Pricing Frameworks for Securitization of Mortality Risk

Andrew Cairns Heriot-Watt University, Edinburgh

Joint work with David Blake & Kevin Dowd

Updated version at: http://www.ma.hw.ac.uk/~andrewc

Financial Times 8 November 2004

"BNP offers hedge against longevity"

PLAN FOR TALK

- Introduction
- Frameworks for modelling stochastic mortality
- Mortality market models
- Related issues

STOCHASTIC MORTALITY

 \boldsymbol{n} lives, probability \boldsymbol{p} of survival, N survivors

- Unsystematic mortality risk:
 - $\Rightarrow N | p ~ \sim ~ \mathrm{Binomial}(n,p)$
 - \Rightarrow risk is diversifiable, $N/n \longrightarrow p$ as $n \to \infty$
- Systematic mortality risk:
 - $\Rightarrow p$ is uncertain
 - \Rightarrow risk associated with p is not diversifiable

STOCHASTIC MODELS FOR MORTALITY RISK

- $\mu(t, x) =$ force of mortality at t for individuals aged x
- q(t, x) = mortality rate at t for individuals aged x

Why do we need a stochastic model for $\mu(t, x)$?

- To calculate quantile reserves (VaR)
- To value mortality-linked securities
- To calculate fair values Plain vanilla contracts
 contracts with embedded options

MORTALITY-LINKED SECURITIES

- Short-term catastrophe bonds (Swiss Re, Dec. 2003)
- Long-term longevity bonds (BNP Paribas, Nov. 2004)

cashflows linked to survivorship index

(Short report available later this week.)

• Survivor swaps (some OTC contracts???)

swap fixed for mortality-linked cashflows

Annuity Futures

traded contract; underlying=market annuity rates; many exercise dates

STOCHASTIC MODELLING

 $\mu(t,x) =$ force of mortality at t for individuals aged x

$$r(t) \;=\;$$
 risk-free rate of interest

 $r(t),\,\mu(t,x)$ represent very different quantities $\textit{Mathematically} \text{ we can treat } r(t),\,\mu(t,x) \text{ as equivalent}$

Cash account:

$$C(t) = \exp\left[\int_0^t r(s)ds\right]$$

Survivor Index:

$$S(u, y) = \exp\left[-\int_0^u \mu(t, y+t)dt\right]$$

= Prob. of survival of (y) from time 0 to time u

given knowledge of evolution of $\mu(t,x)$

Approximately: BNP Paribas = $\sum_{T=1}^{25} \tilde{B}(t, T, 65)$

RISK-NEUTRAL PRICING

• P = real-world measure

 \Rightarrow real-world dynamics for r(t) , $\mu(t,y)$

 $\bullet \ Q = {\rm risk-neutral\ pricing\ measure}$

$$P(t,T) = E_Q \left[e^{-\int_t^T r(s)ds} \middle| \mathcal{H}_t \right]$$
$$\tilde{B}(t,T,x) = E_Q \left[e^{-\int_t^T r(s)ds} S(T,x) \middle| \mathcal{H}_t \right]$$

Pricing under $Q \Rightarrow$ dynamics under P are arbitrage free NO requirement for liquidity, or zero transaction costs

Assumption:
$$\mu(t, y)$$
 is independent of $r(t)$
 $\Rightarrow \tilde{B}(t, T, x) = E_Q \left[e^{-\int_t^T r(s)ds} \mid \mathcal{F}_t \right] E_Q \left[S(T, x) \mid \mathcal{M}_t \right]$
 $= P(t, T)B(t, T, x)$

where

$$B(t,T,x) = E_Q[S(T,x) \mid \mathcal{M}_t]$$

 $(\Rightarrow B(t,T,x) \text{ is a } Q\text{-martingale})$

Now
$$\mu(s, x + s)$$
 is known for $0 < s < t$
 $\Rightarrow B(t, t, x) = S(t, x) = \exp\left[-\int_0^t \mu(s, x + s)ds\right]$

and

$$\frac{B(t,T,x)}{B(t,t,x)} = E_Q \left[e^{-\int_t^T \mu(s,x+s)ds} \mid \mathcal{M}_t \right]$$

= risk-neutral probability at t that (x + t)

survives from time t to time ${\cal T}$

= spot survival probability, $p_Q(t,T,x)$

TYPES OF STOCHASTIC MORTALITY MODEL

We can use the same frameworks as interest-rate

modelling: $\mu(t, x + t)$ is equivalent to r(t)

(but we might not use the same models!!!)

