
1

Optimal Dynamic Asset Allocation

for Defined-Contribution Pension Plans 1 2 3

Andrew J.G. Cairns Heriot-Watt University
David Blake Birkbeck College, London
Kevin Dowd Sheffield University

Abstract

We develop a model for the accumulation phase of a defined-contribution pension
plan with cash and n risky assets and non-hedgeable salary risk. The model
considers a policyholder who pays a constant proportion of his salary, S(t), into a
personal pension fund, W (t). At the time of retirement, T , the fund is converted
into an annuity which depends not just upon the fund size but also prevailing
rates of interest at the time of retirement.

The success of any asset-allocation strategy is measured using a terminal utility
function that depends on the replacement ratio (that is, pension as a proportion
of final salary), or, more generally, on W (T ) and the risk-free rate of interest,
r(T ), at T . The problem considered is how should we invest in order to maximise
expected terminal utility.

We find that it is optimal to invest in a time and interest-rate-dependent combi-
nation of three portfolios. The composition of the three portfolios is shown not
to depend on time or on the presence of non-hedgeable salary risk. The precise
mix of the three portfolios does, of course, depend upon both of these factors.

Finally we consider the power utility function and, in combination with zero non-
hedgeable salary risk, develop closed form solutions for the optimal strategy.
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1 Introduction

This paper examines optimal investment strategies for defined-contribution pen-
sion plans. We will focus on the replacement ratio as the central quantity of
interest: that is, the pension at the time of retirement divided by the final salary
at retirement. Related work (Blake, Cairns & Dowd, 1999) has concentrated on
the evaluation of the value-at-risk for the replacement ratio with various confi-
dence levels. Here we suppose that the policyholder has a specific terminal utility
function which quantifies the value, to the policyholder, of different replacement
ratios relative to one another. What, then, is the asset-allocation strategy over
the accumulation phase of the plan that will maxmise the expected utility at the
time of retirement?

A similar question has been posed recently by Boulier et al. (1999) and Deelstra
et al. (1999). These authors considered a problem which involved:

• Vasicek and Cox-Ingersoll-Ross interest-rate models respectively;

• three assets (cash, a bond and equities);

• (ultimately) deterministic contribution rates;

• a guaranteed minimum benefit at retirement;

• terminal utility measured as power function of surplus cash over the guar-
antee.

Here we consider a problem without a guaranteed minimum benefit, but generalise
the above models in other ways:

• a general one-factor interest rate model;

• cash plus n risky assets;

• random salary growth with a non-hedgeable element;

• utility as a function of the replacement ratio at retirement (that is, pension
as a proportion of final salary).

In particular, we have chosen the dependence on the replacement ratio to reflect
the view that, in the normal course of events, the policyholder’s personal pension
fund, W (t), will be converted into an annuity at retirement rather than taken in
cash. The derived pension then needs to be compared with the individual’s final
salary to take into account their existing standard of living just before retirement.
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In reality, the true picture may lie somewhere in between the two situations and
this may depend upon national regulations. Thus policyholders may receive, at the
time of retirement, a mixture of annuity and cash, with an element of discretion
over the amount of cash and in the type of annuity purchased.

We find that the dependence of the terminal utility function upon the replacement
ratio results in an optimal asset allocation strategy that is similar in some respects
to previous work, but also differs qualitatively in other respects.

It is easiest to characterise the problem in discrete time. Time runs from t = 0
to t = T . Assume that all the dynamic processes in the model are Markov.
Thus, if we wish to make forecasts about the future then it is sufficient that
we know the current state of the world and not also its history. We will also
consider asset-allocation strategies that are Markov. They may be stochastic or
deterministic. Stochastic strategies may, for example, depend upon the current
size of the policyholder’s fund, his salary plus other economic variables.

For such a problem, stochastic dynamic programming provides the appropriate
framework for finding an optimal solution (for example, see Whittle, 1982). This
approach (based upon the Bellman principle) tells us that we can solve the optimi-
sation problem by starting at time T and working backwards recursively. At each
time, t, we consider expected utility one timestep ahead and choose the optimal
asset allocation strategy that will apply from t to t + 1 by maximising this value.
This gives us the expected utility at T starting from t. We then move back to t−1
and repeat the process. In general, this is a very intensive computational prob-
lem. We therefore look for methods and results that help to reduce the amount
of computing time required.

In Section 2 of the paper, we introduce a continuous-time version of the model that
drives the dynamics of the personal pension fund and determines the amount of
pension purchased at retirement. In Section 3 we specify the optimisation problem
and derive some general results. Finally in Section 4 we consider the special case
of a power utility function and derive some more specific solutions for the problem.

2 A continuous-time model for DC pension plans

In this section we develop a simple model in continuous time. This allows us
to derive analytically certain results that could only be derived with difficulty in
more complex models. Furthermore, numerical solutions to the problems in more
complex models can be accelerated using the analytical solution derived here as
a starting point.
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2.1 Risk-free interest rate

We will consider relatively simple diffusion models for the risk-free interest rate,
r(t), which depend upon one factor or source of randomness. The stochastic
differential equation for r(t) is then:

dr(t) = µr(r(t))dt + σr(r(t))dZ1(t)

for suitable functions µr(r) and σr(r) (for example, see Baxter & Rennie, 1996).
Z1(t) is a standard Brownian motion under the real-world measure P .

