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Summary

For larger defined benefit pension plansvariability in funding levelsand contri-
bution rates arises primarily from variability in real investment returnsrelative
to salary growth. Recent work by Dufresne (1988, 1989, 1990) and Haberman
(1994) has shown how this uncertainty can be reduced by chosing an appro-
priate amortization strategy. In the present paper we first consider to what
extent the effectiveness of the decision making strategy is compromized by
uncertainty in the model parameters.

We then extend previous work by considering, in a simple fashion, how
the asset alocation strategy can also be used to control variability. The obvi-
ous approach isto make use of lessvolatile assets. This reduces uncertainty in
funding levelswhile the lower expected investment returnsrai se the mean con-
tribution rate. However, lower risk assets have a tendency to produce returns
which are positively correlated through time. This has the effect of increasing
thevariability in the funding level over that which might be expected, reducing
the benefits of, for example, a switch fom equitiesinto bonds.

It is argued that clearly defined, mathematical objectives must exist for
a fund to settle on an appropriate asset allocation strategy. Such objectives
should define what levels of uncertainty are tolerable and which events are to
be avoided (for example, the event that the solvency level falls below 90%).

It is described how the Inverse-Gamma distribution provides a good ap-
proximation to the stationary distribution of the fund size. Using this approx-
imation, a simple argument shows that an objective which provides an upper
bound on the probahility of insolvency favours a strategy which holds a fixed
amount in alow risk asset and any surplus in a higher risk asset over the re-
balancing strategy which maintains afixed proportion in each asset classinde-
pendent of the current funding level.
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1 Introduction

In this paper we will consider the uncertainty which arises in defined
benefit pension plans as a result of the inherent randomness in invest-
ment returns. In this context a stochastic framework isthe only sensible
one to use. Within a deterministic framework there is no concept of
uncertainty: the very thing we are attempting to quantify and control.

In this paper we will review and develop the results for simple
stochastic models derived by Dufresne (1988, 1989, 1990) and Haber-
man (1992, 1993 a,b, 1994). Thiswill involve providing further insight
into the problems investigated by these authors; development of some
distributional theory behind funding levels; and consideration of how to
treat more than one asset class.

In al casesthere is more than one obviously optimal strategy: that
is, there will not be a single strategy which minimizes variances and
maximizes returns. This introduces the need for clearly defined objec-
tives, and these will be discussed towards the end of the paper.

In this, introductory section we review the existing results, and in
subsequent sections the results are generalized and extended to produce
new insight into the problem of uncertainty in pension funding.

1.1 Defined benefit pension plans

Defined benefit pension plans provide benefits to members which are
defined in terms of a member’s final salary (according to some defini-
tion), and the length of membership in the plan. For example,

Annual pension = % x FPS
where N = number of years of plan membership

FPS = fina pensionable salary

In defined benefit pension plans pension and other benefits do not
depend on past investment performance. Instead the risk associated with
future returns on a fund's assets is borne by the employer. This mani-
fests itself through the contribution rate which must vary through time
as the level of the fund fluctuates above and below its target level. If
these fluctuations are not dealt with (that is, if the contribution rate re-
mains fixed) then the fund will ultimately either run out of assets from
which to pay the benefits or grow exponentially out of control.



1.2 A smplemodel

A number of the factors which we will look at can be first investigated
by looking at avery simple stochastic model. By doing so we areableto
focus quite quickly on the problem and to give ourselves agood feel for
what might happen when welook at morerealistic and complex models.
This approach follows that of Dufresne (1988, 1989, 1990), Haberman
(1992, 1993 a,b, 1994), Zimbidis and Haberman (1993), Cairns (1995)
and Cairns and Parker (1995).

Suppose, then, that we have a fund which has a stable member-
ship and a stable level of benefit outgo. Assuming that al benefits and
contributions are paid at the start of each year we have the following
relationship:

AL(t+1) = (1+i}) (AL(t) + NC(t) — B(t))

where
AL(t) = actuarid ligbility at timet
B(t) = benefit outgo at timet
NC(t) = normal contribution rate at timet
and i, = valuation rate of interest

(Strictly speaking, AL(t + 1) isthe liability which would be calcu-
lated at timet + 1 given the current conditions at timet and if individual
valuation assumptions were borne out over the next year.)

