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Abstract

This paper discusses the modelling and control of pension funds.

A continuous-time stochastic pension fund model is proposed in which there aren risky
assets plus the risk-free asset as well as randomness in the level of benefit outgo. We
consider Markov control strategies which optimise over the contribution rate and over the
range of possible asset-allocation strategies.

For a general (not necessarily quadratic) loss function it is shown that the optimal pro-
portions of the fund invested in each of the risky assets remain constant relative to one
another. Furthermore, the asset allocation strategy always lies on the capital market line
familiar from modern portfolio theory.

A general quadratic loss function is proposed which provides an explicit solution for the
optimal contribution and asset-allocation strategies. It is noted that these solutions are
not dependent on the level of uncertainty in the level of benefit outgo, suggesting that
small schemes should operate in the same way as large ones. The optimal asset-allocation
strategy, however, is found to be counterintuitive leading to some discussion of the form of
the loss function. Power and exponential loss functions are then investigated and related
problems discussed.

The stationary distribution of the process is considered and optimal strategies compared
with dynamic control strategies.

Finally there is some discussion of the effects of constraints on contribution and asset-
allocation strategies.
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1 Introduction

The analysis and control of pension fund dynamics is becoming increasingly important as
members start to pay more attention to the security of promised benefits and as sponsoring
employers become more concerned about the timing and stability of cashflows.

This paper discusses some current problems in the analysis and control of defined benefit
pension funds. Under a pure defined benefit pension fund the benefits payable to an
individual member depend only upon his or her salary and length of past service.

The principal alternative to a defined benefit scheme is a defined contribution occupational
pension scheme. Here the benefits are defined by the level of contributions which are
paid into an individual member’s fund or ‘pot’ and by the investment returns which are
achieved over the period up to retirement. Since the pot is used to purchase an annuity at
the time of retirement the level of pension is also determined by the annuity rate which
prevails at the date of retirement and, in particular, the term structure of interest rates on
that date. Generally the rates of contribution by the sponsor and by the member are fixed.
All of the investment risk is borne by the member and there is no opportunity for the
member to smooth out the effects of adverse investment returns. Existing literature on
defined contribution problems typically deals with the case where the terminal utility is
a function of the fund size at retirement (for example, see Merton, 1990, Gerber & Shiu,
2000, and Deelstraet al., ). The case where the terminal utility is a function of pension
purchased at retirement (that is, fund divided by annuity rate) in a stochastic interest-rate
environment has been considered by Cairnset al. (1999).

Under a defined benefit scheme the sponsoring employer has no ability to vary the tim-
ing or amount of the benefits payable. In contrast to this and to a defined contribution
scheme the rate at which contributions are paid into the fund are (within limits) very flex-
ible. Typically this flexibility rests fully with the fund sponsor while individual members
contribute a fixed percentage of their salaries.

Increasingly, we also see schemes which provides elements of both defined benefit and
defined contribution. Most common are schemes which allow for discretionary increases
to pensions in payment with the size of the increase depending upon recent investment
returns. Other ‘hybrid’ schemes provide a pension which is equal to the maximum of a
defined benefit pension and a defined contribution pension.

Within the pure defined benefit framework there is considerable scope for freedom:

• in how the variable contribution rate should be varied;

• in the choice of asset allocation strategy.

1.1 Contributions

By-and-large, the fund sponsor has considerable freedom in how the contribution rate
can be varied. The basic principle underlying how the contribution rate is set is that it
should take account of the amount of surplus or deficit (that is, the excess of assets over
liabilities). Thus, in some sense, the contribution rate can be reduced during periods of
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surplus and increased above the normal rate when the scheme is in deficit. The role of
the actuary is to take account of the needs of the sponsor and of the members before
recommending to what extent surplus or deficit should affect the contribution rate.

The overall level of flexibility may be restricted by the presence of certain constraints:

• There may be a legal requirement to keep the funding level (the asset/liability ra-
tio) above a certain minimum level (the method of calculation of which can take a
number of forms). If the funding level drops below this minimum the sponsor may
be compelled to make up the deficit immediately.

• Similarly there may be a restriction on the maximum size of the fund. This may
require refunds to the sponsor or improvements to the benefits (although, in the
latter case, the fund would cease then to be a ‘pure’ defined benefit scheme).

• The fund sponsor may wish to keep the contribution rate below a certain level (for
example, twice the normal rate).

• Regulations or plan rules may prevent refunds to the employer, or perhaps refunds
are only permitted when the funding level is sufficiently high.

1.2 Assets

A pension fund will normally fall under the responsibility of a group oftrusteesor man-
agerswho must act in the best interests of the fund members. Within this remit they can
choose how to invest the assets of the fund. Appropriate investment strategies will take
account of:

• prudence;

• requirements to

– maximise returns;

– minimise risk;

– diversify;

– avoid self-investment;

• immediate cashflow requirements;

• security;

• the tax status of the fund and of the various potential assets.

Besides taking the advice of their fund managers, trustees may also seek the advice of
the fund actuary before deciding upon an appropriate strategy. How the funds available
should be allocated presents an interesting problem for the actuary. The solution to such
a problem must take account of many things:
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• the balance between the conflicting interests of the members and the sponsor;

• the expected returns on the various assets and the associated risks and dependencies
(both between individual assets and through time);

• the current level of funding;

• constraints on short selling of assets.

1.3 Objectives

For an actuary to set an optimal contribution rate and asset allocation strategy it is nec-
essary to use a well defined objective function with appropriate constraints. Objective
functions must be sufficiently precise to avoid ambiguous or non-sensical solutions. For
example, the imprecise objectiveminimise varianceleads to various outcomes which min-
imise the variance of the funding level and/or the contribution rate.

Other apparently precise objectives lead to optimal solutions which do not entirely make
sense. In such circumstances it may be necessary to revise the objective function.

1.4 Types of model

A basic question which must be answered first is should we use a deterministic or a
stochastic model. Deterministic models are adequate for cashflow projections and valua-
tions but little else. Stochastic models, on-the-other-hand, allow us to investigate fully the
dynamics of the fund through time and, for example, devise suitable control strategies.
Here we consider stochastic models only.

A separate question is whether models should be kept simple or be made very realistic.
The answer here depends on the reasons for modelling. In a more academic study we are
looking for the major drivers of pension fund dynamics. Simple models allow detailed
study of these factors. Often it is possible to derive analytical results which can then
be used to provide specific links between causes and effects. A more complex model,
on the other hand, may be required if the modeller has in mind a specific pension fund
with a very specific benefit structure. As models become more complex we input more
and more factors and find that more detail comes in the output from each simulation. It
then becomes very difficult to identify why certain effects are evident. However, simple
models provide the backup in the analysis of complex models. Such models give pointers
to what we should be investigating. Thus we may be able empirically to observe the same
links between causes and effects as were found analytically in the simple model. More-
often-than-not such comparisons can explain, with ease, the majority of the variation in
the dynamics of a complex model.

In some problems the aim may be to devise an optimal control strategy. As we show here
it is possible using simple models to derive precisely an optimal control. This then gives
us the starting point for further study and optimisation within a more complex model.

This paper has a number of aims. First, it will pull together some recent results in
continuous-time pension fund modelling (O’Brien, 1986, 1987, Dufresne, 1990, Boulier
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et al., 1995, 1996, and Cairns, 1996, 1997). Fresh proofs of these results will be pre-
sented as appropriate along with further discussion of their implications. Second, some
new avenues will be developed to show how this earlier work can be modified to consider
some generalisations and to pull the results closer to current practice. Third, the paper
will discuss some open problems.

Within this framework the paper will proceed as follows. Section 2 introduces the continuous-
time stochastic model for the dynamics of a pension fund in its most general form which
will be used in the majority of the paper.

Section 3 considers dynamic stochastic control of the model by making reference to a
value function which discounts exponentially future random values of a quadratic loss
function. The section proceeds by looking at various cases both constrained and uncon-
strained. The advantages and disadvantages of the quadratic loss function are discussed
in detail here. Finally, power and exponential loss functions are considered with problems
similar to those under the quadratic loss function identified.

In Section 4 we take the longer-term view and consider the stationary distribution of the
process (although the distribution of the model nears its stationary form within 10 to
15 years usually). This includes a look at the continuous proportion portfolio insurance
approach to asset allocation introduced by Black and Jones (1988) and compares this with
a static investment strategy. Section 5 compares the results of dynamic versus stationary
optimisation derived in Sections 3 and 4 and shows how sensitive these results are to
changes in the control parameters.

Finally Section 6 discusses how the model and value function might be developed in the
future to come closer to reality.

