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Abstract

In this paper we address the issue of how to establish the fair value of an
insurance-linked liability. This is done by considering the introduction into a
simple, one-period market model of a new and quite general security (which,
amongst other things, could be such a liability). We investigate the impact
of this new security on the market and attempt to predict the price (the fair
value) at which it will enter the market, assuming a liquid market.

The model employed is very simple for two reasons. First, it allows us to derive
analytical results for equilibrium prices (often impossible for more complex
models). Second, its simplicity allows us without difficulty to identify specific
effects, rather than muddy the water with more general, abstract or complex
features.

The model includes the following key features. First, investors have different
levels of risk aversion. Second, investors are allowed to have different parameter
estimates for the returns model. Third investors have different, risky future
liabilities.

A principal aim of the paper is to compare the equilibrium approach with
the often-more-tractable risk-minimisation approach to pricing and reserving
popular in financial mathematics. We find that there is a strong link between
the two approaches. However, there are differences between the two prices
derived. These are caused by: different investor liabilities; different parameter
estimates between investors; difficulty in estimating investors’ levels of risk
aversion. Of these we find that differences in estimates of the mean return on
the new security causes the most significant differences.

Keywords: Fair value; Equilibrium theory; Risk-minimising prices; Utility
function; Parameter risk; CAPM; Modigliani-Miller Theorem.
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1 Introduction

In this paper we will discuss in reasonably general terms the concept of fair
value. This has become an increasingly important concept within actuarial
work in recent years in reaction to a number of developments internationally.
There has been a general shift away from traditional actuarial methods (which
have often shrouded the valuation of both assets and liabilities in mystery)
to new approaches which make the valuation process more transparent. In
particular, there has been increasing demand from the international accounting
profession for objective and clear measurement of both liability and asset values.
It is generally agreed that an objective and fair valuation of assets involves
taking these at their current market values without making smoothing or other
adjustments. (We will not deal in this paper the issue of bid-offer spreads,
liquidity and assets, such as property, which are not readily traded.)

We deal in this paper with the more difficult issue of liability valuation. We
will use the following principal to provide our definition of what is meant by
fair value:

The fair value of a liability is the price at which it would trade if a liquid market
existed in such an asset.

A key concept within this definition is the liquid market. This indicates that
there will be both buyers and sellers of the liability. Furthermore, the appro-
priate price will that at which there is a balance between buyers and sellers:
that is, the market will be in equilibrium.

Where a future insurance liability is known with certainty (for example, C 1000
payable in 4 years) the fair value is straightforward to establish: that is, the
value of the matching zero-coupon bond. No other price could persist in a
liquid market: there would be an arbitrage opportunity. Certain uncertain
liabilities are also simple to value: those where the risks are diversifiable. For
example, basic mortality risk is diversifiable and can, in effect be replaced by
deterministic mortality rates. However, the pricing of mortality risks is clouded
by the existence of parameter and model uncertainty as well as the rate of future
mortality improvements (none of which is a diversifiable risk). Many other risks
do not offer the opportunity to diversify. This prevents the identification of a
perfect matching portfolio and of a corresponding unique price.

The author’s work in this field was motivated by the UK debate on the fair
valuation of defined-benefit pension plans (see, for example, Head et al., 1999,
and Exley, Mehta & Smith, 1997). Such plans contain a mixture of liabilities
which do not have perfectly-matching portfolios. For example, certain benefits
are linked to salaries. Index-linked bonds provide a reasonable but imperfect
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match and certainly still leave considerable risk for the sponsoring employer.

As we will see the idea of identifying the portfolio of assets which best matches
(albeit imperfectly) a set of liabilities forms an important component in the
establishment of a fair value. This means that there is a perhaps-surprising
link between a liquid market in risky assets and risk-minimising reserves. The
development of such an approach is not new to actuaries. The concept of
matching well-defined cashflows is a well established process. More recently
Wise (1984a,b, 1987a,b, 1989), Wilkie (1985) and Keel & Müller (1995) have
addressed the issue of matching when a perfect match is not possible.

Development of ideas in the fair valuation of other insurance-linked liabilities
and their link with financial economics has also been ongoing (see, for example,
Reitano, 1997, Babbel & Merrill, 1998, Longley-Cook, 1998, Møller 1998, 2000,
Phillips, Cummins & Allen, 1998, Girard, 2000, Lane, 2000, Panjer, 2000, and
Wang, 2000).

Techniques for the pricing of liabilities or contingent claims (that is, financial
contracts whose payoff is contingent on the value of some other financial or
economic index or price) have developed earlier and at a faster pace within the
financial-economics literature. Key early developments were made by Black
& Scholes (1973), Merton (1973) and Cox, Ross & Rubinstein (1979). They
showed how relatively complex contingent claims can be replicated (that is,
perfectly matched) using dynamic hedging given certain restrictions on the
models for security prices. The existence of a replicating, dynamic-hedging
strategy then means that we can establish a unique no arbitrage price for the
contingent claim (what we would describe in the present paper as the fair
value).

In reality, almost all financial contracts cannot be replicated: that is, dynamic
hedging can reduce risk but not to zero. There are many reasons for this such
as the presence of transactions costs, jumps in market prices, illiquidity in the
market and the lack of a suitable, liquid asset for hedging a given contingent
claim. An immediate consequence of this is that there is no longer a unique no
arbitrage price. Instead there is a range of prices (possibly infinite) which are
all consistent with no arbitrage.

A number of approaches have been proposed to deal with this problem. These
are primarily concerned with the hedging of a contingent claim given the aim is
to optimise a certain objective function rather than the establishment of a price.
Duffie & Richardson (1991) and Schweizer (1992) looked at the application of
mean-variance hedging as one form of the more general variance-minimising
hedging approach. This involves minimising the variance of the surplus or
deficit at the time of payment of a claim over both the initial value of the
hedge portfolio and the self-financing, dynamic-hedging strategy. Föllmer &
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Sondermann (1986) (see also, for example, Föllmer & Schweizer, 1989) had
previously proposed risk-minimising strategies. These strategies are very sim-
ilar to variance-minimising strategies but, rather than being self-financing, the
value of the hedge portfolio is continually topped up or reduced to keep it equal
to the perceived value of the contingent claim at any point in time.

These papers are principally concerned with the issue of how to hedge once a
contract has been entered into. However, where the optimisation includes the
initial value of the hedge portfolio there has been considerable discussion of
whether this initial value can be used as a candidate for the price at which this
contract would trade in the financial markets.

These initial papers focussed on means and variances (equivalently a quadratic
utility function) partly for mathematical tractability but partly also for reasons
of symmetry. In particular, an investor does not know in advance of the price
being set whether or not he will go long or short in a new security. Under such
circumstances it would be inappropriate to use an increasing (and concave)
utility function.

