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Abstract

We propose a structure for modelling simultaneously both nominal and index-linked
bond prices and consumer price inflation with a view to application in the management
of long-term interest-rate risk. The model exploits the framework developed by Flesaker
& Hughston (1996) which provides a straightforward means of ensuring that nominal
rates of interest remain positive.

Price inflation is driven by the difference between short nominal and index-linked interest
rates.

Equities are modelled by considering first total returns. These are taken to equal the
risk-free rate of interest plus a risk premium plus a volitility term. The risk premium,
dividend yields and dividend growth are all modelled on a basis which is consistent
with this starting point and with one another. The model takes into account various
interactions between these variables and with other economic variables in the term-
structure model.

The structure of the model allows us to include some factors which ensure realistic
modelling of short-term dynamics while other factors have a much longer-term impact.
Thus we are able to model much more effectively the long-term cycles in interest rates
which we have observed, for example, in the UK over the last 100 years or so.

Keywords: multifactor; positive interest; Ornstein-Uhlenbeck; time-homogeneous; nom-
inal rates; real rates; inflation.
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1 Introduction

This paper describes the development of a stochastic model for the combined term struc-
ture of:

• rates of interest on fixed-interest bonds;

• rates of interest on index-linked bonds;

• consumer price inflation.

The aim underlying the development of this model is to produce a structure which
is arbitrage free and which produces both reasonable short and long-term dynamics.
In particular, the model was developed for use as a tool in long-term risk management
problems (for example, the model would be appropriate for the investigation of problems
arising in life insurance or pensions) while allowing dynamic portfolio management over
shorter time scales including the use of bond derivatives. With a few exceptions (for
example, Tice & Webber, 1997) arbitrage-free term-structure models have tended to
be driven by short-term risk management problems (for example, the pricing of bond
derivatives).

Much of the detailed development in the paper (that is, in Section 2) concentrates
on the fixed-interest model. This exploits the framework developed in recent years by
Flesaker & Hughston (1996) (FH). (The FH approach was subsequently generalised by
Rutkowski, 1997, and Rogers, 1997.) This approach is similar to that of Heath, Jarrow
& Morton (1992) (HJM) in the sense that they describe a general framework for the
development of arbitrage-free term-structure models. Both frameworks work with more
readily observable quantities such as forward rates and bond prices rather than the risk-
free rate of interest. The FH framework, in contrast to HJM, provides a relatively simple
means of ensuring that nominal interest rates always remain positive. Here we use the
FH framework to develop a time-homogeneous model which is driven by a multifactor
Ornstein-Uhlenbeck (OU) process. By using appropriate parameter values, one or more
of the OU factors can be set up to create long-term cycles in the term structure mimicking
observed behaviour in the UK and elsewhere over the last 100 years. Without this feature
it becomes very difficult to model, in an arbitrage-free framework, the larger fluctuations
we have observed in, for example, long-term par yields.

In Section 3 we describe a two-factor model for real rates of interest as might be inferred
from index-linked bond prices. This model is a generalisation of the Vasicek (1977)
model (that is, a special case of the model proposed by Langetieg, 1980). A model for
consumer price inflation is developed in which the rate of price inflation is equal to the
difference between nominal and real short-term rates of interest adjusted for an inflation
risk premium (to reflect a market preference for index-linked assets) and then subject to
a zero mean error.
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In Section 4 we discuss specific characteristics of the model and, in particular, justify
why this model might be preferred to other multi-asset-class models used for long-term
risk management.

The paper finishes with a discussion of the calibration of the fixed-interest part of the
model.

1.1 A note on notation

For i = 1, 2, 3 let Zi(t) be ni dimensional Brownian motion under the real-world mea-
sure P . Corresponding processes under the equivalent risk-neutral measure (Q) and
terminal measure (P∞) (where this is required) are denoted by Z̃i(t) and Ẑi(t) respec-
tively. The filtration generated by Zi(t) is denoted by F i

t . The filtration generated by

{Z1(t), . . . , Zi(t)} is denoted by F (i)
t . Z̃i(t) and Zi(t) are linked by the market price of

risk λi(t):

dZ̃i(t) = dZi(t) + λi(t)dt
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2 A model for fixed-interest bond prices

2.1 Background

In this section we propose a model which makes use of the framework developed by
Flesaker & Hughston (1996), Rutkowski (1997) and Rogers (1997). Thus zero-coupon
bond prices P (t, T ) are driven by the following family of stochastic processes.

Let M(t, s) for 0 ≤ t ≤ s < ∞ be a family of strictly positive stochastic processes over
the index s which are martingales with respect to t under some probability measure P∞.
That is, given s, for t < u < s, EP∞ [M(u, s)|Ft] = M(t, s). Furthermore, we define
M(0, s) = 1 for all s and assume that for each s, M(t, s) is a diffusion process adapted
to a finite (say n1) dimensional Brownian motion, Ẑ1(t) (under P∞).

Zero-coupon bond prices are defined as

P (t, T ) =

∫∞
T M(t, s)φ(s)ds∫∞
t M(t, s)φ(s)ds

(1)

A more general form of this framework was proposed by Rutkowski (1997) and Rogers
(1997). Rutkowski (1997) defines

P (t, T ) =
EP∞ [AT | Ft]

At

where At is a strictly-positive supermartingale under the measure P∞. The Flesaker &
Hughston (1996) form which we will use in this paper is a special case of this framework,
where At =

∫∞
t M(t, s)φ(s)ds, M(t, s) is a positive martingale under P∞, and φ(s) > 0

for all s. Rutkowski (1997) and Rogers (1997) demonstrate that models of this general
type are arbitrage free.

In this section we will make use of the FH formulation (Equation 1).

Since M(0, s) = 1 for all s we may infer that

φ(s) =
∂

∂s
P (0, s)

up to a constant, non-zero scaling factor.

Instantaneous forward rates are then

f(t, T ) = − ∂

∂T
log P (t, T ) =

M(t, T )φ(T )∫∞
T M(t, s)φ(s)ds

⇒ r(t) = f(t, t) =
M(t, t)φ(t)∫∞

t M(t, s)φ(s)ds
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Although we can write down an expression for the short rate, r(t), in this way it is not
possible, in general, to express the dynamics of r(t) in any simple fashion (for example,
like we can with the Vasicek, 1977, model).

We can also write down expressions for bond volatilities which enables us to link the
model into the framework of Heath, Jarrow & Morton (1992). Since M(t, T ) is a mar-
tingale under P∞ for each T , we can write dM(t, T ) = M(t, T )σT

1 (t, T )dẐ1(t). We now
define the vector

V (t, T ) =

∫∞
T M(t, s)φ(s)σ1(t, s)ds∫∞

T M(t, s)φ(s)ds

The dynamics of the zero-coupon bond prices can then be expressed in the form

dP (t, T )

P (t, T )
= r(t)dt + SP (t, T )T

(
dẐ1(t)− V (t, t)dt

)
where SP (t, T ) = V (t, T )− V (t, t)

It follows that the vector SP (t, T ) is the price volatility function with each of its n1

components defining the volatility of the price of a particular bond with respect to each
of the n1 sources of uncertainty.