Suppose that salary inflation is at the rate s per annum and that
benefit outgo increasesin line with salaries each year. Then

B(t) = B.(1+9)
AL(t) AL.(1+s)
NC(t) = NC.(1+5s)

giving

AL.(1+s) = (1+iy)(AL+NC—B)
or AL = (1+iy)(AL+NC-B)
where iy = (1+iy)/(1+s)—1=(i,—9)/(1+5)
= real valuation rate of interest
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Hence

NC = B—(1—w)AL
where vy = 1/(1+iy)

Inthisidea situation B will be known, while AL will be determined
by the valuation method and its associated assumptions, of which the
real valuation rate of interest is one.

For conveniencewewill work inreal termsrelativeto salary growth.
In effect this means that we may assume that s = 0, without losing any
level of generality.

Now let F(t) be the actual size of the fund at timet. Then

F(t+1)=(1+i(t+121))(F(t)+C(t)—B)

where i(t + 1) is the effective rate of interest earned on the fund
during the period t up tot + 1, and C(t) is the contribution rate at time
t.

C(t) can be split into two parts: the normal contribution rate, NC;
and an adjustment ADJ(t) to alow for surplus or deficit in the fund
relative to the actuarial liability. Thus

C(t) =NC+ADJ(t)
We will deal with the calculation of this adjustment in the next two

sections.

The deficit or unfunded liability at timet is defined as the excess
of the actuarial libility over the fund size at timet. Hence we define

UL(t) = unfunded liability at timet
= AL—F(t)

In North Americait iscommon also to look at the losswhich arises
over each individual year. Thisis defined as the difference between the
expected fund size (based on the valuation assumptions) and the actual
fund size at the end of the year given the history of the fund up to the
start of the year. Thisgivesus

L(t) = lossinyeart
E[F(t)]—F(t) giventhefund history uptotimet—1
= UL(t) —E[UL(t)] giventhefund history uptotimet — 1
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(for example, see Dufresne, 1989).
We will make use of UL(t) and L(t) in the next section.

No mention has been made so far of the interest rate processi(t).
Initially wewill assumethati(1),i(2),. .. formanindependent andiden-
tically distributed sequence of random variables with

i(t) > —1 with probability 1
= i

Var[1+i(t)] = o2
(1+i)*+0?

N ~— —

For notational convenience we will define

11
E[1+i(t)] 1+i
V2 = : = L <V
2 7 E[Q+i)]  (@+iZ+o?

Vi =

These will be made use of in later sections.

1.3 Two methods of amortization

The Spread Method: Thisisin common use in the UK. The adjust-
ment to the contribution rate is just a fixed proportion of the unfunded
liability: that is,

ADJ(t) = kUL(t)
where kK = i a rately
ami

and m = the period of amortization.

The period of amortizationischosen by the actuary, and commonly
ranges from 5 years to over 20 years. For accounting purposes in the
UK m must be set equal to the average future working lifetime of the
membership.

The Amortization of Losses Method: Thisisin common usein
the USA and Canada. The adjustment is calculated as the sum of the
lossesin the last myears divided by the present value of an annuity due
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with aterm of m years calculated at the valuation rate of interest: that
is,

ADJ(t

5,

%\H

Theinterpretation of thisisthat thelossmadein year sisrecovered
by paying mequal instalmentsof L(s)/&m over the next myears. These
m instalments have the same present value as the loss made in year s.

Dufresne (1989) showed that the unfunded liabilities and the losses
are linked in the following way:

m-1
UL(t) = 2 AjLt—1i)
j=0
where Aj = amﬂ
am

Intuitively this makes sense, since AjL(t — j) is just the present
value of the future amortization instalments in respect of the loss made
attimet — j. HenceUL(t) isequal to the present value of the outstand-
ing instalmentsin respect of al losses made up until timet.

The Spread Method can aso be defined in terms of the loss func-
tion. Whereas the Amortization of Losses Method recovers the loss at
time t by taking in m equal instalments of L /& , the Spread Method
recovers this by making a geometrically decreasing, infinite sequence
of instalments which starts at the same level.

