MODELS FOR STOCHASTIC MORTALITY WITH PARAMETER UNCERTAINTY

Andrew Cairns

Heriot-Watt University, Scotland

& The Maxwell Institute, Edinburgh

Workshop on Integrated Risk Modelling, Tilburg, April 11-13, 2007

Working paper: Cairns, Blake, Dowd, Coughlan, Epstein, Ong, Balevich (2007)

A quantitative comparison of stochastic mortality models using data from England

& Wales and the United States

Plan

- Introduction
- Approaches to modelling mortality improvements
- A two-factor model for stochastic mortality
- Application
 - The survivor index
- Adding in a cohort effect
- Conclusions
- Pricing: $P \to Q$

The facts about mortality:

- Life expectancy is increasing.
- Future development of life expectancy is uncertain.
 "Longevity risk"

Longevity Risk = the risk that aggregate future mortality

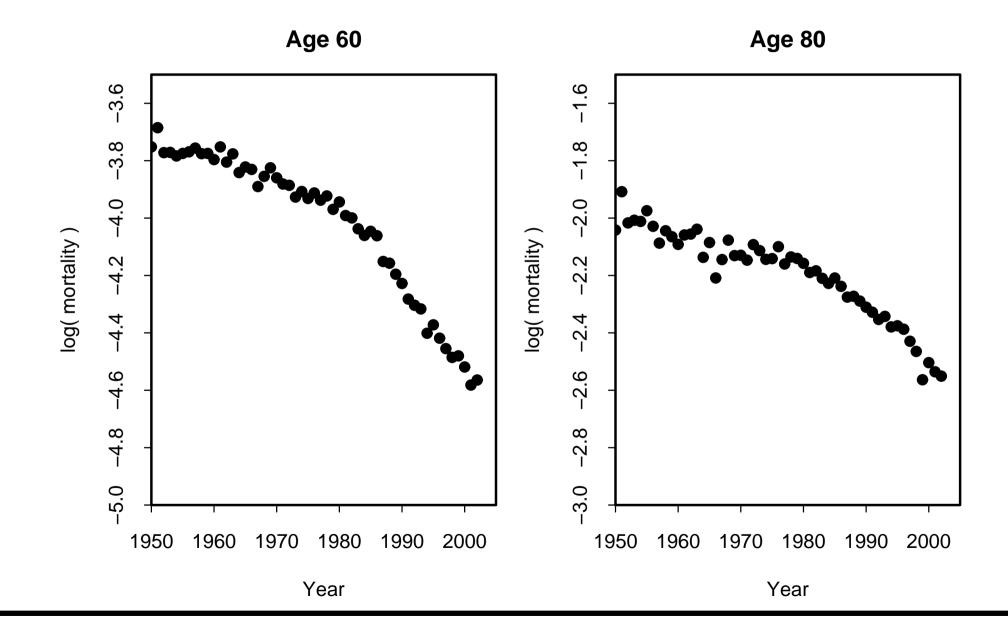
rates are lower than anticipated

Focus here: Mortality rates above age 60

Where is stochastic mortality relevant?

- Risk management in general
- Pension plans: what level of reserves?
- Life insurance contracts with embedded options.
- Pricing and hedging longevity-linked securities.

England and Wales log mortality rates 1950-2002



Stochastic Models

Different approaches to modelling

- Lee-Carter
- P-splines
- Parametric, time-series models
- Market models
- Age-Period-Cohort extensions