2 A general model

In this paper we consider continuous-time stochastic models for pension fund dynamics
which allow forn risky assets and for noise in the level of benefit outgo. The general form
of this simple model is:

dX(t) = X(t).dδX(t,X(t)) +c(t).dt−B.dt−σb.dZb(t) (1)

where X(t) = fund size att

dδX(t,X(t)) = instantaneous return on assets betweent andt +dt

c(t) = c(t,X(t))
= contribution rate

B = expected rate of benefit outgo

and σb = volatility in benefit outgo

Discrete-time models have been considered by Cairns (1995), Cairns & Parker (1997),
Dufresne (1988, 1989, 1990) and Haberman & Sung (1994). Such models have yielded
a number of useful analytical results with wider applications. Continuous-time models,
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which are, in some ways, more idealised, yield further analytical results (for example,
see Dufresne, 1990, Boulieret al.,1995, and Cairns, 1996). Similar results can then be
sought empirically in discrete-time models.

The contribution rate,c(t), is a predictable process and provides us with one of the means
of controlling the dynamics of the pension fund. Dufresne (1990) and Cairns (1996)
considered continuous-time models in which the contribution rate was a linear function
of the current fund size,X(t). Boulieret al. (1995) considered more general forms forc(t)
but found that the optimal solution to a simple control problem was that the contribution
rate should indeed be linear inX(t). These results are discussed in detail in Sections
3 and 4 of this paper. O’Brien (1987) considered a similar objective function where
the contribution rate only was controllable and where there was a stochastic reserve (in
contrast to the constant targetxp relative to salary roll used in Section 3 of this paper).
He found that the optimal contribution rate was linear in the amount of surplus. However,
other aspects of the model used by O’Brien (1987) were unrealistic even for a simple
pension scheme, making a fresh start here appropriate.

The other means of control is through the asset-allocation strategy. First we may allow
for the possibility of a risk-free asset (orcash) which has a value at timet of R0(t) =
R0(0)exp(δ0t). There are, in addition,n risky assets, the prices of which (including rein-
vestment of dividend income) we assume follow correlated geometric brownian motion:
that is,

dRi(t)
Ri

= dδi(t) = δi.dt +
n

∑
j=1

σi j .dZj(t) (2)

or dδ(t) = δ.dt +S.dZ (3)

where dδ(t) = (dδ1(t), . . .,dδn(t))T

δ = (δ1, . . . ,δn)T

S = (σi j )n
i, j=1

dZ = (dZ1, . . . ,dZn)T

andZ(t) is standardn-dimensional Brownian motion. We assume thatZ(t) andZb(t) are
independent.

For convenience later on, we defineD = SST (the instantaneous covariance matrix) and
λ = (λ1, . . . ,λn)T whereλi = δi−δ0 is the risk premium attached to asseti.

Let us assume thatδi > δ0 for all i≥1 (that is, investors are rewarded with higher expected
returns for taking on some risk). No assumption is made about the level of correlation be-
tween the returns on the various stocks including, for example, the benefits (or otherwise)
of diversification. The proportion of the assets invested in asseti (i = 0,1, . . . ,n) is de-
noted bypi(t,X(t)). It follows that∑n

i=0 pi(t,X(t)) = 1. In the development below we
write p = p(t,X(t)) = (p1(t,X(t)), . . ., pn(t,X(t)))T . The instantaneous rate of return on
the fund is then:
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(1−
n

∑
i=1

pi)δ0.dt+
n

∑
i=1

pidδi(t) = δ0.dt+ pTλ.dt+ pTSdZ (4)

In this paper we will consider a range of constraints on the proportions invested in each
asset. These include the possibility that we hold no cash (or a fixed percentage of the fund
in cash) and that there shall be no short-selling of assets.

We allow for more than one risky asset for two reasons. First, it allows for a degree of
realism without complicating substantially the analysis. Second, the experience of the
UK pension funding scene is that pension funds only use cash for short-term liquidity
rather than as a serious asset. Instead funds use government bonds (fixed interest and
index linked) as low-risk (but non-zero-risk) assets. This situation is modelled in Section
3.3.

3 Optimal dynamic stochastic control

3.1 The general quadratic case

We consider first the case where there is no constraint on the amount invested in cash.
Following Boulier et al. (1995) we define the value function for a general controlled
pension fund process

W(t,x)(c, p) = E

[Z ∞

t
exp(−βs)L(s,c(s,X(s)),X(s))ds | X(t) = x

]
(5)

Here exp(−βs) is a discount function andL(s,c,x) is a loss function given that at times,
X(s) = x. This value function is also a function of the chosen, Markov contribution strat-
egyc(s,X(s)) and investment strategyp(s,X(s)) which we abbreviate, where appropriate
to c andp respectively.

Let V(t,x) = inf(c,p)W(t,x)(c, p) = W(t,x)(c∗, p∗) assuming that such optimal control
strategiesc∗ and p∗ exist. ThenV(t,x) satisfies the Hamilton-Jacobi-Bellman equation
(for example, see Merton, 1990, Øksendal, 1998, or Fleming & Rishel, 1975):

0 = inf
c,p

(
e−βtL(t,c,x) +Vt +

[
(δ0 + pTλ)x+c−B

]
Vx +

1
2
Vxx

(
x2pTDp+σ2

b

))
where Vt ≡ ∂V/∂t

Vx ≡ ∂V/∂x

Vxx ≡ ∂2V/∂x2 (6)

We differentiate the expression in brackets with respect toc andp to find that:
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∂
∂c

(
·
)

= e−βtLc +Vx = 0, whereLc = ∂L/∂c (7)

⇒ c∗(t,x) = L−1
c (−eβtVx) (8)

and
∂

∂p

(
·
)

= λxVx +Dpx2Vxx = 0 (9)

⇒ p∗(t,x) = −
(

Vx

xVxx

)
D−1λ (10)

We see from the form ofp∗ that the amounts invested in each of the risky assets always
stay in the same proportion. Thus we may define a special portfolio,A, which is a mixture
of assets 1 ton in the same proportions (in market value terms) asD−1λ. Then for anyx we
hold a proportion ˜p(x) (which depends uponV(t,x)) in portfolio A and 1− p̃(x) in cash.
This result has obvious parallels in modern portfolio theory where the combination here of
cash and portfolio A mimics movement along the capital market line. However, here we
have not yet specified any form for the loss functionL(t,c,x) whereas modern portfolio
theory (which works in discrete time) relies upon the use of a quadratic loss function.
Further consideration of the model shows that portfolio A (which is efficient in the sense
of minimising the value function) is also efficient in the sense of modern portfolio theory:
that is, it has the lowest instantaneous volatility for a given rate of return.

Classical portfolio theory has been extended to include liabilities by Wise (1984), Wilkie
(1985), Sharpe and Tint (1990) and Keel and M¨uller (1995). Working in discrete time
and using a quadratic loss function Keel and M¨uller (1995) find that the composition
of efficient portfolios can be altered by the inclusion of liabilities: in particular, where
liabilities are random and not independent of the asset returns.

The precise form forV(t,x) is, of course, still not yet known: we only have expressions
for c∗ andp∗ involvingV(t,x).
It is necessary that the loss function is a strictly convex function ofc. This ensures that
the inverse ofLc exists. This requirement excludes, for example, downside loss functions
which are convex but not strictly convex.

Here we restrict ourselves to the following quadratic loss function:

L(t,c,x) = (c−cm)2 +2ρ(c−cm)(x−xp) +(k+ρ2)(x−xp)2 (11)

where k ≥ 0.

Thus L−1
c (−eβtVx) = cm−ρ(x−xp)− 1

2
eβtVx (12)

(that is, ifc = cm−ρ(x−xp)−exp(βt)Vx/2 we haveLc(t,c,x) =−exp(βt)Vx ).

A special case of this loss function is the one suggested by Haberman and Sung (1994)
(in a discrete-time framework).

We apply this to the Hamilton-Jacobi-Bellman equation to give:
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0 = e−βt

[(
−1

2
eβtVx

)2

+k(x−xp)2

]
+Vt +(δ0x−B)Vx−λTD−1 Vx

xVxx
λxVx

+
(

cm−ρ(x−xp)− 1
2

eβtVx

)
Vx +

1
2
Vxx

[
x2
(

Vx

xVxx

)2

λTD−1DD−1λ +σ2
b

]
(13)

Given the form of the objective function (Markov and time-homogeneous) it is clear that
the optimal strategiesc∗ andp∗ depend only uponx and not upont. ThusV(t,x) will be
of the forme−βtF(x) and therefore

0 =
1
4

F2
x +k(x−xp)2−βF +(δ0x−B)Fx−λTD−1λ

F2
x

Fxx

+(cm−ρ(x−xp)− 1
2

Fx)Fx +
1
2

Fxx

[
F2

x

F2
xx

λTD−1λ +σ2
b

]
(14)

Try F(x) = Px2 +Qx+R, and writeε = λTD−1λ. Then

0 = −1
4

(2Px+Q)2 +k(x−xp)2−β(Px2 +Qx+R) +(δ0x−B)(2Px+Q)

−1
2

ε
(2Px+Q)2

2P
+(cm−ρ(x−xp))(2Px+Q) +Pσ2

b (15)

⇒ 0 = x2[−P2 +k−βP+2Pδ0−Pε−2ρP]
+x[−PQ−2kxp−βQ−2PB+Qδ0−Qε−ρQ+2P(cm+ρxp)]

+[−1
4

Q2 +kx2
p−βR−BQ−Q2ε

4P
+(cm+ρxp)Q+Pσ2

b] (16)

DefineP̂ = 2δ0−β− ε−2ρ. Then we find that

P(k) =
P̂+

√
P̂2 +4k
2

(17)

Q(k) =
2[P(k)(B−cm−ρxp) +kxp]
−P(k) +δ0−β− ε−ρ

(18)

R(k) =
1
β

[
−1

4
Q(k)2 +kx2

p−BQ(k)−Q(k)2ε
4P

+(cm+ρxp)Q(k) +P(k)σ2
b

]
(19)

This is an admissible solution providedP̂> 0.