Since we have expressed the price dynamics in the way given above we can immediately
see that if

Z̃1(t) = Ẑ1(t)−
∫ t

0
V (s, s)ds

then dP (t, T ) = P (t, T )
(
r(t)dt + SP (t, T )T dZ̃1(t)

)
.

Suppose that the function σ1(t, T ) has been defined in such a way that

EP∞

[
exp

(
1

2

∫ t

0
Vi(s, s)

2ds
)]

< ∞ for each i

(for example, see Baxter & Rennie, 1996). Then, by the Cameron-Martin-Girsanov
(CMG) Theorem, there exists a measure Q equivalent to P∞ under which Z̃1(t) is an
n1-dimensional Brownian motion. Given the form of dP (t, T ) we can see that Q is the
usual risk-neutral measure. Provided each σ1i(t, T ) for all t, T > t, is bounded, then
Vi(s, s) must be bounded, so the CMG condition is satisfied.

We are then free to make a further change of measure from Q to the real-world measure
P .
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2.2 A specific multifactor equilibrium model

We have already expressed M(t, T ) in the following way

M(0, T ) = 1 for all T

dM(t, T ) = M(t, T )σ1(t, T )T dẐ1(t)

= M(t, T )
n1∑
i=1

σ1i(t, T )dẐ1i(t)

where Ẑ11(t), . . . , Ẑ1n1(t) are n1 independent Brownian motions under P∞.

Suppose now that σ1i(t, T ) = σ1i exp[−α1i(T − t)]. We have

M(t, T ) = exp

[
n1∑
i=1

{∫ t

0
σ1i(u, T )dẐ1i(u)− 1

2

∫ t

0
σ1i(u, T )2du

}]

= exp

[
n1∑
i=1

{
σ1i

∫ t

0
e−α1i(T−u)dẐ1i(u)− σ2

1i

4α1i

e−2α1i(T−t)
(
1− e−2α1it

)}]

= exp

[
n1∑
i=1

{
σ1ie

−α1i(T−t)X1i(t)−
σ2

1i

4α1i

e−2α1i(T−t)
(
1− e−2α1it

)}]

where X1i(t) =
∫ t

0
e−α1i(t−u)dẐ1i(u) for i = 1, . . . , n1

Now we recognise the X1i(t) as standard Ornstein-Uhlenbeck processes (for example, see
Øksendal, 1998): that is, X1i(t) is the solution to the stochastic differential equation
X1i(0) = 0, dX1i(t) = −α1iX1i(t)dt + dẐ1i(t).

Now suppose that

φ(s) = φ exp

[
−βs +

n1∑
i=1

{
σ1ie

−α1isX̃1i(0)− σ2
1i

4α1i

e−2α1is

}]

for some φ, β and X̃1i(0). Then

∫ ∞

T
φ(s)M(t, s)ds = φe−βt

∫ ∞

T−t
exp

[
−βu +

n1∑
i=1

{
σ1ie

−α1iuX̃1i(t)−
σ2

1i

4α1i

e−2α1iu

}]
du

where X̃1i(t) = X1i(t) + e−α1itX̃1i(0) is also a standard Ornstein-Uhlenbeck process but
starting away from zero. Then we have
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P (t, T ) =

∫∞
T−t H(u, X̃1(t))du∫∞
0 H(u, X̃1(t))du

where H(u, x) = exp

[
−βu +

n1∑
i=1

{
σ1ie

−α1iuxi −
σ2

1i

4α1i

e−2α1iu

}]

Other specific models using Ornstein-Uhlenbeck processes as drivers within this positive-
interest framework have been proposed by Rogers (1997).

2.3 The risk-free rate and forward rates

Applying the general formula in Section 1.1 we see that the forward-rate curve is

f(t, T ) =
H(T − t, X̃1(t))∫∞

T−t H(u, X̃1(t))du

=

{ ∫ ∞

T−t
exp

[
− β {u− (T − t)}+

n1∑
i=1

(
σ1iX̃1i(t)

[
e−α1iu − e−α1i(T−t)

]

− σ2
1i

4α1i

[
e−2α1iu − e−2α1i(T−t)

] )]
du

}−1

=

{ ∫ ∞

0
exp

[
− βv +

n1∑
i=1

{
σ1iX̃1i(t)e

−α1i(T−t)
(
e−α1iv − 1

)

− σ2
1i

4α1i

e−2α1i(T−t)
(
e−2α1iv − 1

) }]
dv

}−1

⇒ r(t) =

{∫ ∞

0
exp

[
−βv +

n1∑
i=1

{
σ1iX̃1i(t)

(
e−α1iv − 1

)
− σ2

1i

4α1i

(
e−2α1iv − 1

)}]
dv

}−1

If we look more closely at the formula for f(t, T ) we can see that as T tends to infinity,
f(t, T ) tends to β: that is, β is the constant long-term forward rate. (Note that Dybvig,
Ingersoll & Ross, 1994, established that under the assumption of no arbitrage a model
for the term-structure of interest rates must have a non-decreasing long-term spot rate.)

The par yield on irredeemable bonds (assuming continuous payment of coupons) is

ρ(t) =
[∫ ∞

0
P (t, t + s)ds

]−1

=

∫∞
0 H

(
u, X̃1i(t)

)
du∫∞

0 uH
(
u, X̃1i(t)

)
du

and this can be developed in the same way as f(t, T ) and r(t) above.
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2.4 Equivalence of P∞ and Q

Recall that Z̃1i(t) = Ẑ1i(t)−Vi(t, t)dt where the Z̃1i(t) and Ẑ1i(t) are Brownian Motions
under the risk-neutral measure Q and the terminal measure P∞ respectively. Here

Vi(t, t) =

∫∞
0 H(u, X̃1(t))σ1ie

−α1iudu∫∞
0 H(u, X̃1(t))du

.

Since H(u, x) > 0 for all u > 0, −∞ < x < ∞, we have Vi(t, t) < σ1i for all t. For

equivalence between P∞ and Q we require EP∞

[
exp

(
1
2

∫ t
0 Vi(s, s)

2ds
)]

< ∞ for each i

(the CMG condition). Since Vi(t, t) is bounded this condition is satisfied.

2.5 Time homogeneity

From the form of H(u, x), and X̃1(t) =
(
X̃11(t), . . . , X̃1n1(t)

)T
we can see that the P (t, T )

are Markov and time homogeneous. As such the model plus knowledge of X̃1(t) gives
us a set of theoretical prices which may differ from those observed. Under the original
no-arbitrage framework (Flesaker & Hughston, 1996) initial observed prices form part
of the input (hence the earlier note that φ(s) = ∂P (0, s)/∂s) but this results in the loss
of time homogeneity. Both approaches have their own merits. Here the intention is that
the number of factors, n1, should be large enough to ensure that once the X̃1i(t) have
been estimated there is a close correspondence (but not exact) between theoretical and
observed prices for all t. It can then be argued that frictions in the market such as
transaction costs and buying and selling spreads prevent exploitation of the price errors.