In places we will consider, specifically, the Vasicek model (Vasicek, 1977, or, for
example, Duffie, 1996) under which µr(r) = αr(µr − r) and σr(r)

2 = σ2
r.

2.2 Asset returns

Assume we have n+1 assets. One unit of asset i with reinvestment of gross income
has value Xi(t) at time t.

Asset 0 is a risk-free account (or cash for short) satisfying:

dX0(t) = r(t)X0(t)dt

Assets 1 to n are risky and are governed by the following stochastic differential
equations:

dXi(t) = Xi(t)

(
(r(t) + λi)dt +

n∑
j=1

σijdZj(t)

)
for i = 1, . . . , n

where Z(t) = (Z1(t), . . . , Zn(t))′ is standard n-dimensional Brownian motion (un-
der the real-world probability measure P ), λi is the risk premium on asset i and
σij is the volatility of asset i with respect to changes in Zj(t).

Let C be the matrix (σij)
n
i,j=1 (which we assume is non-singular) and λ = (λ1, . . . , λn)′,

and define ρ = C−1λ. Then ρj is the market price of risk associated with the
source of risk dZj(t): that is, ρj is the expected excess return per unit of risk
from source j. More generally the σij and the ρj could be functions of time and
possibly also stochastic.

Consider the Vasicek model. Assume asset 1 is a bond account which rolls over
zero-coupon bonds with τ years to maturity. The price at time t of such bonds



2 A CONTINUOUS-TIME MODEL FOR DC PENSION PLANS 5

per unit nominal is:

P (t, t + τ) = exp(A(τ)−B(τ)r(t)) (1)

where B(τ) =
1− e−αrτ

αr

A(τ) = (B(τ)− τ)

(
µ̃r −

σ2
r

2α2
r

)
− σ2

r

4αr

B(τ)2

µ̃r = µr +
λ1

1− e−αrτ
= µr −

σrρ1

αr

The volatility of asset 1 (in effect a tradeable index rather than a conventional
asset) is σ11 = −σr(1 − exp(−αrτ))/αr (that is, the volatility of the underlying
tradeable asset at each time t) with σ1j = 0 for all j > 1.

It is well known that the prices of bonds rise when r(t) falls. If we assume that
σr(r) < 0 in the general model, it follows that excess expected returns on cash
can only arise if ρ1 is greater than than zero. (If σr(r) was positive then ρ1 would
need to be negative in order to deliver a positive risk premium on bonds.) If we
consider the Vasicek model, this means that µ̃r (the mean reversion level under
the risk-neutral measure Q) is greater than µr (the mean reversion level under the
real-world measure P ).

Where we are considering a more general model for r(t) we can choose a portfolio
which invests at time t in zero-coupon bonds with varying terms, τ , to maturity.
The maturities chosen will depend upon r(t). If the model permits, τ(r(t)) can
be chosen to ensure that the volatility of the bond portfolio remains constant over
time. With a constant market price of risk, ρ1, this ensures that the risk premium
on (the synthesized) asset 1 remains constant. (This feature is used for notational
convenience and does not affect the optimal value function described later on.)

2.3 Salaries

Let the policyholder’s salary, S(t), follow the simple model:

dS(t) = S(t) [(r(t) + µs(t))dt + νsdZs(t) + σ′sdZ(t)]

where µs(t) is some deterministic function and σs allows us to model any links
between salary growth and returns on some of the assets. In contrast, the term
νsdZs(t) (where Zs(t) is a standard Brownian motion independent of Z(t)) allows
us to incorporate non-hedgeable salary risks.

Consequently, we can write:

S(t) = S(0) exp

[∫ t

0

(r(s) + µs(s)) ds− 1

2
ν2

st−
1

2
σ′sσst + νsZs(t) + σ′sZ(t)

]
(2)
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Now Z(t) is an n-dimensional Brownian motion under the real-world measure P .
Let Z̃i(t) = Zi(t) + ρit. Under the risk-neutral measure Q, where all risky assets
have the same expected rate of return as cash, Z̃(t) is an n-dimensional Brownian
motion. Assume that Zs(t) is also a Brownian motion under Q. Then we can
write:

S(t) = S(0) exp

[∫ t

0

(r(s) + µs(s)) ds− 1

2
ν2

st−
1

2
σ′sσst− σ′sρt + νsZs(t) + σ′sZ̃(t)

]

⇒ EQ

[
exp

(
−

∫ t

0

r(s)ds

)
S(t)

]
= S(0) exp

[∫ t

0

µs(s)ds− σ′sρt

]
(4)

We will refer back to this equation later in this paper.

The inclusion of a deterministic, time-dependent adjustment to the growth rate,
µs(t), allows us to incorporate age-dependent salary growth. For example, it is
well known that salaries grow faster at younger ages, implying that µs(t) should
be a decreasing function of time, possibly becoming negative.

2.4 Pension fund

Let W (t) be the value of the pension fund at time t. Then:

dW (t) = W (t) [(r(t) + p(t)′λ) dt + p(t)′CdZ(t)] + πS(t)dt

where p(t) = (p1(t), . . . , pn(t))′ is the vector of proportions of the fund invested
in each of the risky assets and π is the contribution rate (a fixed proportion of
salary).