We find then that
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c∗(x) = cm−ρ(x−xp)− 1
2

(2P(k)x+Q(k)) (20)

or c∗(x) = c∗0−c∗1x (21)

p∗(x) = −(2P(k)x+Q(k))
2P(k)x

D−1λ (22)

or p∗(x) =
p∗0 + p∗1x

x
(23)

wherep∗0 andp∗1 are bothn×1 vectors which are proportional toD−1λ.

Note that whenx = −Q(k)/2P(k), p∗(x) = 0: that is, we are invested entirely in the
risk-free asset. Furthermore if a portfolio,A, is synthesised from then risky assets in the
proportionsD−1λ as described earlier, then, given a funding level ofx, we should hold a
proportion of the fund

p̃(x) = eT p∗(x) =−2P(k)x+Q(k)
2P(k)x

eTD−1λ (24)

in portfolio A and 1− p̃(x) in cash. (eT = (1, . . . ,1) is the unit vector.)

We can also note thatF(x) is minimised atx = −Q(k)/2P(k), which we will denote by
xmin say. As discussed in Section 3.6 this presents, to a certain extent, a barrier through
which it is difficult for the funding level,X(t), to pass. Depending upon the relationship
betweencm, k andxp this could take the form of a ceiling or a floor.

It is important to note thatP(k) andQ(k) do not depend uponσb. It follows, therefore,
that the optimal control strategy (both contributions and investments) do not depend upon
σb. Thus, demographic variability is a factor which affects the value functionV(t,x) only
and we should treat small funds in the same way as large funds.

It is also important to note that the precise proportions of each asset held in portfolio A
do not depend upon the form of the loss function, nor does it depend uponσb.

Remark

The non-linear ordinary differential equation (14) is subject to the boundary condition 0≤
F(x) for all x. We have two degrees of freedom in how we solve this equation. Numerical
work suggests that there are also solutions to (14) which either have singularities (which
we regard as an inadmissible solution) or which are asymptotically linear asx→ ±∞.
Now if F(x) ∼ a+ bx as x→ +∞, c∗(x) ∼ cm− b as x→ +∞. With such a solution
we may find thatX(t) will drift off to infinity. This drift, however, is countered by the
asset-allocation strategy which is quite extreme:

• AsX(t) gets very large the fund goes very long in cash and very short in risky assets.
This ensures that there is a very inefficient strategy which more-or-less throws away
money in order to get back to the target funding levelxp.

• As X(t) gets very small the fund goes very long in risky assets and very short in
cash to get a high expected return to help us get back to a better funded position as
quickly as possible.
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In the quadratic-F(x) case these problems with the asset-allocation strategy also apply
but they are much less extreme. Furthermore, the optimal contribution rate is a linear
function ofX(t). It is a necessary condition for stationarity that the contribution rate is at
least linear. (Note, however, that linearity is sufficient only when the slopec∗1 is greater
than a certain minimum level described later in this paper.)

Thus we can reasonably put in the further boundary condition thatF(x)/x2→ constant as
x→±∞.

3.2 Constraints on cash

We have up until now assumed that the amount of money invested in cash could vary
without bound. Here we go to the other extreme and assume that we invest a proportion
pm of the fund in risky assets and 1− pm in cash, wherepm is fixed. It is reasonable that
pm< 1 allowing for a small but fixed amount in cash to provide short-term liquidity for
the fund to cover immediate benefit payments. (A typical figure for a UK pension fund in
the UK is 5% cash andpm = 95% risky assets.) Subject to this constraint, there is total
freedom in the proportions invested in then risky assets.

Recall the Hamilton-Jacobi-Bellman equation:

0 = inf
c,p

eT p=pm

(
e−βtL(t,c,x) +Vt +[(δ0 + pTλ)x+c−B]Vx +

1
2
Vxx(x2pTDp+σ2

b)
)

(25)

where e = (1, . . . ,1)T

We differentiate the expression in brackets with respect toc as before to get:

∂
∂c

(
·
)

= e−βtLc +Vx = 0, whereLc = ∂L/∂c (26)

⇒ c∗(t,x) = L−1
c (−eβtVx) (27)

To minimise overp subject to the constraint we use the method of Lagrangians. Thus we
minimise the function

G(p,γ) = xVxλT p+
1
2

x2VxxpTDp+ γ(eT p− pm) (28)

overp andγ.

∂G
∂p

= xVxλ +x2VxxDp+ γe= 0 (29)

∂G
∂γ

= eT p− pm = 0 (30)
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for which the solution is

p = p(x) =
(

pm+
Vx

xVxx
eTD−1λ

)
1

eTD−1e
D−1e− Vx

xVxx
D−1λ (31)

=
(

d0 +d1
Vx

xVxx

)
D−1e− Vx

xVxx
D−1λ (32)

where d0 =
pm

eTD−1e

and d1 =
eTD−1λ
eTD−1e

We note, as in the previous section, the connection with modern portfolio theory. We
have already discussed the relevance ofD−1λ. Here we note that portfolios which invest
in the same proportion asD−1e have the minimum variance given that there are to be no
investments in cash. Furthermore, all efficient portfolios are linear combinations ofD−1λ
andD−1e.

Again because of the form of the value function we substituteV(t,x) = e−βtF(x).

Now L(t,c,x) = (c−cm)2 +2ρ(c−cm)(x−xp) +(k+ρ2)(x−xp)2 (33)

⇒ L−1
c (−eβtVx) = cm−ρ(x−xp)− 1

2
Fx (34)

We apply this to the Hamilton-Jacobi-Bellman equation to give:

0 =
1
4

F2
x +k(x−xp)2−βF

+
[(

δ0 +λTD−1
(

d0e+(d1e−λ)
Fx

xFxx

))
x+cm−ρ(x−xp)− 1

2
Fx−B

]
Fx

+
1
2

Fxx

[
x2
(

d0e+(d1e−λ)
Fx

xFxx

)T

D−1
(

d0e+(d1e−λ)
Fx

xFxx

)
+σ2

b

]
(35)

As in the unconstrained case this has a quadratic solutionF(x) = P(k)x2 +Q(k)x+R(k).
The form of p(x) indicates that we require two portfolios A and B. Portfolio A is made
up of fixed proportions of assets 1 ton in proportion to the vectorD−1λ, while portfolio
B is synthesised similarly but in proportion to the vectorD−1e.

As in Section 3.1 portfolios A and B are independent of the form of the loss function.

3.3 Further discussion of the general model

We now consider the optimal asset-allocation strategy in more detail. In particular, con-
sider the instantaneous rate of return on the investments: that is,δ0 + λT p∗(x). Consider
the unconstrained case first.
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δ0 +λT p∗(x) = δ0−
2P(k)x+Q(k)

2P(k)x
λTD−1λ (36)

= δ0−λTD−1λ− Q(k)
2P(k)x

λTD−1λ (37)

Now D is positive definite so thatλTD−1λ is positive. Furthermore,P(k) is positive and
Q(k) is normally negative. Henceδ0 +λT p∗(x) is normally a decreasing function ofx.

Similarly consider the constrained case.

λT p∗(x) = λT
[
d0D−1e+

2P(k)x+Q(k)
2P(k)x

(d1D−1e−λ)
]

(38)

= d0λTD−1e+d1λTD−1e−λTD−1λ +
Q(k)

2P(k)x
λTD−1(d1e−λ) (39)

Note thateTD−1(d1e−λ) = 0. HenceλTD−1(d1e−λ) =−(d1e−λ)TD−1(d1e−λ)< 0
sinceD is positive definite. AgainP(k)> 0 and normallyQ(k) < 0 so thatλT p∗(x) is a
decreasing function ofx.

Furthermore an analysis of the instantaneous variance of the investments confirms that as
the instantaneous rate of return decreases, the instantaneous variance decreases also and
then starts to increase as we go long (effectively) in low-risk assets and short in high-risk
assets.

