Defined Contribution (DC) Pension plans: The Impact of Financial Risk on Individuals and on Population Dynamics

> Andrew Cairns Heriot-Watt University Edinburgh

> > Joint work with

David Blake, Kevin Dowd & Bonnie-Jeanne MacDonald

Outline for talk

- Overview: Accumulation phase of a DC plan
- Fixed retirement age
 - Risk assessment
 - Comparison of optimal strategy with commercial strategies
- Flexible retirement age
 - Implications for individual members
 - Implications for population dynamics

Accumulation phase

Motivation

- DC plans now as important as DB plans
- DC \Rightarrow Financial risk borne by individual members
- Perceived need for research to help members
 - assess the risks
 - manage the risks

Control variable: Investment strategy

- various asset classes
- choice of "commercial" investment strategies
- static versus dynamic

For a given investment strategy:

How well does a DC plan match a DB benchmark? Pension Ratio = $\frac{\text{DC pension}}{2/3 \text{ final salary}}$ Typical *default* strategies

Static strategies

Pension Fund Average (PFA)

typical mixed fund (\sim 70% in UK/int'l equities)

Mixed Bonds (50/50)

50% long bonds; 50% cash

 \Rightarrow minimum variance of Pension Ratio

Initially MIXED fund. Then switch gradually into BONDS.

Default "commercial" strategies:

- Static
- Deterministic lifestyle
- Portfolio insurance (CPPI)
- Threshold strategy

Are these strategies the best that we can do?

By how much can they be improved?

- theoretical best
- practical best (not this talk!)

Example: Fixed retirement age

- Member enters at 25, retires at 65
- Contribution rate: 10% of salary
- Accumulated fund used to buy level annuity
- Various investment strategies considered

Typical results (various asset models considered)

Different investment strategies

How to set the contribution rate?

Median as a proxy for deterministic projection

What % contribution rate

 \Rightarrow 50% chance that pension ratio > 1

- What % contribution rate
 - \Rightarrow 95% chance that pension ratio > 1

50% chance that Pension Ratio > 1						
	Required C.R. (%					
	PFA	3.80				
	Lifestyle	4.69				
	CPPI	4.76				
	Threshold	7.69				
	50/50 Bonds	11.90				

"Low risk strategy" requires $3 \times PFA$

95% chance that Pension Ratio > 1

	Required C.R. (%)		
	95% chance	50% chance	
PFA	10.53	3.80	
Lifestyle	11.11	4.69	
CPPI	12.05	4.76	
Threshold	13.51	7.69	
50/50 Bonds	16.39	11.90	

Accumulation stage: Initial conclusions

- CDF's all have a wide spread
 - \Rightarrow Degree of uncetainty is very high
- Regulators must be persuaded to allow, promote or even require stochastic projections
- Commercial investment strategies don't give substantially different CDF's from simpler static strategies

We have looked at various "commercial" strategies:

- Static
- Deterministic lifestyle
- Threshold / CPPI

Are these strategies the best that we can do?

Three questions:

1. How can we measure the success of a particular strategy?

- 2. What is the optimal asset-allocation strategy ex ante?
- 3. How do the commercial strategies compare with the optimal?

How can we measure the success of a particular strategy?

Retirement at fixed date ${\cal T}$

Various possibilities:

we use plan member's utility function

 $\begin{array}{lll} \mbox{utility} &=& f(\mbox{pension ratio at }T) \\ &=& f\left(\frac{\mbox{DC fund}(T) \ / \ \mbox{annuity } \mbox{price}(T)}{\frac{2}{3}\mbox{Final salary}(T)} \right) \end{array}$

Aim:

To find the asset-allocation strategy that optimises the expected utility.

Optimal strategy:

- may be dynamic
- may depend on past performance of investments
- may depend on current level of interest rates
- may depend on current level of salary

Popular choice: power utility

utility =
$$\frac{1}{1 - RRA}$$
 (pension ratio at T)^{1-RRA}

RRA = relative risk aversion

What is new here:

• utility = function of pension ratio

rather than wealth

• continuous stream of premiums: $k \times$ current salary

Modelling

- Very simple model \Rightarrow
- stochastic asset returns, interest rates
- stochastic salaries; possibly non-hedgeable risk
- possible to find the "true" optimal strategy
- easy to compare with popular commercial strategies
- \Rightarrow clear qualitative conclusions about how good commercial strategies really are.

Model \Rightarrow many assets

Optimisation \Rightarrow we require only 3 mutual funds

A Minumum risk fund to match salary risk

mainly cash

B Minimum risk fund to match salary × annuity risk mainly bonds

C Efficient, risky fund

A, B, C adjusted for correl. between salary and assets

```
Complete market:
```

Main conclusions: optimal strategy

 \bullet Effective assets at t are

 $\overline{W}(t) =$ actual pension wealth, W(t)

+risk-adjusted value of future

premiums, RAVFP

Borrow RAVFP in units of mutual fund A

Main conclusions: optimal strategy

• Investment in risky fund C

= constant % of $\overline{W}(t)$

constant % depends upon plan member's relative risk aversion, RRA

• As a percentage of $\overline{W}(t)$

investment in mutual fund B grows over time investment in mutual fund A falls

Example 1:

- Relative risk aversion: RRA = 6 (moderate)
- Duration of contract: T = 20 years
- Contribution rate: 10% of salary

Example 1: RRA = 6, T = 20

Example 2: Very high RRA, T = 20

Comparison with other strategies

Optimal strategy versus:

- Salary-hedged static strategy (S)
- Merton-static strategy (M)
- Deterministic lifestyle strategies:
 - initially 100% in equities
 - gradual switch over last 10 years into
 100% bonds (B-10) or 100% cash (C-10)