Other authors have looked at hedging on the basis that an investor has a
defined position in a contingent claim at some future time. The issue is then
clearly one sided and the investor then aims to invest his portfolio in a way
which will maximise his expected terminal utility or shortfall risk. Examples
include Karatzas et al. (1991), Kramkov & Schachermayer (1999), Föllmer &
Leukert (1999, 2000), Schachermayer (2000), Delbaen et al. (2000), Cvitanić,
Schachermayer & Wang (2000), Schweizer (2001) and Owen (2001). The issue
of pricing is related to the problem of utility maximisation. In particular,
consider an investor who has a long position in financial contract with some
random payoff at a given time in the future. It is proposed that this contract is
exchanged immediately for a fixed amount of money P . After the exchange the
investor will choose to employ a different dynamic hedging strategy in order
to maximise the same terminal utility function. The expected terminal utility
might be above or below that which was previously determined. There will be
some threshold value for P at which the investor is indifferent to the exchange
of the contract for cash. In some sense this represents a possible price for
this particular contract. However, other investors with different total assets
and utility functions will have different threshold prices P (all of which are
consistent with no arbitrage). This means that we are only part of the way
to determining at what price this financial contract will trade in the financial
markets because we must find an equilibrium between these investors.

Equilibrium modelling is a key aspect of this paper. Thus, rather than consider
the microeconomic impact of a security or the market on a single investor, we
consider the macroeconomic point of view. In particular, we need to consider
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how the structure of a market and how the preferences and views of investors
affect the prices of all securities in the financial markets. Equilibrium pricing
of securities is, in general, a complex problem (and the present author cannot
claim to be an expert!). Some general results can be found in Debreu (1982),
Duffie (1996) and Starr (1997) regarding (a) the existence of equilibrium in the
market and (b) Pareto efficiency1.

With many models the location of a competitive equilibrium can only be found
using numerical methods. This makes the problem of estimating the price at
which a new security would trade, if a liquid market in such an asset existed,
a difficult one to solve. One exception to this rule is the introduction of a
new derivative product into a complete market where a price for the marginal
impact of the new security is the uniquely-determined no-arbitrage price.

Risk-minimisation hedging as a means to establishing a candidate for the mar-
ket price of a new security, on the other hand, does often yield concrete solu-
tions (see, for example, Møller, 1998, 2000). It would be useful, therefore, if
risk-minimising strategies give a price which turns out to match the price de-
termined by the more-complex equilibrium model. Alternatively, in the event
that the two prices do not coincide, how close are the prices: that is, can
the variance-minimising price (or some variation on it) be used as an effective
approximation?

This question is, of course, not easy to answer. However, what we attempt to
do in this paper is to make some progress towards a resolution by applying the
question to a very simple market model. The model has a single time period,
with normally-distributed returns and investors with exponential utility. Other
aspects of the model allow for small, but important, degrees of complexity
(investors have different levels of risk aversion, individual, random liabilities
and potentially different parameters for the investment-returns model).

For this simple model we find that there are very close links between the equi-
librium and the risk-minimising prices. However, the two only coincide under
special circumstances. A key issue is whether or not it is possible to determine
in advance the market price of risk2 for the additional source of risk (uncorre-
lated with the original n sources of risk) associated only with the new security.
The size of this market price of risk depends upon whether or not the new
security can be used to match more effectively investors’ personal liabilities. It
also depends upon a knowledge of investors’ risk preferences and both of these

1An allocation of securities and a price structure is said to be Pareto efficient if all
alternative allocations and price structures result in a strict reduction in the expected utility
of at least one investor.

2Each uncorrelated source of risk has an associated market price of risk. These, in turn,
determine the risk premium on each security.
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quantities may be unobservable. Despite the fact that equality of prices will
be unlikely, we find from numerical studies that risk-minimising prices do often
provide a good approximation to equilibrium prices.

2 A model for the existing market

We start by considering the existing market: that is, the financial market
before the introduction of any new securities. Suppose that there are initially
n securities available for investment. (It may be assumed that these n securities
are corporate stock.) In subsequent sections we will investigate the effect on
the prices of existing securities of the introduction of a new security.

The n securities have prices Si(t) per unit at time t (t = 0, 1) for i = 1, . . . , n.
Each underlying business will exist for one year only and then will be wound
up on the basis of unlimited liability.

Cash is available as an alternative risk-free investment, returning £r at time 1
for each £1 invested at time 0. It is assumed that this is offered by a bank which
is distinct from the investors described below. It also assumed that the bank
has no effect on the market model other than as an agent willing to borrow or
lend unlimited amounts at the risk-free rate.3

We assume that there are no restrictions on long or short investments and that
cash can be borrowed by all investors, without limit, at the risk-free rate.

In addition there are m investors. Investor k has initial wealth Wk0 and has
a utility function for wealth w at time 1 of Uk(w) = − exp(−αkw). In the
general model we will assume that different investors can have different views
on the distributions of the security values at time 1, S1(1), . . . , Sn(1). This may
arise because: they use different amounts of historical data; they use different
models (e.g. trend chasers versus mean reverters); they use different estimation
techniques; they react in different ways to the arrival of new information.

The combination of the n securities, the m investors (and their liabilities as
described below) and the bank constitutes a closed market: in particular, in-
vestors’ decisions and the prices of the securities are not influenced by any
external factors.

Let Ŝ(t) = (S1(t), . . . , Sn(t))′ be the vector of prices at time t. (The ·̂ nota-
tion indicates a vector containing the first n elements of a potentially longer

3An alternative model which we do not investigate here assumes that there is no such
bank, but investors can borrow or lend cash from each other at the risk-free rate. This is
equivalent to the existence of a bank with net deposits equalling net loans. In both cases it
is necessary to establish the risk-free rate of interest at which net deposits equal net loans.



2 A MODEL FOR THE EXISTING MARKET 6

sequence. Aee Appendix A for a full summary of the vector and matrix nota-
tion.) Investor k assumes that Ŝ(1) = µ̂k + CkZ where:

• µ̂k = (µ
(k)
1 , . . . , µ

(k)
n )′;

• the volatility matrix Ck is n× (n + m + 1) (and of rank n) with elements

c
(k)
ij = 0 for all j > i (that is, Ck is lower triangular with zeros in the final

m + 1 columns);

• and Z = (Z1, . . . , Zn+m+1)
′ with Z1, . . . , Zn+m+1 i.i.d. standard normal

random variables.

All investors, therefore, assume normality in this simple model, but each has
different estimates of the means, variances and covariances. This includes V̂k =
CkC

′
k, investor k’s estimate of the covariance matrix for the Si(1). Let us now

define CS
k = (c

(k)
ij )n

i,j=1 to be the square matrix which takes the first n columns

of Ck. Since Ck is lower triangular we have Vk = CS
k CS

k
′
. Furthermore, since

Ck is of rank n, CS
k and Vk are invertible.

For security i the risk premium estimated by investor k is ρ
(k)
i = µ

(k)
i /Si(0)− r.

If we define ê = (1, . . . , 1)′ (n elements) and Λ̂s = diag(Ŝ(0)) as the diagonal

matrix generated by the vector Ŝ(0), we can write ρ̂k = (ρ
(k)
1 , . . . , ρ

(k)
n )′ =

Λ̂−1
s µ̂k − rê.

At time 1 investor k has wealth:

Wk1 = Wk0

[
r + p̂′k

(
Λ̂−1

s (µ̂k + CkZ)− r
)]

+ γk + δ′kZ

= Wk0

[
r + p̂′kρ̂k + p̂′kΛ̂

−1
s CkZ

]
+ γk + δ′kZ (2.1)

where:

• p̂k = (p
(k)
1 , . . . , p

(k)
n )′ represents the proportions at time 0 invested in each

security by investor k;

• γk is a scalar;

• and δk = (δ
(k)
1 , . . . , δ

(k)
n+m+1)

′.

