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Abstract

In this paper we consider the process of modelling uncertainty. In particular we are con-
cerned with making inferences about some quantity of interest which, at present, has been
unobserved. Examples of such a quantity include the probability of ruin of a surplus pro-
cess, the accumulation of an investment, the level or surplus or deficit in a pension fund
and the future volume of new business in an insurance company.

Uncertainty in this quantity of interest,y, arises from three sources:

• uncertainty due to the stochastic nature of a given model;

• uncertainty in the values of the parameters in a given model;

• uncertainty in the model underlying what we are able to observe and determining
the quantity of interest.

It is common in actuarial science to find that the first source of uncertainty is the only
one which receives rigorous attention. A limited amount of research in recent years has
considered the effect of parameter uncertainty, while there is still considerable scope for
development of methods which deal in a balanced way with model risk.

Here we discuss a methodology which allows all three sources of uncertainty to be as-
sessed in a more coherent fashion.

Keywords: parameter uncertainty, model risk, model selection criteria, Bayesian statis-
tics, stochastic interest, ruin theory.



1 Parameter and Model Uncertainty

1.1 Measuring uncertainty

Suppose that we are interested in some quantity,y, related to a given random process gov-
erning investment returns. For example,y may be the accumulation of a single premium
over a 25 year period, or the probability that the assets of a closed pension fund will be
insufficient to meet the guaranteed liabilities. Alternatively, in Risk Theoryy might rep-
resent aggregate claims over the next year, the adjustment coefficient or the probability
of ruin. We need to make inferences about the value ofy and this will be based primar-
ily on a relevant set of past data,x, but also with the use of some subjective judgement.
Subjective judgement arises in particular when a model or range of models is selected but
can also arise if constraints or weights are placed on specific parameters (for example, a
requirement that the mean rate of inflation is positive).

Uncertainty in this quantity of interest,y, arises from three principal sources (for example,
see Draper, 1995, and Bernardo and Smith, 1994, Chapter 6):

• uncertainty due to the stochastic nature of a given model (that is, a stochastic model
produces randomness in its output);

• uncertainty in the values of the parameters in a given model (if we have a finite set
of data then we cannot estimate parameter values exactly);

• uncertainty in the model underlying what we are able to observe and which deter-
mines the quantity of interest.

A fourth source of uncertainty concerns the possibility of measurement errors in the data.
As a general rule, this is not a significant issue in actuarial problems: the financial nature
of most contracts means that relevant quantities should be known accurately. We will not
pursue this point further.

Within the latter, three principal forms of model uncertainty can arise:

• The true model is assumed to be a fixed but unknown member of a general class
of models which will be fitted to the data (if, for example, investment returns were
known to be generated by anARMA(p,q) time series model).

• The class of models under consideration consists of models which are known to be
approximations to a more complex reality in which the modeller has a firm basis
of belief (for example, by using a Normal approximation to what is known to be a
more complex distribution).
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• The class of models consists of a range of models which may provide a proxy for a
more complex reality about which the modeller has little or no prior knowledge.

Most actuarial problems fall into the third category.

For the sake of coherence between the three methods described in Section 1.3 we will
concentrate on the use of the Bayesian paradigm. Equivalent approaches exist using clas-
sical methods but it is not the intention of this paper to discuss the merits of one approach
or the other. Rather the intention of the paper is to focus attention on parameter and model
uncertainty. With this in mind we concentrate on relatively general techniques rather than
give a detailed and accurate solution to a very specific problem. We will, therefore, only
consider two relatively simple examples.

It is common in actuarial work to concentrate solely on randomness arising from the
structure of a given model with the model and parameter values taken as given. In some
cases (for example, Daykin, Pentik¨ainen & Pesonen, 1994) model and parameter risk are
acknowledged but then ingored. Studies which acknowledge and account for parameter
uncertainty have begun to emerge in recent years. Most of these deal with general in-
surance rather than life or investment problems (for example: Klugman, 1992; McNeil,
1997; Pai, 1997; Dickson, Tedesco & Zenwirth, 1998; Scollnik, 1998). On the invest-
ment front, Harris (1999) uses Markov chain Monte Carlo methods to select a model for
price inflation and to investigate parameter uncertainty. Cairns (in discussion of Parker,
1997) raises the issue of parameter and model risk in a pensions or life insurance context
while Crouhy, Galai & Mark (1998) discuss in general terms the effect of model risk on
derivative pricing. Other related work in investment can be found in the collection edited
by Bawa, Brown and Klein (1979). and in other papers following on from those presented
in that volume.

In the present context the termmodel riskis often used. Here we will reserve this for
circumstances where the results and decisions emerging from an analysis are sensitive to
the choice of model. As we will see later in this paper, there are examples where the
results of an analysis do not depend significantly upon the choice of model: that is model
risk is not an issue.

1.2 The principle of parsimony

A useful, early discussion of model uncertainty and model selection can be found in
Jeffreys (1961). There he describes thesimplicity postulate(often known also as the
principle of parsimony). It is well known that people prefer simple models or explanations
to complex ones. Jeffreys states“that the simplest law is chosen because it is most likely
to give correct predictions”. Here the simplest law refers to the striking of a balance

2



between consistency of a model with the observed data and the prior degree of belief in
a model. Jeffreys’ view was that that the prior degree of belief in a model should be
inversely related to the number of parameters. This is consistent with the various model
selection criteria discussed in Sections 2 and 3 of this paper.

Later in his book Jeffreys describes how the point to stop adding parameters is reached
when a modeller has a high degree of belief that the residual errors are random rather than
containing any further structure. This point of view is consistent with the first form of
model uncertainty (that the true model is one member out of a defined class of models).
With the second or third forms of model uncertainty, we accept that the chosen model is
only an approximation to reality and that there is additional structure in the data. However,
with only a finite amount of data available we must choose a model which we believe gives
an adequate description of the past and which will provide an adequate guide to the future
for the task in hand.

