic fash-
ion. The uncertainty of mortality forecasts is illustrated in recent work by Currie,
Durban and Eilers (2004) (hereafter CDE) which analysed historical trends in mor-
tality using P-splines. The fitted surface of values for the force of mortality® fi(¢, x)

!The force of mortality p(t, ) is described in more detail at the start of Section 2. Note that
t represents the current time, x the age at time ¢ of a specified life. The probability that the
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is plotted on a log scale in Figure 1.1 while the development of the force of mortality
for specific ages over time relative to values in 1947 is plotted in Figure 1.2. Figure
1.2 reveals some detail that we cannot easily see in Figure 1.1: specifically that
the rate of improvement has varied substantially over time, and that the improve-
ments have varied substantially between different age groups. CDE also constructed
confidence bounds for the future development of mortality rates. Inevitably these
confidence bounds get wider as the forecast horizon lengthens and CDE found that
even 15-20 years ahead the bounds are very wide. In general terms, the analysis
of CDE, as well as other analyses using the stochastic mortality models discussed
below, indicates that future mortality improvements cannot be forecast with any
degree of precision. Other studies (e.g., Forfar and Smith, 1987, Macdonald et al,
1998, Willetts, 1999, and Macdonald et al, 2003) have come to similar conclusions.

A number of recent studies have sought to model mortality as a stochastic process.
We shall see presently that all these studies bar one (Lin and Cox (2004)?) can be
reformulated into one of the more general frameworks that we will describe later
in this paper. We will describe these briefly here and in the Appendices. Apart
from the one exception, all of these use what we describe as short-rate models for
mortality: that is, they are modelling the spot mortality rates®, q(t, ), or the spot
force of mortality, p(t,x).

The most coherent group of papers that use the short-rate-modelling framework
in discrete time build on the original work of Lee and Carter (1992). This study
introduced a simple model for central mortality rates involving both age-dependent
and time-dependent terms and applied it to US population data (see Appendix A for
further details).* The time-dependency is modelled using a univariate ARIMA time-
series model implying that changes in the mortality curve at all ages are perfectly
correlated. Brouhns, Denuit and Vermunt (2002) applied the same model to Belgian
data and also improved some of the statistical aspects of Lee and Carter’s work.
The possibility of imperfect mortality correlation was investigated by Renshaw and
Haberman (2003) who extend the Lee and Carter approach by adding a second
time-dependent set of changes.

A second approach that also uses the short-rate-modelling framework in discrete

individual will die between times t and t + dt given he has survived until the current time, ¢, is
w(t, x)dt + o(dt) as dt — 0 (that is, approximately p (¢, z)dt for small dt).

2In contrast to the papers mentioned below, Lin and Cox (2004) do not propose a specific
model for stochastic mortality. Instead, they apply the Wang (1996, 2000, 2002, 2003) transform
to convert deterministic projected mortality rates into risk-neutral probabilities. The use of the
Wang transform is gaining in popularity in non-life insurance applications where there is a lack
of liquidity in the instruments subject to the underlying risks. However, it is not clear from Lin
and Cox (2004) how different transforms for different cohorts and terms to maturity relate to one
another to form a coherent whole.

3The spot mortality rate q(¢,r) is the probability at time ¢ that an individual who is aged x
and still alive at time ¢ will die before time ¢ + 1.

4See, also, Lee, 2000b.
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Figure 1.2: fi(t,z) /(1947 x): Fitted values using P-splines for the force of mortality
f(t, x), relative to the 1947 value for the years t = 1947 to 1999 and for ages z =
21, 31, 41, 51, 61, 71 and 81 from Currie, Durban and Eilers, 2004. Note that the
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time has been proposed by Lee (2000a) and Yang (2001). They take a deterministic
projection of the spot mortality rates, §(t, x), as given, and then apply an adjustment
that evolves over time in a stochastic way. (For further, brief details, see Appendix

B.)

Short-rate models for the development in continuous time of the force of mortality
have been proposed by Milevsky and Promislow (2001) and Dahl (2004). Milevsky
and Promislow (2001) take a more theoretical approach in continuous time which
assumes that the force of mortality u(¢, z) has a Gompertz form &y(t) exp(&12) where
the &y(t) term is modelled using a simple mean-reverting diffusion process (see Ap-
pendix C). Dahl (2004) on the other hand develops a parsimonious, affine class of
processes and we discuss his approach further in Appendix D.

There are many financial applications where it is necessary to take account of the
stochastic behaviour of mortality. One example is the calculation of quantile (or
value-at-risk) reserves for life-office portfolios, where the uncertain future pattern
of liability payments will depend, amongst other things, on the future evolution of
the force of mortality u(t,x). It is also important to take account of stochastic
mortality when reserving for policies that incorporate certain types of guarantee.
For example, a guaranteed annuity option is an investment-linked deferred-annuity
contract that gives a policyholder the option to convert his accumulated fund at
retirement at a guaranteed rate rather than at current market rates. The value of
this option most obviously depends upon the level of interest rates at retirement,
but also depends upon the mortality table being used by the life office at the time
of retirement, which, in turn, depends on mortality forecasts at that time.

Taking account of stochastic mortality is also critical when pricing mortality deriva-
tives. Examples of such contracts include:

e Survivor bonds (where coupon payments are linked to the number of survivors
in a given cohort). Long-dated survivor bonds intended to manage longevity
risk® have recently been revived by Cox, Fairchild and Pedersen (2000)¢, Blake
and Burrows (2001) and Lin and Cox (2004). Their origin dates back to
Tontine bonds issued by a number of European governments in the 17" and
18" centuries.

5We use, in this context, the term longevity risk to refer specifically to the risk that future
survival rates are higher than anticipated. For most of the remainder of the paper, we will use the
more general term mortality risk to refer to all types of deviation from that anticipated. The most
obvious form of this risk is derived from experienced mortality and survival rates between now and
some specified future date T. An additional risk applies in cases where cash flows depend upon a
mortality table in use on a given future date: for example, a pension contract where a lump sum
at T is used to purchase an annuity at prevailing market rates at 7.

6Cox, Fairchild and Pedersen comment that a number of insurers were proposing to issue
survivor bonds as early as 1997. The absence of any issues up to the present time suggest that
there are practical problems which still need to be overcome or that the market is not yet ready
to invest in such long-term bonds.
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e Short-dated, mortality-linked securities (market-traded securities whose pay-
ments are linked to a mortality index).” The first, widely-marketed, bond of
this type was issued by Swiss Re at the start of 2004. This involves a three-
year contract (maturing on 1 January 2007) which allows the issuer to reduce
its exposure to catastrophic mortality events. The repayment of the princi-
pal is linked to a combined mortality index of experienced mortality rates in
five countries (France, Italy, Switzerland, the UK and the USA). Under this
contract the principal will be at risk “if, during any single calendar year in
the risk coverage period, the combined mortality index exceeds 130% of its
baseline 2002 level”. The credit spread at issue of 135 basis points equates
to a risk-neutral probability of about 0.04 that the principal would not be
repaid at all. This is equivalent to a catastrophic event that would happen, on
average, once every 75 years (treating individual years as being independent).
The types of catastrophic mortality events that are large enough to breach
the threshold include a severe outbreak of influenza, a major terrorist attack
(specifically the use of weapons of mass destruction), or a natural catastro-
phe. However, the Swiss Re bond addresses a different type of mortality risk
(short-term catastrophic mortality risk) from that considered in this paper
(unanticipated long-term changes in population mortality). The catastrophe
risks being covered by the Swiss Re bond might be correlated with financial
markets (past examples include 9/11 or the Kobe earthquake in 1995). In
contrast, the systematic mortality risks we consider in this paper are assumed
to be uncorrelated with the financial markets.

e Survivor swaps (where counterparties swap a fixed series of payments in return
for a series of payments linked to the number of survivors in a given cohort).®
The case for survivor swaps is made by Dowd et al (2004).

e Annuity futures (where prices are linked to a specified future market annuity
rate).”

e Mortality options (a range of contracts with option characteristics whose payoff

"The contract specifications of short-dated, mortality-linked bonds are similar to traditional
catastrophe bonds (see, for example, Schmock, 1999, Lane, 2000, Wang, 2002, and Muermann,
2004).