We are now in a position to calcul ate the long term mean and vari-
ance of the fund size and of the contribution rate. Details of these are
provided in Dufresne (1989) (in the case when the valuation and the
true mean rate of interest are equal) and Cairns (1995) (covering the
case when i #iy). For the Spread method we find that

R0 — e
E[C(t)] = B—(l_lzzl/vlz(_lv_l)\/l)AL
Var[F(t)] (I-k=wP?(—vo) >

(1—k—v1)2(v2 — (1—k)?)
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(1-k—w)?( — V)

(1—k—v1)2(v2— (1—k)2) AL®

Var[C(t)] = k2

When i = iy, these simplify to

E[F(t)] = AL
E[C(t)] = B—(1—v1)AL
(V2 — V)
Var[F(t)] mALZ
2 (Vi — V) 2
Var[C(t)] = k—(vz_l(l_k)z)AL

Now V2 > v, and we must have Var[F(t)] and Var[C(t)] greater
than 0. Hence we must have (1-Kk)2 <v, = k> 1— /5. This
then automatically impliesthat k > 1 —v; and if thisis combined with
k > 1—w it ensures that the mean fund size is also positive.

Looking at the Amortization of Losses Method we have, when the
valuation rate of interest is equal to the true long term mean rate of
interest,

o?(1+4i)?AL?
Var|L(t)] = =V
O = Ty e Y

Var[F(t)] = Ve X Af

Var[C(t)] =

1.4 Theperiod of amortization

One factor which we have within our control is the period of amortiza-
tion, m.

For the time being, assume that the valuation and the true long term
mean rates of interest are equal: we will look at the more general case
in alater section. The following results can be shown to hold for the
Spread Method (for example, see Dufresne, 1989)

e Var|[F(t)] increases as mincreases.
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Figure 1: The effect of the period of amortization on the variance of the
contribution rate with EJi(t)] = 0.05 and Var(i(t)] = 0.04.
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Figure 2: E[i(t)] = 0.05and Var(i(t)] = 0.04. Comparison of Var [F ()]
with Var[C(t)]. Notes: Var|[F(t)] increases as mincreases; the efficient
frontier for the Spread Method is always more efficient than that for the
Amortization of Losses Method.



e Var[C(t)] decreases initially as m increases from 1 up to some
value m* and then increases as m increases beyond m*. The opti-
mal value, m*, is such that

k* :1/% =1-—wo.

Looking at the Amortization of Losses Method no such analytical
results have been proved but numerical examples show that the same
qualitative behaviour holds, asillustrated in the following example.

Suppose that the mean and the variance of the long term rate of
interest are equal to 0.05 and 0.04 respectively. Figure 1 illustrates how
the variance of the contribution rate (with AL = 1) depends on m. The
Spread Method has its minimum at about 10 while the Amortization
of Losses Method has its minimum at about 16, and this minimum is
higher.

In Figure 2 we compare the variance of the fund size against the
variance of the contribution rate. We do this because we may be inter-
ested in controlling the variance of the fund size as much asthe variance
of the contribution rate (since thisis linked to the security of members
interests). As mincreases each curve movesto theright, first decreasing
and then increasing as m passes through m*. Above m* both the vari-
ance of the fund and the variance of the contribution rate are increasing.
It isclear then that no value of mabove m* can be ‘optimal’ because the
use of some lower value of m (say, m*) can lower the variance of both
the fund size and the contribution rate. Therange 1 < m < m* isthe so-
called efficient region: that is, given avalue of min thisrangethereisno
other value of mwhich can lower the variance of both the fund size and
the contribution rate. There is therefore a trade-off between variability
in the fund size and the contribution rate and settling on what we regard
as an optimal spread period can only be done with reference to a more
specific objective than ‘ minimize variance'.

It is significant that the Amortization of Losses Method curve al-
ways lies above the Spread Method curve. This means that the Spread
Method is certainly more efficient than the Amorti zation of L osses M ethod:
that is, for any value of m in combination with the Amortization of
Losses Method there is a (different) value m' for which the variance of
both the fund size and the contribution rate can be reduced by switching
to the Spread Method.

2 The Strength of the Valuation Basis

So far we have concentrated on the case where the valuation rate of
interest is equal to the mean long term rate of interest. It is common,
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however, for valuationsto be carried out on astrong (occasionally weak)
basis: that is, to use a valuation rate of interest which islower (greater)
than the true long term mean rate of interest. This givesriseto awider
variety of results.