1.3 Theoretical approaches to the assessment of uncertainty

In making inferences abouty we can take one of three approaches:

Method 1: This approach finds the model,M∗, which provides the best fit according to
some criterion (Bayesian or otherwise) along with the best estimate of its parameter set,
θ∗. We then make inferences abouty on the assumption thatM∗ andθ∗ are thetruemodel
and parameter set respectively. The model selection criterion can range from “best fit”
(leading to the choice of an overparametrized model) to ones which penalise models with
too many parameters.

Method 2: Here also, we find the model,M∗, with the highest posterior probability (the
best estimate model) and derive the posterior density,f (θ|x), for this model’s parameter
set. On the basis that the model is correct and thatθ follows this distribution we can then
derive the posterior distribution fory given the past data.

Method 3: This is a full Bayesian approach in which we estimate both the posterior model
probabilities and parameter densities. The posterior distribution ofy given the past data
is then calculated by recognising that both the model and the parameter set are uncertain
and are characterized by their respective posterior distributions.

The three methods described here are given in greater detail in Draper (1995) and Bernardo
and Smith (1994) in a general context, in an actuarial context in Klugman (1992) (param-
eter uncertainty) and in an economic context by Min and Zellner (1993). The statistical
literature contains a large number of papers which deal with methods 2 and 3. The refer-
ences given here themselves contain pointers to many works which could be adapted to
help solve actuarial problems.
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Non-Bayesian methods for combining forecasts of alternative models are reviewed in
Clemen (1989). Such methods (while they work effectively) tend to lack the internal
consistency of Bayesian methods and we do not pursue them further here.

It is clear from these descriptions that Method 1 deals only with the uncertainty which
arises as a result of the stochastic nature of a model. Method 2, adds in the effect of
parametric uncertainty and will normally increase the level of uncertainty iny. Method 3
adds to this by incorporating model uncertainty and this can increase or decrease the level
of uncertainty iny: this depends on the relationships between different but almost equally
plausible models.

In this paper we will use a Bayesian framework to deal with Methods 2 and 3. Method
2 can also be treated within the framework of classical statistics. From a pure, classical
viewpoint, the results from using different models can be compared but not combined
in any meaningful way (for example, see Cox, in discussion of Draper, 1995). Here
Method 3 describes the model averaging approach described by Draper (1995) and Chat-
field (1995).

Within a Bayesian context, results will not normally be overly sensitive to the choice
of an uninformative prior distribution for the parameters. However, this may not be the
case with respect to the prior model probabilities. In particular, when two models give
similar fits but make significantly different predictions about the future a change in the
prior model probabilities can have a significant impact on the posterior distribution of
the quantityy of interest. The posterior distribution fory can be used in the process of
minimising expected loss to obtain a point estimate ˆy. The above remarks suggest that
variation of the prior model probabilities can lead to significantly different estimates ˆy. In
the case of Method 3, therefore, it is not that the Bayesian approach to model uncertainty
should be treated with caution (for example, see Cox, in discussion of Draper, 1995). This
does not mean that model uncertainty can be disregarded. On the contrary, a good analysis
of uncertainty should investigate the sensitivity of results to the choice of model: it may
just be the case that it is not possible to combine the results from different models into a
single statement because we are unwilling to prescribe specific prior model probabilities.

A good example of an analysis of the sensitivity of the results to the choice of model can
be found in Schmock (1999).

2 The Basic Approach

Let M = {M1,M2, . . . ,MN} be the class of models under consideration: that isMi repre-
sents modeli, i = 1,2, . . . ,N, 2≤ N≤∞.

Let p(x|Mi,θi) be the likelihood function for modelMi , given parametersθi , and the set
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of past data,x, and letp(θi|Mi) be the prior distribution forθi given modelMi .

The posterior distribution forθi givenMi andx is thenp(θi|Mi,x) = ci p(x|Mi,θi)p(θi|Mi)
whereci is some normalising constant.

Let us consider first the choice of model. In considering models with different numbers
of parameters it is clear that it is always possible to improve the fit of a model by adding
in further parameters (unless we already have a perfect fit). However, we may regard an
improvement in the fit of a model to be so marginal that it is not felt to be worth changing
to. For an increase in the number of model parameters to be acceptable we need to be
satisfied that it has identified additional structure in the available data. We therefore need
to quantify by how much the quality of fit should be improved by the introduction of a
further parameter. This is done by modifying the likelihood function by adding a term
which makes explicit allowance for differences in the number of parameters between
models. In particular, such an adjustment should favour models with fewer parameters.
For example, the Akaike Information Criterion (AIC) may be employed (for example, see
Wei, 1990). Hence we choose the model whichmaximises:

log p̃(x|Mi,θi) = logp(x|Mi,θi)−A(ki)

whereki is the dimension ofθi, andA(ki) = ki is an increasing function ofki . (Note that
this may sometimes be specified asminimise−2logp(x|Mi,θi)+2ki . For example, this is
the version used in the SPlus computer package.) An alternative to the AIC is the Schwarz
Bayes Criterion (SBC) in whichA(ki) = 1

2ki logn wheren is the size of the sample,x. For
all but small sample sizes the SBC introduces a stiffer penalty on the introduction of
additional parameters. In the context of time series, in fact, the AIC has been shown to
overestimate the order of the model underlying the data (Shibata, 1976). This has not been
found to be the case when the SBC is used. As will be noted in Section 3, the SBC gives
an asymptotic approximation to the posterior model odds (if the prior model probabilities
are equal) although this approximation can be relatively poor with limited sample sizes. It
follows that selection of asinglemodel is equivalent to minimising the expected loss with
a zero-one loss function on the model set,M (assuming that the true model is a member
of cm).