2.6 Practical considerations

The structure of this model is such that only a limited number of random factors (X̃1i(t)
for i = 1, . . . , n1) need to be recorded in order for us to be able to reconstruct the
evolution of the term structure through time, calculate prices, returns on assets and
so on. This is in contrast to some no-arbitrage models based upon the Heath-Jarrow-
Morton (1992) framework which require a record of the entire forward rate curve at all
times.

In this the first stage of the development of this model it was not considered necessary
to allow for correlation between the X̃1i(t). This is because the correlations did not
enrich, in any obvious way, the range of shapes of forward-rate curves etc. which could
be generated. This means that it would be unlikely that the more complex model would
fit historical data significantly better than the model without correlations.

The X̃1i(t), for i = 1, . . . , n1, follow a standard Ornstein-Uhlenbeck process under P∞.
The processes are therefore particularly simple to simulate accurately under this measure



3 REAL RATES OF INTEREST, INDEX-LINKED BONDS AND INFLATION 10

given that, for s > t, X̃1i(s) is normally distributed. The nature of the changes of
measure for each of the X̃1i(t) means that the X̃1i(s) given X̃1i(t) are no longer normally
distributed under Q. For simulation purposes, we are interested in the real-world measure
P which has not really been discussed so far. If a constant market price of risk is employed
relative to Q then the same problem exists (that X̃1i(s) is not normally distributed
exists – although over a one-month period the normal approximation is reasonable). As
an alternative we can employ a constant change of drift between Ẑ1(t) and Z1(t). This
ensures that the X̃1i(t) still follow Ornstein-Uhlenbeck processes under P (now with non-
zero means). A less desirable consequence of this, though, is that this does occasionally
allow risk-premia to become negative from time to time. The frequency of this clearly
depends upon the parametrisation of the model and the size of the change of measure
with a low frequency being tolerable for the sake of ease of simulation of the X̃1i(t).

It is necessary to carry out numerical integration in order to compute bond prices and
interest rates on a given date and given X̃1(t). However, this step can be done in a
straightforward and accurate way, since it only involves one-dimensional integration.
Furthermore, with only a little extra work we can use numerical integration to calcu-
late the distribution of many quantities (how straightforward this is depends upon the
relationship between P∞ and P described above).

The calibration of this part of the model is discussed in Section 5.

3 Real rates of interest, index-linked bonds and in-

flation

3.1 Basic principles

We start here by developing some general ideas before proposing a specific model.

Let C(t) be the consumer price index at time t for a particular currency. Let Q(t, T ) be
the price at time t for a payment of C(T )/C(t) at time T (that is, the Q(t, T ) represent
index-linked, zero-coupon prices). We assume for simplicity that C(t) is known at time
t and that index-linked bonds index payments without a time lag. Real rates of interest
can be derived from Q(t, T ) in the following simple ways:

Spot rates: RQ(t, T ) = − 1

T − t
log Q(t, T )

Forward rates: fQ(t, T ) = − ∂

∂T
log Q(t, T )

Real risk-free rate: rQ(t) = RQ(t, t) = fQ(t, t)

In the index-linked bond market there is no real risk-free asset (that is, an asset which
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returns over the interval t to t + dt, for small dt, the increase in C(t) plus the real risk-
free rate rQ(t) with no volatility). In practice, the real forward and spot-rate curves are
inferred from a limited number of index-linked coupon bonds. From either curve we can
infer what rQ(t) would be if it existed.

Here we propose an equilibrium derivation of the Q(t, T ). We start with a diffusion
model for rQ(t) under the risk-neutral measure Q (which we extend from coverage of the
fixed-interest market to the index-linked market) and calculate prices according to the
following formula:

Q(t, T ) = EQ

[
exp

(
−

∫ T

t
rQ(s)ds

) ∣∣∣∣∣ F2
t

]

Under this model we have

dQ(t, T ) = Q(t, T )
(
rQ(t)dt + SQ(t, T )T dZ̃2(t)

)
= Q(t, T )

{(
rQ(t) + λ2(t)

T SQ(t, T )
)
dt + SQ(t, T )T dZ2(t)

}

Here, Z̃2(t) is n2-dimensional Brownian motion under Q, Z̃2(t) is independent of Z̃1(t)

(this assumption can be relaxed easily) and F2
t = σ

(
{Z̃2(s) | 0 ≤ s ≤ t}

)
.

The consumer prices index is a positive process which is declared on a monthly basis.
Here we will model it as a continuous-time diffusion process:

dC(t) = C(t) [µC(t)dt + σ3(t)dZ3(t)]

where Z3(t) (which is n3 = 1-dimensional Brownian motion under the real world proba-
bility measure P ) is independent of Z1(t) and Z2(t).

We will assume that µC(t) is measurable with respect to the filtration, F (2), generated
by Z1(t) and Z2(t): that is, the drift of the price index is determined by past and present
bond prices. (We will see below that under Q the drift is equal to r(t) − rQ(t) under
Q.) Furthermore, we will assume that σ3(t) is small but non-zero. This reflects the
assumption that C(t) is a commodities index and that at least some of the individual
commodities making up the index have prices which change in an unpredictable way.
The requirement that σ3(t) > 0 also enables inflation to have different drifts under the
real-world and risk-neutral measures.

Now the Q(t, T ) do not give the prices of tradeable assets, since the definition of the
payment at T is continually being changed. On the other hand, if we define L(t, T ) =
C(t)Q(t, T ), then the L(t, T ) do represent the prices of tradeable assets since the payment
at T is always C(T ). Then we have



3 REAL RATES OF INTEREST, INDEX-LINKED BONDS AND INFLATION 12

dL(t, T ) = Q(t, T )dC(t) + C(t)dQ(t, T ) + dC(t)dQ(t, T )

= L(t, T ) (µC(t)dt + σ3(t)dZ3(t))

+L(t, T )
{(

rQ(t) + λ2(t)
T SQ(t, T )

)
dt + SQ(t, T )T dZ2(t)

}
+ 0

= L(t, T )
(
(µC(t) + rQ(t) + λ2(t)

T SQ(t, T ))dt + SQ(t, T )T dZ2(t) + σ3(t)dZ3(t)
)

(Independence of Z3(t) and Z2(t) means that dC(t).dQ(t, T ) = 0.)

Since L(t, T ) is a tradeable asset we can also write its dynamics as

dL(t, T ) = L(t, T )
(
r(t)dt + SL(t, T )T dZ̃ ′(t)

)

where dZ̃ ′(t) =

(
dZ̃2(t)

dZ̃3(t)

)

and SL(t, T ) =

(
SQ(t, T )

σ3(t)

)

It follows, by recalling that dZ̃i(t) = dZi(t) + λi(t)dt, that

r(t) = µC(t) + rQ(t)− λ3(t)σ3(t)

⇒ µC(t) = r(t)− rQ(t) + λ3(t)σ3(t)

from which we see that dC(t) = C(t)
[
(r(t)− rQ(t)) dt + σ3(t)dZ̃3(t)

]
.