8A small number of survivor swaps have been arranged on an over-the-counter basis. They
are not traded contracts and therefore only provide direct benefit to the counterparties in the
transaction.

9As an example, suppose that a(t,z) represents the market price at time ¢ of a level annuity of
£1 per annum payable monthly in arrears to a male aged x at time ¢. (This might, for example, be
a weighted average of the top 5 prices in the market.) It is proposed that a traded futures market
be set up with a(t, z) as the underlying instrument for selected values of z and with a selection of
maturity dates stretching out many years into the future. For a given maturity date, the market
could be closed out some months or even a year before the maturity date itself, to reduce the
impact, for example, of moral hazard, changes in expensing bases, or the movements of individual
annuity providers in and out of the market.
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depends on an underlying mortality table at the payment date). The guaran-
teed annuity contract mentioned above is an example of a mortality option,
although it is really a complex option involving interest rate risks as well.
Contracts of this type are discussed further in Section 6.2.

It is essential that the evolution of the prices of these derivative contracts should
accurately reflect the stochastic evolution of u(t,z).!° The evolution of u(t, ) can
affect prices in two ways. Most obviously, stochastic mortality has an impact on the
value of mortality options: the greater the volatility in mortality rates, the greater
is the value of a mortality option (as with financial options). However, the second
effect is more subtle and relates to the fact that the ‘true’ values of financial contracts
are often non-linear functions of underlying factors. This point often manifests itself
through Jensen’s inequality, and an example in the present context would be that
the price of a contract based on expected cash flow may not be equal to the value
of the contract assuming that mortality follows some central projection. Also (in
line with the pricing of financial options) it may manifest itself in our calculating
expectations using a different probability measure (denoted below by @) from the
real-world or true measure (denoted by P). !

Given that mortality is best modelled as a stochastic variable, it is reasonable to
suppose that any ‘plausible’ mortality model would meet the following criteria:

e The model should keep the force of mortality positive.

e The model should be consistent with historical data.

e The long-term future dynamics of the model should be biologically reason-
able.!?

10Ag an aside, it is important to note that the reference population underlying the calculation
of the mortality rates is important to both the viability and liquidity of these contracts. Some
investors (for example, life offices) will wish to use such contracts to help hedge their mortality risk,
but if the reference population is inappropriate, they will be exposed to significant basis risk and
the mortality derivative might not provide a good hedge. Other investors, including speculators
and hedge funds, will be attracted to mortality-linked securities because their lack of correlation
with other assets helps with the diversification of risk on a general portfolio of investments (see, for
example, Cox, Fairchild and Pedersen, 2000). These investors may be less interested in using these
derivatives for hedging mortality risk but will be interested in liquidity. Adequate liquidity will
then require a small number of reference populations, but these will need to be chosen carefully
to ensure that the level of basis risk is relatively small for those hoping to use the contracts for
hedging purposes. For more detail, see Section 2.1.

We do not discuss in this paper the many practical issues related to the securitization of
mortality risks. These issues are discussed elsewhere (see Cummins, 2004, Dowd et al., 2004, and
Lin and Cox, 2004).

12For example, one might rule out the possibility of an ‘inverted’ mortality curve: that is, one
in which mortality rates fall with age, in contrast to the normal upward slope that we have always
observed in the past.
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e Long-term deviations in mortality improvements from those anticipated should
not be mean-reverting;'® on the other hand, short-term deviations from the
trend due to local environmental fluctuations may be mean-reverting.

e [t should be possible to value the most common mortality-linked derivatives
using analytical methods or using fast numerical methods.

e The model should be complex enough to deal appropriately with the current
pricing, valuation or hedging problem.

Given this list of criteria, it is readily apparent that no one framework dominates
the rest: some frameworks fare better by some criteria, and worse by others. There
is therefore no strong reason why we should prefer models within one any modelling
framework over models in another.

We described above a number of studies that propose specific stochastic models for
the future evolution of mortality rates. This paper does not propose a new model.
Instead, we seek to provide a general formulation of the problem in continuous time
and a range of frameworks for the pricing and valuation of mortality-linked deriva-
tives. Our aim in doing so is to provide extensive foundations for the development
in the future of further stochastic models for mortality and to ensure that they are
used in an appropriate way in pricing problems. The paper focuses for convenience
on the problem of pricing of new securities, but the theory applies equally well to the
fair valuation of insurance liabilities that incorporate mortality-linked derivatives.

The layout of the paper is as follows. In Section 2 we introduce the fundamental
processes for mortality (the force of mortality process u(t,z)) and for the risk-free
rate of interest (r(¢)). These processes feed into survivor indices S(u,y) and a risk-
free cash account C(t) that play central roles in our analysis. We work with two
fundamental types of financial contract:

e pure endowment contracts for a full range of ages and terms to maturity; and

e default-free zero-coupon bonds for a full range of terms to maturity.

13 Specifically we take the view that long-run stochastic improvements in mortality, u(t,y),
should not be mean-reverting to some deterministic projection, fi(¢,y). The inclusion of mean
reversion would mean that if mortality improvements have been faster than anticipated in the past
then the potential for further mortality improvements will be significantly reduced in the future.
In extreme cases significant past mortality improvements might be reversed if the degree of mean
reversion is too strong. This is clearly a very strong assumption that is difficult to justify on the
basis of previous observed mortality changes and with reference to our perception of the timing and
impact of, for example, future medical advances. Short-term trends might be detected by analysing
carefully recent developments in healthcare and in the pharamaceutical industry, but even then
the precise, long-term effects of such advances are difficult to judge. As we peer further into the
future it becomes even more difficult to predict what medical advances there might be, when they
will happen, and what impacts they will have on survival rates. All of these uncertainties rule out
mean reversion in a model for stochastic mortality.
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By noting parallels with interest-rate and credit-risk theory, we then describe how
pure endowment contracts should be priced if they trade in a perfectly liquid, fric-
tionless and arbitrage-free market.

In Sections 3 to 6 we go on to describe different frameworks that could be em-
ployed to build up models for stochastic mortality. Section 3 pulls together all of
the short-rate models described above under the one short-rate-modelling frame-
work and discusses how these models can be used to build an arbitrage-free market
in mortality derivatives. Sections 4 to 7 then discuss various other modelling frame-
works, although to date no specific mortality models have yet been proposed using
them.

Each of these frameworks is drawn from the field of interest-rate modelling but with
the risk-free rate of interest replaced by the force of mortality. These are all described
in theoretical terms: no specific models are proposed or analysed. Rather, the aim
is to leave readers with a choice of frameworks within which they can build their
own continuous-time stochastic mortality models. Most models built up within one
framework can be reformulated within any of the other frameworks (in the same way,
for example, that the Vasicek, 1977, short-rate model for r(¢) can be re-expressed as
a forward-rate model). However, most models rest naturally within one framework,
and are awkward to express within the others.

2 The term structure of mortality

In this section we will define the basic components of a model for stochastic mortality.
We start by considering the force of mortality, (¢, z), at time ¢ for individuals aged
x at time ¢. Traditional static mortality models implicitly assume that u(t,z) =
p(x) for all ¢ and x. Deterministic mortality projections imply that u(t,z) is a
deterministic function of ¢t and z. By contrast, the models we will consider here will
treat p(t,z) as a stochastic process.