Part of the equation for the investor’s wealth at time 1, −(γk+δ′kZ), represents
investor k’s personal liabilities at time 1.
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The expected utility for investor k based upon his subjective assessment of the
returns distributions is then:

E[Uk(Wk1)] = − exp

[
− αk

{
Wk0(r + p̂′k(Λ̂

−1
s µ̂k − rê)) + γk

}

+
1

2
α2

k

(
Wk0p̂

′
kΛ̂

−1
s Ck + δ′k

) (
Wk0C

′
kΛ̂

−1
s p̂k + δk

) ]

(2.2)

We wish to maximise the expected utility over p̂k. Thus we differentiate:

d

dp̂k

log (−E[Uk(Wk1)])

= −αkWk0(Λ̂
−1
s µ̂k − rê) + α2

k

(
W 2

k0Λ̂
−1
s VkΛ̂

−1
s p̂k + Wk0Λ̂

−1
s Ckδk

)
= 0

Hence we have:

p̂k =
1

αkWk0

Λ̂sV
−1
k (µ̂k − rŜ(0))− 1

Wk0

Λ̂sV
−1
k Ckδk (2.3)

Let û
(k)
i be the optimal number of units held in security i by investor k. Then:

u
(k)
i =

pkiWk0

Si(0)
(2.4)

Hence û(k) = (u
(k)
1 , . . . , u(k)

n )′ (2.5)

= Wk0Λ̂
−1
s p̂k (2.6)

= V −1
k

[
1

αk

µ̂k − Ckδk − r
1

αk

Ŝ(0)

]
(2.7)

Note that the component V −1
k Ckδk gives the numbers of units for investor k

to match most closely the risky component of his liability of (−δ′kZ) using
the existing n securities. This means that the liability risks associated with
the n sources or risk generating security returns (Z1, . . . , Zn) are eliminated
first before the investor then considers the construction of a risky portfolio to
maximise his expected utility. A key point here is that all investors act in the
same way with regard to their personal liability risks, rather than act in a way
which takes account of their level of risk aversion.
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Now let ui be the total number of units of security i which are required. Then:

û = (u1, . . . , un)′

=
m∑

k=1

û(k)

=
m∑

k=1

V −1
k

[
1

αk

µ̂k − Ckδk − r
1

αk

Ŝ(0)

]

=
m∑

k=1

1

αk

V −1
k (µ̂k − αkCkδk)− r

(
m∑

k=1

1

αk

V −1
k

)
Ŝ(0) (2.8)

Now the number of units of each security in issue is specified so it is left to us
to derive the set of prices which will allow the market to clear. Hence we find:

Ŝ(0) =
1

r

(
m∑

k=1

1

αk

V −1
k

)−1 [
m∑

k=1

1

αk

V −1
k µ̂k −

m∑
k=1

V −1
k Ckδk − û

]
(2.9)

which, we note, is linear in û. Note also that the lower-triangular form of Ck

implies that V −1
k Ckδk = CS′

k

−1
δ̂k where δ̂k = (δ

(k)
1 , . . . , δ

(k)
n )′.

Remark 2.1

Note that these prices (equation (2.9)) do not depend on the initial wealths,
Wk0. This because the exponential utility function has constant absolute risk
aversion.

Remark 2.2

In the special case that all investors agree on the parametrisation of the returns
model (that is, µ̂k = µ̂ and Ck = C for all k) we have:

û =
1

α
V −1(µ̂− rŜ(0))− V −1Cδ

where
1

α
=

m∑
k=1

1

αk

and δ =
m∑

k=1

δk

⇒ Ŝ(0) =
1

r
[µ̂− αV û− αCδ] (2.10)

Remark 2.3

Assume again that all investors agree on the parameter values and further that
their liabilities are non-random (that is, δk = 0 for all k).
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Optimal portfolios are made up of cash and one efficient portfolio in which the
mix of assets is proportional to V −1ρ̂, where ρ̂ = Λ̂−1

s µ̂ − rê. This defines
the capital market line in traditional mean-variance portfolio theory. Since all
investors have the same view of the world this risky portfolio can be interpreted
as the market portfolio. In other words we are looking at the Capital Asset
Pricing Model.

3 Issue of a new security

3.1 New equilibrium

Now suppose an agency issues at time 0 a new security (i = n + 1) pay-
ing Sn+1(1) at time 1 per unit. The introduction of this new asset might
result in an immediate change in the prices of the original n securities. Let

S̃i(0), for i = 1, . . . , n + 1, be the new prices at time 0. Then ˆ̃S(0) =
(S̃1(0), . . . , S̃n(0))′ is the revised vector of prices of the original n securities and
¯̃S(0) = (S̃1(0), . . . , S̃n(0), S̃n+1(0))′ is its extension to include the new security.

Suppose the issuing agency is an existing component of the market model (one
of the existing companies or one of the investors). Then the issuer takes the
opposite position to each investor in the new security. This means that the net
quantity of new security issued is zero. It follows that if the net quantity to be
issued is non-zero then the security must come from an external agency (for
example, the government or an unquoted company) which we assume has no
other interactions with the existing agencies in the model.

At time 1 we now have the extended price vector (in the view of investor k):

S̄(1) = µ̄k + C̄kZ

where µ̄k = (µ
(k)
1 , . . . , µ

(k)
n+1)

′

C̄k =




Ck

−−
σ′k




σk = (σ
(k)
1 , . . . , σ(k)

n , σ
(k)
n+1, 0, . . . , 0)′.
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It follows that the extended covariance matrix for S̄(1) is:

V̄k =




|
Vk | Ckσk

|
− − −−− + −−

σ′kC
′
k | σ′kσk


 .

Suppose that the total number of units, ui, in each of the existing securities,
i = 1, . . . , n, is unchanged. It is intended that un+1 units of the new security
are to be issued at time 0. The prices of securities 1 to n plus the price of the
new security must be set at a level which will ensure that the market clears:
that is, the demand for each security exactly meets the availability, ui, of each
security, i = 1, . . . , n + 1.

Since prices can change immediately at time 0 in reaction to the announcement
that un+1 units of a new security will be issued, investor k has the revised
wealth:

W̃k0 = Wk0

[
1− p̂′kê + p̂′kΛ̂

−1
s

ˆ̃S(0)
]

(3.1)

Following the same argument as before (equations (2.8) and (2.9)) we find that:

¯̃u =
m∑

k=1

¯̃u(k) (3.2)

where ¯̃u(k) = V̄ −1
k

[
1

αk

(
µ̄k − r ¯̃S(0)

)
− C̄kδk

]
(3.3)

⇒ ¯̃u =
m∑

k=1

V̄ −1
k

[
1

αk

(
µ̄k − r ¯̃S(0)

)
− C̄kδk

]
(3.4)

and ¯̃S(0) =
1

r

(
m∑

k=1

1

αk

V̄ −1
k

)−1 [
m∑

k=1

1

αk

V̄ −1
k µ̄k −

m∑
k=1

V̄ −1
k C̄kδk − ¯̃u

]
(3.5)

where ¯̃u = (ũ1, . . . , ũn+1)
′.