It is reasonable to discuss the choice of λ3(t) at this point. Investors are generally more
interested in real returns rather than nominal returns, especially where inflation is a
relatively uncertain process. We can conjecture, therefore, that if a real risk-free asset
existed then it would have a lower expected return than a nominal risk-free asset. As a
consequence µC(t) should be less than r(t) − rQ(t). This means that the market price
of inflation risk, λ3(t), should be less than zero (if σ3(t) > 0). An appropriate choice of
λ2(t) will ensure that longer-dated, risky, index-linked bonds give the right level of risk
premium over nominal cash and relative to fixed-interest bonds.

3.2 A specific model for index-linked bond prices

We consider here a two-factor equilibrium model for index-linked prices which is a gen-
eralisation of the Vasicek (1977) model. A similar approach to fixed-interest bond prices
has been taken, for example, by Langetieg (1980). The present model is also a special
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case of that developed by Tice & Webber (1997) for the nominal risk-free rate (by taking
their third factor p(t) to be identically equal to zero).

Suppose that

drQ(t) = −α21 (rQ(t)−mQ(t)) dt + σ21dZ̃21(t)

where dmQ(t) = −α22 (mQ(t)− µQ) dt + σ22dZ̃22(t)

or dyQ(t) = −AQ (yQ(t)− µ̃Q) + SQdZ̃2(t)

where yQ(t) = (rQ(t),mQ(t))T

µ̃Q = (µQ, µQ)T

AQ =

(
α21 −α21

0 α22

)

SQ =

(
σ21 0
0 σ22

)

The process mQ(t) is a standard Ornstein-Uhlenbeck process with mean-reversion level
µQ. This process should itself be interpreted as the local mean reversion level of the
main process rQ(t). Superficially this model looks like the Hull & White (1990) model,
but in their development mQ(t) is a deterministic function which is determined by the
initial set of prices Q(0, T ).

Under this model we find that

Q(t, T ) = exp [AQ(T − t)−BQ1(T − t)rQ(t)−BQ2(T − t)mQ(t)]

where BQ1(s) =
1− e−α21s

α21

BQ2(s) =
α21

α21 − α22

[
1− e−α22s

α22

− 1− e−α21s

α21

]

AQ(s) = (BQ1(s)− s)

(
µQ −

σ2
21

2α2
21

)
+ BQ2(s)µQ −

σ2
21BQ1(s)

2

4α21

+
σ2

22

2

[
s

α2
22

− 2
(BQ2(s) + BQ1(s))

α2
22

+
1

(α21 − α22)2

(1− e−2α21s)

2α21

− 2α21

α22(α21 − α22)2

(1− e−(α21+α22)s)

(α21 + α22)

+
α2

21

α2
22(α21 − α22)2

(1− e−2α22s)

2α22

]
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When we choose the market prices of risk, λ2(t), these should be consistent with λ1(t)
and λ3(t) and our views on the relationship between fixed-interest and index-linked
bonds. For example, we have already noted that short-dated index-linked bonds should
return less than short-dated fixed-interest bonds through the market-price of inflation
risk, λ3(t). This will automatically affect returns on longer-dated bonds in the same
way, but longer-term inflation risks may mean that we wish to have a larger or a smaller
difference between long-dated index-linked and fixed-interest bonds.

4 Structure of the model

In describing this model we can note the following points.

First, the model is Markov. Other approaches (for example, Vector ARMA models)
include non-Markov elements. For example, some variables in the model might depend
upon price inflation over the last two years rather than just the current rate of price
inflation. However, such models can be given a state-space representation, which records
at time t all necessary variables to allow simulation of the observations at time t+1. Such
extended models are Markov in structure even though some elements are not directly
observable in the natural sense. It is a reasonable assumption (although this is not
essential) that current prices take account of all available information: past as well as
present. For example, if the future risk-free rate of interest depends upon rates over
the last two years then current bond prices should reflect this directly meaning that the
relevant history is incorporated into the current set of prices.

Second, the model defines nominal and real interest rates and then inflation is driven
by the difference between the short rates. A more natural construction might start with
inflation and build a term-structure model on top of that (for example, Wilkie, 1995).
The present model is Markov and so inflation could be described at the top level and
bond prices below that. However, the resulting formulation of the model would look
much less compact than it is in its present form.

A third point which can be mentioned relates to other models used for long-term risk
management. In some cases such models may provide good forecasts of the medium
and long term while supporting characteristics which give rise to unrealistic short-term
predictions: that is, compared to predictions derived from current market and economic
data (for example, government policy). Under such circumstances, it is common practice
to modify short-term dynamics of the model while keeping the longer term version of
the model unchanged. As an example, it is often the case with the Wilkie (1995) model
that inflation is modelled in the short term using lower volatility and with inflation
expectations modified to reflect current market information. With the current model
we feel that such alterations should not be necessary since the inclusion of a full term-
structure (of interest rates and inflation) means that the model immediately reflects fully
an accurate view of future expectations of interest rates and inflation. Appropriate choice
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of volatilities should then ensure appropriate levels of uncertainty in both short-term as
well as long-term dynamics.

Fourthly the model allows all nominal rates of interest to take values arbitrarily close to
zero. In contrast, some other models with positive interest (for example, the multi-factor
Cox-Ingersoll-Ross model described in Duffie, 1996) impose non-zero lower bounds on
all nominal rates of interest other than the risk-free rate. Such constraints, other than
the lower bound of zero, are rather arbitrary and unjustifiable.

5 Calibration of the fixed-interest model: discussion

The parameters for this model can be approached in a number of different ways. We
will describe two here.

First recall a result of Dybvig, Ingersoll & Ross (1994). They proved that for an interest
rate model to be arbitrage free it is necessary that the infinite-maturity spot rate must
be non-decreasing. In light of this result it becomes a challenge to produce a sufficient
level of volatility on yields-to-redemption on long-dated coupon bonds (as observed, for
example, in the UK) without making short-term interest rates too volatile. Consistent
levels of volatility in both short and long rates can be achieved under the present model
by choosing appropriate values for the α1i and σ1i.

5.1 Historical data

Historical data may be comprised of a mixture of coupon-bond prices, treasury bill rates
and, more recently, prices of zero-coupon bonds, and bond futures and options.

It should be borne in mind that the model was devised with the intention that one or
more of the α1i (say α1n1) should be relatively low. This allows for long-term fluctuations
in the general level of interest rates (particularly those on long-dated coupon bonds). A
consequence of this is that estimated values of the process X̃1n1(t) will be insufficient to
get a reliable estimate of α1n1 . On the other hand, the shapes of the fitted yield curves
on individual dates do depend upon the α1i, so that additional data about α1n1 can be
gained from the range of bond price data.

Full statistical analysis includes modelling how the prices of individual bonds vary rel-
ative to their theoretical prices over time. Here we propose a different approach which
should (although this is not tested) produce almost as effective answers.