There are two types of stochastic mortality:

e The first is specific (or unsystematic) mortality risk — the risk that the ac-
tual numbers of deaths deviate from anticipated numbers because of the finite
number of lives in a given cohort. This type of risk can largely be diversified
by investors under the usual assumption that future lifetimes for different indi-
viduals are independent random variables.!> Specific mortality risk therefore

14We do not claim that real-world markets are perfectly liquid or frictionless. However, we can
state that if prices are calculated in the way proposed then even an illiquid market with frictions
will be arbitrage-free. Conversely, if we were to propose a pricing framework which violates the
conditions in Section 2, then the possibility of arbitrage would emerge over time as the market
becomes more liquid or trading costs begin to fall.

15Gtrictly speaking there might be some local dependencies such as thosed between husband
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does not lead to a risk premium in the price of mortality derivatives.

e Systematic mortality risk — the risk that the force of mortality evolves in a
different way from that anticipated. This type of risk cannot be diversified
away and therefore leads to the incorporation of a risk premium.

By drawing parallels with the pricing of financial contracts, we might expect that
with mortality derivatives systematic mortality risk should be priced using a risk-
neutral probability measure, (), which is different from the real-world probability
measure, P.16 17 18 This intuition turns out to be correct: we will argue below that
mortality derivatives need to be priced with reference to such a measure in order for
the market to be arbitrage free.

2.1 Basic building blocks: the survivor index

We have previously indicated that our aim is to develop a set of theoretical frame-
works to price mortality derivatives. In order to do so, we will make the convenient
but over-simplifying assumption that the force of mortality at time ¢, u(¢,y), is ob-
servable at time t for all y. In reality, we can only estimate u(t,y) from a finite
amount of data, and this estimate is only calculated and published some months
or years after the event. The length of this delay also depends considerably on
the reference population: for example, the UK industry-wide Continuous Mortality
Investigation tables take longer to compile than tables relating to one specific life
office. We recognise that these are important practical issues but we will leave them
for future work.

We will use as our basic building block a family of index-linked zero-coupon survivor
bonds. The indices we will employ are related to survival probabilities for different
ages. Thus we define the survivor index

S(u,y) = exp (— /Ou/,L(t, Y+ t)dt) | (2.1)

and wife, or those between people who die in the same event: particularly the more-significant
catastrophe risks of the type being covered by the Swiss Re mortality bond (including, for example,
deaths cause by natural disasters or terrorist attacks).

16 P is sometimes alternatively referred to as the true or objective or physical probability measure.

'7In fact if we require our market in mortality-linked securities to be arbitrage free, even if this
market is highly illiquid or has high transaction costs, the use of some risk-neutral measure @ is
required of us as a consequence of the Fundamental Theorem of Asset Pricing. This states that if
the market is arbitrage free then there exists a martingale measure that allows us to recover the
market prices.

80ne example of this is the Swiss Re bond. The 135 basis point spread equates to a risk-neutral
probability, approximately, of 0.0135 per annum that the principal will not be paid out. The
real-world probability might be rather less than this.
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If p(t, z) is deterministic then S(u,y) is equal to the probability that an individual
aged y at time 0 will survive to age y + w. Similarly, if u(¢, x) is deterministic, the
probability that an individual aged x at time t; will survive until a later time t, is

S(tg,ﬂ? — tl)/S(tl,[E — tl).

In this paper we are mainly concerned with models in which pu(t,z) is stochastic.
Looking forward from time 0, this means that S(u,y) is now a random variable. In
this case, S(u,y) can still be regarded as a survival probability, albeit one that can
only be observed at time u rather than at time 0. However, it is straightforward
to extract a survival probability by taking the expectation of the random variable
S(t,x) (equation (2.2) below). We prove this by using a combination of indicator
random variables and conditional expectation. Thus, consider an individual aged
x at time 0. Let Y, (u) be a Markov chain which is equal to 1 if the individual is
still alive at time u. Also let M, be the filtration generated by the evolution of the
term-structure of mortality, u(u, z), up to time .1 The real-world or true survival
probability?® measured at time 0, that an individual aged = at time 0 survives until
time w is

pP(Ov u, I) = EP[}/;U(U)]
= Ep[Ep(Ya(u)|Mu)]
= Ep[S(u, z)]. (2.2)
More generally we can define the survival probabilities at time t as follows. Let

pp(t,u, x) be the probability under P that an individual aged z at time 0 and still
alive at the current time ¢ survives until time wu:

pe(tu,x) = Ep[Yo(u)|Ya(t) =1, M]

B[t | pa)].

For the alternative risk-neutral probability measure (), we can define the correspond-
ing survival probabilities:

po(t,u, ) = EQ[Ya(u)|Ya(t) =1, My]

ol Se | ]

We are now in a position to consider the pricing of index-linked zero-coupon survivor
bonds. There is (potentially) a different bond for each maturity date 7" and for each
age = at time 0. We refer to a specific bond as the (T, z)-bond for compactness.

19Tn other words M, gives us full information about changes in mortality up to and including
time t, but no information about how mortality rates will develop after time t.

2Note that Ep[S(u,z)] > exp [~ [’ Ep(u(t,y + t))dt] by Jensen’s inequality. Also, if i(t,y+1)
is a deterministic, best estimate at tlme 0 of future mortality (for example, the median) then
normally we will still have Ep[S(u,z)] # exp [— fo (t,y +t)dt].
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The (7, z)-bond pays the amount S(7',z) at time 7. This payment is well defined
in the sense that S(7', x) is an observable quantity at time 7. The (T, z)-bond is an
example of what financial mathematicians call a tradeable asset?': that is, an asset
that pays no coupons or dividends and whose price at any time t < T represents
the total return on an investment in that asset.??

To price such bonds we also need to make reference to the term-structure of interest
rates. Let P(¢,T) represent the price at time ¢ of a zero-coupon bond that pays 1
at time 7T'. The instantaneous forward rate curve at time ¢ is given by

f(t,T) = —a% log P(t,T)

and the instantaneous risk-free rate of interest is

r(t) = lim f(¢,T)

T—t

(see, for example, Cairns, 2004b). The cash (or money-market) account invests at
the risk-free rate of interest. Its value at time ¢ is denoted by C(t) with

dc(t) = r@)C(t)dt
= C(t) = C(0)exp </o r(u)du) : (2.3)

Let F; be the filtration generated by the term-structure of interest rates up to time
t, and H; be the combined filtration for both the term-structure of interest rates
and mortality. If there exists a measure @) (the risk-neutral measure) equivalent to
the real-world measure P with

(which implies that P(¢,T)/C(t) is a @Q-martingale) then the dynamics of the zero-
coupon bond prices are arbitrage free.

Now let B(t,T, ) represent the price at time ¢ of the (7', z)-bond that pays S(T’, z)
at time T'. If there exists a measure () equivalent to the real-world measure P with

: ct)
B(t,T,x) = Eg | ===5(T
(.70 = Eo | i s(T) | 1]
for all T" and z then the dynamics of the index-linked zero-coupon bond prices are
also arbitrage free. This formula matches those of Milevsky and Promislow (2001)
and Dahl (2004) but encompasses a much wider range of models.

21To financial economists this would be more commonly known as a pure discount asset.
22For an asset that does pay dividends or coupons a tradeable asset can be created by reinvesting
the dividends in the underlying asset itself.
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Assumption 1

We now make the assumption that the dynamics of the term structure of mortality
are independent of the dynamics of the term-structure of interest rates.