- Short-rate modelling framework (e.g. CIR)
- Forward-rate modelling framework (e.g. HJM)
- Positive-interest framework (e.g. Flesaker-Hughston)
- Market Models (e.g. BGM)

SHORT-RATE MODELLING FRAMEWORK

n-factor models

 $d\mu(t,y) = a(t,y)dt + b_1(t,y)d\tilde{W}_1(t) + \ldots + b_n(t,y)d\tilde{W}_n(t)$

Examples:

- Lee & Carter (1992) and followers (discrete time)
- Milevsky & Promislow (2001), Dahl (2004) (continuous time)

MARKET MODELS

Interest rates:

- Forward swap rates are log-normal (Jamshidian, 1997)
- Forward LIBOR rates are L-N (Brace-Gatarek-Musiela, 1997)

Mortality:

- Forward life annuity rates are L-N
- Forward Survivor Credit Offer Rates (SCOR) are L-N

THE ANNUITY MARKET MODEL

Forward annuity contract:

- N_t policyholders enter into forward contract at t
- \bullet No money exchanges hands at t
- N_T survivors at T out of N_t
- \bullet Survivors at T pay \$ 1 at T and receive an annuity of \$ F in arrears from T
- \bullet Deaths before $T \Rightarrow$ contract expires worthless

x =age of policyholders at time 0.

The fair forward annuity rate at t is

$$\begin{split} F(t,T,x) &= \frac{P(t,T)B(t,T,x)}{\sum_{s=T+1}^{\infty}P(t,s)B(t,s,x)} = \frac{B(t,T,x)}{X(t)} \\ \text{where} \\ X(t) &= \sum_{s=T+1}^{\infty}\tilde{B}(t,s,x) \\ &= \text{ price at } t \text{ for $$1 at $T+1$, $T+2$,...} \\ \text{ provided still alive} \end{split}$$

X(t) > 0 is a tradeable asset

Therefore we can find a probability measure P_X under which $\frac{V(t)}{X(t)}$ is a martingale for any other tradeable asset V(t).

i.e. under P_X , F(t, T, x) is a martingale.

Martingale under $P_X \Rightarrow$ $dF(t,T,x) = F(t,T,x) \left[\gamma_P(t) dZ^X(t) + \gamma_B(t) dW^X(t) \right]$ where $Z^X(t) = \text{interest-rate risk}, P_X$ -Brownian Motion $W^X(t) = \text{mortality-rate risk}, P_X$ -Brownian Motion

Key assumption:

 $\gamma_P(t)$ and $\gamma_B(t)$ are deterministic functions $\Rightarrow F(T,T,x)$ is log-normal

EXAMPLE: GUARANTEED ANNUITY OPTION

Surviving policyholders at T have a guarantee:

For each \$1 at T they will receive an annuity of at least K.

Total value of option component at T is

$$G(T) = N_T \max\{K - F(T, x), 0\} \frac{1}{F(T, x)}$$

Value of option at t, with N_t policyholders at t $G(t) = \frac{N_t}{S(t,x)} X(t) \left(K\Phi(-d_2) - F(t,x)\Phi(-d_1) \right)$

where
$$d_1 = \frac{\log F(t, x)/K + \frac{1}{2}\sigma_F^2}{\sigma_F}$$

 $d_2 = d_1 - \sigma_F$

and
$$\sigma_F^2 = \int_t^T (|\gamma_P(u, x)|^2 + |\gamma_B(u, x)|^2) du.$$

THE SCOR MARKET MODEL

(SCOR = Survivor Credit Offer Rate)

Income drawdown example:

- \bullet Pool of identical policyholders, age x at time 0
- N_t survivors at time t
- $E_Q[N_{t+1}|\mathcal{M}_t] = N_t p_Q(t, t+1, x)$
- ullet Policyholder i has fund $F_i(t)$ at t^- , draws $P_i(t)$ at t^+
- Fund reverts to insurer if the policyholder dies

•
$$F_i(t+1) = (F_i(t) - P_i(t)) \times (1 + \beta(t+1))$$

• $\dot{\beta}(t+1)$ is a bonus rate to cover investment returns and survivorship

•
$$(F_i(t) - P_i(t))\beta(t+1) =$$
 Survivor Credit

If we set $\tilde{\beta}(t+1)$ at t, the economically fair value is:

$$\tilde{\beta}(t+1) = \frac{1 - P(t,t+1)p_Q(t,t+1,x)}{P(t,t+1)p_Q(t,t+1,x)}$$
$$= \text{Survivor Credit Offer Rate}$$

Forward SCOR: Define

$$S(t, T, T + 1, x) = \frac{\tilde{B}(t, T, x) - \tilde{B}(t, T + 1, x)}{\tilde{B}(t, T + 1, x)}$$
i.e. fix at time t the bonus rate payable at $T + 1$
Then
 $1 = P(T, T + 1)n_0(T, T + 1, x)$

$$0 < \frac{1 - P(T, T+1)p_Q(T, T+1, x)}{P(T, T+1)p_Q(T, T+1, x)} = S(T, T, T+1, x) < \infty$$

 \Rightarrow we can choose to model S(t, T, T + 1, x) as a Log-Normal process.

COMPARISON OF MARKET MODELS

- Annuity Market Model
 - 'elegant' solution for specific valuation problem
 - BUT different models required for different problems
- SCOR Market Model
 - less elegant
 - more flexible ('one model fits all')

SCOR Market Model details:

$$dP(t,T) = P(t,T) \Big[r(t)dt + V_P(t,T)d\tilde{Z}(t) \Big]$$

$$dB(t,T,x) = B(t,T,x)V_B(t,T,x)d\tilde{W}(t)$$

$T_0 = \mathrm{key}$ future valuation date for cohort x

Let $T_k = T_0 + k$.