Let θ = (β, α1, σ1) be the fixed parameter set and πt be the set of prices on a given
date. The error structure of the πt given θ and X̃1(t) is the subject of studies by Cairns
(1998, 1999) (although those papers use a simpler descriptive model for the forward-rate
curve). Thus, for each t, given θ and πt we can estimate X̃1(t) independent of all other
dates (so-called descriptive modelling). The full likelihood function can be expressed in
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the following way:

L(θ; x1; π) = L1(θ; x1)
∏
t∈T

L2(θ; x1(t); πt) = L1(θ; x1)L2(θ; x1; π)

where T is the reference index, L2(θ; x1(t); πt) is the likelihood function for time t only for
estimation of θ and x1(t), and L1(θ; x1) = L1(θ; {x1(t) : t ∈ T }) is the likelihood function
for the time series x1(t). (This full likelihood assumes that actual-minus-theoretical price
errors for individual stocks on different dates are independent.)

We conjecture that the following estimation procedure gives a good approximation to the
result of full maximisation of L(θ; x1; π) over θ and x1 with substantially less computing
effort:

Stage 1:
For a given θ and t ∈ T , let x̂1(t)(θ) maximise L2(θ; x1(t); πt) over x1(t).

Stage 2:
Maximise L(θ; x̂1(θ); π) over θ where x̂1(θ) = {x̂1(t)(θ) : t ∈ T }.
The curve fitting required in Stage 1 in the context of interest-rate data is known as
descriptive modelling. This is described in more detail elsewhere (Cairns, 1998, 1999).

This conjecture is based upon the following argument:

We know that the size of the dataset π = {πt : t ∈ T } will be much larger than the
size of {x1(t) : t ∈ T }. A consequence of the relatively large quantity of price data is
that any deviation in x1(t) from x̂1(t)(θ) would result in a much more severe penalty
in L2(θ; x1(t); πt (unless the model is over-parametrised) compared to the potential gain
in L1(θ; x1). As a result we conjecture that the result, (θ̄, x̄1), of full maximisation of
L(θ; x1; π) would give x̄1 ≈ x̂1(θ̄).

We should also investigate the adequacy of the model. If the choice of model and, in
particular, the number of factors n1 is acceptable then we should find the following:

• The quality of fit on any particular date, t, given θ̂ and x̂1(t)(θ̂) should not vary
substantially over time. For example, the model should be able to mimic the full
range of yield curves which we observe in the market. Furthermore, the differ-
ences between estimated and observed prices should be sufficiently small to avoid
(because of transactions costs) exploitation of apparent arbitrage opportunities.

• The estimated x̂1(t)(θ̂) should evolve in a way which is consistent with the under-
lying model. Should it be found that the processes x̂1i(t)(θ̂) for i = 1, . . . , n1 are
correlated then the mode should be adjusted accordingly, although this will result
in rather more parameters than we might prefer.
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5.2 Qualitative methods

Alternative methods to calibration involve making prior statements about target quan-
tities such as:

• the mean value of specific interest rates (for example, the 3-month treasury-bill
rate, and 5 and 25-year par yields);

• the level of short-term variability of specified rates;

• the level of long-term variability of specified rates;

• the degree of influence of the various driving factors on different interest rates in
the short and long term.

Parameter values can then be found by analytical methods or by simulation to match as
closely as possible the targets.

The prior statements are typically based upon historical experience but take subjective
views on the relative importance of certain periods of data. Subjective judgements are
especially important for the treatment of factors which are subject to long cycles (that
is, for low α1i) where there is insufficient data.

Consider, for example, par yields on long-dated bonds and irredeemable bonds in the
UK (for example, see Wilkie, 1995, Figure 6.1). Over a period of 100 years or so, these
yields have ranged from about 2.5% up to 15%. The target for 25-year par yields should,
therefore, cover this range with reasonable probabilities of attaining both 2.5% and 15%
over, say, a one-hundred-year period. It is specifically this requirement which dictates
the need for one of the α1i to be relatively low, although the existence of relatively long
cycles suggests this as well.

The non-linear dependence of prices and interest rates upon the X̃1i(t) complicates mat-
ters somewhat. However, we can make some crude approximations based upon the Taylor
expansion which turn out to be quite effective. Thus,

f(t, T ) = f(t, T )(X̃1(t))

≈ f(t, T )(0)

(
1 +

n1∑
i=1

√
2α1idi(T − t)X̃1i(t)

)

≈ β

(
1 +

n1∑
i=1

√
2α1idi(T − t)X̃1i(t)

)

where di(u) =
σ1ie

−α1iu

(β + α1i)

√
α1i

2
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Note that V ar
(√

2α1iX̃1i(t)
)
→ 1 as t → ∞. Thus the long-term effect of X̃1i(t) on

f(t, t + s) is βdi(s) in contrast to the short-term effect of local volatility in X̃1i(t) which
is β

√
2α1idi(s).

The par yield on irredeemable bonds is

ρ(t) = ρ(t)
(
X̃1i(t)

)
=

[∫ ∞

0
P (t, t + s)ds

]−1

=

∫∞
0 H

(
u, X̃1i(t)

)
du∫∞

0 uH
(
u, X̃1i(t)

)
du

≈ β

[
1 +

n1∑
i=1

σ1iβ

(β + α1i)2

√
α1i

2
X̃1i(t)

]

Actual variances turn out to be a bit higher than those predicted by these formulae
because of the non-linear dependence of f(t, T ) on X̃1(t). However, we are provided
with a useful starting point. Furthermore, we can get a useful guide to the relative
importance of each of the X̃1i(t) on various interest rates.

5.3 Example

For illustration, the following parameter values (with n1 = 3) were chosen partly based
on trial and error and partly using the linearisation.

β = 0.05 (this needs to be sufficiently low to get some 25-year
par yields as low as 3% with reasonable frequency)

α1 = (0.4, 0.2, 0.05)
σ1 = (0.7, 0.3, 0.4)

The dependencies quoted in Table 1 can be seen graphically in Figures 1, 2 and 3.

In Figure 1 we have plotted the 25-year par yield over a typical 100-year period: that
is, we can see periods of stable low rates interspersed with bursts of high rates. Figure
1 also plots X̃1i(t) for i = 1, 2, 3 over the same period. This allows us to see that certain
features in the dynamics of the 25-year par yield can be explained by variations in each
of the three driving factors. For example, the broad level of the yield is driven by X̃13(t)
while more local peaks and dips are caused by local peaks and dips in X̃11(t) and X̃13(t).
These short-term dependencies concur (in as far as we can assess this visually) with the
final row of Table 1.