Once a modelM∗= Mi∗ has been selected, we maximise the posterior densityp(θi∗|Mi∗,x)
overθi∗ (or, for example, take the posterior meanE[θi∗|Mi∗,x]) giving a best estimate of
θ̂i∗. Where the quantity of data,x, is large and the priorp(θi∗|Mi∗) diffuse, the posterior
maximum can reasonably be replaced by the maximum likelihood estimate. The analysis
then proceeds as ifMi∗ andθi∗ are the true model and parameter set.
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3 Incorporating Parameter and Model Uncertainty

The underlying objective in this paper is to provide a statement about the value of some
quantity of interesty. In the basic approach we fixed the model and its parameter set and
it is straightforward (at least in principal) to make probability statements about such a
quantity. When we admit the possibility of parameter and model uncertainty the Bayesian
paradigm gives us a coherent framework within which we can continue to make probabil-
ity statements abouty.

Here we aim to derive a posterior distribution for bothMi andθi|Mi.

Let Pr(Mi) be the prior probability for modeli andp(θi|Mi) be the prior distribution for
θi given modeli.

Treating the pair(θi,Mi) as the parameter set in the simple Bayesian framework we have

p(θi,Mi|x) = p(θi|Mi,x)Pr(Mi|x)
where Pr(Mi|x) = c.Pr(Mi).p(x|Mi)

p(x|Mi) =
Z

p(x|θi,Mi)p(θi|Mi)dθi

andc is some normalising constant. Thus, the joint posterior density for(θi,Mi) is equal
to the product of the posterior density forθi , given modelMi is correct, times the posterior
probability of modelMi . Note that it is incorrect to write

p(θi,Mi|x) = cp(x|θi,Mi)p(θi|Mi)p(x|Mi)Pr(Mi)

but rather we should write

p(θi,Mi|x) = c
(

ci p(x|θi,Mi)p(θi|Mi)
)

p(x|Mi)Pr(Mi)

where theci are first calculated to normalise thep(θi|Mi,x), andc is then calculated in
order to normalise the overall posterior distribution.

Suppose that we are ultimately interested in some quantityy which depends on the model
and the parameter set. For example,y may be the adjustment coefficient, or the probability
of ruin. Then

p(y|x) = ∑
i

p(y|x,Mi)Pr(Mi|x)

where p(y|x,Mi) =
Z

p(y|x,Mi,θi)p(θi|Mi,x)dθi

The first of these follows the standard Bayes formula for the posterior distribution: that
is,

p(θi|Mi,x) = ci p(x|Mi,θi)p(θi|Mi)

6



whereci is a normalising constant specific to modeli.

An asymptotic analysis ofp(θi|Mi,x) (for example, see Bernardo and Smith, 1994) shows
that

logp(θi|Mi,x) = c− 1
2

(θi− θ̂i)THi(θi− θ̂i) +o(|θi− θ̂i|2)

whereθ̂i is a weighted mean of the maximum likelihood estimate forθi and the mode of
the prior distribution forθi , andHi is the sum of the hessian matrices at the respective
maxima of the likelihood and prior density functions.

When the prior distribution is very diffuse andn is large we can make some appealing
approximations. First,Hi can be well approximated bynB̂i, whereB̂i = Bi(θ̂i) is the
information matrix for a single observation givenθ̂i is the true value forθi . Second,̂θi can
be well approximated by the maximum likelihood estimate forθi . (Those wishing to take
a pragmatic approach can use this result as a justification for using maximum likelihood
(for example, see Jeffreys, 1961, Chapter 4:Approximate Methods and Simplifications.)

Our treatment of the posterior distribution over the collection of models is rather more
complex.

Again we start with the Bayes formula for the posterior distribution forMi :

Pr(Mi|x) = cPr(Mi)p(x|Mi)

The componentsp(x|M1), p(x|M2, . . . (up to some multiplicative constant) are called Bayes
Factors. Calculation of the Bayes factors often requires complex numerical techniques.
Kass and Raftery (1995) give a useful description of some computational procedures to
evaluate these quantities.

Since the Bayes factors can be difficult to work with, Draper (1995) simplifies the expres-
sions by applying a similar asymptotic argument to that above, finding that

logp(x|Mi) = c+
1
2

ki log2π− 1
2

log|Îi|+ logp(x|θ̂i,Mi) + logp(θ̂i|Mi) +O(n−1)

whereÎi is the information matrix for the datasetx evaluated at̂θi under modeli, ki is the
dimension ofθi andp(θi|Mi) is the prior distribution forθi .

Now since the observations are assumed to be independent,Îi = nB̂i whereB̂i is the infor-
mation matrix for a single observation givenθ̂i,Mi, so

log|Îi|= ki logn+ log|B̂i|

Note that asn increases, the second term will remain roughly constant for each model.
If ki is the same for each model then the log|B̂i| term will be the only term of relevance,
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whereas ifki varies between models then, asn increases, theki logn term becomes much
more significant than the log|B̂i| term. Draper (1995) notes that the effect of the prior
p(θ̂i|Mi) is negligible, and this is particularly so for a diffuse prior. We are therefore able
to drop this term.

If we definel̂ i to be equal to the maximum log-likelihood for modeli, logp(x|θ̂i,Mi), then
we have

logp(x|Mi) ≈ l̂ i−
1
2

ki logn− 1
2

log|B̂i|+
1
2

ki log2π +c

Hence

logPr(Mi|x) ≈ logPr(Mi) + l̂ i−
1
2

ki logn+
1
2

ki log2π− 1
2

log|B̂i|+c

wherec is some normalising constant which ensures that∑i Pr(Mi|x) = 1.

Note that the expression for the model likelihood logp(x|Mi) is very similar to l̂ i −
1
2ki logn which is the Schwarz Bayes Criterion (for example, see Schwarz, 1978, or Wei,
1990), the remaining terms−1

2 log|B̂i|+ 1
2ki log2π being of a lower order.

The analysis above gives us the framework for the application of Method 3 described in
Section 2, and therefore accounts for model uncertainty. Method 2 follows a similar path,
but, once the posterior model probabilities have been computed, we concentrate upon
the model with the highest posterior probability, treating it as though it were the correct
model. This is consistent with the use of a zero-one loss function (that is, a loss of 1 if the
wrong model is chosen) which would result in the selection of the model with the highest
posterior probability. However, this loss function only really makes sense when the true
model is known to be a member of the classM of models under consideration. We will
not, therefore, press this point too firmly. In any event it is perhaps more relevant to use
loss functions which apply to the success or otherwise of the decisions taken as a result
of the modelling process.