Thus we find that when the funding level is low we invest more in high-risk assets and
as the funding level rises we shift from high-risk into low-risk assets. This is a rather
counterintuitive investment strategy. We would expect that as the funding level falls that
we might shift into lower-risk assets to protect our position. The strategy we have found
here does the opposite. The reason for this is because of the quadratic form of the objective
function. This, in a sense, defines an ideal funding levelxp and an ideal contribution rate
cm. If the funding level is below this then we invest in high-return, high-risk assets to
increase the chance of getting quickly back to the ideal level. Conversely if the funding
level is too high then we are prepared to invest in what is effectively an inefficient, high-
risk, low-return investment strategy in order to get back to the ideal level. Indeed the fund
will go long in cash and short in equities. In effect the scheme would be throwing money
away since, for the same level of risk (that is, volatility of asset returns) it could have
a higher expected return. The inefficiency here turns out, with hindsight, to be a result
of the quadratic loss function. This actually prefers the positive target contribution rate,
cm, to refunds. In other words, it is better to throw money away than to take a refund.
(There is nothing new in this observation. Related problems in other branches of financial
economics come to the same counter-intuitive conclusions where, for example, quadratic
utility functions are employed.)

Now consider the optimal contribution rate. Sometimes this is written in the form(c0−
c1xp)−c1(x−xp) wherex−xp is the surplus relative to the target fund sizexp. c1 is the
rate at which we try to remove surplus oramortizethis surplus. It can be noted that the
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optimal amortization rate,c∗1 = P̂(k), depends onk, δ0, λ andD but not oncm, xp or σ2
b.

On the other hand,c∗0 also depends onxp andcm but again not onσ2
b.

Similarly it can be seen thatp∗(x) does not depend uponσ2
b. Thus, it has been demon-

strated that for such a quadratic loss functionL(·) the optimal contribution and asset-
allocation strategies do not depend in any way upon the randomness in the level of benefit
outgo (at least where this uncertainty is uncorrelated with investment returns).

Later in this paper we will return to the dynamic optimisation problem where we have a
different objective function and where there are constraints on the investment strategy and
of the funding level.

3.4 Optimal strategy whenp is fixed

Suppose instead that the asset-allocation strategy is static: that is,p(t,x) = p for all t, x,
for somep. We can still apply the Bellman equation but minimise overc(t,x) only. Thus
we find that

0 =
[

1
4

F2
x +k(x−xp)2

]
−βF

+
[

δ0x−B− pTλx+
(

cm−ρ(x−xp)− 1
2

Fx

)]
Fx +

1
2

Fxx(pTDpx2 +σ2
b) (40)

Again we try to find a solution of the formF(x) = Px2 +Qx+R and we find that

P = P(k) =
P̂+

√
P̂2 +4k
2

(41)

where P̂ = 2δ0−β−2pTλ−2ρ + pTDp (42)

Q = Q(k) =−
2
[
kxp +P(k)

(
B−cm−ρxp

)]
P(k) +β−δ0 + pTλ +ρ

(43)

R = R(k) =
1
β

[
−1

4
Q(k)2 +kx2

p−BQ(k) +(cm+ρxp)Q(k) +P(k)σ2
b

]
(44)

The question now arises: how do we choose the optimal staticp?

We will consider one option here: minimiseP(k) over p. This means that the optimal
curve F(x) will be as close as possibile in the limit asx tends to±∞ to the superior
solution derived in Section 3.1. Clearly the solution derived in Section 3.1 will be lower
for all x regardless of the value ofp. (Other possibilities include minimisingF(x) overp
for a specific value ofx, or minimising the minimum ofF(x) overp.)

To minimiseP(k) overp we differentiate:

dP
dp

=
dP

dP̂

dP̂
dp

(45)
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=
(

1
2

+
1
2

P̂
(
P̂2 +4k

)−1/2
)

(−2λ +2Dp) (46)

⇒ p̂ = D−1λ (47)

A consideration of the form of̂P as a function ofp shows that this is a minimum at ˆp.

We note that the proportions in the risky assets as given in ˆp are the same as those derived
in Section 3.1. Furthermore, we find that, givenp= p̂, P̂= 2δ0−β−2ρ−λTD−1λ (again
the same as in Section 3.1). This means that:

• for large or small values ofx the loss of optimality as a result of fixingp does not
become too great;

• if we write c∗(t,x) = c∗0−c∗1x thenc∗1 is not affected by the restriction on the invest-
ment strategy (that is, the rate of amortisation of surplus or deficit is not affected).

3.5 Comparison of the strategies

Let us consider a specific example to compare the effectiveness of the optimal strategies
derived in Sections 3.3 and 3.5 compared to that in Section 3.1. The fixed parameters are
as follows:

δ0 = 0.03, δ =
(

0.04
0.06

)
, S=

(
0.05 0.05
0.05 0.2

)
, B = 1, σb = 0.1 (48)

The control parameters are:

cm = 0.6, k = 0.001, xp = 10, β = 0.03, ρ = 0 (49)

In this and in subsequent sections we define the funding level,X(t), as the value of the
assets divided by the expected rate of benefit outgo. Alternatively, if expected benefit
outgo is defined as it is here asB = 1 thenX(t) is also the fund size.

The optimal value functionsF(x) are plotted in Figure 1 and their stationary distributions
(as derived later on in Section 4) are plotted in Figure 2.

Selected statistics are given in Table 1. From Table 1 and Figure 1 we can see that the
unconstrained solution is significantly better that the other two. The unconstrained and
static cases are quite similar in some ways (shape and contribution strategy) but the lack
of flexibility in the investment strategy adds on a fixed and substantial penalty. The con-
strained (no cash) case looks much more different. By reference to Figure 1 it performs
well in the middle of the range and, indeed, attempts to stay there by applying a more ag-
gressive amortization strategy. For more extreme values ofx this strategy is much poorer
than the static case. However, by looking also at the stationary densities of the funding
level under the three strategies (Figure 2) we can see that such extreme values will occur
very rarely indeed.
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Figure 1: Comparison of value functions for three investment/contribution strategies. (a)
(solid line) unconstrained optimum. (b) (dotted line) optimum under the constraint of no
cash (pm = 1). (c) (dashed line) optimum under a static investment strategy.
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Figure 2: Comparison of stationary densities for three investment/contribution strategies.
(a) (solid line) unconstrained optimum. (b) (dotted line) optimum under the constraint
of no cash (pm = 1). (c) (dashed line) optimum under a static investment strategy. (The
funding level is defined here as fund size divided by the expected rate of benefit outgo.)

Table 1: Comparison of optimal strategies with and without constraints.

Minimum
P Q R F(x) c∗0 c∗1

Unconstrained 0.073 -1.60 9.00 0.19 1.40 0.073
Constrained (pm = 1) 0.086 -1.75 9.79 0.85 1.48 0.086
Static 0.073 -1.60 16.70 7.89 1.40 0.073
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As mentioned in Section 3.1 we can look at Figures 1 and 2 and see that under the uncon-
strained investment strategy the value function is minimised atxmin = −Q/2P = 11.01
and that this, in effect, turns out to be a ceiling (althoughX(t) can have brief excursions
above this value because of volatility in the benefit outgo). Under such circumstances
(that is the existence of, effectively, a ceiling) some of the criticisms of the approach with
the quadratic loss function become somewhat irrelevant since we are practically never at
a funding level where we choose effectively to throw away money (in the sense described
in Section 3.4).

Under other circumstances (for example, here if we tookk = 0.005 andxp = 10 as before
but changedcm from 0.6 to 0.8) the ceiling would turn into a floor at 8.99 and the funding
level would spend most of the time above this floor. While this appears to be an appealing
strategy the reservations about the investment strategy discussed in Section 3.4 are well
founded here.

Under the constrained strategy the value ofxmin is 10.19 but we can see that the funding
level can frequently go above this level. Atxmin note that the fund here is invested in
proportion to the minimum variance portfolioD−1e.

Finally we can see from Figure 2 that the static investment strategy leads to much wider
fluctuations in the funding level which could only be reduced by increasing the value ofk
in the loss function.

We will return to this example in Section 5.

3.6 Power and exponential loss functions

3.6.1 Power loss function

Let us complete this section now with a short analysis of the special case whereσb = 0
and

L(t,c,x) =
{
−1

γ (cm−c)γ for c≤ cm

+∞ for c> cm
for 0< γ< 1. (50)

Again we assume that the optimal value function takes the formV(t,x) = exp(−βt)F(x).
Then the form of the Hamilton-Jacobi-Bellman equation takes the form:

inf
c,p

{
−1

γ
(cm−c)γ−βF +

[(
δ0 + pTλ

)
x+c−B

]
Fx +

1
2

Fxxx
2pTDp

}
= 0 (51)

(We restrict optimisation to strategies which keep the fund size positive. Without this
condition it is clearly optimal to take contribution refunds of infinite size.)

Now

∂
∂c

(
·
)

= 0 (52)
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⇒ (cm−c)γ−1 +Fx = 0 (53)

⇒ c∗(x) = cm− (−Fx)1/(γ−1) (54)
∂

∂p

(
·
)

= 0 (55)

⇒ p∗(x) = −D−1λ
Fx

xFxx
(56)

Insertingc∗(x) andp∗(x) into equation (51) we get

(−Fx)γ/(γ−1)
(

γ−1
γ

)
−βF +(δ0x+cm−B)Fx−

1
2

F2
x

Fxx
λTD−1λ = 0 (57)

We try for a solution of the formF(x) =−k(x−xm)α.