In Figure 2 we plot a longer simulation run and give scatter plots which allow us to get
a better picture of the dependency of 25-year par yields on the X̃1i(t). In particular, we
can see the strong dependency noted in Table 1 (and that this is non-linear) on X̃13(t)
and the weak long-term dependency on X̃11(t) and X̃12(t).
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Long-term Individual S.D. due to Total S.D.
Standard deviations (%) X11 X12 X13 predicted sample
f(t, t + 1

4
) 3.15 1.90 3.16 5.07 5.05

f(t, t + 5) 0.47 0.70 2.46 2.60 3.10
f(t, t + 25) 0.00 0.01 0.91 0.91 1.11

ρ(t) 0.39 0.38 1.58 1.67 2.70(*)
Short-term
Standard deviations (%)
f(t, t + 1

4
) 2.82 1.14 0.99 3.19 4.04

f(t, t + 5) 0.42 0.44 0.78 0.99 1.11
f(t, t + 25) 0.00 0.01 0.29 0.29 0.33

ρ(t) 0.35 0.24 0.50 0.65 1.25(*)

Table 1: Standard deviations driven by individual factors and overall standard devia-
tions for selected rates of interest. Predicted standard deviations estimated using the
linearisation. (*) The sample standard deviation for ρ(t) is, in fact, the sample standard
deviation of the 25-year par yield.

Figure 3 gives equivalent plots for 3-month spot rates. As expected there is a greater
degree of short-term volatility and of long-term variation compared to the 25-year par
yields. We can also see how long-term variability depends in more equal terms on X̃11(t)
and X̃13(t), and (to a lesser extent) X̃12(t). A closer analysis of simulated 3-month rates
shows that short-term rates of interest sometimes experience long periods of low stable
rates and other periods of considerable volatility. Such behaviour is entirely consistent
with that observable in many developed countries. For example, in Germany rates have
been low and stable for many years having gone through a period of considerable turmoil
earlier in the century. Overall 3-month rates could be seen to range from 0.1% (as we have
seen in Japan) up to 45% (consistent with, for example, some East European countries).

An alternative approach to the modelling of these cycles was proposed by Tice & Webber
(1994). Their three-factor equilibrium model incorporates a particular form of non-
linearity which gives rise to an underlying chaotic behaviour with high and low interest-
rate cycles as a means of explaining historical behaviour of interest rates, for example, in
the UK. Here we have demonstrated experimentally that the present model (with linear
underlying processes) apparently can mimic equally well this behaviour.



6 EQUITIES 20

6 Equities

[Note: this Section is presently in draft form and is currently unpublished. This section
of the paper may not be quoted without the explicit permission of the author.]

Let us now turn to equities. We define:

P0(t) = total return equity index

P1(t) = price index without reinvestment of dividends

y(t) = gross dividend yield payable contunuously

D(t) = dividend index

= P1(t)y(t)

First consider the total return and price indices. It’s dynamics can be written using the
following stochastic differential equation:

dP0(t)

P0(t)
= (r(t) + ρp(t)) dt +

n1∑
j=1

σ41j(t)dZ1j(t)

+
2∑

j=1

σ42j(t)dZ2j(t) + σ431(t)dZ3(t) + σ441(t)dZ4(t)

and
dP1(t)

P1(t)
= (r(t) + ρp(t)− y(t)) dt +

n1∑
j=1

σ41j(t)dZ1j(t)

+
2∑

j=1

σ42j(t)dZ2j(t) + σ431(t)dZ3(t) + σ441(t)dZ4(t)

where Z4(t) is a standard Brownian motion under P independent of Z1(t), Z2(t) and
Z3(t). We anticipate that the σ41j(t) will be negative ensuring that instantaneous equity-
price and bond-price changes are positively correlated. Thus we regard the equity price
as being the discounted value of future dividend payments with a fall in this value if
interest rates rise unexpectedly.

Suppose that

dD(t)

D(t)
= µD(t)dt +

n1∑
j=1

σ51j(t)dZ1j(t) +
2∑

j=1

σ52j(t)dZ2j(t)

+σ531(t)dZ3(t) + σ541(t)dZ4(t) + σ551(t)dZ5(t)

where Z5(t) is a standard Brownian motion under P independent of Z1(t), Z2(t), Z3(t)
and Z4(t).
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We can also write

dy(t)

y(t)
= µy(t)dt +

n1∑
j=1

σ61j(t)dZ1j(t) +
2∑

j=1

σ62j(t)dZ2j(t)

+σ631(t)dZ3(t) + σ641(t)dZ4(t) + σ651(t)dZ5(t)

Since y(t) = D(t)/P1(t) we have

dy(t) = dD(t)

(
1

P1(t)

)
+ D(t)d

(
1

P1(t)

)
+ dD(t)d

(
1

P1(t)

)

⇒ µy(t) = µD(t)− r(t)− ρp(t) + y(t)

+
n1∑

j=1

σ41j(t)
2 +

2∑
j=1

σ42j(t)
2 + σ431(t)

2 + σ441(t)
2 −

n1∑
j=1

σ41j(t)σ51j(t)

−
2∑

j=1

σ42j(t)σ52j(t)− σ431(t)σ531(t)− σ441(t)σ541(t) (2)

σ61j(t) = σ51j(t)− σ41j(t)

σ62j(t) = σ52j(t)− σ42j(t)

σ631(t) = σ531(t)− σ431(t)

σ641(t) = σ541(t)− σ441(t)

σ651(t) = σ551(t)

We will assume that dividends grow in a predictable fashion rather than reacting imme-
diately to market volatility: that is, σ5ij(t) = 0 for all i and j.

We will also assume that σ4ij(t) = 0 for i = 2, 3 and all j. This means that volatility
in equity prices arises from two sources: the fixed-interest bond market; and the fourth
source, Z4(t), which is independent of the bond markets and price inflation. Hence:

σ61j(t) = −σ41j(t) for j = 1, . . . , n1

σ641(t) = −σ441(t)

and σ6ij = 0 otherwise

In the following paragraphs we will also make use of the following processes R(t) and
RQ(t) which satisfy the stochastic differential equations:

dR(t) = −αRR(t)dt + dr(t)

dRQ(t) = −αRQRQ(t)dt + drQ(t)
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We propose the following simple models for µD(t) and ρp(t):

µD(t) = θ0 + θ1y(t) + θ2r(t) + θ3 (r(t)− rQ(t)) + θ4R(t) + θ5 (R(t)−RQ(t))

ρp(t) = ρ0 + ρ1y(t) + ρ2r(t) + ρ3rQ(t) + ρ4R(t) + ρ5RQ(t)

+ρ6


 n1∑

j=1

σ41j(t)
2 + σ44(t)

2




We note some points to explain the choice of structure in this model:

• It is often felt that if dividend yields, y(t) are too low (or too high) then effect
of mean reversion in y(t) will mean a fall (or a rise) in equity prices. However, it
can equally well reflect expectations that dividends will rise at a faster rate than
normal. Thus dividend yields will indeed revert to more normal levels without a
fall in prices.

This means that θ1 will be negative.

• The term θ3 (r(t)− rQ(t)) determines the extent to which dividend increases reflect
changes in consumer prices. θ3 will typically lie between 0 and 1. If θ3 equals 1
then dividends fully reflect changes in prices (everything else being equal). More
likely, though, θ3 < 1 meaning that dividends do not keep up with prices in times
of high inflation.