Method 2 combined with the use of the Schwarz Bayes Criterion rather than the poste-
rior model probabilities described in this section has been used in an actuarial context
by Klugman (1991). He considers how the predictive quantities from a mortality study
and for pure premiums in casualty insurance can be affected by the acknowledgement of
parameter uncertainty.

Harris (1999) considers an example in which the dataset is sufficiently small that the
asymptotic approximations are relatively poor. This is done by comparing the results of
applying Markov chain Monte Carlo techniques which converge to the exact posterior
model probabilities with the results of applying similar formulae to the above.
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4 Application to Stochastic Interest Models

In this section we consider a very simple stochastic interest rate problem: that of the
accumulation of a single payment made at time 0 up to some timet under the action of
random rates of interest. The payment will be invested in equities.

4.1 Theoretical development

Suppose thatδ(t) represents the force of interest between timest−1 andt: that is, an
investment of 1 made at time 0 will accumulate toeδ(1) at time 1, and exp(δ(1) +δ(2) +
. . .+δ(t)) at timet. For convenience we definey(t) = ∑t

s=1δ(s). It is therefore of interest
to know what the distributions ofy(t) andF(t) = expy(t) look like.

In making inferences abouty(t) andF(t) we will consider two simple models for the
processδ(t):
Model 1

δ(t) is an independent and identically distributed series withδ(t)∼ N(µ,σ2). The model
parametersµandσ2 are not known and must be estimated from a set ofnpast observations
δ = (δ(−n+1),δ(−n+2), . . . ,δ(0)).
Under Method 1 of inference we take

µ̂ =
1
n

0

∑
s=−n+1

δ(s)

σ̂2 =
1
n

0

∑
s=−n+1

(δ(s)− µ̂)2

and these are assumed to be the true values in our analysis of uncertainty. Thus

y(t)|δ ∼ N(µ̂t, σ̂2t)

Under Method 2 we retain the assumption of independence of returns but take into account
parameter uncertainty. In the Bayesian analysis we use the Jeffreys prior distribution
f (µ,σ2) = σ−3 described by O’Hagan (1994, Chapter 5). It is often the case that we have
no prior information about the magnitude of a particular parameter. This immediately
suggests the use of a non-informative or diffuse prior. Jeffreys considered it appropriate
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that the outcome of an analysis should not be sensitive to the particular way in which a
model is parametrised (for example, here takingσ as a parameter orσ2). Invariance of the
results relative to such a transformation led to the introduction of the Jeffreys prior. (There
exist alternative non-informative priors to that proposed by Jeffreys. Brief discussions of
this can be found in Bernardo & Smith, 1994, Section 5.6, or Dawid, 1983. Jeffreys,
himself, preferred to usef (µ,σ2) = σ−2.) Using the Jeffreys prior we are able to derive
the posterior distributions givenδ = (δ(−n+1), . . . ,δ(0)):

µ|σ2,δ ∼ N

(
µ̂,

σ2

n

)
nσ̂2

σ2 |δ ∼ χ2
n

whereµ̂ andσ̂2 are as defined above under Method 1.

From this we can derive the posterior law ofy(t) given δ (for example, see O’Hagan,
1994, Chapters 2 and 9)

y(t)|δ = µ̂t+

√
(t2 +nt)σ̂2

n
Tn

whereTn has a standard t-distribution withn degrees of freedom. Hence

E[y(t)|δ] = µ̂t (as above)

Var[y(t)|δ] =
t2 +nt
n−2

σ̂2

(This is derived straightforwardly from the properties of the t-distribution.)

AlthoughF(t) = expy(t) the thick tails of the t-distribution dictate thatF(t) hasinfinite
mean and variance (although, of course, we could characterise the distribution through
its median and other quantiles). This is quite obviously different from the finite values
obtained under Method 1.

Now consider the formula forVar[y(t)|δ]. The second part isntσ̂2/(n−2) which closely
resembles (but exceeds) the variance predicted by Method 1 but this is added to a further
component of variancet2σ̂2/(n−2) due to uncertainty in the mean trajectoryµt. As t
increases this second component becomes dominant: for example, ift equalsn then the
variance is doubled by uncertainty inµ. This is a point which is invariably overlooked
when questions of long-term risk-management are being considered. (For example, the
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folklore surrounding the use of equities as the asset of choice for long-term investment is
significantly compromised by the existence of parameter uncertainty.)

Model 2

δ(t) is modelled by an AR(1) time series model: that is,

δ(t)−µ= α(δ(t−1)−µ) +σZ(t)

whereZ(t) is a sequence of independent and identically distributed standard normal ran-
dom variables.

Conditional onδ(−n+1), the likelihood for the observed series is

f (δ|µ,σ2,α) =
0

∏
s=−n+2

{
(2πσ2)−1/2exp

[
− 1

2σ2

(
δ(s)−µ−α(δ(s−1)−µ)

)2
]}

Using the conditional likelihood, we can derive the following maximum likelihood esti-
mates:

µ̂ =
1

n−1

(
−1

∑
s=−n+1

δ(s) +
δ(0)−δ(−n+1)

1− α̂

)

α̂ =
∑0

s=−n+2

(
δ(s)− µ̂

)(
δ(s−1)− µ̂

)
∑0

s=−n+2

(
δ(s−1)− µ̂

)2

σ̂2 =
1

n−1

0

∑
s=−n+2

[
δ(s)− µ̂− α̂(δ(s−1)− µ̂)

]2
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We can rewrite the conditional likelihood as

f (δ|µ,σ2,α) ∝ (σ2)−(n−1)/2exp

[
− 1

2σ2

{
φ1 +φ2(µ− µ̂)2 +φ3(α− α̂)2

+φ4(µ− µ̂)(α− α̂) +φ5(µ− µ̂)(α− α̂)2

+φ6(µ− µ̂)2(α− α̂) +φ7(µ− µ̂)2(α− α̂)2
}]

where φ1 = (n−1)σ̂2

φ2 = (n−1)(1− α̂)2

φ3 =
(n−1)σ̂2 +(δ(−n+1)− µ̂)2− (δ(0)− µ̂)2

1− α̂2 ≈ (n−1)σ̂2

1− α̂2

φ4 = 2(δ(−n+1)−δ(0))≈ 0

φ5 =
2(δ(−n+1)−δ(0))

1− α̂
≈ 0

φ6 = −2(n−1)(1− α̂)
φ7 = (n−1)

(The three approximations take out the terms which have a lower order thann−1.)