Now:

Vkû
(k) =

1

αk

µ̂k − r

αk

Ŝ(0)− Ckδk

from equation (2.7). Hence:

¯̃u(k) = V̄ −1
k




Vkû
(k) + r

αk

(
Ŝ(0)− ˆ̃S(0)

)

−−−−−−−−−−−−−
1

αk
µ

(k)
n+1 − r

αk
S̃n+1(0)− σ′kδk


 . (3.6)
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Now for each k there exists a vector b̄k for which:

V̄ −1
k =




|
V −1

k | 0
|

− − − + −
0 | 0


 + b̄kb̄

′
k

(see Appendix B).

We therefore have:

¯̃u(k) =




û(k) + r
αk

V −1
k

(
Ŝ(0)− ˆ̃S(0)

)

−−−−−−−−−−−−−−
0




+ b̄k

{
b̂′kVkû

(k) +
r

αk

b̂′k
(
Ŝ(0)− ˆ̃S(0)

)
+ b

(k)
n+1

(
1

αk

µ
(k)
n+1 −

r

αk

S̃n+1(0)− σ′kδk

)}

(3.7)

where the n× 1 vector b̂k contains the first n elements of b̄k.

Finally:

¯̃u =
m∑

k=1

¯̃u(k) =




û

−−
0


 + r




(∑m
k=1

1
αk

V −1
k

) (
Ŝ(0)− ˆ̃S(0)

)

−−−−−−−−−−− −
0




+
m∑

k=1

b̄k

{
b̂′kVkû

(k) +
b
(k)
n+1µ

(k)
n+1

αk

− b
(k)
n+1σ

′
kδk

}

+

(
m∑

k=1

r

αk

b̄kb̂
′
k

)(
Ŝ(0)− ˆ̃S(0)

)

−
(

m∑
k=1

rb
(k)
n+1

αk

b̄k

)
S̃n+1(0). (3.8)

The next step is to specify ¯̃u. We will assume there are no new units in securities
1 to n so ˆ̃u = û while ũn+1 may or may not be zero. An important question
to ask is what is the impact (if any) of the mere existence of the new security
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(that is, taking ũn+1 = 0)? In particular, can we find a price, S̃n+1(0), for the
new security which gives rise to an equilibrium where there is no impact on
the prices of the existing securities (thst is, where ũi = ui for i = 1, . . . , n,
un+1 = 0 and S̃i(0) = Si(0) for i = 1, . . . , n)? If such an equilibrium exists then
the introduction of the new security at S̃n+1(0) will have no impact on market
prices.

It follows that we must attempt to solve equation (3.8) subject to the given

constraints. Thus take ˆ̃S(0) = Ŝ(0) and ˆ̃u = û. The desired equilibrium exists
if and only if:


û

−−
0


 = ¯̃u =




û

−−
0


 +

m∑
k=1

b̄k

{
b̂′kVkû

(k) +
b
(k)
n+1µ

(k)
n+1

αk

− b
(k)
n+1σ

′
kδk

}

−
(

m∑
k=1

rb
(k)
n+1

αk

b̄k

)
S̃n+1(0)

⇔
(

m∑
k=1

rb
(k)
n+1

αk

b̄k

)
S̃n+1(0) =

m∑
k=1

b̄k

{
b̂′kVkû

(k) +
b
(k)
n+1µ

(k)
n+1

αk

− b
(k)
n+1σ

′
kδk

}

(3.9)

Now equation (3.9) consists of n + 1 linear equations but only one unknown,
S̃n+1(0). In general, therefore, there is no solution and no equilibrium with
ũi = ui and S̃i(0) = Si(0) for i = 1, . . . , n and ũn+1 = 0. On the other hand,

equation (3.8) is linear in ¯̃S(0) and of full rank, so an equilibrium set of prices
¯̃S(0) can be found.

Remark 3.1

Suppose that ˆ̃u = û and ũn+1 = 0.

In general the new equilibrium prices ˆ̃S(0) for the existing securities are not
equal to their prices Ŝ(0) before the introduction of the new security.

Thus, in a market where investors use different model parameters for investment
returns, the mere existence of the new security, even though zero net units
are issued, has an impact on all market prices. One might argue that this
is not surprising. If the δk (the investors’ liability risks) are non-zero then,
although ũn+1 = 0 some investors will have long and others short positions in
the new security. This depends upon how the well the new security can be used
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to reduce each investor’s liability risks. This trading might then affect other
prices. However, the following corollary suggests that this is not the case.

Corollary 3.2

Suppose that all investors agree on the returns model parameters (that is, µ̄k =
µ̄ and C̄k = C̄ for all k).

(a) The equilibrium with ˆ̃u = û and ũn+1 = 0 exists when:

ˆ̃S(0) = Ŝ(0) and S̃n+1(0) =
1

r
(µn+1 − ασ′δ − ασ′C ′û) .

where α and δ are defined in equation (2.10).

(b) The equilibrium with ˆ̃u = û and ũn+1 6= 0 exists when:

¯̃S(0) =
1

r

[
µ̄− αV̄ ū− αC̄δ

]
(3.10)

that is: ˆ̃S(0) =
1

r
(µ̂− αV û− un+1αCσ − αCδ)

= Ŝ(0)− 1

r
un+1αCσ (3.11)

while S̃n+1(0) =
1

r
(µn+1 − ασ′C ′û− ασ′δ − αun+1σ

′σ) . (3.12)

Proof:

(a) Since C̄k = C̄ for all k we have b̄k = b̄ for some b̄ for all k. Equation (3.9)
then holds if and only if:

rbn+1

α
b̄S̃n+1(0) =

(
b̂′V û +

bn+1

α
− bn+1σ

′δ
)

b̄

⇔ S̃n+1(0) =
1

r

(
µn+1 − ασ′δ +

α

bn+1

b̂′V û

)
. (3.13)

But bn+1 = σ−1
n+1 and b̂ = −σ−1

n+1(C
S)′

−1
σ̂ (Appendix B) so (3.13) holds if and

only if:

S̃n+1(0) =
1

r

(
µn+1 − ασ′δ − ασ̂′(CS)−1V û

)
=

1

r

(
µn+1 − ασ′δ − ασ̂′(CS)′û

)
=

1

r
(µn+1 − ασ′δ − ασ′C ′û) (3.14)

since σj = 0 for j = n + 2, . . . , n + m + 1.
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The proof of (b) follows in a similar fashion.

Remark 3.3

It follows that the prices of securities 1 to n remain unaffected by the introduc-
tion of the new security if (and usually only if) both ũn+1 = 0 and investors
agree on the parameter values in the returns model.

If we consider the case δk = 0 for all k then we can see that this result is
not surprising. All investors will still hold a mixture of cash and the same
market portfolio meaning that all investors will have positive holdings in the
new security, all negative or all zero. Since the net amount issued is zero, no
investor will have a long or a short holding. This leaves us to optimise over the
original securities which we have already done.

Remark 3.4

Suppose ũn+1 = 0 and that investors agree on the parameters. Even if the δk are
non-zero we find that the prices of the existing securities remain unchanged.

This observation clarifies the comments following Remark 2.1. Thus, even
though there will be some trading in the new security when ũn+1 = 0, this will
not have an effect on the prices of the existing securities.

This is, perhaps, a counterintuitive result. However, we can make two fur-
ther observations. First, although prices are not affected, the expected utilities
of the investors will increase as a result of the introduction of the new secu-
rity. Second, the lack of an effect on prices is related to the Modigliani-Miller
theorem (see, for example, Bodie & Merton, 1998).