Let Y (t) = W (t)/S(t). Then we can write:

dr(t) = br(t, p, Y, r)dt + σrr(t, p, Y, r)dZ̃(r)(t) + σry(t, p, Y, r)dZ̃y(t)

dY (t) = by(t, p, Y, r)dt + σyr(t, p, Y, r)dZ̃(r)(t) + σyy(t, p, Y, r)dZ̃y(t)

where Z̃(r)(t) and Z̃(y)(t) are independent and identically distributed, standard
1-dimensional Brownian motions. Z̃(r)(t) = Z1(t) and Z̃(y)(t) depends upon
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Z2(t), . . . , Zn(t) and Zs(t),

br(t, p, y, r) =

{
µr(r) (in general)
αr(µr − r) (Vasicek model)

by(t, p, y, r) = π +
(
p′C(ρ− σs)− µs(t) + ν2

s + σ′sσs

)
y

σrr(t, p, y, r)2 =

{
σr(r)

2 (in general)
σ2

r (Vasicek model)

σry(t, p, y, r)2 = 0

σyr(t, p, y, r)2 =
(
p′D1p− 2p′C1σs1 + σ2

s1

)
y2 = (p′C1 − σs1)

2y2

σyy(t, p, y, r)2 =
(
ν2

s + σ′s2σs2 + p′D2p− 2p′γs2

)
y2

=
(
ν2

s + (C ′
2ρ− σs2)

′(C ′
2ρ− σs2)

)
y2

where C1 = Ce1

= (σ11, . . . , σn1)
′

e1 = (1, 0, . . . , 0)′

C2 =




σ12 . . . σ1n
...

...
...

...
σn2 . . . σnn




σs1 = σ′se1 = (σs)1

σs2 = ((σs)2, . . . , (σs)n)′

D = CC ′

= instantaneous covariance matrix for assets

D1 = C1C
′
1

D2 = C2C
′
2

γs = Cσs

= vector of covariances between assets and salary

γs1 = C1σs1

γs2 = C2σs2, with γs = γs1 + γs2

We also have C ′
1D

−1C1 = e′1C
′D−1Ce1 = 1.

The instantaneous covariance matrix for (r(t), Y (t))′ is(
arr ary

ayr ayy

)
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where

arr = σr(r)
2

ary = ayr

= (p′C1 − σs1σr(r))y

ayy = (ν2
s + σ′sσs + p′Dp− 2p′Cσs)y

2

=
(
ν2

s + (C ′ρ− σs)
′(C ′ρ− σs)

)
y2

2.5 Annuity purchase

We assume that at the time of retirement, T, the accumulated fund will be used to
purchase an immediate level annuity at a price of a(T, r(T )) per unit of pension.
If the retiree is aged x, then the fair value of a(T, r(T )) will be:

a(T, r(T )) =

∫ ∞

0

P (T, T + s) spxds

where spx is the survival function (under measure Q) of the retiree given survival
to age x and P (t, u) is the price at time t of a zero-coupon bond which matures
at time u. (Thus a(t, r(t)) is, in fact, a function of r(t) only.)

As a proxy for this we will, in some cases (see Section 4), approximate a (T, r(T ))
by:

ea−br(T ) (5)

where the constants a and b are chosen to ensure the best linear approximation to
log a(T, r(T )) over the central range of r(T ) (say, the mean of r(T ) plus or minus
two standard deviations). The constants may be determined more precisely by,

for example, minimising E
[(

a(T, r(T ))− ea−br(T )
)2]

over a and b. This is similar

to duration matching although here it is done in a less precise manner (that is, we
find a constant match which is approximately correct most of the time rather than
a varying match which is correct all of the time). Affine term-structure models
(for example, the Vasicek and Cox-Ingersoll-Ross models) have zero-coupon prices
which are equal to exp[A(d) − B(d)r(T )] for some functions A(d) and B(d) (for
example, see equation 1). This means that the approximation (5) is equivalent to
having a constant holding in zero-coupon bonds with a particular fixed term d to
maturity: d is chosen to ensure that B(d) = b.
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3 Terminal utility and optimal asset allocation

3.1 Terminal utility

Suppose that we have some terminal utility K(Y (T ), r(T )). Let:

J(t, y, r)(p) = E [K(Y (T ), r(T )) | Y (t) = y, r(t) = r, p(s, y(s), r(s))]

and let φ(t, y, r) = sup
p

J(t, y, r)(p)

be the optimal value function.

3.2 Optimal asset allocation

The Hamilton-Jacobi-Bellman equation (hereafter referred to as the Bellman equa-
tion) for this problem (for example, see Fleming & Rishel, 1975, Merton, 1992,
Øksendal, 1998, Korn, 1997) is:

sup
p

[
φt + byφy + brφr +

1

2
ayyφyy + ayrφyr +

1

2
arrφrr

]
= 0

where by = by(t, y, r, p) etc. and φt, φyr are first and second partial derivatives of
φ(t, y, r) with respect to t and to y and r, respectively etc.