Recall that
R0 = e
EIC(t)] = B_(l—k(Il/vlz(_lv—l)Vl)AL
1—k—w)2(v2—
verr (1E k—V1)Z(3/2(X1(1XZI)<)2) A
varlc) = Ko KW

(1—k—v1)2(v2— (1—k)2)

We concentrate on the variance of the contribution rate and ook for
the existence of a minimum with respect to the period of amortization,
m. There are a number of cases to consider which are defined by the
relationship between the valuation rate of interest and the true mean
and variance of the long term rate of interest.

1. Strong basis. (valuation rate less than true mean rate)
(these are currently observations, and not proved)
(@) E(G) isanincreasing function of k for k > 1—, /V».
(b) Var (C) hasaminimum for some1— /v, < k* < 1.
(c) Var (R) isadecreasing function of k.

From this we can see that for k > k* both the expected value and
the variance of the contribution rate are increasing so that increas-
ing k above k* is not worthwhile. If k is decreased then we trade
off alower contribution rate for a higher variance. The optimal
value therefore depends on the pension fund's utility function or
objectives.

For some values of k the mean contribution rate will be negative,
indicating that the fund is large enough to pay for itself and at
times requiring refunds to the employer. Although this seems an
ideal situation, thereality isthat the company must first have built
up thefundtothislevel. It would also belikely to violate statutory
surplus regulations.
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It is possible to have smaller expected fund levels and higher con-
tribution rates, but these do not arise if the projected unit method
is used in the calculation of the funding rate and using a conser-
vative valuation rate of interest.

2. Best estimate: (valuation rate equal to true mean rate)
Theresults of Dufresne (1989) hold.
(a) E(G) isaconstant function of k for k > 1 —, /Va.
(b) Var (C;) hasaminimum for some 1 — /v, < k* < 1.
(c) Var (R) isadecreasing function of k.

3. Weak basis: (valuation rate slightly greater than true mean rate)
Defined by i <iy < /(1+i)2+0%2—1.
(a) E(CG) isadecreasing function of k for k > 1— /2.
(b) Var (C;) hasaminimum for some 1 —,/vo < k* < 1.
(c) Var(R) isadecreasing function of k.
This time we find that it may be acceptable to increase k above
k*, trading off lower contributions for higher variability.

4. Very weak basis. (valuation rate significantly greater than true
mean rate)

Defined by /(1+1)2+ 02— 1 < y.

(8 E(CG) isadecreasing function of k for k > 1— v, at which point
it equals B and the schemeisfunded on apay asyou go basis. For
1-w >k>1- /N E(G) isdtill adecreasing function.

(b) Var(C;) has a minimum equal to zero at k = 1—w,. Thisis
because the scheme is now funded on a pay as you go basis and
contributions equal the constant B.

(c) Var(R) has alocal minimum at k = 1, a maximum at some
1-w <k <1landagloba minimumequa tozeroatk=1—w,
when the fund stays constant at zero.

Theéefficient frontier
Pooling these results together we can determine a curve m(y)
where

M(uc) =min{Var(G) :E(G) =puc, 1> k> max(1—w,1—\/v2),w <1}
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Figure 3. Effect of different valuation rates of interest. Moving from
left to right: iy, = 0.03 and iy, = 0.04 (type 1, strong basis); iy = 0.05
(type 2, best estimate basis); iy, = 0.06 (type 3, weak basis); iy = 0.07
(type 4, very weak basis). The dotted line is the efficient frontier.

This curve defines the minimum variance which can be attained for
a given mean contribution rate. In fact, it can be shown that this curve
is convex (quadratic).

These different types of outcome are illustrated in Figure 3, with
i =0.05and 6% = 0.22.

3 Senditivity Testing

In carrying out such analysesit isimportant to realize that the model for
the rate of return including its parameter values are uncertain. First, the
model we use hereis only one of arange of possible models of varying
complexity which all fit past data reasonably well. All of these models
are, however, only an approximation to a much more complex redlity.
Second, the parameter values which we have used (here i = 0.05 and
o2 = 0.04) are not known with certainty: for example i could equally
well be 0.04 or 0.06.