Let $P_{k,x}$ be the measure under which $S(t, T_{k-1}, T_k, x)$ is a martingale.

For compactness write $S_k(t) = S(t, T_{k-1}, T_k, x)$. Martingale property \Rightarrow $dS_k(t) = S_k(t) \left(\phi_{Bk}(t) dW^k(t) + \phi_{Pk}(t) dZ^k(t) \right)$ for k = 1, 2, ..., where $\frac{S_k(t)}{(1+S_k(t))}\phi_{Bk}(t) = V_B(t, T_{k-1}, x) - V_P(t, T_k, x)$ $\frac{S_k(t)}{(1+S_k(t))}\phi_{Pk}(t) = V_P(t,T_{k-1}) - V_P(t,T_k)$

For valuing at t embedded options maturing at T_1 we need to simulate all rates under the same measure. For example, simulating under $P_{1,x}$, for k > 1, substitute $dW^{k}(t) = dW^{1}(t) + \sum_{j=2}^{\kappa} \frac{S_{j}(t)}{1 + S_{j}(t)} \phi_{Bj}(t) dt$ $dZ^{k}(t) = dZ^{1}(t) + \sum_{j=2}^{k} \frac{S_{j}(t)}{1 + S_{j}(t)} \phi_{Zj}(t) dt$

29

Option pricing

 $\pi(T_1) =$ option payoff at T_1

Depends on $S(T_1, T_{k-1}, T_k, x)$, $P(t, T_k)$ for k = 2, 3, ...

 $\pi(t) =$ option value at $t \Rightarrow$

$$\frac{\pi(t)}{\tilde{B}(t,T_1,x)} = E_{P_{1,x}} \left[\frac{\pi(T_1)}{\tilde{B}(T_1,T_1,x)} \middle| \mathcal{H}_t \right]$$

RELATED ISSUES

- Possible criteria for stoch. mortality models
- Types of investor
- Basis risk

POSSIBLE CRITERIA FOR STOCHASTIC MORTALITY MODELS

- $\mu(t,x) > 0$ for all t, x
- Model consistent with historical data
- Future dynamics should be *biologically* reasonable
- Complexity of model appropriate for task in hand
- Model allows fast numerical computation

TYPES OF INVESTOR

- Want to hedge mortality risk
 - Annuity providers, pension plans
 - Life offices, reinsurers
- Portfolio diversification / Return enhancement
 - Investment banks
 - Hedge funds

```
BASIS RISK
```

How well does the underlying index match the hedger's own mortality risks?

Example: Index = UK pensioner mortality

- Hedger 1 = Mexican life insurer \Rightarrow high basis risk
- Hedger 2 = UK pension plan \Rightarrow low basis risk

High basis risk \Rightarrow security may not be worth buying.

BASIS RISK

Issuer of security has to make potential investors feel

confident about what they are buying

- Index = buyers/sellers own mortality risks
 - \Rightarrow moral hazard/distrust

 \Rightarrow no sales

- Independent index (e.g. national mortality)
 - \Rightarrow greater investor confidence
 - BUT more basis risk

Basis risk: UK Assured lives versus E&W population Mortality rates relative to 1961 values <u>~~</u>∦ = 21 x = 311.0 1.0 = 41 1.0 Х $\widehat{\mu}(t, x)/\widehat{\mu}(1961, x)$ $\widehat{\mu}(t, x)/\widehat{\mu}(1961, x)$ $\widehat{\mu}(t, x)/\widehat{\mu}(1961, x)$ 0.8 0.8 0.8 0.6 0.6 0.6 0.4 0.4 0.4 0.2 **UK Males Assured lives** 0.2 0.2 Eng. & Wales gen. pop. 0.0 0.0 0.0 1960 1990 2000 1980 1990 2000 1960 1970 1980 2000 1980 1960 1970 1990 1970 x = 61 x = 81 91 1.0 1.0 1.0 $\widehat{\mu}(t,x)/\widehat{\mu}(1961,x)$ û(t, x)/û(1961, x) û(t, x)/û(1961, x) 0.8 0.8 0.8 0.6 0.6 0.6 0.4 0.4 0.4 0.2 0.2 0.2 0.0 0.0 0.0 1960 1970 1980 1990 2000 1960 1970 1980 1990 2000 1960 1970 1980 1990 2000

Updated version at: http://www.ma.hw.ac.uk/~andrewc

Related to basis risk:

```
Measurement error
```

- \Rightarrow don't issue 0-1 securities
- e.g. Swiss Re catastrophe bond

TIME LAG

Mortality data takes time to report and analyse

• Swiss Re bond

Principal reduced only if a catastrophe

- \Rightarrow delay in repayment only if mortality > c.130%
- BNP Paribas bond:

Payment at T linked to mortality at T-2

Updated version at: http://www.ma.hw.ac.uk/~andrewc