Thus we have:

sup
p

{
φt +

(
π +

[
p′C(ρ− σs)− µ̃s(t)

]
y
)

φy + µr(r)φr

+
1

2

(
ν2

s + (C ′p− σs)
′(C ′p− σs)

)
y2φyy

+(C ′p− σs)
′e1σr(r)yφyr +

1

2
σr(r)

2φrr

}
= 0

(6)

where µ̃s(t) = µs(t)− ν2
s − σ′sσs.

Proposition 3.2.1

The optimal asset allocation strategy takes the form:

p∗(t, y, r) = D−1

(
Cσs − C(ρ− σs)

φy

yφyy

− C1σr(r)
φyr

yφyy

)

= C ′−1

(
σs − (ρ− σs)

φy

yφyy

− e1σr(r)
φyr

yφyy

)
(7)
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Proof

We differentiate the expression {·} in (6) with respect to p and equate to zero.
Thus:

yC(ρ− σs)φy + (Dp− Cσs)y
2φyy + Ce1σr(r)yφyr = 0

Solving for p the result follows.

2

Let us consider the composition of p∗(t, y, r) in equation (7).

Suppose that π = 0. The instantaneous variance of dY (t)/Y (t) is v(p) = ν2
s +

σ′sσs+p′Dp−2p′Cσs and the expected rate of growth is m(p) = p′C(ρ−σs)−µ̃s(t).

First, let us minimise v(p) over p.

⇒ 2Dp− 2Cσs = 0

⇒ p∗(0) = D−1Cσs = C ′−1
σs = pA

⇒ m(pA) = mA

= σ′sC
−1D−1C ′−1

(ρ− σs)− µ̃s(t)

= σ′s(ρ− σs)− µ̃s(t)

Now minimise v(p) over p subject to m(p) = m.

Let L(p, ψ) = v(p) + 2θ(m(p)−m).

∂L

∂p
= 2Dp− 2Cσs + 2ψC(ρ− σs)

= 0

⇒ p∗(m−mA) = C ′−1
[σs − ψ(ρ− σs)]

∂L

∂ψ
= 2(m(p)−m)

= 0

⇒ [Cσs − ψC(ρ− σs)]
′D−1C(ρ− σs)− µ̃s(t)−m = 0

⇒ ψ = ψ(m)

=
mA −m

(ρ− σs)′(ρ− σs)

The important point to note is that the optimal portfolio p∗(m−mA) is a weighted
average of the minimum-variance portfolio pA = C ′−1σs (with weight 1 + ψ) and
another efficient portfolio pC = C ′−1ρ (with weight −ψ).
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Now consider V (t) = Y (t)/a(t, r(t)) where a(t, r(t)) is the price at t of an immedi-
ate level annuity. Since a(t, r(t)) is a function of r(t) only, we can write da(t, r(t))

as a(t, r(t))
[
− da(r)dr(t) + 1

2
ca(r)(dr(t))2

]
, where da(r) is the duration of the

annuity function:

da(r) = − 1

a(t, r)

∂a(t, r)

∂r

and ca(r) =
1

a(t, r)

∂2a(t, r)

∂r2

Then:

dV (t) = V (t)

[
(p′C(ρ− σs)− µ̃s(t)) dt− νsdZs(t) + (p′C − σ′s)dZ(t)

+da(r) (µr(r)dt + σr(r)dZ1(t))

+

(
da(r)

2 − 1

2
ca(r)

)
σr(r)

2dt + da(r)σr(r) (p′Ce1 − σs1) dt

]

=D V (t)
(
m(p, r)dt +

√
v(p, r)dZ̃

)
where Z̃(t) is a Brownian motion, =D means ‘equivalent in distribution’,

m(p, r) = p′C(ρ− σs)− µ̃s(t) + da(r)µr(r) + da(r)(p
′Ce1 − σs1)σr(r)

+

(
da(r)

2 − 1

2
ca(r)

)
σr(r)

2

and v(p, r) = ν2
s + σ′sσs + p′Dp− 2p′Cσs + 2da(r)p

′Ce1σr(r)

−2da(r)σs1σr(r) + da(r)
2σr(r)

2

First, minimise v(p, r) over p:

⇒ 2Dp− 2Cσs + 2da(r)σr(r)Ce1 = 0

⇒ p = D−1(Cσs − da(r)σr(r)Ce1)

= C ′−1
(
σs − da(r)σr(r)e1

)
= pB

Note that pB = pA if da(r) = 0 (that is, if we are funding for cash). Let mB =
m(pB, r). Next, minimise v(p, r) over p subject to m(p, r) = m. Let pB(m−mB)
be the optimal p for this problem. Let L(p, ψ) = v(p, r) + 2ψ(m(p, r)−m).
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Then:

∂L

∂p
= 2Dp− 2Cσs + 2da(r)σr(r)Ce1 + 2ψC(ρ− σs + da(r)σr(r)Ce1) = 0

⇒ p = C ′−1
(σs − da(r)σr(r)e1 − ψ(ρ− σs + da(r)σr(r)e1))

= (1 + ψ)C ′−1
(σs − da(r)σr(r)e1)− ψC ′−1

ρ

= (1 + ψ)pB − θpC

∂L

∂ψ
= 0

⇒ ψ =
mB −m

(ρ− σs + da(r)σr(r)e1)
′ (ρ− σs + da(r)σr(r)e1)

As before we see that the optimal asset allocation strategy, pB(mB − m, r) is a
weighted average of the minimum variance portfolio pB and the more risky, but
efficient, portfolio pC .

