MORTALITY RISK FOR LIFE INSURERS AND PENSION FUNDS

ANDREW CAIRNS Heriot-Watt University, Edinburgh and The Maxwell Institute, Edinburgh

PLAN FOR TALK

- Background and the mortality problem
- Possible solutions
- Stochastic mortality models
- Basis risk
- Conclusions

The Problem

Nothing is certain in life except death and taxes.

(1789: Franklin)

2005: What we know as the facts:

- Death is still a certainty!
- Life expectancy is increasing.

Future development of life expectancy is uncertain.
 "Longevity risk"

The Problem: Insurance risk

• Traditional view:

Pooling of insurance risks \Rightarrow diversification BUT

- Systematic risks: e.g.
 - Florida hurricane risk
 - Pandemic risk
 - Long-term mortality improvements

The Problem – UK Defined-Benefit Pension Plans:

- Before 2000:
 - High equity returns masked impact of longevity improvements
- After 2000:
 - Poor equity returns, low interest rates
 - Decades of longevity improvements now a problem

The Problem – Life Insurers: annuity business

- Annuity providers:
 - Risk due to *unanticipated* improvements in mortality.
- Equitable Life (and others): GAO's

Guaranteed Annuity Option: becomes valuable if

- interest rates fall
- mortality rates fall

The Problem – Life Insurers: life business

- Short-term catastrophes
 - Pandemic
 - Terrorism
 - Earthquake etc.
- Long-term, *unanticipated* deterioration in mortality

Insurers: What to do with systematic mortality risk?

- Ignore risk not significant;
- Accept as a legitimate business risk;
- Diversify insurance liabilities (annuities + life);
- Replace fixed annuities with participating contracts;
- Reinsurance (downside risk);
- Securitise a line of business;
- OTC mortality-linked contracts;
- Traded mortality-linked securities.

Pension plans: What to do with systematic mortality risk?

- Cannot/should not:
 - Ignore; Accept as business risk; Diversify.
- Purchase individual annuities from insurer;
- Bulk buyout;
- Actively manage risk using:
 - OTC mortality-linked contracts;
 - traded mortality-linked securities.

Life insurer's perspective

England and Wales: Males age 20–29 mortality

England and Wales log mortality rates 1950-2002

Why do we need stochastic mortality models?

 $Data \Rightarrow$ future mortality is uncertain

- Good risk management
- Setting risk reserves
- Life insurance contracts with embedded options
- Pricing and hedging mortality-linked securities

The wider picture

Life insurers and pension funds exposed to many risks

- A: investment risk
- B: interest-rate risk
- C: mortality and longevity risk
- A, B \rightarrow can hedge to reduce risk; C?

Blake, Cairns & Dowd (2006) Living with mortality ... British Actuarial Journal 12: 153-197.

Stochastic mortality

- Many models to choose from
- Annual mortality data
 - National data; subpopulations
- Limited data \Rightarrow model and parameter risk

How to compare stochastic models (*)

- Quantitative criteria
- Qualitative criteria
 - parsimony and transparency
 - robust relative to age and period range
 - biologically reasonable
 - forecasts are reasonable

(*) Cairns et al. (2007) A quantitative comparison of stochastic mortality models.... Online: www.lifemetrics.com

Fan charts + A plausible set of forecasts

Model risk

Model risk

Model risk

Modelling Conclusions

- Be aware of model and parameter risk
- Use a full range of quantitative and qualitative criteria

Uses include:

Risk assessment and pricing of mortality-linked securities

MORTALITY-LINKED SECURITIES

- Short-term catastrophe bonds (Swiss Re, 2003, 2005)
- Survivor swaps (some OTC contracts)

swap fixed for floating mortality-linked cashflows

• Long-term longevity bonds (EIB/BNP, Nov. 2004)

cashflows linked to survivorship index

ultimately unsuccessful

What makes a proposed security successful?

- Attractive capital structure for hedgers
- Transparent and trustworthy underlying index
- Low basis risk for hedgers
- Good understanding of the risks being traded \Rightarrow need a good model
- Need receivers of longevity risk
 - \Rightarrow natural hedgers; hedge funds etc.

November 2004: EIB/BNP Paribas longevity bond

- Payments linked to survivor index S(t)
- S(t) = proportion of cohort age 65 at time 0 surviving to time t.
- Bond pays 50M $\times S(t)$ at time t
- Reference population: England and Wales, males
- Issuer=European Investment Bank
- Structurer and Manager=BNP Paribas

EIB's perspective

- Likes to issue floating-rate notes in Euros
- Does not like floating-mortality bonds in GBP

- Too much capital up front for limited risk transfer
- Perceived basis risk
- Price not obviously a problem

What still needs to be done?

Longevity-linked securities:

- Right capital structure
 - Survivor swaps (standardised?)
 - Survivor caps and caplets
 - Capital-at-risk bonds
- Need to understand basis risk

Traded securities: basis risk

 $\mathsf{Basis}\;\mathsf{Risk}\Rightarrow$

mismatch between reference population and own risk

Examples:

- different population characteristics
- different age profile
- males/females

Traded securities: basis risk

Single, reliable reference population

- \Rightarrow high basis risk for many hedgers
- \Rightarrow security not worth holding
- \Rightarrow low demand
- \Rightarrow low liquidity

Traded securities: basis risk

Several reference populations

 \Rightarrow low basis risk for hedgers

BUT too many reference populations

- \Rightarrow poor transparancy or reliability
- \Rightarrow low liquidity

Tradeoff required to get the right balance

Basis risk

- More work to be done
- Relatively little data
 - \Rightarrow need to work hard to extract stylised facts
- Role for biological reasonableness

Conclusions

 Life Insurance and Pensions liabilities are huge (\$ Trillions)

- Life insurers and pension plans are exposed to significant systematic longevity risk
- Options:
 - bear the risk internally
 - transfer the risk to the financial markets

Conclusions

- Requirement for good risk management
 ⇒ Potential huge demand for mortality-linked securities
- Challenges for the future:
 - to improve statistical models;
 - to develop a substantial, liquid market in

mortality-linked securities

 \Rightarrow need to design products that are attractive for both buyers and sellers

Andrew Cairns

Department of Actuarial Mathematics and Statistics

Heriot-Watt University

Edinburgh, EH14 4AS, UK

E-mail: A.Cairns@ma.hw.ac.uk

WWW:http://www.ma.hw.ac.uk/~andrewc