We add to the likelihood the Jeffreys prior distribution for(µ,σ2,α) of f (µ,σ2,α) =
σ−3(1−α)1/2(1+ α)−1/2. (Again, some authors dislike the form of this prior due to
its asymmetry and the singularity atα = −1. For example, if one believes strongly
that α 6= ±1 but have no strong beliefs aboutα otherwise, then a prior of the form
σ−3(1−α)3/2(1+ α)1/2 would be required to ensure that the posteriorf (α|δ) derived
below tends to zero asα tends to±1. We have not investigated here the effect of this
change of prior or of the change in the model 1 prior toσ−2.) Thus, we obtain the follow-
ing posterior distributions (which, given the above adjustments, are approximate):

µ|δ,σ2,α ∼ N

(
µ̂,

σ2/(n−1)
(1−α)2

)
(n−1)σ̂2

(
1+ (α−α̂)2

1−α̂2

)
σ2

∣∣∣∣∣∣ α,δ ∼ χ2
n−1

andα|δ has the posterior density function

f (α|δ) = k(α̂,n)
[
1− α̂2 +(α− α̂)2]−(n−1)/2[

1−α2]−1/2
for −1< α< 1
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Now givenµ, σ2, α andδ

δ(s)−µ = α(δ(s−1)−µ) +σZ(s)
= σ(Z(s) +αZ(s−1) + . . .+αs−1Z(1)) +αs(δ(0)−µ)

where Z(s) ∼ N(0,1)

and it can be shown that

y(t)|µ,σ2,α,δ = µt+(δ(0)−µ)M(α, t) +σV(α, t)1/2Z

where M(α, t) =
α(1−αt)

1−α

V(α, t) =
1

(1−α)2

(
t− 2α(1−αt)

1−α
+

α2(1−α2t)
1−α2

)
and Z ∼ N(0,1).

Hence y(t)|α,δ = µ̂(t−M(α, t)) +δ(0)M(α, t) +σṼ(α, t)1/2Z′

where Z′ ∼ N(0,1)

Ṽ(α, t) =
(t−M(α, t))2

(1−α)2(n−1)
+V(α, t)

⇒ y(t)|α,δ = µ̂(t−M(α, t)) +δ(0)M(α, t)

+
√

Ṽ(α, t)

√
σ̂2

(
1+

(α− α̂)2

1− α̂2

)
Tn−1

whereTn−1 has a t-distribution withn−1 degrees of freedom.

The form of the posterior distribution forα is such that a simple expression fory(t)|δ
cannot be found. Instead, the posterior distribution fory(t) must be found by combining
the above expression fory(t)|α,δ and the posterior distribution forα using straightforward
numerical techniques.

4.2 Data and results

The data to which these models were applied were observed annual (log) returns on eq-
uities in the UK (including reinvestment of dividends) over the last 30 years. Model
uncertainty here is of the third form described in Section 1.1. In order to keep the ex-
ample simple we have restricted ourselves to two possible models. We could, of course,

13



-1.0 -0.5 0.0 0.5 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

alpha

D
E

N
S

IT
Y

Figure 1: Posterior density forα given Model 2

extend the analysis to include allAR(p) times series models, models with fatter tails than
Normaletc.. We have restricted ourselves to two models here just to keep the presentation
simple and for illustration purposes only.

The two models were fitted with the following results:

Model 1: µ̂= 0.1472,σ̂2 = 0.05907

Model 2: µ̂= 0.1457,σ̂2 = 0.05724,α̂ =−0.1758

Each model was set a prior probability of 0.5 since it is difficult to argue in advance of
looking at a set of investment data that one model is more suitable than the other.

The posterior model probabilities were found to bePr(M1|δ) = 0.63 andPr(M2|δ) =
0.37, so that model 1 is therefore the best estimate model.

The posterior density function under Model 2 forα is plotted in Figure 1. It can be seen
that with only 30 years of data there is considerable uncertainty in the value ofα.

By means of illustration we now consider accumulations up to timet = 25. The density
functions fory(25) are plotted in Figure 2 and forF(25) in Figure 3 for Methods 1, 2 and
3.

In the description of the different approaches to this problem we noted that there would
be a marked increase in the variance ofy(t). This is clearly found to be true from looking
at Figure 2: Method 1 produces a much narrower predictive distribution fory(25) than

14
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Methods 2 and 3. Clearly parameter uncertainty is important here.

If we compare the solid and dotted curves in Figure 2 we find that the inclusion of model
uncertainty makes a smaller but still significant change to the distribution ofy(25). (Ex-
perimentation with simulated sets of data suggest that differences between Methods 2
and 3 become more significant when returns in successive years are much more highly
correlated than was observed. This, for example, might be the case for fixed interest
investments.)

It should be noted that the density under Method 3 is narrower than that for Method 2.
This is, perhaps, counterintuitive. However, sinceα̂ < 0, the posterior density for Model
2 is narrower than that for Model 1. Therefore, model averaging in Method 3 narrows,
rather than widens, the distribution.

The densities plotted in Figure 3 provide us with the same conclusions about the accu-
mulation functionF(25), although the high degree of skewness has tended to make these
differences appear less. However, it should be recalled that whereas the dashed density
curve (Method 1) provides us with finite moments, the dotted and solid curves (Methods
2 and 3) both represent random variables with infinite moments.