Let us refer back to equation (7) which gave the optimal asset allocation strategy
for the dynamic optimisation problem:

p∗(t, y, r) = C ′−1

(
σs − (ρ− σs)

φy

yφyy

− e1σr(r)
φyr

yφyy

)

We now see that this can be written in the form:

p∗(t, y, r) = θApA + θBpB + θCpC

where θA = θA(t, y, r)

= 1− φyr − da(r)φy

da(r)yφyy

θB = θB(t, y, r)

=
φyr

da(r)yφyy

θC = θC(t, y, r)

= 1− θA(t, y, r)− θB(t, y, r)

= − φy

yφyy

pA = C ′−1
σs

pB = C ′−1
(
σs − da(r)σr(r)e1

)
and pC = C ′−1

ρ (8)

The three portfolios pA, pB and pC correspond to the three portfolios described
below:
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A: pA (with pA0 = 1−∑n
i=1 pAi), the minimum-risk portfolio measured relative

to S(t);

B: pB (with pB0 = 1−∑n
i=1 pBi), the minimum-risk portfolio measured relative

to S(t)a(t);

C: pC (with pC0 = 1−∑n
i=1 pCi), a more risky portfolio which is efficient when

we measure risk and return relative to both S(t) and S(t)/a(t).

Within each of the three portfolios the proportion invested in each of the n + 1
assets remains constant over time. However, the proportion of the fund as a whole
invested in each of the three portfolios (that is, (θA(t, y, r), θB(t, y, r), θC(t, y, r)))
does vary over time and depending upon r(t) according to the equations (8).

Remark 3.2.2

We can see that the term θC is equal to the reciprocal of the degree of relative risk
aversion.

As a consequence we note two points. First, since relative risk aversion is positive
(but possibly dependent upon t and y) the investment in portfolio C is necessarily
positive. Second, if relative risk aversion is constant, it will be optimal to invest
a constant proportion in the risky portfolio C ′−1ρ over time.

Remark 3.2.3

Note that the three portfolios pA = C ′−1σs, pB = C ′−1(σs−da(r)σr(r)e1) and pC =
C ′−1ρ, do not depend upon the level of non-hedgeable salary risk, νs. However,
the precise mix may depend upon νs through its effect on φ(t, r).

Section 4 below develops this remark further.

Corollary 3.2.4

Suppose that φ(T, y, r) = K (y/a(T, r)): that is, the terminal utility is a function
of the pension as a proportion of final salary (replacement ratio) achieved at time
T .

Then θA(T, y, r) = 0 for all y, r.
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Proof:

At t = T, we find that:

φy =
1

a(T, r)
K ′(y/a(T, r))

φyr =
da(r)

a(T, r)
K ′(y/a(T, r)) +

yda(r)

a(T, r)2
K ′′(y/a(T, r))

φyy =
1

a(T, r)2
K ′′(y/a(T, r))

It is then straightforward to confirm that θA = 0.

2

This means that, as we approach retirement, we reduce to zero the proportion of
the personal pension fund invested in portfolio A. In general, though, before the
retirement date part of the fund will be invested in portfolio A. The exception
to this result occurs if we are funding for cash. Then da(r) = 0 for all r and
portfolios A and B are identical.

Conjecture 3.2.5

As T − t tends to infinity θB(t, y, r) tends to zero.

We make this conjecture on the following basis. The further we are from retirement
the less able are we to predict what interest rates will be at the time of retirement.
This means that φr and φyr are likely to tend to 0 as T − t increases. This result
is illustrated in the case of the Vasicek model developed in Section 4.3.

Let us return now to the solution of the Bellman equation (6). Inserting the
solution for p∗ given in equation (7) we get:

φt + (π − µ̃s(t)y) φy + (ρ− σs)′
(

σs − (ρ− σs)
φy

yφyy

− e1σr(r)
φyr

yφyy

)
yφy

+µr(r)φr +
1
2
(ν2

s + σ′sσs)y2φyy

+
1
2

(
σs − (ρ− σs)

φy

yφyy

− e1σr(r)
φyr

yφyy

)′(
σs − (ρ− σs)

φy

yφyy

− e1σr(r)
φyr

yφyy

)
y2φyy

−σ′s

(
σs − (ρ− σs)

φy

yφyy

− e1σr(r)
φyr

yφyy

)
y2φyy

+
(

σs − (ρ− σs)
φy

yφyy

− e1σr(r)
φyr

yφyy

)′
e1σr(r)yφyr +

1
2
σr(r)2φrr = 0

(9)



3 TERMINAL UTILITY AND OPTIMAL ASSET ALLOCATION 15

Corollary 3.2.6

The optimal value function is fully determined by ρ, σs, π, µ̃s(t), µr(r), σr(r) and
K(y, r).

Remark 3.2.7

In particular, this means that once the market price of risk, ρ, has been specified,
the optimal value function, φ, is not affected by the choice of assets used (provided
C is non-singular).