This assumption will allow us to separate the pricing of mortality risk from the
pricing of interest-rate risk. It follows that

B.Tw) = Fo| Gy | 7| Balsra) | )

= P(t,T)B(t,T,x)
where B(t,T,x) = Eq[S(T,z) | M.
Thus B(t,T,z) is a martingale under ). We can also assume that the B(¢,T z)

processes are strictly positive (barring the possibility of catastrophic events that
wipe out the entire population).

This allows us to make three further observations.

e B(t,T,z)/B(t,t,x) = po(t,T,x). Since we can regard the B(t,T,z) as spot
prices we will refer to the pg(t,T, ) as spot survival probabilities.

e We can use the B(t,T,z) to define the forward force of mortality surface (we
will sometimes shorten this to forward mortality surface):

0
pt, T,x+T) = —a—TlogB(t,T,x).

Conversely, knowledge of the forward mortality surface allows us to price the

bonds:
B(t,T,x)

T
_— = — L t d .
B(i,t,2) @m{ [ All . @ + u)du

If we take T' = t, we get the spot force of mortality:
plt,x + 1) = it tx + t),

e Let us assume that the dynamics of the term structure of mortality are gov-
erned by an n-dimensional Brownian motion W (t) under Q. The martingale
property of B(t,T,x) together with its positivity allows us to write down the
stochastic differential equation for B(¢, T, x) in the following form

dB(t,T,z) = B(t,T,x)V(t,T,x)dW (t)

where V(t,T,z) is family of previsible?® vector processes that specify the
volatility term structure of bond prices.

2To describe a process, X (t), as previsible means that the value of X (¢) is known or observable
by time t.
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We will now consider the possible frameworks** which we can use to model the
dynamics of the B(t,T,x) processes. These correspond to a variety of frameworks
used in modelling interest rates (see, for example, Cairns, 2004b):

e short-rate modelling framework for the dynamics of u(t,y) (which correspond
to short-rate models for the risk-free rate of interest, r(¢), including those of
Vasicek, 1977, Cox, Ingersoll and Ross, 1985, and Black and Karasinski, 1991);

e forward-mortality modelling framework for the dynamics of the forward mor-
tality surface, fi(t, T, x+T) (corresponding to the framework of Heath, Jarrow
and Morton, 1992);

e positive-mortality modelling framework for the spot survival probabilities,
po(t, T, z) (corresponding to the positive-interest framework developed by Fle-
saker and Hughston, 1996, Rogers, 1997, and Rutkowski, 1997);

e market modelling framework for forward survival probabilities or forward an-
nuity prices (corresponding to the LIBOR and swap market models of Brace,
Gatarek and Musiela, 1997, and Jamshidian, 1997).

Towards the end of the paper we also discuss the parallels between pricing mortality
derivatives and credit risk. We note that there are many similarities which allow the
transfer to our context of some intensity-based models that have been developed for
pricing credit risk.

We stress that the purpose of the following sections is to expand the theoretical
foundations of this relatively new field. We leave for further work the development
of new models within the different frameworks considered here. We also leave for
others the process of fitting these models to historical and market data.

3 Short-rate modelling framework

Models built up within this framework® specify directly the dynamics of u(t,y).
Existing models for the term-structure of mortality within this framework include
Lee and Carter (1992), Lee (2000a), Yang (2001), Brouhns, Denuit and Vermunt
(2002), and Renshaw and Haberman (2003) in discrete time, and Milevsky and

24 Tn this paper we use the terms framework and model in a precise way. A framework is a
general approach to modelling. We use the word model to mean a specific model developed within
a given framework. For example, we have the Vasicek (1977), Cox, Ingersoll and Ross (1985), and
Black and Karasinski (1991) models within the short-rate modelling framework. The framework
normally defines what we can use as the basic building blocks in the modelling process.

25See footnote 24.
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Promislow (2001) and Dahl (2004) in continuous time. In continuous time we model
the force of interest which will have the general stochastic differential equation

du(t,y) = a(t,y)dt + b(t,y) dW (t) (3.1)

where a(t,y) and b(t,y) (an n x 1 vector) are previsible processes and W(t) is a
standard n-dimensional Brownian motion under the risk-neutral measure (). We
then have (see, for example, Milevsky and Promislow, 2001, or Dahl, 2004)2®

B(t,T, =)
2\ tT
B(t,t, ) pe(t, T, )

~ B, [exp <_ /t ' u(u,:c—l—u)du) ‘ Mt} (3.2)

We can make the following observations about this framework:

e We have specified that W (t) and b(t,y) are n x 1 vectors. This means that
we can allow for the possibility that short-term changes in the term-structure
of mortality can be different at different ages. Different rates of change at
different ages can also be achieved through the a(t,y) drift function.

e a(t,y) and b(t,y) might depend on other diffusion processes which are them-
selves adapted to M,. Note that this dependence allows b(¢,y) = 0, in which
case the force of mortality curve evolves in a smooth fashion over time. How-
ever, the evolution of the force of mortality curve is still stochastic because of
its dependence on the stochastic drift rate a(t,y). Other models might assume
that b(t,y) # 0, in which case the force of mortality curve exhibits a degree of
local volatility.

e The assumption that b(t,y) = 0 is equivalent to the assumption that the
volatility function V (¢, T, x) for the B(t, T, x) processes tends to zero as T — t.
Thus, the shortest-dated bonds will have a very low volatility.

e This framework includes models that assume that u(t,y) takes some para-
metric form (for example, the Gompertz-Makeham model u(t,z) = &(t) +
£1(t)e2®7) We can model the parameters in this curve as diffusion processes.
This class is a specific example of the type noted above where a(t, y) and b(t, y)
themselves depend on other diffusion processes.

The framework includes the affine class of models for u(t,z) considered by Dahl
(2004), under which the spot survival probabilities have the closed form

po(t, T,x) = exp[Ao(t, T, x) — As(t, T, 2)u(t, x + 1)]

26Tf we are modelling the spot survival probabilities, pg(t,t + 1, ), or the spot mortality rates,
qgo(t,t+1,2) =1—po(t,t+1,x) in discrete time, then the equivalent of equation (3.2) in discrete
time is pg(¢,T,x) = Eq [po(t,t +1,2) x ... x po(T — 1,T,z 4+ (T — 1 —t))|M,].
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with n = 1 dimension. Dahl provides sufficient conditions on a(t,y) and b(t,y)
(equation 3.1) that result in this affine representation for pg(t,7T,z). These con-
ditions match those of Duffie and Kan (1996) for interest-rate models (see, also,
Vasicek, 1977, and Cox, Ingersoll, and Ross, 1985). An important criterion of mor-
tality models is that the spot survival probability function pg(¢, T, x) is decreasing
in T' — otherwise this would imply the potential for future negative mortality rates.

One potential drawback of this affine class is that the only models that ensure that
po(t, T, x) is decreasing in T' require the use of a mean-reverting process for pu(t,y).
This mean reversion might be towards a time-dependent, but deterministic, local
mean-reversion level, in which case mortality improvements can be systematically
built into the model. However, mean-reverting mortality probabilities are question-
able, as discussed previously in Footnote 13.

4 Forward mortality modelling framework

The next set of models are forward mortality models.