In fact this can have a very significant effect on level the variabil-
ity. Figures 4 and 5 illustrate this point. The true mean rate of interest
is successively given the values 0.04, 0.05 and 0.06. In Figure 4 the ef-
fect on Var[C(t)] is very significant, particularly for larger values of m.
However, these results are distorted by the fact that, when the valuation
and the true long term mean rates of interest are not equal, the mean
fund size depends on m. The normalized variance of C(t) is plotted in

13



g : L oo
: ) BT Ty
o —
Figure 4: E[i(t)] = i = 0.04,0.05,0.06 and Var[i(t)] = s2 = 0.04.

Var[C(t)] plotted against m for different long term rates of return. The
valuation rate of interest is fixed.
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Figure 5: E[i(t)] =i = 0.04,0.05,0.06 and Var[i(t)] = s2 = 0.04.

Var[C(t)]/E[F(t)]? plotted against m for different long term rates of
return. The valuation rate of interest is fixed.
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Figure 6: E[i(t)] = 0.05 and Var]i(t)] = s2 = 0.03,0.04,0.05.
Var[C(t)]/E[F(t)]? plotted against m for varying levels of volatility in
the rate of return. The valuation rate of interest is fixed.

Figure 5 and the effect can be seen to be reduced but still significant.

A changein thevalue of i of 1% makes a differencein m* of about
2 years (for example, moving fromi = 0.05to i = 0.06 changesm* from
10to 8).

The result of these changesis not as significant as might first ap-
pear. For example, suppose we settled upon m* = 10 on the basis that
i = 0.05. If in fact the long term mean turned out to be i = 0.06 then
the decision to amortize over 10 years would turn out to have been only
marginally worse than if the true optimum m* = 8 had been used. The
fact that the actual variance of the contribution rate was perhaps 20%
higher than that expectedisirrel evant since thelower valuewould never,
in fact, have been attainable.

Figure 6 shows the effects of uncertainty in 6 (with 62 taking the
values 0.03, 0.04 and 0.05). The effect is again substantial, but much
more uniform over the whole range of values for m. This is because
62 has a much more direct effect on the variance of the fund size and
the contribution rate. However, as with uncertainty in i, the normalized
variance is relatively stable over a range of values about the minimum,
so choosing the wrong value of mwill only marginally increasethe long
term variance.

The point to take in from this section is that we need to take care
in ensuring that we look at the right quantities. We therefore need to
compare the actual outcome based on the decision which was based
on incorrect assumptions with the outcome which would have actually
happened had the decision been based on the correct assumptions. Here
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the differences have been shown to be minimal but if we were to find
that they were significant then we may need to look carefully at our
estimates to seeif they can be refined and improved upon.

With only a limited amount of past data it is extremely plausible
that the true long term mean rate of interest may be one, two or even
three percent different from our best estimate. Similarly, the long term
variance could be quite different from our best estimate.

4 ODbjectives

We have already discussed that within the efficient region for m (1 <
m < m*) thereis atrade off between higher variance of F (t) and higher
variance of C(t). To settle on an optimal spread period therefore re-
quires the use of a specific objective or utility function. For example,
we may be concerned about containing the fund size within a specified
band (bounded below, say, by the minimum solvency level and above
by a statutory surplus limit). We could accommodate this by specifying
that E[F(t)] lie in the middle of this band and that the standard devia-
tion of F(t) be no more than 10% of this mean fund size. In this case
the optimum would be m** which pushes the variance of F(t) up to the
maximum level allowable or m* if thisislower.

If a proper optimum is to be found then the fund must have awell
defined objectivewhich will allow optimization to take place. Examples
of some objectives are:

1. Minimize Var|C(t)] subject to Var [F(t)] < Vimax;
2. MinimizeVar[C(t)] subject to E[F (t)] = ur;

3. Minimize the variance of the present value of all future contribu-
tions (that is, 31> o V!C(t)) subject to ......;

4. Maximize E[u(F(t))] where u(f) is utility function which de-
pends on the fund size. For example, if u(f) = —(f — fp)? then
E[u(F(t))] = —{Var[F(t)] + (E[F (t)] — fo)?}, the second term
being a penalty for deviation of the mean from the target of fo;

5. MinimizeVar[C(t)] subject to Pr{F (t) < ALmin} < 0.05, where,
for example, ALin IS the minimum solvency liability.

Care should be taken when formulating an objective. For example,
the fourth of these makes less sense if E[F(t)] is constant for all values
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of m (that is if iy = i); and constraints should have reasonable rather
than extreme or even impossible values (for example, do not impose
a requirement that the mean rate of return on the assets should equal
50%).