Tables show:

• Cost:

- Benchmark: 10% cont. rate with optimal strategy
- Other strategies: % contribution rate to match optimal utility
 - \Rightarrow form of certainty equivalent

(c)	RRA = 6, T = 20				
Strategy:	Optimal	St	atic	Deterministic lifestyle	
	stochastic	S	М	B-10	C-10
Cost	10.00%	10.61%	11.55%	10.71%	11.39%

- S: Salary-hedged static
- M: Merton static
- B-10: Deterministic lifestyle; switch to bonds over last 10 years
- C-10: Deterministic lifestyle; switch to cash over last 10 years

The effect of policy term, ${\cal T}$

(C)	RRA = 6, T = 20				
Strategy:	Optimal	Static		Determini	stic lifestyle
	stochastic	S	М	B-10	A-10
Cost	10.00%	10.61%	11.55%	10.71%	11.39%

(d)	RRA = 6, T = 40				
Strategy:	Optimal	Static		Determini	stic lifestyle
	stochastic	S	М	B-10	A-10
Cost	10.00%	11.52%	12.58%	12.86%	13.67%

(b)	RRA = 1, T = 40				
Strategy:	Optimal Static		Determinis	stic lifestyle	
	stochastic	S	М	B-10	A-10
Cost	10.00%	17.37%	17.36%	32.21%	34.33%

(d)	RRA = 6, T = 40				
Strategy:	Optimal	Static		Determinis	stic lifestyle
	stochastic	S	М	B-10	A-10
Cost	10.00%	11.52%	12.58%	12.86%	13.67%

(f)	RRA = 12, T = 40				
Strategy:	Optimal	Static		Determinis	stic lifestyle
	stochastic	S	М	B-10	A-10
Cost	10.00%	12.38%	13.17%	16.57%	17.82%

Fixed Retirement: Conclusions

- Commercial strategies can be costly
- Optimal strategy has some drawbacks:
 - regular rebalancing \Rightarrow difficult to implement??
 - short selling
 - \Rightarrow we need to find a compromise
 - \Rightarrow future work to find a robust dynamic strategy that

takes account of plan member's risk aversion

Fixed Retirement: Conclusions

• Even under optimal stochastic strategies pension ratio at 65 is very uncertain

 \Rightarrow Increasing use of flexible retirement ages

Next step: go to the other extreme:

Retire when Pension Ratio = 2/3 of current salary

Basic model

- Interest rates: Vasicek, risk-free rate r(t)
- Assets:
 - Cash account
 - Long-dated bond
 - Equities
- Fixed salary growth rate

Replacement ratio

$$RR(t) = \frac{\text{Wealth}(t)/\ddot{a}(x+t,r(t))}{\text{Salary}(t)}$$

Retire when $RR(t) \geq 2/3$

- What is the distribution of the age of retirement?
- How does it depend on the investment mix?
- What is the impact on the size of the working population?

Percentages in (Cash, Bonds, Equities)

Impact on population dynamics

- Assume:
 - stable population
 - stable mortality rates
 - all individuals enter working population at 25
 - retirement according to 2/3 rule
 - all individuals follow the same investment strategy

Impact on population dynamics

Dependency Ratio = $\frac{\# \text{ retired population}}{\# \text{ working population}}$

Age of youngest retiree	55	65	75
Dependency ratio	0.83	0.40	0.17

Low dependency ratio \Rightarrow + and -

strongly correlated with exp.-weighted investment returns

Observations

• "Extreme" criterion applied \Rightarrow

substantial swings in working population

- Introducing heterogeneity:
 - mixed investment strategies
 - mixed retirement strategies
 - stochastic salaries

Heterogeneity in investment strategies

Each plan member follows one of three investment

strategies

	Strategy	% Bonds	% Equities
A	Low risk	80	20
В	Medium risk	40	60
С	High risk	0	100

1/3 of members for each strategy

Investment heterogeneity has little effect

Reason

- Long-term investments in A, B and C are highly correlated
- Annuity purchase at the same rates for A, B, C
 - driver is short-term interest rate r(t)
 - different mean returns
 - but periods of high growth for A, B, C coincide

Why are these fluctuations undesirable?

- Substantial late-retirement risk for plan members
- "Dependency ratio" relevant to
 - how to pay for pre-working population
 - how to pay for pensioners with state pension only
- ullet fluctuations in working population \Rightarrow
 - impact on economy
 - impact on tax take

Is it possible to smooth out the fluctuations?

Work in progress:

- stochastic price inflation and salaries
- heterogeneity in:
 - retirement decisions
 - contribution rate
 - entry age to plan
 - career flight path
 - annuity type

Which of these are important for smoothing?

Conclusions

- DC pensions load risk onto plan members
- Need to develop better dynamic investment strategies
- Potential demographic timebomb
 - flexible retirement ages are inevitable
 - pension system needs to be designed to avoid big fluctuations in working population

• Blake, D., Cairns, A.J.G., and Dowd, K., (2001)

Pensionmetrics: Stochastic pension plan design and value-at-risk during the accumulation phase

Insurance: Mathematics and Economics

 Cairns, A.J.G., Blake, D., and Dowd, K., (2004)
 Stochastic Lifestyling: Optimal Dynamic Asset Allocation for Defined Contribution Pension Plans
 To appear in the *Journal of Economic Dynamics and Control*

MacDonald, B.-J. and Cairns, A.J.G., (2005)
 DC Pension Plans For All: What If?
 AFIR 2005, Zurich

http://www.ma.hw.ac.uk/~andrewc/papers