For example, there is no advantage to using bonds of one duration over another.
Similarly, there would be no advantage to investment in equity derivatives over
the underlying stocks. However, consider equation (7) for

p∗(t, y, r) = θApA + θBpB + θCpC

= C ′−1
(θAσs + θB(σs − da(r)σr(r)e1 + θCρ)

Now θA, θB and θC are functions only of φ and its various partial derivatives
and of the form of the annuity function a(T, r(T )). It follows that p∗(t, y, r) will
depend upon the individual assets available through the volatility matrix C (since
the dynamics of these assets are governed by r(t), ρ and C only).

Let us now introduce an arbitrary deterministic function ε(t) which will be defined
later. For the sake of brevity, in the equations which follow, we will take ε to mean
ε(t), µ̃s to mean µ̃s(t) and so on wherever this is convenient to do so. Expanding
equation (9) and dividing this by (y + ε)2φyy gives:{

φt

(y + ε)2φyy

}
+

(
π + εµ̃s

y + ε

){
φy

(y + ε)φyy

}

−µ̃s

{
φy

(y + ε)φyy

}
− 1

2
(ρ− σs)

′(ρ− σs)

{
φy

(y + ε)φyy

}2

+
1

2
ν2

s

(
1− 2ε

y + ε
+

ε2

(y + ε)2

) {
1
}

+ µr(r)

{
φr

(y + ε)2φyy

}

+σ′s(ρ− σs)

(
1− ε

y + ε

){
φy

(y + ε)φyy

}

−(ρ− σs)
′e1σr(r)

{
φy

(y + ε)φyy

} {
φyr

(y + ε)φyy

}

−1

2
σr(r)

2

{
φyr

(y + ε)φyy

}2

+
1

2
σr(r)

2

{
φrr

(y + ε)2φyy

}
= 0

(10)
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4 Special case: power utility

Let us consider now the special case of the power utility function (which assumes
constant relative risk aversion):

φ(T, y, r) =
1

β
yβeγr

for γ < 0 and β < 1, β 6= 0. If we assume that the annuity price a(r) can be well
approximated by ke−dr for some constant d > 0, then it is natural to take γ = βd.

4.1 A possible solution

Let us investigate the possibility of a solution of the form:

φ(t, y, r) = δ(t) (y + ε(t))β(t) eγ(t)r (11)

for some deterministic functions δ(t), ε(t), β(t) and γ(t).

In the following equations we use the abbreviated forms ε for ε(t), ε′ for ∂ε(t)/∂t
and so on, where appropriate, for compactness. Differentiating φ(t, y, r) we get:

φy = δβ(y + ε)β−1eγr

φyy = δβ(β − 1)(y + ε)β−2eγr

φr = δγ(y + ε)βeγr

φyr = δβγ(y + ε)β−1eγr

φrr = δγ2(y + ε)βeγr

φt = δ′(y + ε)βeγr + δγ′r(y + ε)βeγr + δβε′(y + ε)β−1eγr

+β′ log(y + ε)δ(y + ε)βeγr

⇒ φy

(y + ε)φyy

=
1

β − 1

φyr

(y + ε)φyy

=
γ

β − 1

φr

(y + ε)2φyy

=
γ

β(β − 1)

φrr

(y + ε)2φyy

=
γ2

β(β − 1)

φt

(y + ε)2φyy

=
1

δβ(β − 1)

(
δ′ + δγ′r +

δβε′

y + ε
+ δβ′ log(y + ε)

)

We insert these expressions into equation (10) and equate the resulting terms in
log(y + ε), 1/(y + ε) and so on to zero.
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Equating terms in log(y + ε) to zero:

⇒ β′(t) = 0

⇒ β(t) ≡ β for all t

Equating terms in 1/(y + ε)2 to zero:

⇒ 1

2
ν2

s = 0 (12)

or ε(t) = 0 for all t (13)

Equating terms in 1/(y + ε) to zero:

⇒ ε′(t) + π + µ̃s(t)ε(t)− σ′s(ρ− σs)ε(t) = 0 for all t (14)

Equating terms independent of y to zero:

⇒ δ′(t)
δ(t)

+ γ′(t)r − βµ̃s(t)−
1

2
(ρ− σs)

′(ρ− σs)
β

β − 1

+
1

2
ν2

s + µr(r)γ(t) + βσ′s(ρ− σs)

−(ρ− σs)
′e1σr(r)γ(t)

β

β − 1
− 1

2
σr(r)

2γ(t)2 1

β − 1
= 0

(15)

As with equation (14), equation (15) must hold for all t and r.

We see from equation (14) that the proposed solution ε(t) ≡ 0 in equation (13)
can only be achieved if π = 0. Since we assume π > 0, a solution compatible with
power utility requires salary risk to be perfectly hedgeable, that is, νs = 0.

The requirement that π = 0 or νs = 0 is apparently quite restrictive. In reality
νs will be non-zero. However, typically it will be quite small meaning that the
solution which may have to be found using numerical methods ought to be similar
in form to the case where νs = 0 (the exception being close to the boundary y =
−ε(t)). We have not attempted here to consider how accurate this approximation
might be.

We now present two examples where equations (14) and (15) can be satisfied for
certain functions γ(t), ε(t) and δ(t).