• Changes in equity prices already reflect changes in interest rates to the extent
that the σ41j(t) are less than 0. That is, if interest rates rise then dividends are
discounted at higher rates of interest and equity prices fall. However, there is a
longer-term effect on dividends. Most companies have some form of short-term
debt which is subject to variable short-term rates of interest. Thus, if the risk-free
rate of interest, r(t), rises, interest payments on these loans will rise. This will
reduce the amount of money which will be available for distribution in the form of
future dividends.

Any immediate impact is modelled in the volatility terms σ51j(t) (that is, the
immediate change in prices as a result of a change in discount factors). The effect
on dividends will be longer term, however, and this is reflected in the term θ2r(t).

We require, therefore, that θ2 < 0. The magnitude of θ2 depends upon the extent
to which underlying companies rely on short-term debt.

• We have included R(t) and RQ(t) to reflect the possibility that there is a longer
delay in the effect of changes in r(t) and rQ(t). In particular, we will assume that
θ4 = −θ2. Thus, unanticipated changes in r(t) will not be reflected immediately in
µD(t). Instead they will gradually emerge as R(t) decays to zero.
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Similarly, changes in price inflation r(t)− rQ(t) may only work their way through
to the rate of dividend growth gradually. We allow for some immediate effect on
the growth rate so that −θ3 < θ5 < 0.

• Generally we associate high dividend yields with higher risk premia and low div-
idend yields with greater stability and lower risk premia. In particular, if equity
prices fall sharply (y(t) rises) investors often equate the mean reversion effect in
y(t) with higher price rises: that is, the market will correct some of the fall in
prices. This can be modelled in ρp(t) by taking ρ1 > 0.

• When interest rates are high we expect to see greater volatility and also anticipate
increased risk premia. High risk premia are also associated with recent price falls,
here as a result of an unanticipated rise in interest rates. This means that we
should take ρ2 > 0.

• We will consider the effect of rQ(t) on the risk premium through the factor ρ3 later
as its impact is not so clear.

• It is not obvious that changes in r(t) or rQ(t) should have any delayed impact. We
therefore assume that ρ4 and ρ5 will be equal to zero.

• We expect the risk premium to be larger when prices are more volatile. This is
modelled here by including the term ρ6

(∑n1
j=1 σ41j(t)

2 + σ44(t)
2
)

with ρ6 > 0. We
note though that the level of volatility in equity prices might be linked to the level
of volatility in bond prices which in turn is closely correlated with r(t). To some
extent, then, the risk-return link could be modelled through ρ2 only with ρ6.

We now write:

µy(t) = −ξ1 (y(t)− ȳ(t))

where ȳ(t) = ξ0 + ξ2r(t) + ξ3rQ(t) + ξ4R(t) + ξ5RQ(t) + ξ6


 n1∑

j=1

σ41j(t)
2 + σ44(t)

2




ȳ(t) represents the natural or target dividend yield for the current state of the economy.
From equation (2) and the subsequent discussion we have

ξ1 = −θ1 + ρ1 − 1

We require that ξ1 > 0 to ensure that y(t) is mean reverting. We have already specified
that θ1 < 0 and ρ1 > 0. The new requirement thus means that ρ1 > max{1 + θ1, 0}.
Given ξ1 we then have
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ξ0 = (θ0 − ρ0)/ξ1

ξ2 = (θ2 + θ3 − ρ2 − 1)/ξ1

ξ3 = −(θ3 + ρ3)/ξ1

ξ4 = (θ4 + θ5 − ρ4)/ξ1 = (−θ2 + θ5)/ξ1 assuming θ4 = −θ2 and ρ4 = 0

ξ5 = −(θ5 + ρ5)/ξ1 = −θ5/ξ1 assuming ρ5 = 0

ξ6 = (1− ρ6)/ξ1

We have not yet considered the value of ρ3. Let us look first at the likely effect of rQ(t)
on ȳ(t). We associate low real yields on index-linked bonds with low dividend yields on
equities. This implies that we should have ξ3 > 0. But ξ3 = −(θ3 + ρ3)/ξ1 and θ3 > 0,
ξ1 > 0, which implies that ρ3 = −ξ1ξ3 − θ3 < 0: that is, low real yields should be
associated with high risk premia. This is not an obvious relationship. However, it is a
consequence of the likely effects of rQ(t) on dividends and dividend yields. With some
thought we can see, in fact, that a possible consequence of falling yields is rising prices.
This can be a result of an increased risk premium: that is, we should indeed have ρ3 < 0.

6.1 Stationarity

Recall that we can write

dy(t)

y(t)
= −ξ1 (y(t)− ȳ(t)) dt +

∑
i,j

σ6ij(t)dZij(t)

⇒ y(t) = y(0) exp


∫ t

0
µy(s)ds− 1

2

∫ t

0
σy(s)

2ds +
∑
i,j

σ6ij(t)dZij(t)


 (3)

where σy(t)
2 =

∑
i,j

σ6ij(t)
2

As y(t) → 0, µy(t) → ξ1 [ξ0 + ξ2r(t) + ξ3rQ(t) + ξ4R(t) + ξ5RQ(t) + ξ6σy(t)
2]. It is not

sufficient, that this limit is positive on average. Instead, we see from equation (3) that
we must take into account the Ito correction −σy(t)

2/2. As a consequence, it is necessary
that

ξ1

[
ξ0 + ξ2r(t) + ξ3rQ(t) + ξ6σy(t)

2
]
− 1

2
σy(t)

2

is positive on average. (Note that R(t) and RQ(t) have been omitted from this equation
as they have zero mean.) This condition would also be sufficient if r(t), rQ(t) and the
σ6ij(t) are all constant.
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The condition helps to ensure that y(t) does not tend to 0 as t tends to infinity. This
has been confirmed by simulations where it was found that a small positive drift µy(t)
when y(t) was close to 0 was not sufficient to prevent y(t) from getting smaller still.

If that the parameterisation ensures that y(t) does not tend to zero and that µy(t) is
negative for large y(t), it normally follows that y(t) is stationary. However, we can also
note that with an appropriate choice of parameters y(t), like the fixed-interest model,
can move in long cycles. This means that the model can exhibit what appears to be
non-stationary behaviour over quite long periods of time.

6.2 Further comments

Initial numerical tests suggest that inclusion of the R(t) and RQ(t) factors do not affect
substantially the results of a simulation. The most significant effect is that the inclusion
of θ5RQ(t) in the expression for expected dividend growth increases the level of volatility
in that quantity. The impact on dividend yields and on equity returns is rather smaller.
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Figure 1: 25-year par yields. Top left: variation over a 100-year period. Top right and
bottom left/right: variation of X̃1i(t) for i = 1, 2, 3.