We will return to the role of objectives later in this paper after we
have introduced the possibility of investment in several asset classes.

5 Asset Allocation Strategies

So far we have considered only a simple stochastic interest model (in-
dependent and identically distributed returns) which provides us with
some intuitively-appealing, analytical results. From a simple point of
view this can be regarded as a single asset model. However, it can be
applied equally well to funds with more than one asset class.

5.1 TheRebalancing Strategy

This strategy dictates that the fund maintains a constant proportion of
its assets in each asset class and is therefore independent of the current
funding level. In practice the fund is rebalanced only periodicaly (to
keep down transaction costs) so that the proportions in each class may
drift away temporarily from their target values. For example, the fund
may be rebalanced once a month or once a year, or whenever the pro-
portion of the fund in a given asset class deviates from its target value
by more than 2%, say.

Suppose we rebalance the fund once a year and there are m assets
2,...,m Assetk (k=1,2,...,m) will producereturnsof ji(t) inyear
t=1,2,...). For modelling purposes we will assume that the process
= (ja(t),..., jm(t))T is stationary and ergodic. Furthermore, let
n' = (my,...,mm) ' represent the target proportions in each asset class.
Then i(t) = =" j(t) is the return on the fund in year t. Since j(t) is
stationary and ergodic, soisi(t). If j(1),j(2),... areindependent then
soarei(1),i(2),....

We can therefore model the processi(t) directly and apply thisto
the simple model for a pension plan described in Section 2.

If the process j(t) has some sort of correlation structure then it is
likely that i(t) does also. Again, however, it may be possible to model
i(t)=n"j(t) directly allowing usto carry out arelatively simple inves-
tigation similar to that reviewed in Section 2.

Haberman (1993a, 1994) has investigated the use of an AR(1) time
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series model for i(t). It was found that p > O (positively correlated
returns) decreases the value of m* (for example, if we maintain E[i(t)]
and Var(i(t)] at 0.05 and 0.04 respectively but increase p from O (i.i.d.
returns) to only 0.1 then m* falls from 10 to 5). Conversely a negative
value of p (as could be the case for equities) will increase the value of
m’.

Now it isintuitively clear that an alternative way to the period of
amortization of reducing the variance of the funding level isto invest in
lower risk assets. However, such assets generally tend to provide more
positively correlated returns. Cairns and Parker (1995) have shown that
if E[i(t)] andVar(i(t)] remain fixed while p increasesthen both the mean
and the variance of the funding level will increase. The first of these
effectsis beneficial to the fund, whereas the second is not.

When we move to lower risk assets both E[i(t)] and Var|[i(t)] will
fall but the results of Cairnsand Parker (1995) suggest that the likely in-
crease in p will mean that the variance of the funding level will not fall
by as much as we might expect. In fact this can be shown to be the case
in the following simulation study. Returns on equities, irredeemable
bonds (consols) and short term bonds, and the growth of salaries were
generated by the Wilkie model (19944, b). Returns for bonds of inter-
mediate duration were generated by using an exponential yield curve to
interpolate between the short term and irredeemable bond yields. Figure
7 shows the standard risk-return profile for a selection of portfolios. eg-
uities and 15-year bonds; equities and consols; equities and short term
bonds; and single bond holdings. What this graph does not show is
the autocorrelations which exist in certain of the portfolios. The cor-
relations between real returns over salary growth in successive years
ranged from (approximately) O (for equities), through 0.3 (consols) to
0.6 (short term bonds).