4.3 Further Remarks

First, it has been noted that in the presence of parameter and model uncertainty that the
posterior mean and variance ofF(t) is infinite. Similarly we would find that the mean and
variance of the (random) present value functionV(t) = 1/F(t) is infinite.

Consider, then, a savings policy which guarantees to pay out a sum of 1, say, at timet in
return for a single premiumSmade at time 0. The above remarks just serve as a reminder
that to use the expected value ofV(t) makes no sense. (Even whenE[V(t)] is finite this
is not necessarily the correct way to set a premium rate.) Instead we must set a single
premium at a level which, for example, ensures that the probability that the issuing office
has sufficient cash to pay off the liability at timet is at least 0.9.

Second, it should be noted that with only 30 years of data on equity returns, the esti-
mated mean rate of return of 14.6% has a standard error of 4.5%. This, when added to
the inherent randomness of investment returns, calls into question the emphasis which
practitioners place not only on deterministic methods but also on the use of a much more
restricted range of assumptions.

Third, the approach taken here and in the next section is to choose which modelsout of
the family M fit the data best. It is possible thatM has been poorly specified so that
none of the models investigated give an adequate description of the data. It is, therefore
appropriate to carry out a supplementary analysis of the residual errors for each model
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fitted, checking, for example, for outliers, autocorrelation and general lack of adherence
to the assumed distribution (for example see Zellner, 1975).

5 Application to Ruin Theory

LetU(t) = u+ct−S(t) be a surplus process, whereu is the initial surplus,c is the rate of
premium income andS(t) is the aggregate claims between times 0 andt (for example, see
Panjer and Willmot, 1992). We assume thatS(t) is a Compound Poisson Process so that

S(t) =
N(t)

∑
i=1

Xi

whereN(t) ∼ Po(λt) is a Poisson Process,Xi is the amount of claimi, i = 1,2, . . .,
X1,X2, . . . are independent and identically distributed, positive random variables, and
{N(t) : t ≥ 0} and X1,X2, . . . are independent. (In addition we assume that theXi are
positive almost surely and that, givenMi andθi there existsγ = γ(Mi,θi) > 0 such that
E[exp γ(Mi,θi)Xi |Mi,θi]< ∞.)

Let ψ(u) be the probability of ruin given an initial surplus ofu. Lundberg’s inequality
states that

ψ(u)≤ e−Ru

whereR, the adjustment coefficient, is the unique positive solution of the equation

λ +cr = λMX(r)

λ is theknownclaims rate,c is theknownrate of premium income, andMX(r) is the
moment generating function of theknownclaims distribution.

We look at two problems:

• What is the value of the adjustment coefficient,R?

• How much surplus,u, should we have in order that the probability of ruin is no
more than 0.01?

In the statement of Lundberg’s inequality, it was emphasized that each component was
known with certainty. In reality, each of these components has some uncertainty attached
to it, and this is what we now investigate. Under this uncertaintyψ(u) should now be
defined as the probability of ruin given an initial surplus ofu based on our (limited) past
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claims experience. From this definition it is clear thatψ(u) must take account of the
inherent parameter and model uncertainty.

We will, however, assume that the claims rateλ is known (and, without loss of generality
this is equal to 1). This is a rather artificial assumption which simplifies the problem
somewhat but it does not compromise the purpose of the exercise which is to illustrate the
effects of incorporating parametric and, more importantly, model uncertainty.

Suppose we have a set of datax = (x1,x2, . . . ,xn), these being the amounts of the lastn
claims with which to make inferences about the claims distribution.

Approaching the problems with a finite data set it is clear that neither the claims model
nor the parameter values will be known with certainty. As a result of this, the adjust-
ment coefficient itself will not be known with certainty. Instead,R will have a level of
uncertainty which is consistent with the level of uncertainty in the parameters and in the
model.

Before looking at the two problems in more detail we will put the three methods described
in Sections 1 to 3 into the present context.

Method 1: The best estimate model is chosen using the AIC or SBC and then its param-
eter values are set to be equal to their maximum likelihood estimates. By doing thisR is
also fixed andψ(u) has the usual exponential upper bound.

Methods 2 and 3:These derive posterior parameter and model distributions which allow
us to calculate a posterior distribution forR and to assess solvency requirements. Under
these circumstances the upper bound forψ(u|x) is no longer exponential. Instead

ψ(u|x) = E[I |x] where I =
{

1 if ruin occurs
0 otherwise

= E[E(I |R)|x]
≤ E

[
e−Ru|x

]
where, of course,R= 0 in the event thatc≤ λE[Xi|θi,Mi].
[Note thatE[e−Ru|x]≥ e−µRu whereµR = E(R|x) by Jensen’s inequality (for example, see
Williams, 1991). However, this is, of course, a lower bound so its usefulness is limited.]

Given only a finite amount of claims data, we can never say with certainty that the pre-
mium rate will exceed the expected claims rate in the future.

Now even in the most simple cases the posterior distributions for each model and param-
eter set are difficult to work with. So we now extend some of the asymptotic techniques
described in Section 3. The development which follows is not intended to be completely
rigorous: rather it is given here to illustrate in general terms, the order of the effect pa-
rameter and model uncertainty.
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Under Modeli (with parameter setθi) we have, for largen,

θi ∼: N(θ̂i,H
−1
i )

whereθ̂i is the posterior mode andHi is the Hessian matrix of the posterior density eval-
uated at̂θi for modeli, with H−1

i = O(n−1) asn→ ∞.

Now givenθi (andλ = 1) we solve

1+cR= Mi(R;θi)

whereMi(R;θi) is the moment generating function for claims modeli and parameter set
θi. Let R(θi) be the unique positive solution of this equation or 0 if no positive solution
exists, and let̂Ri = R(θ̂i). ExpandingMi(R;θi) about(R̂i; θ̂i) we have

Mi(R;θi) = Mi(R̂i; θ̂i)+
∂Mi(R̂i; θ̂i)

∂R
(R−R̂i)+

ki

∑
j=1

∂Mi(R̂i; θ̂i)
∂θi j

(θi j−θ̂i j )+o(|(R−R̂i ;θi−θ̂i)|)

whereki is the dimension ofθi in modeli.