6 EQUITIES 28

0 100 200 300 400 500

0
5

10
15

20

3-month spot rates

year

sp
ot

 r
at

e 
(%

)

-3 -2 -1 0 1 2 3

0.
1

0.
5

5.
0

50
.0

•
•
•

•

•

•• •
•• •

•
• •

•
•

•
•

•
•••

•

•
•
•

• •
•

•

•
•

•

••

••

•

•
••

•
•

••
•

• •
•

•
•

•
•

•

••

•
• ••

•

•

•

• •

•

•

•

•••

•
•

• •
•

•

•
•

• ••• •

•
•

•

••

•

•
•
•

••
••

•
•

••• •
•

•
• • •

••

•
•

•

•

••

•
•

•
•

•
•

•

• • ••
•

•

•
•
••

•
•

•
•

••
• • •••

•

• • •

•

•

• •
••

•

•
• •

•

•
••

•

•

•

•

•
•

• •

•
••

•
• •

••
••

•

••
••

•
••

•

•••••
••

•
•

• ••

• •
•
•

•

• •

•
••

•

•
• •

•
•

••
•

•
•

•

• •
•

•
•

• •
•

•

• •
•

••
•

•

• • ••
•

•
•• ••

•

•
••

•••

• •• ••

•
••

•
•

• •

•

•

•

•• •

• •

•
•

•
••

•

••
•

•
• •

•

•
•

•••
•

••
• •

••
•

•
•

•

••
•

••

•
•

•••
•

•
•

•
•

•
•• •

•
•

•

•
••

•

• •

••

•
•

•
•••• ••

•
• •• • •

•• ••
••

•• ••
••

••
••

•

•
•

• • •
•

•

•
•• •
••

•

••
•

•
•

•
•

••

••

• •
•

•
•

• ••
•

•
• ••

• •
•

•

•
•

•

•
•

•
•

•
•

• •
••

••
••

• ••

••
•
•

••
••

•
•

••
•

•••
• •

• •
•

•

• ••

••••
•

•

•
• •

• •

•••
•

• ••
•

•

•

•
•
•

••
•

•

•

• ••
•

•

•

•
•

••

••

•

•

•
•

•
•

X1 vs 3-month spot rate

X1

yi
el

d 
(%

)

-4 -2 0 2 4

0.
1

0.
5

5.
0

50
.0

•
•

•

•

•

•• •
•• •

•
••

•
•

•
•

•
• ••

•

•
•
•

••
•

•

•
•

•

••

• •

•

•
••

•
•

• •
•

••
•

•
•

•
•

•

• •

•
• ••

•

•

•

• •

•

•

•

•• •

•
•

• •
•

•

•
•

•• • • •

•
•

•

••

•

•
•
•

••
• •

•
•

••• •
•

•
•• •

••

•
•

•

•

• •

•
•

•
•

•
•

•

••••
•

•

•
•
• •

•
•

•
•

••
• ••••

•

•••

•

•

••
••

•

•
••

•

•
• •

•

•

•

•

•
•
••

•
••

•
••

•• • •
•

• •
••

•
••

•

• ••• •
••

•
•

•••

••
•

•

•

• •

•
••

•

•
• •

•
•

••
•

•
•

•

••
•

•
•

••
•

•

••
•
• •

•

•

• •• •
•

•
••• •

•

•
••• • •

•• •••

•
• •

•
•

••

•

•

•

• ••

••

•
•
•

• •

•

••
•

•
•••

•
•

• • •
•

••
••

••
•

•
•

•

• •
•
••

•
•

•••
•

•
•

•
•

•
•• •

•
•

•

•
••

•

••

• •

•
•
•

••• • ••
•

•• •••
••••

• •
••• •

••

• •
• •

•

•
•

• ••
•
•

•
• • •

••
•

• •
•

•
•

•
•
••

••

• •
•

•
•

•• •
•

•
•• •
••

•
•

•
•

•

•
•

•
•

•
•

••
••
••

••
•••

••
•

•

••
••
•

•
••
•

• ••
••

••
•
•

•• •

• •• •
•

•

•
••

• •

•••
•

•••
•

•

•

•
•

•
••
•

•

•

••
•
•

•

•

•
•
• •

• •

•

•

•
•

•
•

X2 vs 3-month spot rate

X2

yi
el

d 
(%

)

-10 -5 0 5 10

0.
1

0.
5

5.
0

50
.0

•
•
•

•

•

•••
•••

•
••

•
•

•
•

•
•• •

•

•
•

•

••
•

•

•
•
•

• •

••

•

•
••

•
•

• •
•

•••

•
•
•

•
•

• •

•
•••

•

•

•

••

•

•

•

•••

•
•

••
•
•

•
•
•••••

•
•
•

••

•

•
•

•

••
• •

•
•

• •••
•

•
• ••

• •

•
•

•

•

••

•
•
•
•

•
•
•

••
••

•

•

•
•

••

•
•

•
•
••
••• • •
•

•••

•

•

• •
••

•

•
••

•

•
••

•

•

•

•

•
•

••

•
• •

•
••
••

••
•

• •
• •

•
• •
•

••• • •
• •

•
•

•••

••
•

•

•

• •

•
••

•

•
••

•
•

••
•

•
•

•

••
•
•
•
••

•

•

••
•

••
•

•

••••
•

•
••• •

•

•
• •
• ••

•••• •

•
• •

•
•
••

•

•

•

• • •

••

•
•

•
••

•

••
•

•
• •

•

•
•

• ••
•

••
••

••
•

•
•

•

•••
••

•
•

• •
•
•
•

•
•

•
•

• ••
•
•

•

•
••

•

••

••

•
•

•
• •• • • •

•
•••••••••

••
••• •

••

••
• •

•

•
•

•••
•

•

•
••

•
••

•

••
•

•
•
•

•
• •

••

••
•
•

•
•••

•

•
•••

••
•
•

•
•

•

•
•

•
•

•
•

••
••

••
••

•• •

••
•

•

••
••

•
•

• •
•

• • •
••

•••
•

•••

••••
•

•

•
••
••

•••
•

•••
•
•

•

•
•
•

• •
•

•

•

•••
•

•

•

•
•

• •

• •

•

•

•
•
•

•

X3 vs 3-month spot rate

X3

yi
el

d 
(%

)

Figure 2: 25-year par yields. Top left: variation over a 500-year period. Top right and
bottom left/right: Scatter plots of 25-year par yields against X̃1i(t) for i = 1, 2, 3.
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Figure 3: 3-month spot rates. Top left: variation over a 500-year period. (Some values
ranging from 20% up to 45% have been cut off to allow us to make out more of the main
detail.) Top right and bottom left/right: Scatter plots of 25-year par yields against
X̃1i(t) for i = 1, 2, 3.
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Appendix A: The Ornstein-Uhlenbeck Process

Suppose dX(t) = −αX(t)dt + σdZ(t).

Let Y (t) = exp(αt)X(t). Then, by Ito’s formula:

dY (t) = αeαtX(t)dt + eαtdX(t)

= σeαtdZ(t)

⇒ Y (t) = Y (0) + σ
∫ t

0
eαudZ(u)

⇒ X(t) = e−αtX(0) + σ
∫ t

0
e−α(t−u)dZ(u)

It follows that, for t < s, X(s) given Ft is normally distributed with

E [X(s) | Ft] = e−α(s−t)X(t)

V ar [X(s) | Ft] = σ2

(
1− e−2α(s−t)

)
2α