Suppose that we have the two stochastic differential equations:

dB(t,T,z) = B(t,T,x)V(t,T,z)dW (t) (4.1)
and di(t, T,z +T) = a(t,T,x+T)dt+ Bt T,z +T)dW(t)  (4.2)

where V(¢,T, ), a(t, T,z +T) and B(t,T,x + T) are previsible processes. Now we
might ask if we can specify V (¢, T, x), a(t, T, z+T) and B(t, T, +7T) freely. However,
by drawing parallels with the forward-interest-modelling framework of Heath, Jarrow
and Morton (1992) (HJM), we can see that, in fact, there will need to be some form
of relationship between V (¢, T, x), a(t,T,x+T) and B(t,T, 2+ T) to be sure that we
have an arbitrage-free framework for pricing mortality-linked derivatives. Before we
develop the mathematical form of this relationship we can remark that the presence
of age as an additional dimension means that our framework provides a richer and
more complex modelling environment than does the classical HJM framework.
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From equation (4.2) we have

¢ ¢
pt, T +T) = p(0,T,2+7T)+ / a(s, T,x+T)ds + / B(s, T,z +T)dW(s)
0 0
t ¢
= u(t,xr+t) = p0,t,z+1t)+ / a(s,t,x +t)ds + / B(s,t,z+t)dW(s)
0 0

and S(tz) — exp [— /0 tu<s,x+s)ds]

= exp[—/t (Oux—l—udu—// (u, 8,2+ s)ds du
//ﬂus:z:+s "ds dW (u )]

Next note that

B(t,T,z) = S(t,x)exp [—/jﬂ(t,s,x—l—s)ds]

T
= exp[—/ (Oux—l—udu—// (u, 8,2+ s)ds du

// B(u, 5,2 + 5)'ds dW (u )} (4.3)

Now define V(u, T, z) = — f (u, s,z + s)'ds. We can then apply Ito’s formula to
B(t,T,z) in equation (4.3) to get the SDE

dB(t.T,x) — B(t,T,x)[(%|V(t,T,x)|2—/Ta(t,s,x+s)ds) it
YV, a;)'dv’“V(t)} .

(This confirms our earlier claim that V (¢, T, z) f (u,s,x +s)ds.)

Now we require the drift under @ to be zero. Therefore

1 T
Yverop = / alt, s,z + s)ds
t

2
and by taking the partial derivative with respect to T" we get
at, T,x+T) = =V(t,T,2)6t,T,z+T).

As with the other frameworks, the challenge is to specify an appropriate form for
B(t,T,z+T) or V(t,T,z). The chosen formulation needs to ensure that the forward
mortality surface remains strictly positive. This requirement is most easily achieved
by making (¢, T,z + T') explicitly dependent on the current forward mortality sur-
face. In addition, the chosen form needs to ensure that the spot force of mortality
curve, u(t,y), retains an appropriate shape (for example, that it is increasing with

age).
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5 The positive-mortality framework

We now turn to our third class of models, the positive mortality framework.

Let P be some measure equivalent to @, and let A(t,x) be some family of M,
adapted, strictly-positive supermartingales.

Define
B(t,t,x) A(t, x)

pQ(taTa ZL‘) = (51)
The strict positivity of A(t,z) means that po(t, T, z) is positive. The supermartin-
gale property of A(t,x) ensures that the pg(t, T, x) are less than or equal to 1 and
decreasing in T' > t. It is straightforward to demonstrate (for example, through the
application of the Radon-Nikodym derivative d@)/ d15) that the resulting dynamics
of B(t,T,z) are appropriate for an arbitrage-free pricing model (see, also, Rogers,
1997, and Rutkowski, 1997). Within this pricing framework, the drift of A(¢,x)
under P is equal to —pu(t,z +t) x A(t,z). (In the corresponding positive-interest
model the drift of A(t) is equal to —r(t) x A(t) — see, for example, Cairns, 2004b.)

Equation (5.1) appears deceptively simple as a pricing formula. However, the effort
comes in specifying a model for the processes A(t,z) and in calculating the expec-
tations. (For examples in interest-rate modelling see Flesaker and Hughston, 1996,
Rogers, 1997, and Cairns, 2004a.)

A special case of this framework is an adaptation of Flesaker and Hughston (1996)
(FH). Let N(t,s,z) for 0 <t < s be a family of strictly-positive martingales under

P. Define -
A(t, z) :/ N(t,s,x)ds
t

The martingale property of N(¢,s,z) means that

Es[A(T, x)|M,] /Nts:c (5.2)
< A(t,z). (5.3)

It follows from (5.3) that A(t,z) satisfies the Rogers/Rutkowski requirements for a
strictly-positive supermartingale.

Combining equations (5.2) and (5.1) we now get

fT tSJJS

polt, Tox) = [ N(t,s,x)ds

From a computational point of view this involves, at worst, the numerical evaluation
of a one-dimensional integral, no matter what the model for N(¢, s, z). Our problem
is now one of devising an appropriate model for the family of martingales N (¢, s, x).
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It is common in interest-rate-derivatives markets to calibrate the initial term struc-
ture of the model to the observed interest-rate term structure, and we can apply
this approach to the mortality term structure too. Suppose then that we take as
given at time 0 the market prices of the zero-coupon bonds, P(0,7T"), and the (T, z)-
bonds, B (0,T,x), for all x and T" > 0. From this we can derive the implied spot
survival probabilities pg(0,T,z) = B(0,T,z)/P(0,T). The initial values for the

family N(¢,T,s) can then be calibrated as follows:
0 _
N(0,T,z) = _(9—TpQ(O’T’ x)=p(0,T,2 4+ T)pg(0,T, ).

This initial calibration is unique up to a strictly-positive, constant scaling factor.

By analogy with interest-rate modelling, this framework might contain natural
model formulations that are difficult to identify in other frameworks. For exam-
ple, the Cairns (2004a) interest-rate model can be reformulated as a short-rate
model. However, the short-rate formulation is rather clumsy compared with the
positive-interest formulation.

6 Mortality market modelling framework

We come now to the mortality market models, and begin with some preliminaries
about the types of model covered by this framework.

As with the previous frameworks, market models are formulated in continuous time.
However, in contrast to the previous frameworks, market models give us the dynam-
ics for a restricted set of assets or forward rates (for example, the prices B (t,T,x)
for T € {1,2,3,...}).%

Within an interest-rate context, one of the key steps in the development of a market
model (see, for example, Brace, Gatarek and Musiela, 1997, and Jamshidian, 1997)
is making a change from the risk-neutral probability measure @) to a suitable pricing
measure. This is done by changing the numeraire from cash to a different tradeable
asset. For example, with the LIBOR market model we use a zero-coupon bond,
P(t,T) as the numeraire. In this section we will discuss first a possible change of
numeraire in the mortality-modelling context and then show how this change of
numeraire can be used to develop mortality market models.

2TWe may infer the prices of other assets not explicitly modelled by interpolation. However,
these inferences are not exact since the market is incomplete outside of the market variables that
are explicitly modelled.
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6.1 Introduction: change of numeraire

Recall that the processes B(t,T,x) in a zero-interest-rate environment are martin-
gales under ) with SDE’s

dB(t,T,z) = B(t,T,z)V (t,T,z)'dW (t)
for appropriate previsible volatility functions V (¢, T, x).2®
Now consider some, strictly-positive, tradeable assets as numeraires. As a specific
first example consider B(t, 7,y) as the numeraire. We then consider processes of the
type
B(t,T, )
B(t,1,y)
For most problems it is likely that the most productive choice of y will be z itself

(since then Z(7,7,x) = po(7, T, x)). If we then apply Ito’s formula and the product
rule we find that

aZ(t,7,2) = 26, T,2) (V(, T,2) = Vi, @)'(dW@) —V(t,r,x)dt).

Z(t, T, z) =

Now define a new process W7 (t) = W (t) — fot V (s, T,x)ds. Provided that V (¢, T, z)
satisfies the Novikov condition we can use the Girsanov theorem (see, for example,
Karatzas and Shreve, 1998) to infer that there exists a measure P, equivalent to
() under which W™*(t) is a standard Brownian motion. In this case

dZ(t,T,x) = Z(t,T, z) (vu, T,2) - V(t,r, x))'dwm(t),

so that Z(t,T,x) is a martingale under P, .

In what follows we will make more sophisticated choices for the numeraire, but the
basic techniques described above will remain the same.