4.2 Funding for cash

Assume that γ(t) ≡ 0 and νs = 0 for all t: that is, we are funding for cash as
a proportion of final salary at time T rather than an annuity, and salary risk is
hedgeable.
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Then equations (14) and (15) become:

ε′(t) + π + µ̃s(t)ε(t)− σ′s(ρ− σs)ε(t) = 0 (16)

δ′(t)
δ(t)

− βµ̃s(t)−
1

2
(ρ− σs)

′(ρ− σs)
β

β − 1
+ βσ′s(ρ− σs) = 0 (17)

with boundary conditions:

ε(T ) = 0 (18)

δ(T ) = 1/β (19)

Define

Ms(t) =

∫ T

t

µ̃s(u)du =

∫ T

t

µs(u)du− σ′sσs(T − t)

∆0 = −1

2
(ρ− σs)

′(ρ− σs)β/(β − 1) + βσ′s(ρ− σs)

and ∆1 = σ′s(ρ− σs)

The solutions to equations (16) to (19) are then:

ε(t) = πeMs(t)−(T−t)∆1

∫ T

t

e−Ms(τ)+(T−τ)∆1dτ (20)

δ(t) =
1

β
e−βMs(t)+(T−t)∆0 (21)

Referring back to equation (4) and recalling that µ̃s(t) = µs(t) − ν2
s − σ′sσs =

µs(t)− σ′sσs (since here νs = 0), it is straightforward to see that:

ε(t) = π

∫ T

t

EQ

[
exp

(
−

∫ τ

t

r(u)du

)
S(τ)

S(t)

∣∣∣∣ Ft

]
dτ (22)

where Q is the risk-neutral measure. Thus, ε(t) is equal to the economic value
(or present value) of the future contributions as a proportion of today’s salary1.
Economic value here has a precise meaning, since we asume that the market is
complete and that future salaries are hedgeable (that is, νs = 0 and Q is unique).

We note the following:

• The optimal value function is independent of the form of the model for the
risk-free rate of interest: that is, of µr(r) and σr(r). (This, though, depends
upon the particular model for S(t) used here.)

1This is related to some results by Karatzas, Lehoczky & Shreve (1987), Boulier et al. (1999)
and Deelstra et al. (1999).
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• The optimal allocation is:

p∗(t, y, r).y = C ′−1
(σsy − (ρ− σs)(y + ε(t))/(β − 1))

= −ε(t)C ′−1
σs +

(
y + ε(t)

)
C ′−1

[
ρ− βσs

1− β

]

= −ε(t)pA +
(
y + ε(t)

)[
1

1− β
pC +

(−β)

1− β
pA

]
(23)

Thus we undertake the following investment strategy:

• First, we short sell portfolio A up to the value ε(t), as indicated in equation
(23). This part of the fund therefore has value −ε(t) at time t.

• This leaves us with an amount equal to y + ε(t) for investment (which we
will call the surplus). Again by reference to equation (23) we see that a
proportion 1/(1 − β) of this surplus is invested in the risky portfolio C,
while the remainder (a proportion (−β)/(1− β)) is invested in portfolio A.

Note that the proportions of the surplus invested in each portfolio do not
depend upon the amount of surplus, nor do they vary over time or depend
upon r(t).

The third portfolio pB plays no part in this strategy as we are funding for cash
rather than an annuity.

This optimal asset allocation strategy generalises, in some respects, that derived
by Deelstra et al. (1999), who considered a specific model for r(t), the Cox, In-
gersoll & Ross (1985) model (that is, µr(r) = αr(µr − r) and σr(r) = σr

√
r).

With three assets (cash, bond and stock), they find that the proportion invested
in stock remains constant over time, while the proportions invested in the bond
and cash vary over time. This result is not directly comparable with the present
result for two reasons. First, Deelstra et al. (1999) use a bond with a fixed ma-
turity date whereas here asset 1 is a bond index with constant volatility. Second,
they consider a different (deterministic) model for salary growth, and include a
minimum guarantee.

The combination here of the form of the salary model, the asset model and with
funding for cash means that the problem essentially reverts to that examined in
Merton (1990).

4.3 Special case: Vasicek model for r(t)

Let us now assume that we are using the Vasicek model for interest rates and that
γ(T ) = γ < 0. Thus µr(r) = αr(µr − r) and σr(r) = σr. We also assume that
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ν2
s = 0 as in equation (12).

Let us now solve equations (14) and (15). Equation (15) becomes:

δ′(t)
δ(t)

− βµ̃s(t)−
1

2
(ρ− σs)

′(ρ− σs)
β

β − 1

+αrµrγ(t) + βσ′s(ρ− σs)− (ρ− σs)
′e1σr

β

β − 1
γ(t)

−1

2
σ2

r

1

β − 1
γ(t)2 + [γ′(t)− αrγ(t)] r = 0

(24)

Equating terms in r to zero:

γ′(t)− αrγ(t) = 0

⇒ γ(t) = γe−αr(T−t)

Equating the remaining terms to zero:

0 =
δ′(t)
δ(t)

− βµ̃s(t)− βσ′sσs + ξ0 + ξ1e
−αr(T−t) + ξ2e

−2αr(T−t)

=
δ′(t)
δ(t)