Now Mi(R̂i; θ̂i) = 1+cR̂i and ignoring the smaller order terms we solve

1+cR ≈ 1+cR̂i +mir (R− R̂i) +
ki

∑
j=1

mi j (θi j − θ̂i j )

where mir =
∂Mi(R̂i ; θ̂i)

∂R

and mi j =
∂Mi(R̂i ; θ̂i)

∂θi j
j = 1,2, . . . ,ki

⇒ (c−mir )R ≈ (c−mir )R̂i +
ki

∑
j=1

mi j (θi j − θ̂i j )

⇒ R(θi) ≈ R̂i +
1

c−mir
mT

i (θi− θ̂i)

where mT
i = (mi1,mi2, . . . ,miki )

[In fact this relationship is exact in the case of the exponential distribution.]

Hence, given modeli
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R ∼: N(R̂i,σ2
i )

where σ2
i =

1
(c−mir )2mT

i H−1
i mi

[SinceH−1
i = O(n−1) asn→∞, it follows thatσ2

i = O(n−1) asn→∞: that is, the Normal
approximation becomes more accurate asn→ ∞.]

Let

Pr [R≤ r | x,Mi] =



0 if r < 0

Φ
(
− R̂i

σi

)
if r = 0

Φ
(

r−R̂i
σi

)
if r > 0

(1)

be the approximate posterior cumulative distribution function forRgiven modeli, and let
pi = Pr(Mi|x) be the posterior probability of modeli (i = 1,2, . . .). (This approximation
is a crude ackowledgement of the fact thatRcannot be negative.)

Let i∗ be the value ofi which maximisespi , so thatMi∗ is the best estimate model. Under
Method 2 the posterior distribution forR is approximatelyfi∗(r|x). Under Method 3 the
posterior distribution forR is approximatelyf (r|x) = ∑i pi fi(r|x).
Applying these posteriors forR we are now able to calculate the now approximate upper
bound for the probability of ruin.

Recall thatψ(u)≤ E[e−Ru|x].
Using the distribution defined in equation (1), it is straightforward to show that

E
[
e−Ru|x,Mi

]
= exp

[
−R̂iu+

1
2

σ2
i u2
]{

1−Φ
(−R̂i +uσ2

i

σi

)}
+Φ

(
−R̂i

σi

)
whereΦ(·) is the cumulative distribution function of the standard Normal distribution.

Hence, under Method 2

ψ(u) ≤ exp

[
−R̂i∗u+

1
2

σ2
i∗u

2
]{

1−Φ
(
−R̂i∗ +uσ2

i∗

σi∗

)}
+Φ

(
−R̂i∗

σi∗

)
and under Method 3

ψ(u) ≤ ∑
i

pi exp

[
−R̂iu+

1
2

σ2
i u2
]{

1−Φ
(
−R̂i +uσ2

i

σi

)}
+Φ

(
−R̂i

σi

)
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Figure 4: Experiment 1: Approximate posterior distributions forR: dashed curvef5(r|x)
(Method 2); dotted curvespi fi(r|x) for i = 4,5 from left to right; solid curvef (r|x) =
∑i pi fi(r|x) (Method 3)

We now compare the three methods by considering some illustrative datasets.

In each of the experiments the (artificial) set of possible models is{M1,M2, . . . ,M10}
whereMi is the Gamma distribution with shape parameterα = i. (Here, ifY has a Gamma
distribution with shape parameterα and scaling parameterγ thenY has density function
f (y) = γαyα−1e−γy/Γ(α) andY has meanα/γ and varianceα/γ2.) Under each model
there is one parameter,γ (the scaling parameter), to estimate.

In the absence of any prior information we choose prior distributions which are diffuse.
Thus the prior model probabilities arePr(Mi) = 0.1 (i = 1,2, . . . ,10) and the prior dis-
tributions forγ are all improper, uniform distributions on(0,∞). [In the current context,
some authors feel that it is not appropriate to use improper priors forγ since it is not
then possible to compare models where one or more has such a prior (for example, see
Bernardo and Smith, 1994, Chapter 6, and Lindley in discussion of O’Hagan, 1994). This
problem can be avoided by choosing a proper prior forγ which is nevertheless very dif-
fuse compared to the data (for example, an exponential prior with very high mean). In
practice this would make a negligible difference to the outcome of the analysis.]

Experiment 1

400 observations were simulated from a Log-Normal distribution with parametersµ = 0
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Figure 5: Experiment 1: Posterior ruin probabilities for Methods 1, 2 and 3

andσ2 = 0.25. The data were normalised so that they had a mean of 1 (that is, the unit of
currency was set equal to the mean of the sample). Based on a premium rate ofc = 1.1
the results of the analysis were as follows.

The adjustment coefficient: Figure 4 illustrates the different results which can be ob-
tained using Methods 2 and 3. The dashed curve is the posterior density,f5(r|x), for R
given M5, the best estimate model. The solid curve is the posterior density,f (r|x) for
R over all models. The solid curve is the sum of the dotted curves which represent the
pi fi(r|x) for i = 4,5. In this example, the solid curve and the dashed curve are quite simi-
lar indicating that the adition of model uncertainty has not had a significant impact on the
results of our analysis.

Minimum reserves: Here the problem is to determine what reserve,u, is required to
ensure that the probability of ruin is no more than 0.01.

Method 1:R= 0.1548. SolveG1(u) = e−Ru = 0.01 ⇒ u = 29.8.

Method 2:i∗ = 5. SolveG2(u) = E[e−Ru|x,M5] = 0.01 ⇒ u = 36.0.

Note thatG2(29.7) = 0.0194, which is significantly higher than the required probability
of 0.01.