6.2 Annuity market models

The annuity market models that we will describe below (with and without stochastic
interest) follow in the footsteps of Jamshidian (1997) in that they are formulated to
provide a simple solution for a very specific type of contract. Jamshidian formulated
his model specifically to provide a simple formula for the value of a swaption. Here
we will derive a formula for the value of a simple form of guaranteed annuity option.
The approach that we take here is also in the spirit of Pelsser (2003) who tackles
the issue of pricing guaranteed annuity options. However, Pelsser concentrates on
the inherent interest rate and equity risks, whereas we concentrate here on mortality
and interest-rate risks.

Z8Readers who are familiar with interest-rate market models can consider the cash (or money-
market) account (equation 2.3) as being the numeraire when pricing under @). In this zero-interest-
rate environment the cash account is equal to 1 for all time.
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6.2.1 Zero interest rates

For simplicity we will restrict ourselves initially to a market where interest rates are
set to zero: this will help clarify the basic argument. Non-zero stochastic interest
rates will be added later.

Let
B(t,T,x)

ZziT-i-l B(tv S, I)

be a forward annuity rate under which survivors at T' pay £1 at T" and receive back
F(t,z) at times T+1,T+2, ... so long as they are still alive at each of those dates.?
In the assumed zero-interest-rate environment this contract has zero value at time ¢.
Note specifically that F(T,x) =1/ " ., po(T, s, x) is the spot (market) annuity
rate at 7.

F(t,z) =

This suggests (by analogy with Brace, Gatarek and Musiela, 1997, and Jamshidian,

1997) the use of a different numeraire X (t) = > 2., B(t,s,x). Since X(t) is a

strictly-positive martingale we can write its SDE as
dX (t) = X (t)Vx (t)dW ()

for an appropriate previsible volatility function Vx(t). Then

aF(te) = F(t,2)(V(t,T,2) —vX(t))'(dVv(t) — Vx(t)dt)
= F(t,z)y(t,z)dW™(t)

where ~(t, z) = (V(t, T,z)— VX(t)) and WX(t) = W(t) — [! Vy(s)ds is a standard
Brownian motion under an appropriate measure Py equivalent to ().

The standard modelling assumption for market models is to specify that (¢, )
is a deterministic function. It follows in this case that F(s,z) for t < s < T is
log-normally distributed under Py with

Ep [F(s,x) My] = F(t,s)
and Varp,[log F(s,z)| M, = / 1y (u, ) |*du.
t
Now consider an annuity contract that includes a guaranteed annuity rate. In the

open market £1 at time 7" will secure a pension of F(T,z) per annum from time 7’
payable annually in arrears (assuming no expenses and a fair price). The contract

29Readers may be more familiar with a deferred annuity contract. Under this contract survivors
at ¢t pay £1 at t in return for a defined series of payments at times T+ 1,7 + 2,... payable only
to those who are still alive at each of those dates. In contrast, with the forward contract, the
purchase price is not paid until time 7', and then only by those who are still alive at that time.



6 MORTALITY MARKET MODELLING FRAMEWORK 23

also includes a guarantee that the amount of the pension will be K per annum (the
guaranteed annuity rate) if this rate is higher than the open market rate.

When we wish to value the guarantee we need to consider carefully the nominal
amount being converted into an annuity at 7. We claim that the appropriate amount
is S(T', x). To see why, suppose that we have a group of N(¢,z) lives at time t aged
x +t. At time T, N(T,z) of these individuals will still be alive. Suppose that
each of these survivors will have available a nominal amount of £1 for conversion
into an annuity at 7. Then, given My, N(T,z) will have a binomial distribution
with parameters N(t,z) and S(7T,z)/S(t,z) and expected value xS(T,z) where
k= N(t,x)/S(t,z). The argument is concluded with the developments leading up
to equation (6.1) below where we see that N (7', x) is conditionally independent of
the mortality table in use at time 7T'. This allows us to replace N (T, z) by kS(T, s),
thereby justifying our original claim that the appropriate amount is S(7, ).

The total value of the contract at 1" is

N(T,z) max{F(T,z), K} Z po(T, s, x).

s=T+1
The value of the option itself at T" is therefore
F(T,x) '

Now the option itself is a tradeable asset with price G(t) at time ¢, so G(t)/X (t) is
a Px martingale. Hence

G(T) =

% — Ep, % ’ Mt}
- o [ MECEe | a]
- o [ (MR ) |
_ B :EpX (N(T,x) | Mr) ([;(_TF;,C()Q?T)’); Mt]
~ Ep, :%5(T>$>(Iz§(_T,Z()§(xT);+ Mt} o

= Ep [k(K = F(T,z))+ | My
= Gt) = kX(t)(K®(—dy) — F(t,x)P(—dy))
log F(t,z)/ K + %U%

OF

dz = dl—O'F

T
2 = / Iy (o, ) 2
t
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and ®(z) is a cumulative distribution function for the standard Normal distribution.

We have explained here how the swap market model can be adapted to mortality
modelling. However, it remains for an empirical study to determine whether the
assumption of a deterministic y(u, z) is reasonable or not.

6.2.2 Stochastic interest rates

Now consider the case with stochastic interest rates. In this case we have
dP(t,s) = P(t,s)(r(t)dt + Vp(t,s)dZ(t))
dB(t,s,x) = B(t,s,z)Vg(t,s,z)dW(t)

where Z(t) and W (t) are independent Brownian motions. Application of the product
rule gives us

d(P(t,s)B(t,s,x)) = P(t,s)B(t,s,z)(r(t)dt + Vp(t, s)dZ(t) + V5(t, s, 2)dW (t)).

Now consider the annuity contract described above with a guaranteed annuity rate
of K. The actual annuity rate at time 7" per £1 at T is F(T, ) where

P(t,T)B(t, T, x)
S P(T,8)B(T,s,x)

s=T+1

F(t,z) =

(With ¢ = T this equates to F(T,z) =1/>, P(T,s)pq(T,s,x).) This suggests the

use of the numeraire
o0

X(t)= > P(T,s)B(T,s,x)
with

dX(t) = X(t) [r(t)dtJerX(t)dZ(t)+VBX(t)dW(t)

where Vpx(t) = X(t)7! i Vp(t,s)P(t,s)B(t,s, )
s=T+1

and Vpx(t) = X(t)™* i Vi(t,s,x)P(t,s)B(t, s, x).
s=T+1

Under the measure Py, the prices of all tradeable assets discounted by X (t) are
martingales. Specifically this implies that F(t,z) is a Pyx-martingale with SDE
under Py

dF(t,x) = F(t,2)[yp(t, 2)dZ" (t) + vp(t, 2)dW™ (1))

for suitable previsible processes vp(t,z) and yg(t,z). In the annuity market model
we assume that vp(t,x) and yp(t,z) are deterministic functions. As before we
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assume that the nominal amount to be converted into an annuity at 7" is S(7), ).
(The argument in the previous section (6.2.1) converting actual numbers of lives
surviving to T into S(T,x) applies equally well here.) The value of the option
component is denoted by G(t) with

S(T,z)(K — F(T,z)),

Y ()
The martingale property implies that
G@t) _ G(T)
X = Ee x|
— EPX |:S(T7 ’I)(K - F(T? x))+ Ht:|

P(T,T)B(T,T,x)
= EPX [(K - F(T’ x))+|Ht] :

With the assumption that the volatility functions vp(t,x) and yg(t,z) are deter-
minstic this gives us the pricing formula

G(t) = X(t)(KP(—=do) — F(t,2)®(—d1))
log F(t,z)/ K + %J%

OF
dy = dy—op

T
and o = [ (plua) P+ au, o) P)du
t

where d; =

It can be seen, therefore, that the annuity-market model offers a simple but pow-
erful tool that can enable us to tackle some important questions involving annuity
guarantees.