Stochastic Models

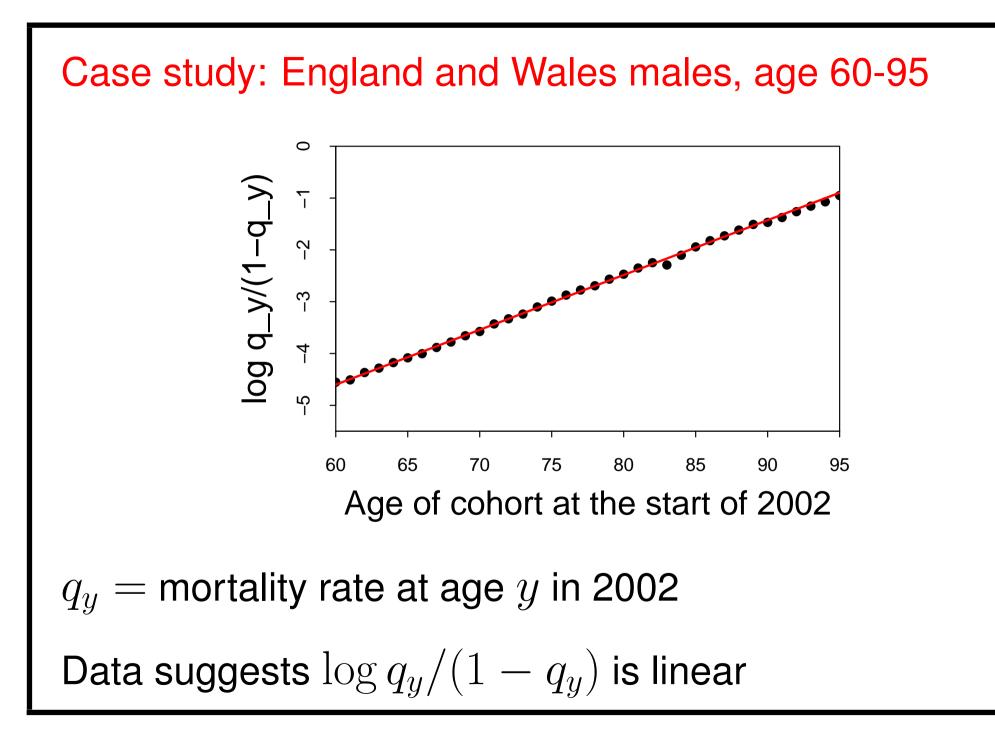
Limited historical data \Rightarrow

• No single model is 'the right one'

limited data \Rightarrow Model risk

• Even with the right model

limited data \Rightarrow Parameter risk



"PARAMETRIC" TIME-SERIES MODELS

q(t, x) Mortality rate for the year t to t + 1 for individuals aged x at t:

General class of models

$$\operatorname{logit} q(t, x) = \sum_{i=1}^{N} \beta_{x}^{(i)} \kappa_{t}^{(i)} \gamma_{t-x}^{(i)}$$

"Parametric" $\Rightarrow \beta_x^{(i)}$ is a simple function of x

Estimation

• Data: Deaths D(t, x), Exposures E(t, x)

 \Rightarrow Crude death rates $\hat{m}(t,x) = D(t,x)/E(t,x)$

• Underlying $m(t, x) = -\log[1 - q(t, x)]$

(by assumption)

- $D(t,x) \sim \text{independent Poisson}\Big(m(t,x)E(t,x)\Big)$
- Maximum likelihood $\Rightarrow \hat{\beta}_x^{(i)}$, $\hat{\kappa}_t^{(i)}$ and $\hat{\gamma}_{t-x}^{(i)}$