Method 3: SolveG3(u) = E[e−Ru|x] = 0.01 ⇒ u = 37.9.

Note thatG3(29.7) = 0.0221 andG3(36.1) = 0.0119.
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i pi = Pr(Mi|x) γ̂i R̂i σi

1 0.000 – – –
2 0.000 – – –
3 0.000 – – –
4 0.409 4 0.1483 0.0415
5 0.591 5 0.1548 0.0388
6 0.000 – – –
...

10 0.000 – – –

Table 1: Experiment 1 estimates

We see that an acknowledgement of parameter uncertainty results in a large increase in
the required reserve. There is a small difference between Methods 2 and 3. However, the
main point to note here is that ignoring parameter and model uncertainty may significantly
underestimate the required reserve.

We can, of course, look at the ruin curves in general rather than picking a specific ruin
probability. The differences between the three methods are illustrated in Figure 5. The
three curves are, from left to right,G1(u), G2(u) andG3(u) corresponding to Methods 1,
2 and 3 respectively. Sincee−Ru is convex, Jensen’s inequality will always ensure that
the curveG2(u) will always lie aboveG1(u). The relative positions ofG2(u) andG3(u)
will depend on the relative weights of the different models under consideration and in the
degrees of pessimism predicted by each model.

Experiment 2

400 observations were simulated from a Gamma(1.3,1.3) distribution. Based on a pre-
mium rate ofc = 1.5 the results of the analysis were as follows.

The adjustment coefficient: Figure 6 illustrates the results of the three methods which
can be obtained using Methods 2 and 3. In this experiment we find that the solid curve
is quite different from the dashed curve, so, in this case, it seems sensible to take model
uncertainty into account. Upon considering the reserving problem, however, the need to
consider model uncertainty is less clear.

Minimum reserves:

Method 1:R= 0.333. SolveG1(u) = e−Ru = 0.01 ⇒ u = 13.83.

Method 2:i∗ = 1. SolveG2(u) = E[e−Ru|x,M1] = 0.01 ⇒ u = 14.54.

23



0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
2

4
6

8
10

POSTERIOR DENSITIES FOR R

R

de
ns

ity

METHOD 2

g  (r)
5

METHOD 3

g(r)
p  g  (r)

1     1

p  g  (r)
2     2

Figure 6: Posterior distributions forR: dashed curvef1(r|x) (Method 2); dotted curves
pi fi(r|x) for i = 1,2 from left to right; solid curvef (r|x) = ∑i pi fi(r|x) (Method 3)

i pi = Pr(Mi|x) γ̂i R̂i σi

1 0.681 1 0.333 0.0500
2 0.319 2 0.465 0.0511
3 0.000 – – –
...

10 0.000 – – –

Table 2: Experiment 2 estimates
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Note thatG2(13.83) = 0.013, which is significantly higher than the specified maximum.

Method 3: SolveG3(u) = E[e−Ru|x] = 0.01 ⇒ u = 13.59.

Note thatG3(13.83) = 0.009 andG3(14.54) = 0.007, so Methods 1 and 2 are overesti-
mating the amount of the required reserve. However, this is a result of the fact that the
alternative Model 2 has a less risky claims distribution than Model 1 which was used by
Methods 1 and 2.

In this experiment, the addition of model uncertainty has clearly had an effect on the
setting of a reserve.

6 More complex examples: MCMC

Exact evaluation of uncertainty can only be achieved in a limited number of cases: for
example, the Geometric Random Walk model described above. In the majority of prac-
tical applications this is not possible and it is, therefore, necessary to resort to the use of
numerical techniques.

One approach is to locate the mode of the posterior distribution for the set of parameters,
θ, and to use a suitable approximation (for example, Normal) around this. One can then
generate the distribution of the quantity of interest,y, by taking a representative range of
values ofθ weighted according to its posterior distribution (either deterministically or at
random), and averaging the distributions fory givenθ.

Markov chain Monte Carlo (MCMC) is a more efficient class of methods which allow
us to deal with more complex models with many parameters, such as the Wilkie (1995)
model, where it is difficult to write down the posterior distribution fory.

The method involves taking a random (but not independent) sequence of valuesθ1,θ2, . . . ,θN

from the posterior distribution forθ|M,x. A posterior distribution fory|θi,M,x can then
be calculated either analytically or by further simulation.

This is a relatively new method in statistics which requires powerful computing resources.
Several years on the method is only just beginning to be applied to actuarial and invest-
ment problems (for example, Harris, 1999, and Scollnik, 1998). More advanced papers
on MCMC and further references can be found in the collection of papers edited by Gilks
et al. (1995).
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7 Conclusions

In this paper we have discussed an approach to the incorporation of parameter and model
uncertainty in the process of making inferences about some quantity of interest,y. The
approach taken is Bayesian, which provides a coherent framework allowing us to make
inferences abouty in the presence of parameter and model uncertainty.

In the examples given it was found that the inclusion of parameter uncertainty made a sig-
nificant contribution to the outcome of the modelling exercise. Furthermore, the inclusion
of model uncertainty also modified the final outcome, but to a lesser extent.

It should be noted that the quantity of data will have an impact on the significance of
parameter and model uncertainty. If we obtain more data then this may reduce the need
to incorporate model and perhaps even parameter uncertainty. With some actuarial ap-
plications (for example stochastic insurance or reinsurance), however, it is not realistic to
assume that we can find a significant amount of additional data so that the problem under
discussion here is not one which we can ignore.

From the literature it appears that researchers in non-life insurance are leading the way
in addressing the problems of parameter uncertainty. However, there is still considerable
scope for the development of methods which identify not just one but a group of models
which merit further investigation and a fuller comparison.

In general it is not clear whether model uncertainty will alter our conclusions significantly
or not. It is therefore our duty to test the sensitivity of our conclusions to the choice of
model. If these conclusions are found to be sensitive then it will be essential to conduct
an analysis which properly accounts for model uncertainty.
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