6.3 The SCOR market model

We will now consider a market model that looks directly at annualised forward
mortality rates. This type of model is less tractable than the annuity market model
(Section 6.2) if we use it to value annuity guarantees. On the other hand, this type
of model can be applied much more easily to a wider class of product.

As before we will start by considering the situation where interest rates are equal
to zero. We now define the concept of survival credits (previously utilised by Blake,
Cairns and Dowd, 2003). These are, in effect, bonuses payable to survivors within
a pool of life office policyholders in a way which ensures that no systematic profits
or losses accrue to the life office. The survival credit payable to survivors at ¢ + 1 is
calculated at time ¢ by the life office based on the latest mortality tables available
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at time ¢t. In the event that actual survivorship from t to t + 1 differs from that
anticipated, the variation or risk over that year is borne by the life office.

The risk-neutral survival probability from ¢ to t+1 measured at time ¢ is pg (¢, t+1, x)
and this implies that the actuarially and financial-economically fair survival credit
payable at ¢ + 1 is
1 —pQ(t,t + 1,1’)
po(t,t+1,2)

This represents a fair subdivision (as far as it can be anticipated at time t) of the
amount invested at ¢ by those who die before ¢ + 1 amongst those who survive to
t +1.3% It equals the odds at t of failing to survive to t + 1 given survival to t.

This survivor credit is reminiscent of the 7-LIBOR (the London Interbank Offer
Rate with duration or tenor 7) in the money markets which is equal (in a world
with non-zero interest rates) to L = (1 — P(t,t + 7))/7P(t,t + 7). The 7-LIBOR
contract states that for each £1 deposited at t, £1 + 7L will be returned at ¢ + 7.
For this reason we will refer to

1 - pQ(kala T, 5U)
(T — Ti—1)po(Th—1, Ty, x)

as the Survivor Credit Offer Rate (or SCOR). In general we will assume that T}, —
Ti_q = 1 for all k.3

L<Tk—17 Tk—h Tk’a "L‘) -

(6.2)

Note also that we can rewrite (6.2) as

B(Ty—1,Ty—1,2) — B(T}—1, Ty, v)
(Ty — Tye—1)B(Ty—1, Tk, ) '

L(Tk—laTk—kaax) =

This allows us to define the forward SCOR as follows

B(t, Tk—l, ZE) - B(t, Tk, JJ)

L(t,Th—1, Ty, v) =
(, k—15 k"%) (Tk—kal)B(tkav‘r)

(6.3)

Under a forward SCOR contract arranged at ¢ we are fixing in advance the survivor
credit that will be payable at T}, to survivors at Tj. That is for each £1 payable by
survivors at Tj_1, those still alive at Ty will receive £1 + (T — Ty—1) L(t, T—1, T, x)
at Ty. This will have zero value at ¢ using the risk-neutral pricing approach discussed
in Section 2.

30This is rather like a pool of annuitants as considered by Blake, Cairns and Dowd (2003), but
here we are not making any assumptions about how much income is paid out of the fund to the
survivors. However, Blake, Cairns and Dowd do not consider in detail the possibility of stochastic
mortality.

31Note that, while pg(Tk—1, Tk, ) must lie between 0 and 1, L(Ty—1, Tx—1, Tk, z) can lie between
0 and oo. This means that we can model L(Tx_1,Tx—1,Tk,x), if we so choose, as a log-normal
random variable.
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For simplicity of notation in what follows, let us assume that T}, — T},_; = 1 for all
k and denote
Li(t) = L(t, Ty, T, ).

From equation (6.3) we see that Ly () is equal to the value of a tradeable asset
or portfolio (B(t,Ty—1,x) — B(t,Tk,x)) with the tradeable asset B(t,Ty,z) as the
numeraire.>> As noted at the start of this section on market models, this implies that
there exists a measure Pr, equivalent to () under which the prices of all tradeable
assets divided by B(t,Tj,z) are martingales and under which W7k(t) = W (t) —
fot Vs(u, Ty, z)du is a standard Brownian motion.

Application of the product rule to Li(t) (following a similar argument in Cairns,
2004b, Section 9.1) gives us

dLu(t) = %(VB@,Q_M)—VB(t,Tk,x))'{dv”’V(t)—VB(t,Tk,x)dt}
= L)V (t)dw ™ (1) (6.4)

where

whe(t) = W(t)—/tVB(u,Tk,x)du
and VLk(t) = VL(t,kal,Tk,x)
(1+ Li(t))

= (VB(t,kahaj) - VB(t’Tk’x>> Lk(t)

(6.5)
With reference to equation (6.4), first we note that the martingale property implies
that Ep, [Ly(u)|M¢] = Ly(t) for t <u < Ty_1. Second, if we make the usual market

model assumption that V7, (¢) is a deterministic function then Ly (u), given M, for
t <u < Tj1, is log-normal under Pr, with Varp,, [log Ly (u)|M,] = IS Vik(s)|Pds.

Equation (6.5) can be rearranged to give

L (t)

Vi(t, Ty—1,2) — Vp(t, Tk, z) = m

Vi (t). (6.6)

Bearing in mind the relationship between the W7k(t) and W (t), for [ > k we can
use (6.6) to show that

l
AW (t) = dWT(t) + >
j=k+1

L;(t)

vaj(t)dt.

32The fact that L (t) can be expressed as the ratio of the prices of two tradeable assets is central
to the no-arbitrage arguments. If either quantity was not a tradeable asset then the arguments
would break down.
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Thus, expressing the dynamics under Pr,, we have
dLi(t) = Li(t)Vei(t)dW™(t)
and for k > 1

k
L;(#)
dLp(t) = Lp(t)Vik(t) | dW(t — L Vp(t)dt )
k(2) k()Lk()( ()+;1+Lj(t) 15 (t) )
These equations can be used as the basis for simulation of the Ly (t) in discrete time.
In addition we can simulate under the real world measure P by replacing dW 7 (t)

by dW (t) + A(t)dt for a suitable process A(t).

Once again, this class of model offers us a powerful toolkit. However, we need to
test potential models against historical data. At the same time, there are challenges
in finding a suitable market-price-of-risk process A(¢) that is statistically justifiable
and that leaves the model reasonably tractable.

7 Credit risk modelling framework

Finally, we consider credit-risk models.

To start, we note that the zero-coupon survivor bond with price B(t, T, x) at time t is
similar to a zero-coupon corporate bond that pays 1 at 7" if there has been no default
and 0 if the bond has defaulted. There are many models that address the problem
of how to price such bonds (see, for example, the textbooks by Schénbucher, 2003,
or Lando, 2004). In the present context, the most useful models for default risk that
could be translated into a stochastic mortality model are intensity-based models (see,
for example, Schonbucher, 2003, Chapter 7). In these models the default intensity,
A(t) corresponds to the force of mortality (¢, z+4t). Thus from the theoretical point
of view pricing can be approached in the same way.

However, there are some differences between mortality risk and credit risk that will
be reflected in the type of model used:

e In a credit risk context different companies are equivalent to different cohorts
in the mortality model. In mortality modelling there is a natural ordering of
the different cohorts (that is, by current age) with strong correlations between
adjacent cohorts. In contrast, there is no natural ordering of individual com-
panies and, although defaults may be correlated, the additional structure in a
mortality model will be absent.

e The default intensity in a credit model is likely to be modelled as a mean-
reverting process that is also possibly time-homogeneous. In contrast, mor-
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tality models are certainly time inhomogeneous and need to incorporate non-
mean-reverting elements. This has the important implication that Cox, Inger-
soll and Ross (1985)-type models can be used for credit-risk models, but not
for mortality-based models.

e The default intensity is likely to be correlated with the interest-rate term
structure, whereas the force of mortality is unlikely to be.