Excursion: Data issues

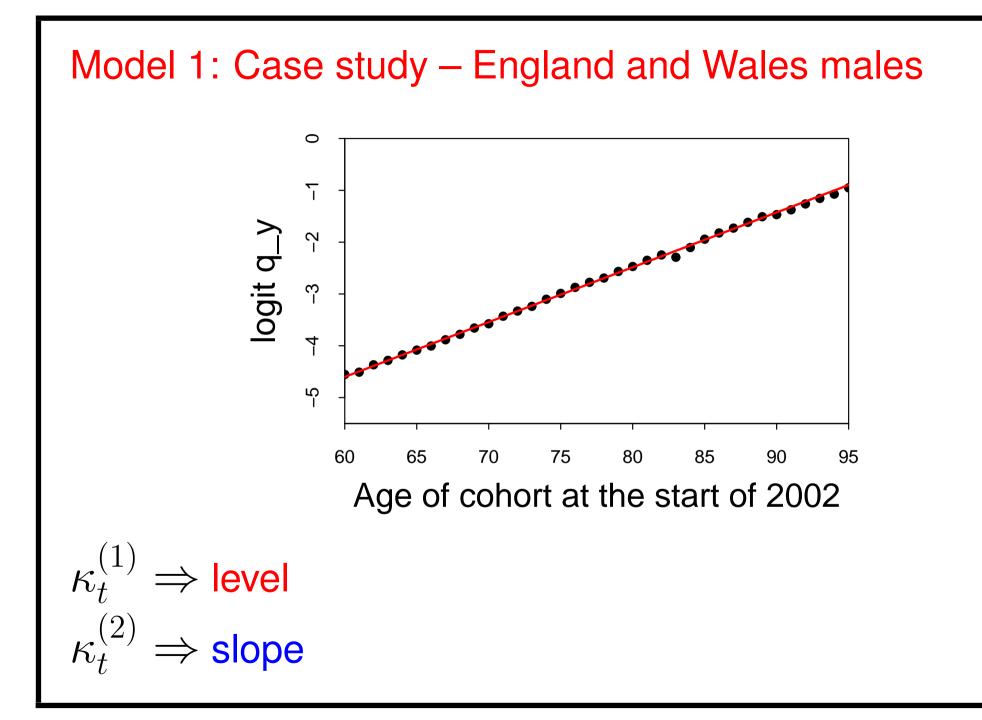
- $\bullet \ D(t,x)$ Deaths reasonably accurate
- E(t, x) Exposures are estimates
 - even in census years
 - US data \Rightarrow generally very unreliable!
 - $E+W data \Rightarrow$ better, except 1886 cohort
 - impact on Poisson assumption needs further study

TWO PARAMETRIC TIME-SERIES MODELS

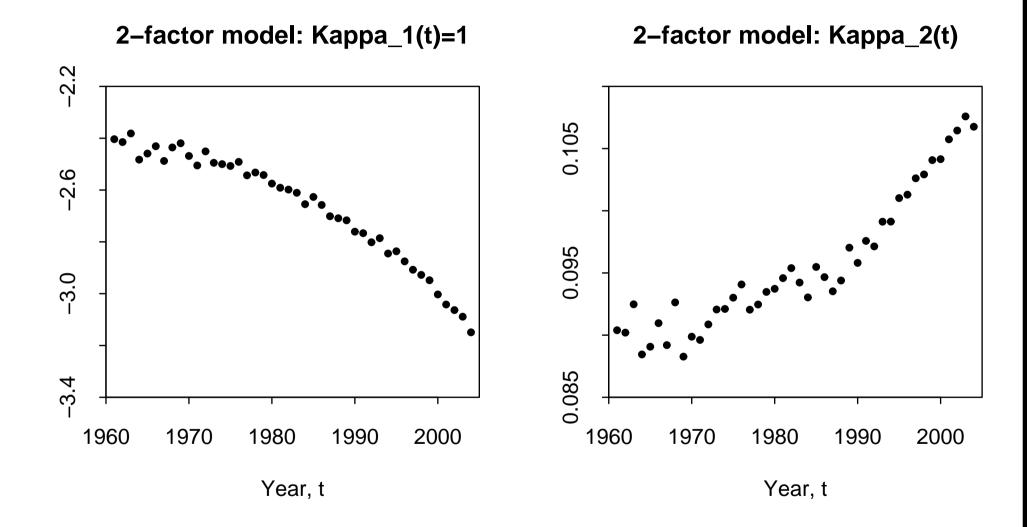
Model 1 (Age-Period model):

logit
$$q(t, x) = \kappa_t^{(1)} + \kappa_t^{(2)}(x - \bar{x})$$

Model 2 (Age-Period-Cohort model):



Model 1



$$\kappa_t = (\kappa_t^{(1)}, \kappa_t^{(2)})'$$

Model: Random walk with drift

$$\kappa_{t+1} - \kappa_t = \mu + CZ(t+1)$$

•
$$\mu = (\mu_1, \mu_2)' = \mathsf{drift}$$

- V = CC' =variance-covariance matrix
- \bullet Estimate μ and V
- \bullet Quantify parameter uncertainty in μ and V

WHY 2 FACTORS? (i.e. $\kappa_t^{(1)}$ and $\kappa_t^{(2)}$)

Data suggest changes in *underlying* mortality rates are not perfectly correlated across ages.