Remark 3.5

Suppose ũn+1 = 0 and that investors agree on the parameters. There is no
allowance in the price of the new security (equation (3.12)) for its volatility, σ,
except:
(i) where it is matched by volatility in the value of existing securities (the ασ′C ′û
term); and by
(ii) the volatility in the investors’ liabilities (the ασ′δ term).

In particular, if δn+1 = 0, the price of the new security does not take into
account the σn+1 term. If, on the other hand, δn+1 6= 0 then the price of the
new security will be affected by the size of σn+1.

The main effect of σn+1 occurs when un+1 > 0: the larger un+1 is the lower the
price at which the new security must be issued. Furthermore, the prices of the
existing securities will be affected by the size of the new issue.
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3.2 Risk minimisation

Risk minimisation entails establishing the portfolio of existing securities which
matches most closely the payoff on the new security. It is then proposed that
the value at time zero of this matching portfolio be a candidate for the market
price of the new security (that is, our best estimate of the price at which the
new security would trade).

We will concentrate first on the special case where investors all agree on the
returns model: that is, µ̄k = µ̄ and C̄k = C̄ for all k.

Let P represent the subjective probability measure used by each investor for
this model and let Q be an equivalent risk-neutral probability measure. Under
Q we have EQ[Sj(1)] = rSj(0) for j = 1, . . . , n and for j = n + 1 once the price
of the new security has been established.

Let x0 be the amount of money we invest in cash and xi be the number of units
of security i (i = 1, . . . , n) we purchase at time 0 (with x = (x1, . . . , xn)′). The
portfolio, (x0, . . . , xn), which provides the best match is defined as the solution
to the following optimisation problem:

Minimise EP


(

Sn+1(1)− x0r −
n∑

i=1

xiSi(1)

)2



where EP represents expectation under the measure P . This is equivalent
to minimisation first of the variance (under P ) of Sn+1(1) − x′S(1) and then

choosing x0 so that EP

[
Sn+1(1)− x0r − x′Ŝ(1)

]
= 0.

Now:

Sn+1(1)− x′Ŝ(1) = µn+1 − x′µ̂ + σ′Z − x′CZ

⇒ V arP

[
Sn+1(1)− x′Ŝ(1)

]
= (σ′ − x′C)(σ′ − x′C)′

= σ′σ − 2x′Cσ + x′V x

⇒ d

dx
V ar

[
Sn+1(1)− x′Ŝ(1)

]
= 2V x− 2Cσ = 0

⇒ x = V −1Cσ (3.15)

EP

[
Sn+1(1)− x′Ŝ(1)

]
= 0

⇒ x0 =
1

r
(µn+1 − x′µ̂)

=
1

r

(
µn+1 − σC ′V −1µ̂

)
(3.16)

The value at time 0 of this best matching portfolio, and our candidate for the
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price of the new security, is thus:

π = x0 + x′ ˆ̃S(0)

=
1

r

(
µn+1 − σ′C ′V −1µ̂

)
+ σ′C ′V −1

(
Ŝ(0)− 1

r
αun+1Cσ

)
(by equation (3.11))

=
1

r

(
µn+1 − σ′C ′V −1µ̂

)
+

1

r
σ′C ′V −1 (µ̂− αV û− αCδ − αun+1Cσ)

(by equation (2.10))

=
1

r

(
µn+1 − ασ′C ′û− ασ̂′δ̂ − αun+1σ̂

′σ̂
)

(3.17)

since the form of C (rank n and only the first n columns are non-zero) ensures
that:

C ′V −1C =


 In | 0
−−− + −−

0 | 0


 .

Equation (3.17) gives us the candidate for the price of the new security. This
should be compared with the equilibrium price in equation (3.12). In both
cases the price has been calculated taking into account the effect (under the
equilibrium model) of the introduction of the new security on the prices of the
new securities. We aim to see then if the price of the new security under the
equilibrium model is consistent with the risk minimisation approach. We can
see that equations (3.12) and (3.17) almost coincide. In particular, we have:

π − S̃n+1(0) = ασn+1(δn+1 + ũn+1σn+1).

The question then arises: can this gap be closed?

First we should note that if σn+1 = 0 the two prices coincide (we have a
complete market). Furthermore, if σn+1 = 0 it is straightforward to show that
we will get the same price, π, if risk is calculated relative to the risk-neutral
measure Q (described below) rather than the subjective measure P (because
the same portfolio (x0, x) results in zero risk under both P and Q). Suppose,
instead, that σn+1 6= 0. Is there a risk-neutral measure Q under which the
risk-minimising price equals the equilibrium price?

Under P we have:

S̄(1) = µ̄ + C̄Z = µ̄ + C̄SZ̄.

For an arbitrary vector λ̄ we can write this as:

S̄(1) = µ̄− C̄Sλ̄ + C̄S(Z̄ + λ̄)

= µ̄− C̄Sλ̄ + C̄S ¯̇Z

where ¯̇Z = Z̄ + λ̄.
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Let Q be the measure equavalent to P under which the Żi are i.i.d. ∼ N(0, 1).
In particular, choose λ1, . . . , λn such that, for i = 1, . . . , n:

EQ[Si(1)] = µi −
n+1∑
j=1

cijλj

= rS̃i(0)

⇒ µ̂− ĈSλ̂ = r ˆ̃S(0)

⇒ λ̂ = (CS)−1(µ̂− r ˆ̃S(0))

= (CS)−1 (µ̂− (µ̂− αV û− αCδ − αun+1Cσ))

= α
(
(CS)′û + δ̂ + σ̂un+1

)
. (3.18)

Since EQ[Si(1)] = rS̃i(0) for i = 1, . . . , n, it follows that Q is a risk-neutral
measure (with respect to the existing securities). We call λi the market price
of risk with respect to risk i. It can be seen that the market prices of risk
depend upon:

• investors’ risk preferences (more risk averse implies higher absolute mar-
ket price of risk);

• uncertainty in individual security returns (more risky implies higher ab-
solute market price of risk);

• liability risks (the more useful an asset is for hedging investors’ liabilities
the lower is the absolute market price of risk);

• the amount of new security to be issued (more units to clear in the market
pushes down prices implying higher absolute market prices of risk).

The concept of the market price of risk is somewhat abstract. A related and
well understood quantity is the risk premium on each security: that is, the
excess expected return over the risk-free rate. In the present case this is:

ρ̂ = Λ̂−1
S

(
µ̂− rŜ(0)

)
= Λ̂−1

S CSλ̂ (3.19)

so there is an explicit link between risk premia and the market prices of risk.
In particular, the market price of risk represents the excess expected return per
unit of risk for each source of risk Z1, Z2, . . ..

For the moment let λn+1 be a general market price of risk for risk n + 1. Let
us revisit the risk-minimisation problem, but this time measure risk relative to
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the risk-neutral measure Q:

Minimise EQ


(

Sn+1(1)− x0r −
n∑

i=1

xiSi(1)

)2



where EQ represents expectation under the measure Q. This is equivalent to
minimisation first of the variance under Q of Sn+1(1)−x′S(1) and then choosing

x0 so that EQ

[
Sn+1(1)− x0r − x′Ŝ(1)

]
= 0.