We can conclude that credit-risk modelling does have something to offer us in the
mortality context. However, we need to use models that reflect the differences de-
scribed above, or else we must adapt suitable credit-risk models to handle mortality
risk.

8 Conclusions

We have presented here a number of theoretical frameworks that could be used for
pricing many different types of mortality derivatives. More specifically, these frame-
works demonstrate how an arbitrage-free (or risk-neutral) valuation methodology
can be used to price a great variety of mortality-related instruments, from vanilla
survivor bonds to exotic mortality derivatives. These frameworks build on those
already established for conventional interest-rate derivatives, and therefore help to
show how the existing literature on the valuation of interest-rate derivatives can be
adapted to the valuation of derivatives involving mortality risk factors. They also
provide a basis for the future development of specific stochastic mortality models,
which can be developed within the frameworks offered here.

Our valuation methodology is of course the same, in principle, as that used to price
derivatives based on other underlyings. As such, it is also open to exactly the same
arguments over its merits. In particular, the use of arbitrage-free methods is always
problematic if markets are incomplete, as is certainly the case with mortality deriva-
tives markets. However, risk-free approaches provide natural benchmark valuations,
and one can also argue heuristically that they will become easier to justify in any
given context as markets become less incomplete over time. We also recognize that
many of the assumptions underpinning these frameworks (such as liquid, frictionless
markets) do not hold in practice. Nevertheless, it is still the case that, in such im-
perfect markets, if prices evolve in the way suggested by these pricing frameworks,
then the model will be arbitrage free. We are not assuming that the market must
be complete, or that transactions costs must be zero or that assets are infinitely
divisible, and so on.

Needless to say, many challenges remain for future work. These challenges centre
around five main issues:
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e Models: We need to investigate which models give adequate statistical de-
scriptions of historical mortality data, and which models generate ‘reasonable’
mortality dynamics.

e The number of risk factors: We need to determine how many risk factors are
needed to provide a satisfactory model of the mortality term structure. Is one
risk factor adequate, or do we need to have two or more factors to accommodate
imperfectly correlated mortality improvements at different ages? One can
easily argue that multiple factors might be desirable because the factors that
affect mortality (medical advances, outbreaks of disease, etc.) are likely to
have different impacts on people of different ages.

e Liquidity vs. basis risk: As with other derivatives, there is the usual tradeoff
between basis risk and liquidity. If we want to encourage the development of
market liquidity, then we would encourage standardized mortality instruments
trading on organized exchanges; however, such instruments will embody con-
siderable basis risk, which will reduce their usefulness as hedge instruments.
Conversely, the basis risk for the primary client associated with tailor-made
(or OTC) instruments will be low, but at the cost of poor liquidity. However,
there are also other factors to consider. For example, the trading of mortality
derivatives can be encouraged by choosing ‘good’ reference populations for the
mortality indices (e.g., a good reference population might one be typical of the
population as a whole, or typical of the annuitant population). Furthermore,
the market for mortality derivatives might be helped by the fact that mortal-
ity risks have low market beta, and the willingness of investors to buy up the
Swiss Re mortality-related bond is certainly encouraging.

e Index specification and moral hazard: The choice of index also needs to take
account of possible moral hazard. For example, can the index be manipulated
by the issuer of a security or by investors? Issuers of mortality-linked securities
can learn from past experience of cat bond issuance, where moral hazard is al-
ways present to some degree.?® A carefully-chosen index will not only increase
liquidity, as discussed above, but it will also reduce moral hazard. A conse-
quence, though, is that this reduction is typically accompanied by increased
basis risk for those wishing to use the security for hedging. With cat bonds,
one of the principal ways to reduce moral hazard is to link the payments to a
non-company-specific index rather than to the ceding company’s experience.
The same arguments apply to mortality-related securities, although, perhaps,
to a lesser degree.?*

33For a discussion of moral hazard as it relates to the issue of cat bonds, see, for example, the
papers by Doherty (1997), and Doherty and Richter (2002).

34This issue has already been address in part, by choosing in this paper to link payments to the
survivor index (equation 2.1) rather than to the actual number of survivors in a particular cohort.
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e The measurement-publication lag: How do we allow for the time lag between
the measurement date and the date when mortality rates for that date have
been graduated and made public? For example, is there something that can
be learned here from catastrophe derivatives, where information gradually
emerges after a catastrophic event? Connected to this issue is the need to
specify the contract in a way that minimises insider-trading moral hazard as-
sociated with time lags in the release of information. This is a critical issue,
not least because some early attempts to introduce non-life-insurance-linked
catastrophe derivatives failed on precisely this point.3®

In summary, mortality risks are an important new frontier in quantitative financial
risk. They offer intellectual challenges to those who study them and serious financial
benefits to those who trade them — and one would hope that they might also bring
significant benefits to customers down the line.
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Appendices

A The Lee and Carter model for stochastic mor-
tality

Lee and Carter (1992) investigate the dynamics of the observed central mortality
rates m(t, ) for integer ¢ and x. Their model breaks m(¢, x) down into a log-bilinear
model

logm(t,z) = a(x) + b(z)k(t)

with the translation and scaling constraints that ) b(z) = 1 and Z;‘ZTO k(t) =
0. a(z) and b(x) are non-parametric functions without any smoothing applied or
functional form. Stage 1 of the modelling process estimates the functions a(z), b(z)
and k(t) without reference to a dynamic model for k(t). For a given functional form
for a(z) and b(z), k(t) is estimated directly using the data for date ¢ in isolation and
without any assumption about its dynamic form. This is repeated until we optimise
the fit over a(z) and b(z) subject to the scaling constraints above. Stage 2 of the
modelling process then fits an ARIMA process to the k(t).

B The Lee and Yang model for stochastic mor-
tality

Lee (2000a) and Yang (2001) proposed the following model for stochastic mortality.

Suppose that a deterministic forecast of annual mortality rates is made at time 0.
Thus (z,t) represents the probability (as estimated at time 0) that an individual
aged x at time t will die before time t + 1 for each integer x and t. The actual
mortality experience is modelled as

. 1
q(z,t) = q(z,t)exp | X(t) — 50'12/ + oy Zy (t)

1
where X(t) = X(t—-1)— 503( +oxZx(t)

and Zx(t) and Zy(t) are mutually independent sequences of i.i.d. standard normal
random variables.

It follows that the X(¢) models the stochastic trend in the development of the
mortality curve while the —$0% + oy Zy (t) models one-off environmental variations
in mortality (such as a major flu epidemic). From the limited data available Yang
found that oy was not significantly different from 0.
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C The Milevsky and Promislow model for stochas-
tic mortality

Milevsky and Promislow (2001) model the force of mortality in the form pu(t,z) =
& exp(&1x+Y;) where Y, is an Ornstein-Uhlenbeck process with SDE dY; = —aY;dt+
odW;. Essentially this is equivalent to a Gompertz model with a time-varying scaling
factor.

D The Dahl model for stochastic mortality

Dahl (2004) models the process for u(t, = +t) as follows
du(t,z +1t) = o (t, x, p(t,z + t))dt + ot (t, z, u(t, z + t))dW (t).
He finds that if the drift and volatility are of the form

oty p(t,e+1t) = 6t x)u(t,z+t) + (L, x)
and o (t,x, u(t,x +1)) = /0o(t,x)ut,x +1t) + (ot x)

for some deterministic functions (¢, x), §°(t, z), (*(t,z) and (?(t, z) then

po(t, T, x) = AT -BET.ou(tet1)

where the deterministic functions A(t, T, z) and B(t,T,x) are derived from differ-
ential equations involving 0%(¢, z), §7(t, x), (*(¢t,z) and (7 (¢, z).