The situation is quite different when we look at the mean and stan-
dard deviation of thefund size (Figure 8). Herewe seethat, if the Wilkie
model givesan accurate representation of the future, then the benefits of
amove into bonds which the ordinary risk-return profile would suggest
(interms of risk reduction) are much reduced when they are applied to a
pension fund. As discussed abovethisisaresult of the autocorrelations
which are present in bond returns. In particular note that:

e consolsgiverise to afund size which has alower mean but hasa
higher variance than an equity based fund;

¢ al-bond portfolios are inefficient (that is, there always exists a
mixed equity-bond portfolio which raises the mean fund size and
reduces the variance of the fund size: for example, equity/short-
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Figure 7. Risk-Return profile for portfolios simulated by the Wilkie
model. Solid curve: different mixtures of equities and 15-year bonds.
Dotted curve: equities and consols. Short dashed curve: equities and
short term bonds. Long dashed curve: single bond holdings.
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Figure 8: Standard deviation against mean of the fund size (rebalancing

strategy) for given portfolios simulated by the Wilkie model. The curves
aredefined in Figure 7.
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bond curvein Figure 8);

e if bond returnsin successive years had (like equities) been more-
or-lessindependent of one another then Figure 8 would havelooked
much more like the much more conventional situation presented
inFigure 7;

o for this model, mixed bond portfolios appear to be less efficient
than single bond portfolios (but not greatly so);

¢ portfolios which maintain 50% or 60% in equities and therest in
long-bonds are significantly less risky for a fund than a pure eg-
uity fund without reducing the mean fund size by a great amount.

It should be reiterated that these observations have been drawn
from aWilkie model based simulation. It istherefore possiblethat other
asset models will lead to different conclusions — further work needs to
be done here.

5.2 Constant proportion portfolio insurance

Thisis a strategy described by Black and Jones (1987) and Black and
Perold (1992). Here, there are two model portfolios, one low risk and
one high risk, into which we can invest the assets of the fund. Constant
proportion portfolio insurance requires that we invest a certain multiple
of the fund's surplus in arisky portfolio and the remainder in the low
risk portfolio. Surplusis defined here as being the excess of assets over
some ‘floor’. For example, the floor may be that defined by minimum
solvency regulations, and need not be the actuaria liability which is
used in the calculation of the on giong funding level. If the amount of
surplus is precisely zero (that is, the value of the assets is equal to the
floor) then the amount of the fund invested in the high risk portfolio will
be zero.

Mathematically we have

St) = max{F(t) — Lmin,0} = amount of surplusat timet
Fi(t) = c.S(t)=amount of fund in risky portfolio
F(t) F(t) —c.S(t) = amount of fund in low risk portfolio
Lmin ‘“floor’
c = multipleof surplusinvested in risky asset
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The advantage of using such a strategy is that it provides a simple
mechanism for the avoidance of the floor (a mechanism which is miss-
ing from the rebalancing strategy) and this will hopefully reduce the
probability that the floor is breached.

Supposethat 1 and o are the vectors representing the proportions
in the various assets under the high risk and the low risk strategies re-
spectively. Then a fund which is wholly invested in the high risk fund
will obtain areturn on its assetsin year t of

i1(t) =m1j(t)

while the return on afund which iswholly invested in the low risk
fund will obtain areturn on itsassetsin year t of

io(t) =73 j(t)

If the fund isinvested according to the constant proportion portfo-
lio insurance strategy then the return in year t will be

i(t) = p(t—1i1(t)+(1-p(t—1))ia(t)
where p(t—1) = cSt—1)/F(t—1)

It therefore follows that the m-dimensional asset model can be re-
placed by a 2-dimensional stochastic process (i1(t),i2(t)). Thismimics
the reduction to 1-dimension when the rebalancing strategy is used.

[Note: From a mathematically tractible point of view it helps to
measure the amount of surplusimmediately after the payment of bene-
fitsand contributions. Thiswill be discussed el sewhere (Cairns, 1995).]

6 The StableDistribution of the Fund Size

So far we have looked at the unconditional (or stationary) mean and
variance of the fund size. Sometimes (for example, in the setting of
objectives) it is of interest to know how often the funding level will
fall below or rise above a certain level. In discrete time (as we are
considering here) it isonly possible to derive the stationary distribution
for F(t) when i(t) takes one of a small number of distributions (see
Dufresne, 1990). Alternatively, the distribution of F(t) can be found by
using the recursive methods described by Parker (1994) (seeaso Cairns
and Parker, 1995).
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Figure 9: Inverse Gamma approximation to the distribution of F(t).
Solid curve: empirical distribution of F(t). Dotted curve: Inverse
Gamma approximation.