Now:

Sn+1(1)− x′Ŝ(1) = µn+1 + σ̄′Z̄ − x′
(
µ̂ + CSẐ

)
= µn+1 − σ̄′λ̄ + σ̄′ ¯̇Z − x′

(
r ˆ̃S(0) + CS ˆ̇Z

)
(3.20)

⇒ V arQ

[
Sn+1(1)− x′Ŝ(1)

]
= (σ′ − x′C)(σ′ − x′C)′

⇒ d

dx
V ar

[
Sn+1(1)− x′Ŝ(1)

]
= 2V x− 2Cσ = 0

⇒ x = V −1Cσ as before (3.21)

EQ

[
Sn+1(1)− x′Ŝ(1)

]
= 0

⇒ x0 =
1

r

(
µn+1 − σ̄′λ̄− x′(µ̂− CSλ̂)

)
=

1

r

(
µn+1 − σ′C ′V −1µ̂− σn+1λn+1

)
(3.22)

Hence π = x0 + x′ ˆ̃S(0)

=
1

r

(
µn+1 − σ′C ′V −1µ̂− σn+1λn+1

)
+σ′C ′V −1 (µ̂− αV û− αCδ − αun+1Cσ)

=
1

r

[
µn+1 − σn+1λn+1 − ασ̂′(CS)′û− ασ̂′δ̂ − αun+1σ̂

′σ̂
]
. (3.23)

In order for equation (3.23) to match the equilibrium price (see equations (3.11)
and (3.12)) we therefore require:

λn+1 = α(δn+1 + un+1σn+1). (3.24)

It follows that the equilibrium and risk-minimising prices do not coincide unless
one of the following holds:



3 ISSUE OF A NEW SECURITY 19

1. Minimise under P and α = 0.

An uninteresting case!

2. Minimise under P and δn+1 = σn+1 = 0.

Thus the new security does not help with liability hedging and it can be
hedged perfectly using existing securities. Again this is a rather uninter-
esting case.

3. Minimise under P and δn+1 = un+1 = 0.

As un+1 increases, prices must fall in order for the market to clear. This
result tells us that if un+1 = 0 (and δn+1 = 0) then no risk premium
is required other than that which derives from consistency with existing
securities.

4. Minimise under Q with:

λ̂ = α
(
(CS)′û + δ̂ + σ̂un+1

)
and λn+1 = α (δn+1 + un+1σn+1)

Case 4 offers the best solution. However, in practice it will be difficult for
investors to identify both the total liability risk δn+1 and the aggregate risk-
aversion parameter α.

3.3 Different investor viewpoints

We conclude this section with a brief treatment of risk minimisation when
investors have different points of view.

Consider investor k. From his point of view the risk minimising portfolio under
his subjective probability measure Pk takes:

x(k) = V −1
k Ckσk (3.25)

x(k) =
1

r

(
µ

(k)
n+1 − σkC

′
kV

−1
k µ̂k

)
(3.26)

⇒ π(k) = x
(k)
0 + x(k)′Ŝ(0) (3.27)

and π̃(k) = x
(k)
0 + x(k)′ ˆ̃S(0) (3.28)

where π(k) and π̃(k) represent investor k’s risk-minimising estimates of the price
of the new security using the prices of the existing securities before and after

respectively. Investors may find it difficult to estimate the new prices ˆ̃S(0) so
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we will concentrate in later sections of this paper on π(k) rather than π̃(k). (In

any event ˆ̃S(0) turns out to be quite close, in general, to Ŝ(0).)

These prices are subject to all of the causes described in Section 3.2. How-
ever, the differences in individual parameter estimates causes further strains.
In particular, different investors will come up with different estimates of the
price of the new security. We can see (and this is verified in Section 5) that dif-
ferences between investors’ estimates for µn+1 can potentially cause significant
differences between the π(k).

4 Company holdings in the new security

4.1 Companies as additional investors

In the previous development we assumed that the new security would be held
only by the investors. Suppose that the companies are allowed to borrow at
the risk-free rate to invest in the new security, with company i holding viui

units. Then Si(1) becomes Ṡi(1) = Si(1) + vi(Sn+1(1)− rS̃n+1(0)). If investor
k invests proportion ṗki in asset i (for i = 1, . . . , n + 1) his wealth at time 1 is:

W̃k,1 = W̃k0

[
r +

n∑
k=1

ṗki

(
Ŝi(1)

Ṡi(0)
− r

)
+ ṗk,n+1

(
Sn+1(1)

S̃n+1(0)
− r

)]

= W̃k0

[
r +

n+1∑
k=1

p̂ki

(
Si(1)

S̃i(0)
− r

)]

where p̂ki = ṗki for i = 1, . . . , n, and p̂k,n+1 = p̃k,n+1 +
∑n

k=1 p̃kiviS̃n+1(0)/S̃i(0).

We can therefore equally well optimise over ṗk or p̂k with the same optimal

utility for a given set of prices ¯̃S(0). Furthermore, the total demand for units
of the new security held by companies and investors at the optimal solution will
not be affected by the change in rules. It follows that, from the investors’ point
of view, it is irrelevant whether or not the company holds the new security (a
point of view expressed by Exley, Mehta & Smith, 1997.)

4.2 Fair value of insurance-related liabilities:
companies as the issuing agency

A special case of this is where the new security is issued by one of the existing
companies (or securities). This is equivalent to issue by an external agency with
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un+1 = 0 as the issuing company takes on the opposite holding to investors in
the new security.

This then is what is of critical interest to actuarial advisers. For example,
suppose a quoted insurance company wishes to determine the fair value of part
or all of its liabilities. These liabilities could be divided into units and placed
as securities in the market with the insurer taking the opposite holding (that
is, acting as counter party). The key point to note is that the fair valuation
problem is simplified in most cases (that is, quoted companies) by the fact that
the net number of units issued, un+1, is zero. Furthermore, the arguments in
Section 4.1 indicate that the company itself can take any long or short position
it wishes without affecting the resulting prices: in particular, it can choose to
eliminate precisely a particular risk.

Consider the special case where all investors agree on the parametrisation of
the returns model. We have seen that un+1 = 0 implies that the introduction
of the new insurance-linked security has no impact on the prices of the existing
securities. This means that the capital structure of the company has no effect
on the value of the company. (This is just a statement of the Modigliani-Miller
Theorem.)

On the other hand, we have seen that if investors do not agree on the parametri-
sation then, even if un+1 = 0:

• the securitisation of the insurance liability will have an impact on the
prices of existing securities;

• in particular, a change in the capital structure of the company will have
an effect on its value.

A key problem which remains in either case is the establishment of the market
price of risk for risk n + 1.

4.3 Does splitting a company add value?

Another question that can be asked is does splitting a company into two parts
add value? As with previous questions it may be argues that the split will allow
investors to improve their expected utility and that the ensuing reorganisation
of portfolios might push up prices. However, again the arguments in Section
4.1 tell us that splitting a company into two parts (which is equivalent to selling
off a liability) will only have an effect on prices if investors do not agree on the
parametrisation of the returns model.
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5 Numerical examples

We will now consider some numerical examples to illustrate these results and
investigate what the impact is of different investor viewpoints and the accuracy
of risk-minimising prices.

Suppose that there are initially two risky assets with one further asset to be
added. There are five investors each initially with wealth C 100,000 at time 0.
We will consider first the case where all investors agree on the parametrisation
of the returns model. Thus:

• µi = 100 for i = 1, 2, 3;

• (V̄ )ij = 400 if i = j and = 100 if i =6= j;

• u1 = 2000, u2 = 1000;

• r = 1.05 (and is observable).