Inserting this into equation (57) we get, for allx:

(kα)γ/(γ−1)(x−xm)γ(α−1)/(γ−1)
(

γ−1
γ

)
+βk(x−xm)α−δ0

(
x− B−cm

δ0

)
kα(x−xm)α−1

+
1
2

k2α2(x−xm)2α−2

kα(α−1)(x−xm)α−2λTD−1λ = 0 (58)

⇒ xm =
B−cm

δ0
(59)

α = γ (60)

and k =
1
γ
cγ−1

1 (61)

where c1 =

(
β−δ0γ + 1

2
γ

γ−1λTD−1λ
1− γ

)
(62)

Hence

c∗(x) = cm−c1(x−xm) (63)

p∗(x) = D−1λ
(x−xm)
(1− γ)x

(64)

We note the similarity of the problems and solutions here with a well-known optimal-
consumption problem described by Merton (1971, 1990). Equivalence is achieved by
equating the controllable level of consumption withB−c∗(t) in the current model. This

17



enables us to speculate that recent extensions of this work to include the effects of trans-
actions costs can be applied to the present problem. For example, the problem of propor-
tional transactions costs has been considered by, amongst others, Davis & Norman (1990)
and Shreve & Soner (1994).

As with the quadratic loss function, contributions decrease linearly withx with the amor-
tisation ratec1 being determined by the discount rateβ and the risk-aversion parameterγ
(but not the maximum acceptable contribution rate,cm).

Investment in risky assets,p∗(x).x increases linearly inx above the minimumxm and
therefore appears to conform better with conventional wisdom. However, it turns out that
this solution gives rise to one of two trivial stationary solutions forX(t): that is,X(t)→ xm

or +∞ depending upon the value ofβ.

Returning to the dynamics of the funding levelX(t) we find thatc∗(x) andp∗(x) give rise
to

dX(t) = (X(t)−xm)
[(

δ0 +
1

1− γ
λTD−1λ−c1

)
dt +

1
1− γ

λTS−1dZ(t)
]

(65)

=
D

(X(t)−xm)
[(

δ0 +
1

1− γ
λTD−1λ−c1

)
dt +

1
1− γ

√
λTD−1λdZ̃(t)

]
(66)

whereZ̃(t) is another Brownian motion. It follows that (and inserting the known form of
c1):

X(t)−xm = (X(0)−xm)exp

[(
δ0 +

1
2(1− γ)

λTD−1λ−β
)

t +
1

1− γ
√

λTD−1λZ̃(t)
]

(67)

That is, X(t)− xm is a geometric Brownian motion which tends to zero ifβ > δ0 +
λTD−1λ/2(1− γ) and to+∞ if β< δ0 +λTD−1λ/2(1− γ).
There are some similarities between this solution and that of Boulieret al. (1995) under
whichxm−X(t) is also a geometric Brownian motion.

With either the introduction of volatility in benefit outgo (σb > 0) or with restrictions on
the amount of cash we cannot have both a lower bound on the funding level and an upper
bound on the contribution rate.

The loss functionL(c) = cγ/γ for c > 0 andγ > 1 has been considered by Siegmann
& Lucas (1999). They obtain similar results to those described above, except thatxm

becomes a maximum, and contributions are bounded below by 0 rather than above by
cm.)

3.6.2 Exponential loss function

Similarly, we can consider the exponential loss function (for example, see Siegmann &
Lucas, 1999):
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L(t,c,x) = exp(γc−θx) (68)

whereγ > 0 andθ > 0. Here the relationship betweenγ andθ determines the relative
emphasis on the employer and the members.

This gives us the solution:

F(x) = exp(a−bx) (69)

where b = γδ0 +θ

and a = log
γ

γδ0 +θ
+
−β +(γδ0 +θ)B+(γδ0 +θ)/γ− 1

2λTD−1λ
(γδ0 +θ)/γ

⇒ c∗(t) = c0−c1x (70)

p∗(t) =
1
x

p0 (71)

where c0 =
−β +(γδ0 +θ)B+(γδ0 +θ)/γ− 1

2λTD−1λ
γδ0 +θ

c1 = δ0

and p0 =
D−1λ

γδ0 +θ

This solution is more like the quadratic loss function considered in earlier sections: that is,
the proportion of the fund invested in risky assets decreases asx increases. If we increase
θ then p0 decreases. This reflects the fact that there is a greater degree of risk aversion
when we consider the interests of the members, so we invest less in risky assets.

With a little algebra we can see thatX(t) follows a Brownian motion with driftµ =
(−β+(γδ0+θ)/γ+ 1

2λTD−1λ)/(γδ0+θ) and volatility
√

α =
√

λTD−1λ/(γδ0+θ). This
means that the solution is unsatisfactory because it is both non-stationary and because it
gives rise to a ‘counterintuitive’ investment strategy.

4 The stationary distribution of X(t)

4.1 General model

Assume now that

c(t,x) = c(x) = c0−c1x (72)

p(t,x) = p(x) =
p0 + p1x

x
(73)

wherep0 andp1 aren×1 vectors.
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The reason for assuming a linear form forc(x) andxp(x) is simple. They are consistent
with the optimal dynamic controls derived in Section 3 when we use a quadratic loss
function. Furthermore let us recall the value function

W(t,x)(c, p) = E

[Z ∞

t
exp(−βs)L(s,c(s,X(s)),X(s))ds | X(t) = x

]
(74)

As β→ 0, βW(t,x)→E[L(s,c,X)]: that is, the limiting optimal dynamic controls are also
optimal in the static case if we use the same quadratic loss function.

The dynamics of the fund size,X(t), are then

dX = X
[(

δ0 + p(x)Tλ
)

dt+ p(x)TSdZ̃
]
+(c0−c1X−B)dt+σbdZb (75)

=
[(

δ0X +(p0 + p1X)Tλ
)

dt+(p0 + p1X)TSdZ̃
]
+(c0−c1X−B)dt+σbdZb

(76)

=
D

µ.dt−νX.dt+(α +βX + γX2)1/2dZ (77)

whereZ̃(t) is a standardn-dimensional Brownian Motion, andZ(t) is a standard Brownian
motion which depends upoñZ(t) andZb(t),

µ = c0−B+ pT
0 λ (78)

ν = c1−δ0− pT
1 λ (79)

α = pT
0 Dp0 +σ2

b (80)

β = 2pT
0 Dp1 (81)

γ = pT
1 Dp1 . (82)

In order to discuss the properties of this model we state the following theorem:

Theorem 4.1.1

Let the continuous-time stochastic process Xt satisfy the stochastic differential equation

dXt = (α +βXt + γX2
t )1/2dZ+µdt−νXtdt (83)

subject to the constraints on the parametersα> 0, γ> 0, β2−4αγ≤ 0, µ> 0 andν> 0.

(a) If β2−4αγ< 0, the stationary density function of Xt is

fX(x) = K exp

[
2atan−1 x+b

c

]
(α +βx+ γx2)−1−ν/γ (84)

for −∞ < x< ∞

where a =
1√

4αγ−β2

(
νβ
γ

+2µ

)
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b =
β
2γ

c =

√
4αγ−β2

2γ
.

(b) If β2−4αγ = 0 and X0>−b, the stationary density function of Xt is

fX(x) =


K(x+b)−θ exp[−φ/(x+b)]

{
for x>−b if θ> 0
for x<−b if θ< 0

0 otherwise

(85)

where b =
β
2γ

θ = 2

(
1+

ν
γ

)
φ =

νβ +2µγ
γ2

that is, the Translated-Inverse-Gamma distribution with parameters−b, θ−1> 0 and
φ> 0 (T IG(−b,θ−1,φ)). (If X ∼ TIG(k,α,β) then(X−k)−1∼Gamma(α,β).)
In each case K is a normalizing constant.

Proof: Proofs of these two results have been provided before by a number of authors.
Distribution (b) was first derived in the context of pension funding by Dufresne (1990) in
the case where there is one risky asset, no cash and no demographic volatility (σb = 0).
Dufresne also noted that the stationary distribution of the funding level was the same as the
distribution of a perpetuity. An alternative proof for the distribution of the present value
of a perpetuity was also shown to have distribution (b) by Yor (1992) and by De Schepper
et al. (1994). Föllmer and Schweizer (1993, Theorem 5.1 and erratum) considered the
diffusion process defined above as underlying a model for stock prices. They derived both
of the limiting distributions given in (a) and (b).

The two distributions above are also known as Pearson type IV and type V distributions
respectively (for example, see Johnsonet al.,1994).

Let us consider the Pearson Type IV distribution. This distribution has four degrees of
freedom. The fifth degree of freedom used in the dynamics of the fund size determines
the speed of the process.