1 factor (e.g. most Lee-Carter-based models)

 \Rightarrow changes over time in the q(t, x) are perfectly correlated.

Bayesian approach to parameter uncertainty

- Jeffreys prior $p(\mu,V) \propto |V|^{-3/2}$.
- Data: vector $D(t) = \kappa_t \kappa_{t-1}$ for t = 1, ..., n
- MLE's: $\hat{\mu}$ and \hat{V} .
- Posterior:

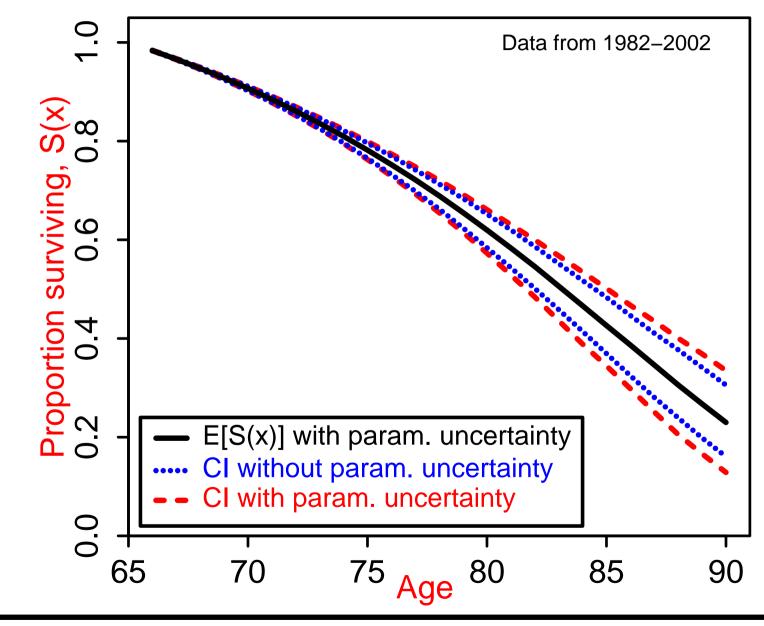
$$\begin{split} V^{-1}|D &\sim \operatorname{Wishart}(n-1, n^{-1}\hat{V}^{-1}) \\ \mu|V, D &\sim MVN(\hat{\mu}, n^{-1}V) \end{split}$$

Application: cohort survivorship

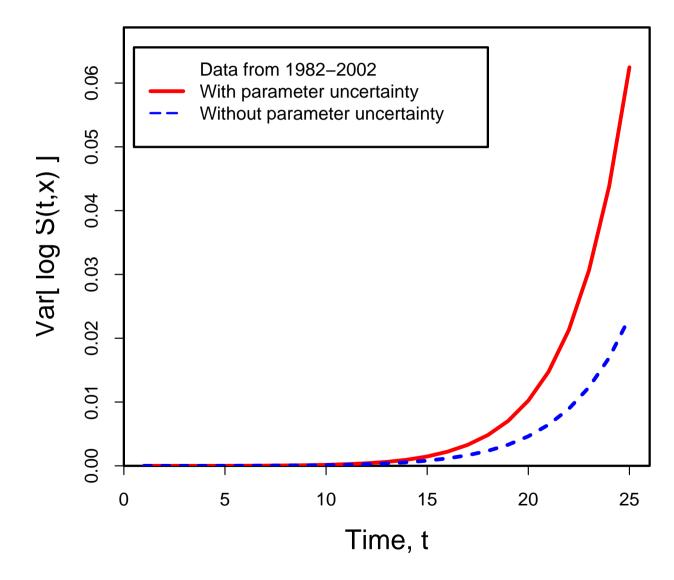
- Cohort: Age x at time t = 0
- S(t, x) = survivor index at tproportion surviving from time 0 to time t

$$S(t,x) = (1 - q(0,x)) \times (1 - q(1,x+1) \times \dots \times (1 - q(t-1,x+t-1)))$$