The risk-aversion parameters for the five investors are α1 = 2 × 10−5, α2 =
4 × 10−5, α3 = 6 × 10−5, α4 = 8 × 10−5, α5 = 10 × 10−5. These very small
values are better understood when we note that the corresponding values for
the relative risk aversion factor (wU ′′

k (w)/U ′
k(w)) evaluated at the initial wealth

are 2, 4, 6, 8 and 10 respectively (reasonable values for private investors).

Experiment 1: no personal liabilities Suppose first that all investors
have γk = 0 and δk = 0.

The results are given in Table 1.

We can make the following observations:

• Security 1 has a higher risk premium because of the larger number of
units in issue.

• All investors hold twice as many units of security 1 as security 2. This
is in proportion to the market portfolio (reflecting the standard Capital
Asset Pricing Model (CAPM) result).

• No investors go long or short in the new security. However, if the market
price was less than 92.74 all investors would want to go long in security
3.

• Since no investors take a position in the new security their expected
utilities are unaffected by its introduction.



5 NUMERICAL EXAMPLES 23

Table 1

Risk Investor k
Price prem. k = 1 2 3 4 5

Before Holding (units)
Security 1 87.73 8.99% 875.91 437.96 291.97 218.98 175.18
Security 2 90.23 5.82% 437.96 218.98 145.99 109.49 87.59
Expected
utility ×106 -113943 -14235 -1778 -222 -28
After Holding (units)
Security 1 87.73 8.99% 875.91 437.96 291.97 218.98 175.18
Security 2 90.23 5.82% 437.96 218.98 145.99 109.49 87.59
Security 3 92.74 2.83% 0.00 0.00 0.00 0.00 0.00
Risk-min est.
of Sec. 3 price 92.74 92.74 92.74 92.74 92.74
Expected
utility ×106 -113943 -14235 -1778 -222 -28

• The investors’ estimates of the risk minimising price for the new security
are all accurate. This reflects the fact that δk = 0 for all k and u3 = 0.

Experiment 2: non-zero, risky personal liabilities Suppose now that
the investors have personal liabilities which are risky and correlated with the
securities, but also have independent risks.

The liability risks for the five investors are:

The results are given in Table 3.

We can make the following observations:

• The risk premia are higher than before. This reflects the fact that, ev-
erything else being equal, investors want to go short in both securities in
order to match their liabilities.

• Investors no longer hold exactly twice as many units of security 1 as
security 2. The balance has shifted away from this ratio to reflect the ad-
ditional use of the two securities to match liabilities. This is one example
of how the standard CAPM result breaks down.

• A variety of positions are taken in the new security. These reflect the
sign and magnitude of δ

(k)
3 .
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Table 2

Investor, k
1 2 3 4 5

γk -1000 -1000 -1000 -1000 -1000

δ
(k)
i

Risk i = 1 2000 2000 2000 1400 200
2 200 200 200 1400 2000
3 2000 500 1000 2000 -2500
4 2000 2000 0 0 0
5 0 0 2000 0 0
6 0 0 0 2000 0
7 0 0 0 0 2000
8 0 0 0 0 0

Table 3

Risk Investor k
Price prem. k = 1 2 3 4 5

Before Holding (units)
Security 1 86.46 10.66% 922.30 412.44 242.49 203.01 219.77
Security 2 89.27 7.02% 518.11 253.89 165.82 59.80 2.38
Expected
utility ×106 -112340 -14333 -1836 -237 -30
After Holding (units)
Security 1 86.46 10.66% 929.53 410.78 248.41 220.63 190.64
Security 2 89.27 7.02% 525.34 252.24 171.74 77.41 -26.73
Security 3 91.82 3.91% -36.17 8.27 -29.63 -88.11 145.64
Risk-min est.
of Sec. 3 price 92.29 92.29 92.29 92.29 92.29
Expected
utility ×106 -112330 -14333 -1835 -235 -29
Extra cash 4.48 0.47 9.03 106.44 363.47
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• All investors have been able to use the new security to increase their
expected utility. The final row of the table gives the extra money required
and invested in cash under the “before” scenario to raise the expected
utility to the “after” scenario expected utility. It represents the costs to
the investor of the non-existence of security 3. We can see that size of the
extra cost reflects the reletive holding of security 3 relative to securities 1
and 2. In this experiment, although expected utilities improve, the extra
costs are relatively small relative to the investor’s total wealth.

• The investors have overestimated the likely price of the new security using
risk minimisation. This reflects the fact that

∑m
k=1 δ

(k)
3 > 0, meaning that

investors prefer in aggregate to sell the new security to improve their
liability matching.

Experiment 3: different investor parameters We next assume that in-
vestors have different estimates of the covariance matrix V̄ for the security
returns. (We will look at the additional effect of different µi in the next exper-
iment.)

The investors’ estimates of this matrix are:4

Investor 1: V̄1 =


 477.8596 104.7094 118.044

104.7094 339.4282 95.7807
118.044 95.7807 356.4805


 (5.1)

Investor 2: V̄2 =


 384.16 88.788 88.984

88.788 333.8109 88.7112
88.984 88.7112 410.631


 (5.2)

Investor 3: V̄3 =


 325.4416 100.4828 90.3804

100.4828 468.253 122.0007
90.3804 122.0007 438.9757


 (5.3)

Investor 4: V̄4 =


 509.8564 109.9646 109.0614

109.9646 497.6498 104.9419
109.0614 104.9419 410.9654


 (5.4)

Investor 5: V̄5 =


 410.0625 84.8475 106.11

84.8475 556.7245 111.1204
106.11 111.1204 416.6257


 (5.5)

The results are given in Table 4.

We can make the following observations:

4These estimates were generated using a relative standard deviation of 10% around the
true values in the Cholesky decomposition of V̄ .
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Table 4

Risk Investor k
Price prem. k = 1 2 3 4 5

Before Holding (units)
Security 1 86.03 11.23% 790.48 461.48 352.46 166.98 228.59
Security 2 89.59 6.61% 590.40 283.33 102.57 37.01 -13.31
Expected
utility ×106 -112983 -14139 -1803 -240 -29
After Holding (units)
Security 1 86.02 11.25% 801.65 460.01 361.06 180.27 197.01
Security 2 89.60 6.60% 598.75 279.21 109.93 49.19 -37.08
Security 3 91.77 3.97% -46.98 14.20 -36.66 -72.87 142.31
Risk-min est.
of Sec. 3 price 92.16 92.34 92.08 92.64 92.24
Expected
utility ×106 -112967 -14138 -1801 -239 -28
Extra cash 6.58 1.45 15.12 75.59 361.10

• We immediately note that the prices of securities 1 and 2 are both affected
by the introduction of the new security. However, the size of this effect
is tiny.

• Different investors now have different risk-minimising price estimates for
the new security. This reflects the fact that they will have different risk-
minimising portfolios as a consequence of different covariance matrices.
The range of these risk-minimising prices is not too great. This is a
promising suggestion that risk-minimisation might provide a good ap-
proximation to the fair value.

These price estimates are all higher than the equilibrium price. This
reflects the desire of investors to match their liability risks, which is re-
sulting in a net sale of security 3.

• The extra cash required for each investor is similar in magnitude to Ex-
periment 2.