Following the notation of Johnsonet al. (1994) we defineµ′r = E[Xr ]. We defineµ′−1 = 0
and haveµ′0 = 1. It is easy to show that theµ′r satisfy the following recursive relationship:

−k0rµ′r−1 +(k3− (r +1)k1)µ′r +(1− (r +2)k2)µ′r+1 = 0 (86)

where k0 =
α

2(γ +ν)
, k1 =

β
2(γ +ν)

, k2 =
γ

2(γ +ν)
, k3 =

β−2µ
2(γ +ν)

(87)
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Hence we have

E[X] = µ′1 =
k1−k3

1−2k2
=

µ
ν

(88)

E[X2] = µ′2 =
k0 +(2k1−k3)µ/ν

1−3k2
=

αν +βµ+2µ2

ν(2ν− γ)
(89)

⇒Var[X] =
αν +βµ+2µ2

ν(2ν− γ)
− µ2

ν2 =
ν2
(

α +βµ
ν + γµ2

ν2

)
ν2(2ν− γ)

=
α +βE[X] + γE[X]2

2ν− γ
(90)

E[c(X)] = c0−c1E[X] = c0−c1
µ
ν

(91)

Var[c(X)] = c2
1Var[X] = c2

1
α +βE[X] + γE[X]2

2ν− γ
(92)

The stationary distribution exists if and only if 2(1+ν/γ)> 1: that isc1> δ0 + pT
1 λ− 1

2γ
(in fact, γ1/2 is the asymptotic volatility as|x| → ∞). Similarly E[X] exists if and only if
c1 > δ0 + pT

1 λ andVar[X] exists if and only ifc1 > δ0 + pT
1 λ + 1

2γ.

Coming back to the optimal solution for the dynamic problem we found thatc∗1 = P(k) =
P(k,β). Thus the condition for stationarity is

P(k) > δ0 + p∗1
Tλ− 1

2
p∗1

TDp∗1 (93)

where p∗1 = −D−1λ (unconstrained case).

⇒ P(k) > δ0 +
3
2

λTD−1λ (94)

Now P(k,β) is a decreasing function ofβ and an increasing function ofk, so the condition
above is less likely to be satisfied ifβ is large ork is small. Under such circumstances
the funding level will diverge ast tends to infinity. The situation, therefore, is that with
a relatively large value ofβ we pay more attention to control of short-term variability in
the contribution rate at the expense of larger fluctuations in the long term. Likewise, if the
value ofk is too small then we also pay too much attention to short-term contribution-rate
stability.

4.2 Continuous proportion portfolio insurance

The idea of continuous proportion portfolio insurance (CPPI) was introduced by Black
and Jones (1988) and Black and Perold (1992).

The previous sections in this paper have concentrated upon quadratic loss functions. The
motivation behind CPPI is that in certain countries there exist minimum funding con-
straints: that is, there exists a floor below which the funding level must not fall. CPPI was
proposed as a means of reducing the risk that the fund falls below this floor.
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Under CPPI if the funding level is low then the fund will be invested more in low-risk
assets (in particular, those which will best match variations in the floor). As the funding
level improves the fund can be shifted more into risky assets which provide the fund with
higher upside potential.

Suppose that the minimum funding level (or floor) isM. We have a low-risk portfolio
A with a proportionπAi of the fund invested in asseti (i = 1,2, . . . ,n). We also have a
higher-risk portfolio B which invests in proportion to the vectorπB. At funding levelx a
proportionpA(x) of the fund is invested in portfolio A andpB(x) = 1− pA(x) in portfolio
B. Since A is less risky we have (normally):

πT
Aλ < πT

Bλ (that is, A has a lower expected return) (95)

πT
ADπA < πT

BDπB (that is, A is lower risk). (96)

We definepB(x) in one of the following ways:

pB(x) =
x−M

M
(97)

or p̄B(x) = max

{
x−M

M
,0

}
(98)

We will concentrate here onpB(x) for the sake of mathematical convenience since it is
normally the case that the probability thatX(t) falls belowM under this strategy is very
small if A is very low risk.

The vector of proportions invested in each asset under CPPI is thus:

pc(x) =
M
x

πA +
x−M

x
πB (99)

=
pc0 + pc1x

x
(100)

where pc0 = M(πA−πB)
pc1 = πB

We can, therefore, apply all of the results discussed in Section 4.1 to CPPI. For example, it
is of interest to compare the effectiveness of CPPI relative to a static investment strategy.
Let us look first at the stationary mean and variance of the funding level. In the equations
below we use a subscriptc for calculations under CPPI ands where we are considering
the static strategy. Thus

E[Xc] =
µc

νc
=

c0−B+ pT
c0λ

c1−δ0− pT
c1λ

= mc (101)

and Var[Xc] =
αc +βcmc + γcm2

c

2νc− γc
= s2

c say. (102)
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We will assume that the floor,M, is sufficiently small and that portfolios A and B, and
the contribution strategy have been chosen in such a way thatX(t) is stationary with
M <mc < ∞.

Now suppose that we will employ a static investment strategy under which we hold assets
in proportion to the vectorpsπA + (1− ps)πB for all x whereps is some scalar quantity.
Then we have

E[Xs] =
c0−B

c1−δ0− (psπA +(1− ps)πB)Tλ
= ms. (103)

Now chooseps in such a way thatms = mc: that is,

ps =
mc(c1−δ0−πT

Bλ)− (c0−B)
mc(πA−πB)Tλ

=
M(πA−πB)Tλ
mc(πA−πB)Tλ

=
M
mc

(104)

Note that 0< ps< 1.

We now claim thatVar[Xs]<Var[Xc].

αc +βcmc + γcm
2
c (105)

= σ2
b +M2(πA−πB)TD(πA−πB) +2M(πA−πB)TDπBmc +πT

BDπBm2
c (106)

= σ2
b +(M(πA−πB) +mcπB)T D(M(πA−πB) +mcπB) (107)

= σ2
b +(pcπA +(1− pc)πB)T D(pcπA +(1− pc)πB)m2

c (108)

wherepc = M/mc.

We also have

αs+βsms+ γsm
2
s = σ2

b +(psπA +(1− ps)πB)T D(psπA +(1− ps)πB)m2
s (109)

But mc = ms andpc = ps so thatαc +βcmc + γcm2
c = αs+βsms+ γsm2

s.

Next consider

2νs− γs = 2
(
c1−δ0−πT

Bλ− pS(πA−πB)Tλ
)

(110)

−(psπA +(1− ps)πB)T D(psπA +(1− ps)πB) (111)

= 2
(
c1−δ0−πT

Bλ
)
−πT

BDπB−2pS(πA−πB)Tλ (112)

+
[
πT

BDπB− (psπA +(1− ps)πB)T D(psπA +(1− ps)πB)
]

(113)

Now 0< ps< 1, (πA−πB)Tλ< 0 and
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Figure 3: Comparison of stationary distributions for static and CPPI investment strategies.
Both distributions have the same mean.

[
πT

BDπB− (psπA +(1− ps)πB)T D(psπA +(1− ps)πB)
]
> 0 (114)

(since the expression in square brackets is convex, quadratic inps andπT
ADπA< πT

BDπB).
Therefore

2νs− γs> 2νc− γc. (115)

Hence

αs+βsms+ γsm2
s

2νs− γs
<

αc +βcmc + γcm2
c

2νc− γc
(116)

⇒Var[Xs] < Var[Xc] (117)

This can be summarised in the following theorem:

Theorem 4.2.1

For any CPPI investment strategy let mc and s2c be the stationary mean and variance of
the funding level Xt. There exists a static investment strategy which invests under which
the stationary mean funding level, ms, is equal to mc but the stationary variance of the
funding level, s2s, is less than s2c.

Interpretation: In the variance sense, the static strategy ismore efficientthan CPPI: that
is, given a CPPI strategy we can always find a static strategy which delivers the same
mean funding level but a lower variance.

One example illustrating this result is plotted in Figure 3. Here we use the same fixed
parameters as in Section 3.5. In addition we havec0 = 1.5 andc1 = 0.07 for both the
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static and CPPI strategies. Under CPPI we have a floor ofM = 10 with πT
A = (0,0) and

πT
B = (0.2,0.8) (meaning that at the floor (X(t) = M) the fund is invested 100% in cash).

This gives rise to a mean funding level (that is, assets divided by expected benefit outgo) of
17.1 while the variance of the funding level is, in fact, infinite. Under the matching static
investment strategy the expected funding level is also 17.1 while the standard deviation of
the funding level is 5.4. This marked difference in the variances is caused by the fatness
of the tail of the CPPI distribution although this is not clear from Figure 3. What we can
see in Figure 3 is that the two distributions are quite different.

One might ask why would we use CPPI when the static strategy has been shown to be
more efficient. The answer to this is that it depends upon the objectives of the pension
fund. If the objective is to minimise variance then clearly the static strategy is superior
(although we have shown in Section 3 that a form of ”inverse” CPPI is better still). On
the other hand, if the objective is to minimise the probability that the funding level falls
below the floor,M, then CPPI is clearly superior.