6.1 Thelnverse-Gamma approximation

In the continuous time version of the model it can be shown that if we
are following the rebalancing strategy then F(t) has an Inverse-Gamma
distribution (for example, see Dufresne, 1990, Cairns, 1995). (If aran-
dom variable, X, has an Inverse-Gamma distribution with parameters o.
and A then 1/X has a Gammadistribution with parameters o. and A, and
X has mean A/ (o. — 1) and variance A?/[(o. — 1)%(0.— 2)].)
Furthermore, if we are following the constant proportion portfolio
insurance strategy instead then it can be shown (see Cairns, 1995) that
F(t) — M has an Inverse-Gammad distribution (for some constant M).

This exact result has been matched to the distribution for F(t) in
the discrete time model, with the conclusion that the Inverse-Gamma
distribution provides a very good approximation in a wide variety of
cases. This can be seen in Figure 9 where we compare the empirical
and approximate distributionsfor F (t). This example was generated by
independent and identically distributed Log-Normal returns:

Iogl() ~ N(0.0286,0.0399)
E[i(t)) = 0.05
Var[ (t)] = 0.0449

Space prevents further illustration but the approximation is just as
good in cases where the process 1+ i(t) is generated by:
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¢ both the rebalancing and constant proportion portfolio insurance
strategies,

¢ various independent and identically distributed processes includ-
ing the Log-Normal, Gamma, L og-Normal-with-a-minimum, and
Translated-Gamma distributions (the last two mimicking a port-
folio of equities and options);

e processes with correlated returns including the AR(1) (for which
the application to pension fund modelling is described by Haber-
man, 1994) and the Wilkie model (see Wilkie, 1987, 1994 a,b).

Having agood idea about what the distribution of F (t) lookslikeis
important when we are considering certain types of objectives. In par-
ticular, those which involve probabilities and certain utility functions
rather than just means and variances require the use of the full distri-
bution function for F(t). For example, suppose the minimum solvency
level will be 60% of the ongoing actuarial liability. A suitable objective
for a scheme might then be to minimize the variance of the contribution
rate subject to the constraint that the probability of falling below the
minimum solvency level in any oneyear is at most 0.05.

7 Comparison of Strategies

The question arises as to which of the two strategies (rebalancing and
constant proportion portfolio insurance) isto be preferred. Clearly this
will depend on the objective which the pension plan has set itself. How-
ever, a number of facts can be drawn together which will clarify the
situation before we consider the objective.

Welook at the continuoustime model dealt with by Dufresne (1990)
and Cairns (1995). Following the analysis of Cairns (1995) we assume
the existence of 2 assets. onerisk-free and the other risky (but offerring
a higher expected return).

First, consider the constant proportion portfolio insurance strategy.
At any given time, the amount of surplus dictates how much of the
fund should be invested in each asset and consequently we are able to
calculate the mean, the variance and the (Inverse-Gamma) distribution
of the fund size (Figure 10, dotted curve).

Second, consider the rebalancing strategy. We can choose what
proportion of the fund to invest in each asset. Suppose, then, we choose
this proportion in such a way as to ensure that the mean fund size un-
der this strategy matches that under the strategy described above. (We
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Figure 10: Comparison of Rebalancing strategy (solid curve) and Con-
stant Proportion Portfolio Insurance strategy (dotted curve). Both strate-
gies give the same mean fund size. Rebalancing gives a lower variance
of the fund size. Constant Proportion Portfolio Insurance is better at
avoiding low funding levels.

do this by using the formulafor E[F (t)] givenin Section 1.3 to derive
the mean rate of return. This mean can then be achieved by choosing
an appropriate mix of assets.) Once the portfolio mix has been chosen
we can derive the variance and the distribution of the fund size (Fig-
ure 10, solid curve). It can be shown (Cairns, 1995) that this variance
will always be lower than that under the constant proportion portfolio
insurance strategy.

In terms of variances the rebalancing strategy is the more efficient
of the two and should therefore be preferred (backing up the conslu-
sions of Lee, 1994). However, there are circumstances under which
constant proportion portfolio insurance will be the preferred strategy:
in particular, when the objective requires that the probability of falling
below a given level (for example, the minimum solvency level) is no
more than 0.05, say. It is a strategy which is much better at avoiding
specific undesirable levels of funding.
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