• The optimal holdings in the various securities is significantly altered by
the introduction of different investor covariance estimates. This is easier
to observe when the δk = 0 (not given here). This is another example of
a break down of the standard CAPM result that all investors have risky
investments in proportion to the market portfolio.
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Table 5

Risk Investor k
Price prem. k = 1 2 3 4 5

Before Holding (units)
Security 1 85.22 – 699.25 434.90 430.41 184.23 251.20
Security 2 90.58 – 549.16 362.22 97.56 35.69 -44.62
Expected
utility ×106 -115224 -13997 -1737 -238 -29
After Holding (units)
Security 1 85.20 – 676.07 446.00 443.44 205.63 228.85
Security 2 90.57 – 521.42 374.13 109.78 56.06 -61.40
Security 3 93.02 – 127.20 -53.97 -56.72 -118.24 101.73
Risk prem.
Security 1 10.22% 11.19% 13.09% 12.15% 12.12%
Security 2 6.02% 7.60% 6.91% 6.65% 4.83%
Risk-min est.
of Sec. 3 price 94.45 92.62 92.88 92.60 92.05
Expected
utility ×106 -115108 -13985 -1733 -234 -28
Extra cash 48.08 20.83 36.19 199.02 184.54

Experiment 4: different investor parameters In this experiment we
allow investors to have, in addition to experiment 3, different estimates of the
mean returns. These are:

Investor 1: µ1 = (98.19, 100.56, 102.11)′ (5.6)

Investor 2: µ2 = (99.02, 101.99, 100.48)′ (5.7)

Investor 3: µ3 = (100.64, 101.36, 101.23)′ (5.8)

Investor 4: µ4 = (99.84, 101.13, 100.10)′ (5.9)

Investor 5: µ5 = (99.81, 99.48, 99.69)′ (5.10)

The results are given in Table 5.

We can make the following observations:

• The investors’ estimates of the risk-minimising price for the new security
now vary quite significantly. However, this is primarily a consequence
of differences between investors’ estimates of the expected return on the
new security.

However, this is an important consideration in the establishment of fair
value. It does not invalidate the use of risk-minimising prices. However,
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it does indicate that any estimate for the price for security 3 is subject to
significant parameter risk, regardless of whether or not a sound and ob-
jective method is being used to assess fair value. In particular, no investor
can anticipate what estimates of µ3 will be used by other investors.

• The risk premia on assets 1 and 2 now vary between investors. As a
consequence these have been presented differently in the table.

• The extra cash required for each investor has changed significantly from
the previous experiment. This reflects the changes in risk premia esti-
mated by each investor.

6 Conclusions

We have shown how we can use equilibrium theory as a means of establishing
the fair value of a liability. We have also discussed the use of risk-minimisation
as a method for deriving a market price.

For the simple model investigated we have discussed how the equilibrium price
relates to the risk-minimising price. We have seen that there is a strong link
between the two, but difference exist which are difficult to overcome. The main
factors causing differences between the two prices are:

• different estimates of security-returns parameters between investors, es-
pecially the mean return on the new security;

• the existence of personal, risky liabilities for each investor (which affects
the risk premium on the new security);

• the aggregate risk aversion factor (which is difficult to estimate).

Of these the mean return on the new security is the critical reason for differences
between risk-minimising prices and the equilibrium (or fair) value.

As side results we have reminded ourselves of two significant flaws in the central
result in the basic form of the Capital Asset Pricing Model. We have also seen
that, although the Modigliani Theorem is not true in general, its central result
seems to be quite robust.

This paper just scratches the surface of the issue of fair valuation and it would
seem that there is a considerable amount of work still to be done.
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Appendix A: Notation

Matrices

Consider the n× (n + m + 1) matrix A = (aij)
n (n+m+1)

i=1, j=1 . Then:

AS = (aij)
n n

i=1, j=1 that is, a square matrix deleting the final m + 1 columns

Ā = (aij)
(n+1) (n+m+1)
i=1, j=1 the extension of A by one extra row

ĀS = (aij)
(n+1) (n+1)
i=1, j=1 that is, a square matrix deleting the final m columns

In the main text A is usually the volatility matrix C or Ck. In addition we
have the n× n covariance matrix V = CkC

′
k and its extension V̄ = C̄kC̄

′
k.

Vectors

Let n, m be constants and x′ = (x1, . . . , xn+m+1). Then:

x̂′ = (x1, . . . , xn)

x̄′ = (x1, . . . , xn+1)

Λ̂x = diag(x̂) the diagonal matrix constructed from x̂

Λ̄x = diag(x̄)

In the main text x is usually S(t), u, δ, σ, µ, ρ or γ.

Revised values after introduction of new security

Certain vectors or matrices change their value after the introduction of a new
security. The revised value is indicated by the placing of a tilde over the vector

or matrix: for example,
˜̂
S(0),

˜̂
ΛS = diag

( ˜̂
S(0)

)
.

Appendix B: Matrix results

Suppose that C is an n × (n + m + 1) lower triangular matrix of rank n. Let
C̄ be the lower-triangular extension of C to n + 1 rows and of rank n + 1.

Lemma B.1

(a) CS−1
= A is lower triangular.

(b) C̄S−1
= Ā is lower triangular with (Ā)ij = (A)ij for i, j ≤ n.

Proof by calculation of A and Ā:
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(a) Let the columns of CS be denoted by the column vectors c1, . . . , cn with
c′i = (0, . . . , 0, cii, . . . , cni).

Let the rows of A be denoted by the row vectors a1, . . . , an with ai = (ai1, . . . , aii, 0, . . . , 0).

The lower triangular forms of A and CS ensure that aicj = 0 for all j > i.

Also we require:

aici = aiicii = 1 for all i

and aicj =
i∑

k=j

aikckj = 0 for all j < i

Thus, for each i we calculate aii, ai,i−1, . . . , ai1 recursively.

(b) Let the columns of C̄S be denoted c̄1, . . . , c̄n, c̄n+1 with the first n elements
of c̄i matching ci for i = 1, . . . , n.

Let the rows of Ā be denoted ā1, . . . , ān, ān+1. where āi = (ai1, . . . , aii, 0, . . . , 0)
extends the row vector ai with the addition of a 0. It is straightforward to see
that āic̄i = 1 for i = 1, . . . , n and āic̄j = 0 for i, j = 1, . . . , n and i 6= j. It is
also straightforward to see that āic̄n+1 = 0 for i = 1, . . . , n.

Finally the elements of ān+1 are chosen using a backwards recursion as in (a)
to ensure that ān+1c̄n+1 = 1 and ān+1c̄i = 0 for i = 1, . . . , n.

Corollary B.2

Let b̄ = ā′n+1 and let b̂ be its first n elements. Suppose V = CC ′ and V̄ = C̄C̄ ′.

(a)

V̄ −1 =




|
V −1 + b̂b̂′ | bn+1b̂

|
− − −−−−−− + −−−

bn+1b̂
′ | b2

n+1


 =




|
V −1 | 0

|
− − − + −−

0 | 0


 + b̄b̄′

(b) Let σ = (cn+1,1, . . . , cn+1,n+1, 0, . . . , 0)′ be the transpose of the (n + 1)th row
of C̄. Then:

bn+1 =
1

σn+1

, and b̂ = − 1

σn+1

(CS)′
−1

σ̂