5 Numerical examples

We consider now an example in which the following parameters are fixed (as in Section
3.6):

δ0 = 0.03, δ =
(

0.04
0.06

)
, S=

(
0.05 0.05
0.05 0.2

)
, B = 1, σb = 0.1 (118)

Here we consider an analysis of the sensitivity of the optimal control strategies to variation
of the input parameters in the value function and the loss function. The central parameter
values which we will use are:

cm = 0.6, k = 0.001, xp = 10, β = 0.03 (119)

Furthermore, we assume that none of the fund can be invested in cash (as in Section 3.3
with pm = 1). Throughout this analysis we keep the fifth input parameterρ equal to 0.

In Tables 2 (Dynamic optimisation) and 3 (Stationary optimisation) below we give the
values of the input parameters (cm, k, xp andβ), the optimal values ofp0, p1, c0 andc1,
and the mean and standard deviation of the stationary fund size and the contribution rate.

The values given forpB0 andpB1 relate to the proportion of the fund invested in the more
risky but efficient portfolio B: that is, the portfolio in which investments are in proportion
to the vectorD−1λ. In particular, the proportion of the fund invested in portfolio B is
pB(x) = (pB0 + pB1x)/x. Sincepm = 1 the remainder of the assets are invested in the
minimum variance portfolio A:D−1e/(eTD−1e).

26



Table 2: Dynamic Optimisation

Ex. cm k xp β σb pB0 pB1 c0 c1 E[X] S.D.[X] E[C] S.D.[C]

1 0.6 0 – 0.02 0.1 20.7 -1.97 1.00 0.038 8.9 3.8 0.660 0.146
2 0.6 0 – 0.03 0.1 20.7 -1.97 0.89 0.028 7.0 ∞ 0.699 ∞
3 (*) 0.6 0.005 10 0.03 0.1 20.1 -1.97 1.48 0.086 9.6 1.5 0.651 0.132
4 0.6 0.05 10 0.03 0.1 19.8 -1.97 3.00 0.238 9.9 0.8 0.647 0.194
5 0.5 0.005 10 0.03 0.1 22.1 -1.97 1.47 0.086 9.7 1.6 0.633 0.141
6 0.6 0.005 15 0.03 0.1 26.0 -1.97 1.74 0.086 14.2 2.3 0.512 0.194
7 0.6 0.005 10 0.03 0.2 20.1 -1.97 1.48 0.086 9.6 1.6 0.651 0.139

Table 3: Stationary Optimisation

Ex. cm k xp β σb pB0 pB1 c0 c1 E[X] S.D.[X] E[C] S.D.[C]

1 0.6 0 – – 0.1 20.7 -1.97 1.21 0.058 9.7 2.2 0.644 0.127
2 – –
3 (*) 0.6 0.005 10 – 0.1 20.1 -1.97 1.68 0.105 9.8 1.3 0.647 0.141
4 0.6 0.05 10 – 0.1 19.9 -1.97 3.16 0.254 9.9 0.8 0.647 0.200
5 0.5 0.005 10 – 0.1 22.4 -1.97 1.70 0.105 10.3 1.4 0.619 0.152
6 0.6 0.005 15 – 0.1 25.6 -1.97 1.97 0.105 13.7 1.9 0.526 0.197
7 0.6 0.005 10 – 0.2 20.1 -1.97 1.68 0.105 9.8 1.4 0.647 0.149

5.1 Notes on the numerical examples

• Examples 1 and 2 show the effect of changing the risk-discount rateβ whenk =
0. Note how the variances in the dynamic case become infinite asβ increases.
However, whenβ = 0.03 the dynamic optimum still has a stationary distribution,
albeit with infinite variances.

When k = 0 we can also see that the optimal asset-allocation strategies for the
dynamic and static cases are the same and do not depend uponβ. We also see that
cD

1 = cS
1−β if k = 0.

As β tends to 0 the optimal dynamic solutions converge to the same values as the
optimal static solution. The effect ofβ is therefore to suppress variance in the short
term through a lower value ofc1. A low value ofc1 may reduce variance in the
short term but it increases it in the long run by allowing fluctuations in the fund size
to persist.

In Example 1 we also see thatE[C]> cm. This reflects that fact that the minimum
variance ofC falls asE[C] increases (andE[X] falls).

• In Example 1, the fund is invested 100% in portfolio B whenX equals about 7.0.
Below this the fund goes long in portfolio B and short in portfolio A. Conversely,
whenX reaches just above 10.5 the fund has 100% in portfolio A. WhenX goes
above this there is a long position in portfolio A and a short position in portfolio B.

Similar ranges apply for each of the other examples.
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• Examples 2, 3 and 4 show the effect of increasingk. This shifts the emphasis onto
reducing the variance of the fund size rather than of the contribution rate. The
principle effect is thatc1 increases withk: that is, surplus or deficit is amortised
more quickly. The changes inp0 andc0 are primarily a knock on effect.

• Examples 3 and 5 demonstrate the consequences of changingcm. p1 remains un-
changed as it does throughout. The changes in the remaining control parameters
have the effect of shifting the mean values principally but also affect the variances.

• Examples 3 and 6 consider the effect of changing the target fund sizexp. There
is no change inc1 or p1. p0 andc0 change in order to shift the mean fund size.
The variance rises because the target fund size is being moved away from the more
natural mean observed in Example 3. This increases the tension on the mean con-
tribution rate since a target fund size of 15 is not entirely consistent with a target
contribution rate of 0.6.

• Examples 3 and 7 show the influence of the uncertainty in the level of benefit outgo.
As was remarked in Section 3,σb has no effect on the optimal values ofp0, p1, c0

andc1. Furthermore, the increases in the variances are small indicating that at this
level (σb = 0.1 or 0.2) the main source of variability in the contribution rate is due
to investment risk.

• The stationary distributions for the fund size for the dynamic and the stationary op-
tima in Example 3 are plotted in Figure 4. It can be seen that the results are similar
although the dynamic optimum gives rise to a stationary distribution which is less
peaked and which has fatter tails. In other cases (for example, Example 6) if there is
some tension between the target funding level,xp, and the target contribution rate,
cm, there will be more of a difference between the two stationary distributions.

6 Constraints and discontinuities

A number of possible constraints can be put in place which complicate considerably the
preceeding analyses. These are:

• upper and lower barriers for the funding level,X(t). These might be legislative
requirements or self-imposed by the fund sponsor and the trustees.

• an upper limit set by the fund sponsor on the contribution rate.

• restrictions on the short-selling of assets.

Further discontinuities might exist where the objective function has a non-standard form.
For example, we may have

L(t,c,x) = (c−cm)2 +k(max{xp−x,0})2 (120)
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Figure 4: Example 3: Comparison of the stationary distribution of the funding levels for
the dynamic and stationary optimal solutions.

where the second term only introduces a penalty when the funding level drops belowxp.
Such a function can also be used as a means of investigating the effects of a barrier since
ask gets larger and larger the optimal contribution rate belowxp will increase in an effort
to raise the funding level abovexp as quickly as possible. For largek this will have the
effect of looking like a reflection off the barrier.

Analysis of many of these problems is under way but there are only a few interesting
results to discuss at this stage.

6.1 Dynamics in the presence of a minimum barrier

A much simplified version of the minimum funding requirement in the UK is as follows.
There is a floorM below which the funding level should not fall. IfX(t) does drop below
M then it is immediately increased toM by a special contribution.

This problem can be approached by modifying the original setup described in Section 2
by adding an additional contribution ratec+.max{M−X(t),0}: that is, when the fund-
ing level is belowM. As c+ tends to infinity the dynamics of the model approach that
described above and the process reflects off the barrierM. In this limit the process can be
written as follows:

dX = X
[(

δ0 + p(X)Tλ
)

dt + p(X)TSdZ
]
+c(X).dt−B.dt−σb.dZb +dLM

t . (121)

The new term in this formula,dLM
t , is called thelocal timeof the process,X(t), atM and

is defined as

LM
t =

Z t

0
dLM

s (122)
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= lim
ε→0

1
ε

Z t

0
I(M ≤ X(t)<M + ε)ds (123)

whereI(·) is equal to 1 whenX(t) lies betweenM andM + ε and 0 otherwise.

LM
t is a measure of how much time the process spends in the vicinity ofM.

ThedLM
t term represents the additional contributions required when the process hits the

barrier to keepX(t) aboveM. In a sense it gives the process a small upwards ‘kick’ every
time it hits the barrier.

It is possible to analyse the stationary distribution of such a process whenc(x) andp(x).x
are linear inx away from the barrier: it has a truncated Pearson type IV distribution.
However,Var[c(X)dt+ dLM

t ]/dt2 is infinite whereas the variance is finite when there is
no barrier. This inhibits the optimisation of, for example, quadratic objective functions.
For such problems it is easier to replacedLM

t by c+ max{M−X(t),0}dt and consider
what happens asc+ tends to infinity.

A more suitable loss function which accommodates local time as a result of the existence
of upper and lower barriers is:

L(c) = l0c+
√

1+ l21(c− l2)2. (124)

Note that asc→+∞, L(c)∼ (l0 + l1)c, while asc→−∞, L(c)∼ (l0− l1)c. This asymp-
totic linearity is required to ensure that the expected value of the loss function does not
become infinite when a reflecting barrier and local time is introduced. Ifl0< l1 thenL(c)
is increasing and convex. In other words, the fund sponsor prefers to pay less rather than
more and prefers stability to instability. Furthermore, the employer will be prepared to
pay a higher average contribution rate in the long run in return for lower volatility in the
contribution rate.