90% Confidence Interval (CI) for Cohort Survivorship

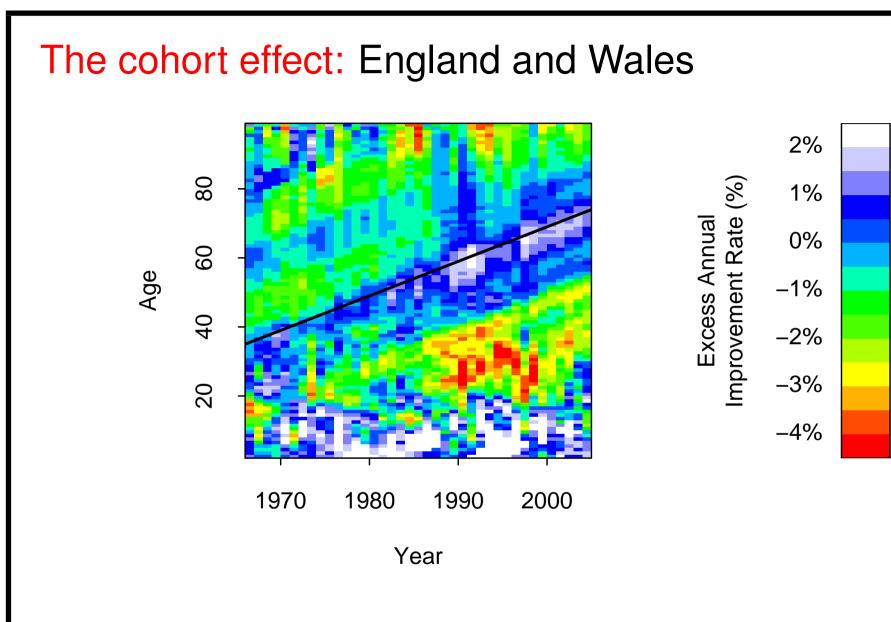


$Var[\log S(t, x)]$ for x = 65



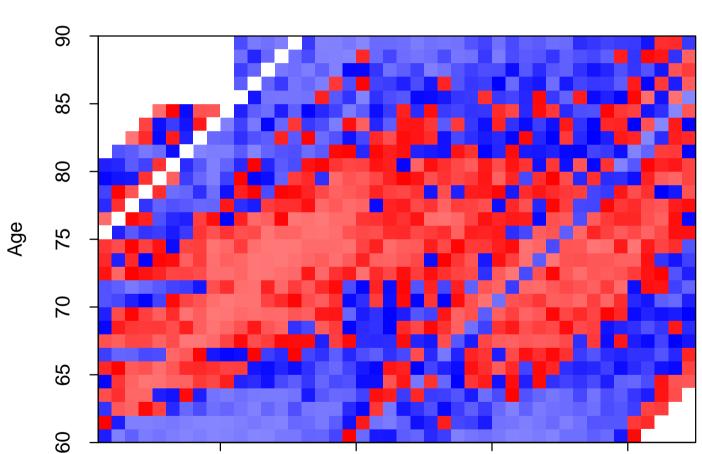
Cohort Survivorship: General Conclusions

- Less than 10 years:
 - Systematic risk not significant
- Over 10 years
 - Systematic risk becomes more and more significant over time
- Over 20 years
 - Model and parameter risk begin to dominate



Mortality improvement relative to calendar year average.