− βµs(t) + ξ0 + ξ1e
−αr(T−t) + ξ2e

−2αr(T−t)

where ξ0 = −1

2
(ρ− σs)

′(ρ− σs)
β

β − 1
+ βσ′sρ

ξ1 = αrµrγ − (ρ− σs)
′e1σrγ

β

β − 1

ξ2 = −1

2

σ2
rγ

2

(β − 1)

Let Ks(t) =
∫ T

t

(
βµs(u) + ξ0 + ξ1e

−αr(T−u) + ξ2e
−2αr(T−u)

)
du. Combining this

with δ(T ) = 1/β gives us the solution:

δ(t) =
1

β
eKs(t)

Equation (14) is unchanged from before. Thus:

ε(t) = π

∫ T

t

EQ

[
exp

(
−

∫ τ

t

r(u)du

)
S(τ)

S(t)

∣∣∣∣ Ft

]
dτ

is the economic value at t of the future contributions as a proportion of today’s
salary.
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Recall that:

p(t, y, r) = θBC ′−1
(σs − da(r)σre1) + θAC ′−1

σs + (1− θB − θA)C ′−1
ρ

where θB = θB(t, y, r) =
φyr

da(r)yφyy

and θA = θA(t, y, r) = 1− φyr − da(r)φy

da(r)yφyy

As in the previous example, we sell short at time t an amount equal to ε(t) in
portfolio A. Furthermore, it is straightforward to see that the surplus y + ε(t) is
invested in the following proportions:

p(t, y, r)y + ε(t)pA

y + ε(t)
=

β

β − 1

(
pB +

(
1− γ(t)

βda(r(t))

)
(pA − pB)

)
+

1

1− β
pC

where pB = C ′−1
(σs − da(r)σre1)

pA = C ′−1
σs

and pC = C ′−1
ρ

Since da(r) is assumed to be constant it follows that γ(t)/βda(r) → 1 as t → T .
Thus, lower risk assets are shifted over time from portfolio A into portfolio B. By
time T there are no investments remaining in portfolio A (as proved in Corollary
3.2.4). This gives the most tangible difference between the present case and the
case where we are funding for cash (γ = 0). On the other hand, the proportion
of the excess over −ε(t) invested in the risky portfolio C does not depend on
either time or y. None of the investment proportions depend upon r. This arises,
in the present work, for two reasons. First, the r(T ) components in the salary
and asset parts of the model cancel out. Second, the choice of a power utility
function produces a similar lack of dependence upon t and r as arises in simpler
optimisation problems (for example, see Merton, 1990).

4.4 Further comment

If νs > 0, then there is non-hedgeable salary risk. With a power utility function,
which takes the value minus infinity for negative values of y,we need to ensure
that the fund size stays positive at all times. To do this, we need to ensure that
the proportions of the fund held in each asset are bounded in some neighbourhood
of zero.

Further investigation shows that, with π = 0 and νs > 0, we still retain the power
form of the solution (equation 11) when ε(t) = 0. This suggests the following
outcome in problems with non-zero payment streams. Suppose we replace the
salary-related and non-hedgeable contribution stream πS(t) by a related, possibly
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stochastic, contribution stream C(t) which is hedgeable (for example, if assets
include index-linked bonds and if C(t) is linked to the same index). Suppose also
that final salary is the product of a hedgeable component and a component which
is independent of asset returns. Then the independent component will separate
out in a power utility problem and have no effect on the optimisation procedure.
In combination with the hedegable contribution stream C(t) the observation for
π = 0 suggests that this new model will retain the power form of the solution
(equation 11).

5 Conclusions

In this paper we have extended the recent work of Boulier et al. (1999) and
Deelstra et al. (1999) in a number of ways:

• We consider a general one-factor diffusion model for interest rates rather
than the Vasicek or Cox-Ingersoll-Ross models.

• We place no restriction on the number of risky assets.

• Salary growth is random and contains a non-hedgeable element.

• The terminal utility function can be a function of the terminal fund value
in salary units and of the risk-free interest rate at that time. In particular,
we took it to be a function of the pension purchased at retirement as a
proportion of final salary.

With this structure we are able to prove some general results using the Bellman
equation. In particular:

• the optimal portfolio is composed of a time-dependent mixture of just three
portfolios (pA, pB and pC) which are themselves constant over time;

• the optimal utility depends only upon the market prices of risk and not, in
addition, on the particular range of assets available;

• the low risk component of the total fund gradually shifts from low-risk cash
investments into assets that match the future pension liability. (This result
is similar in some respects to a result derived in Blake (1998).)

With more restrictive assumptions and the special case of power utility, we were
able to establish more specific results: in particular, circumstances under which
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the power-utility structure is preserved through time. We found that the depen-
dence of the utility function upon the replacement ratio rather than the cash value
of the fund at retirement leads to an optimal asset-allocation strategy that is sim-
ilar in some respects to that derived by Boulier et al. (1999) and Deelstra et al.
(1999) (in particular, the stable investment proportion in risky assets) but quali-
tatively different in other respects (e.g., a shift from low-risk cash assets towards
liability-matching assets).

The model considered here did not include any form of minimum guaranteed
benefits. However, the main results in this paper should extend to problems
involving guarantees with utility measured as a function of the excess pension
benefit as a proportion of final salary.
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