6.2 No short-selling of assets

Suppose that the holdings in each asset must be non-negative: that is, 0≤ p(t,x)≤ 1 for
all t, x.

Let us consider the following piecewise linear model for the proportion of the fund in-
vested in the more risky asset 2 in a 2-asset model:

c(x) = c0−c1x for all x (125)

p2(x) =



1 if x< x0

x0
(x1−x0)

(x1−x)
x if x0≤ x< x1

0 if x1≤ x

(126)

In the unconstrained case
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Table 4: Stationary optimisation under constraints

Case x0 x1 c0 c1 E[X] S.D.[X] E[C] S.D.[C] E[L(C,X)]

Constrained 3.87 7.40 1.77 0.123 9.29 1.50 0.628 0.184 0.0485

Unconstrained 3.96 7.89 1.68 0.105 9.85 1.35 0.645 0.142 0.0315

p2(x) =
x0

(x1−x0)
(x1−x)

x
(127)

for all x. The use ofx0 andx1 here makes it easier to see where the constraints lock in.

For asset 1 and cash we have:

p1(x) = 1− p2(x) (128)

p0(x) = 0 (129)

Over each interval[0,x0), [x0,x1) and[x1,∞) the stationary distribution function is a scaled
Pearson type IV with different parameters over each interval. Sincep(x) is continuous
the stationary density function is continuous. This allows numerical evaluation of an
objective function and hence optimisation overc0, c1, x0 andx1.

Let us consider a numerical example. We use the same model parameter values and
objective function as in Section 5. In the unconstrained problem the optimal solution is
linear inx as usual. In the constrained problem the optimal solution will not be linear or
piecewise linear inx, but here we optimise only over piecewise linear strategies.

It can be seen by referring to Table 4 that the effects of the constraints in this example are
fairly small but, nevertheless, significant. The size of the effect of the constraint depends
upon to what extent the interval[x0,x1) comes into play in the unconstrained case. IfX(t)
falls into [x0,x1) most of the time then the effect of the constraint will be small. Here, in
the unconstrained case, most of the time the fund is invested long in the low-risk asset 1
and short in the high-risk asset 2.

6.3 Upper limit on the contribution rate

Boulier et al. (1996) considered the effect of an upper bound on the optimal contribution
rate. This resulted in a nearly linear form forc(x) and a bell-shaped curve forp(x).
Their solution required the existence of a risk-free asset for the fund and zero volatility in
the benefit outgo: otherwise the dynamics of the model would be non-stationary since a
sufficiently large deficit will eventually build up which cannot be eradicated.
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7 Conclusions

This paper has considered the optimal control of a pension fund using the asset-allocation
strategy and the contribution strategy.

Optimal solutions have been derived for power and exponential loss functions (with no
demographic risk –σb = 0) and, in more detail, for a quadratic loss function. In most
cases the contribution strategy appears to be sensible and conforms with current practice.
In each case aspects of the solution were not completely satisfactory. First power and ex-
ponential loss functions were found to give rise to non-stationary solutions. Second, when
we considered the quadratic and exponential loss functions, the optimal asset-allocation
strategy derived was rather counterintuitive: moving, say, out of equities into bonds when
the level of surplus is growing.

This has one of two explanations. Funds may be operating in a very non-optimal way.
Alternatively, they may be operating optimally but with different objectives. For example,
in the UK, the government has recently introduced minimum funding legislation. This
should lead to loss functions which heavily penalise events when the fund size falls below
the legal minimum. Boulieret al. (1996) considered a related problem in which the
contribution rate was subject to an upper constraint (say, twice the target rate). However,
in the present framework (in which all assets are risky and where there is volatility in the
benefit outgo) it is not possible to constrain the contribution rate in this way, for otherwise
the fund size would ultimately drift off to minus infinity.

There is, however, some sense in a shift out of equities if the fund size is well above its
target level. First if there is too much surplus then there will be pressure on the sponsoring
employer to use this surplus to pay for discretionary pension increases which, perhaps,
had not been promised. In any event the members would be benefitting from good invest-
ment returns while the employer has to pay when things go badly. Second if the employer
is able to take a refund, the refund may be liable to tax (for example, in the UK this is
40% with the aim of inhibiting exploitation of the tax advantages enjoyed by a pension
fund). Third, too much surplus may lead to the removal of part or all of the fund’s special
tax status (again this is the case in the UK). All of these reasons mean that it should be
advantageous to put a bigger proportion of the fund into low-risk assets when the fund
has a large surplus. The results described in this paper back up this viewpoint.

It is clear from the results contained in this paper that we must look for alternative loss
functions. The target are ones which give rise to stationary solutions and sensible asset-
allocation strategies.

The results presented in this paper and in that of Boulieret al. (1995) also draw attention
to the following issues:

• what objective functions (if any) are used by pension funds? Are pension funds cur-
rently operating in a sub-optimal way or do they have different objective functions
from the one considered here?

• what constraints (if any) on contributions and investments are appropriate? Can
investment constraints be circumvented by prudent use of derivatives?
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• is too much emphasis placed on the calculation of the so-called actuarial liability
when this may have no relationship to the target funding level under the optimised
objective function? Here the problems have been analysed solely with reference to
the objective function. A framework which relies heavily on the actuarial liability
might result in a solution which is sub-optimal with reference to this stated objective
function.

It must be stressed again that we have assumed a stable membership structure in the pen-
sion plan. In many problems there may be a reason, for example, to incorporate changes
in the membership as a sponsoring company evolves or restructures. Such situations
would require an adaptation of, for example, the use ofX(t) = F(t)/W(t) as the key pro-
cess and of the objective function. The findings in this paper suggest that the interests
of the employer and fund members might be served better by a combination of dynamic
control theory and more traditional actuarial valuation techniques. In this respect, theo-
retical solutions to simplified problems give us a basis for investigations of more complex
situations.

Acknowledgements

I would like to thank the many people who have commented on earlier versions of this
paper and at various talks. In particular, I have had useful conversations with or sugges-
tions from Jean-Francois Boulier, Daniel Dufresne, Martin Schweizer, Wolfgang Run-
galdier, Michael Taksar, Hanspeter Schmidli, Ravi Mazumdar, Paul Embrechts, Gary
Parker, Martino Graselli, Mary Hardy, David Wilkie, Terence Chan, Iain Currie, Jack
Carr, Ken Brown, and Andrew Lacey.

References

Black, F. and Jones, R. (1988) Simplifying portfolio insurance for corporate pension
plans. Journal of Portfolio Management14(4), 33-37.

Black, F. and Perold, A. (1992) Theory of constant proportion portfolio insurance.Jour-
nal of Economic Dynamics and Control16, 403-426.

Boulier, J-F., Trussant, E. and Florens, D. (1995) A dynamic model for pension funds
management.Proceedings of the 5th AFIR International Colloquium1, 361-384.

Boulier, J-F., Michel, S., and Wisnia, V (1996) Optimizing investment and contribution
policies of a defined benefit pension fund.Proceedings of the 6th AFIR International
Colloquium 1, 593-607.

Cairns, A.J.G. (1995) Pension funding in a stochastic environment: the role of objectives
in selecting an asset-allocation strategy. Proceedings of the 5th AFIR International
Colloquium 1, 429-453.

Cairns, A.J.G. (1996) Continuous-time stochastic pension fund modelling.Proceedings
of the 6th AFIR International Colloquium1, 609-624.

Cairns, A.J.G., Blake, D., and Dowd, K. (1999) Optimal dynamic asset allocation for
defined contribution pensions. Preprint.

Cairns, A.J.G., and Parker, G. (1997) Stochastic pension fund modelling.Insurance
Mathematics and Economic21, 43-79.

Davis, M.H.A., and Norman, A.R. (1990) Portfolio selection with transaction costs.

33



Mathematics of Operations Research15, 676-713.

Deelstra, G., Grasselli, M., and Koehl, P-F. (1999) Optimal investment strategies in a
CIR framework.. Preprint.

De Schepper, A., Teunen, M., and Goovaerts, M. (1994) An analytical inversion of a
Laplace transform related to annuities certain.Insurance: Mathematics and Economics
14, 33-37.

Dufresne, D. (1988) Moments of pension contributions and fund levels when rates of
return are random.Journal of the Institute of Actuaries115, 535-544.

Dufresne, D. (1989) Stability of pension systems when rates of return are random.In-
surance: Mathematics and Economics8, 71-76.

Dufresne, D. (1990) The distribution of a perpetuity, with applications to risk theory and
pension funding.Scandinavian Actuarial Journal1990, 39-79.

Fleming, W.H., and Rishel, R.W. (1975)Deterministic and stochastic optimal control.
Springer-Verlag, New York.
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