The Cohort Effect



Year

2-factor Model: Standardised Residuals

TWO PARAMETRIC TIME-SERIES MODELS

Model 1 (Age-Period model):

$$\operatorname{logit} q(t,x) = \kappa_t^{(1)} + \kappa_t^{(2)}(x-\bar{x})$$

Model 2 (Age-Period-Cohort model):

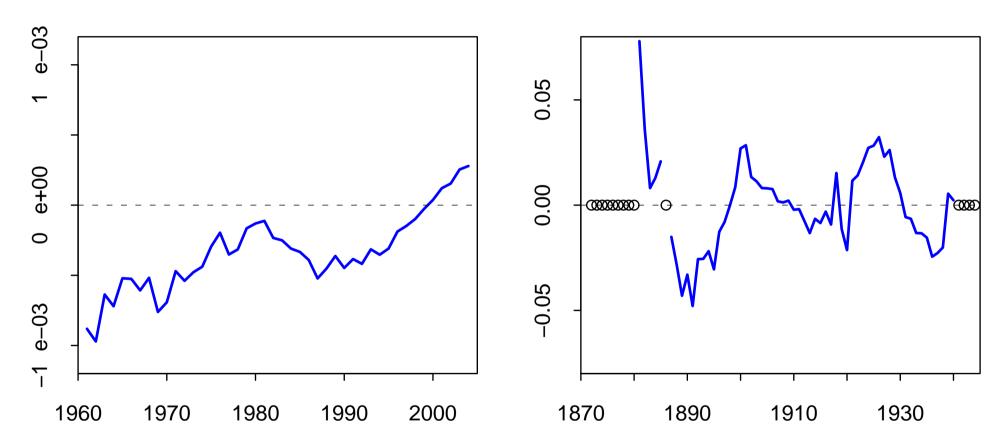
$$\begin{aligned} \log it \ q(t,x) \ &= \ \kappa_t^{(1)} + \kappa_t^{(2)} (x - \bar{x}) \\ &+ \kappa_t^{(3)} [(x - \bar{x})^2 - \sigma_x^2] \\ &+ \gamma_{t-x}^{(4)} \end{aligned}$$

(e.g. see Renshaw & Haberman (2006))

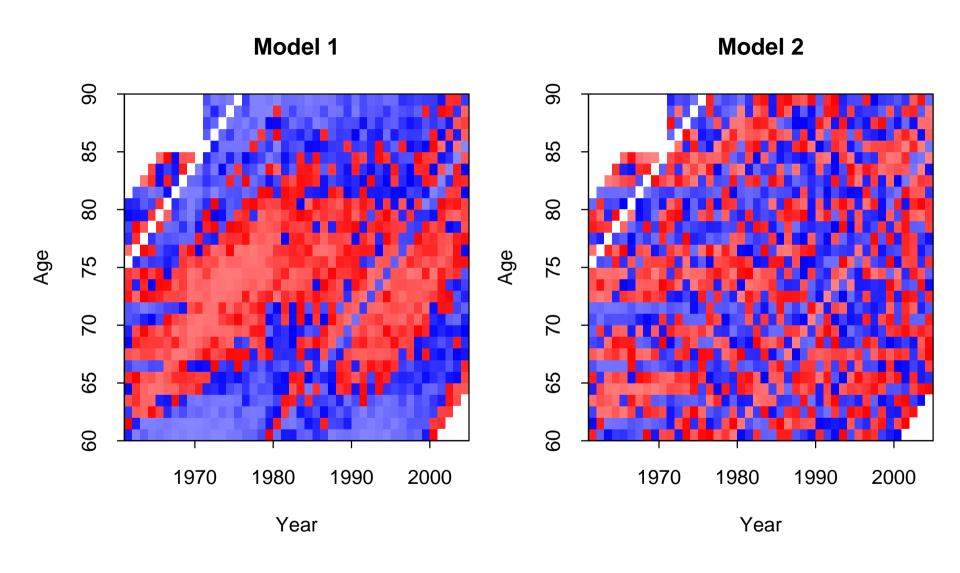
Model 1 versus Model 2 kappa_1(t) kappa_2(t) 0.110 -2.4 -2.6 0.100 -2.8 0.090 -3.0 Model 1 Model 2 -3.2 0.080 1960 1970 1980 1990 2000 1960 1970 1980 1990 2000

Model 2: extra factors

kappa_3(t)

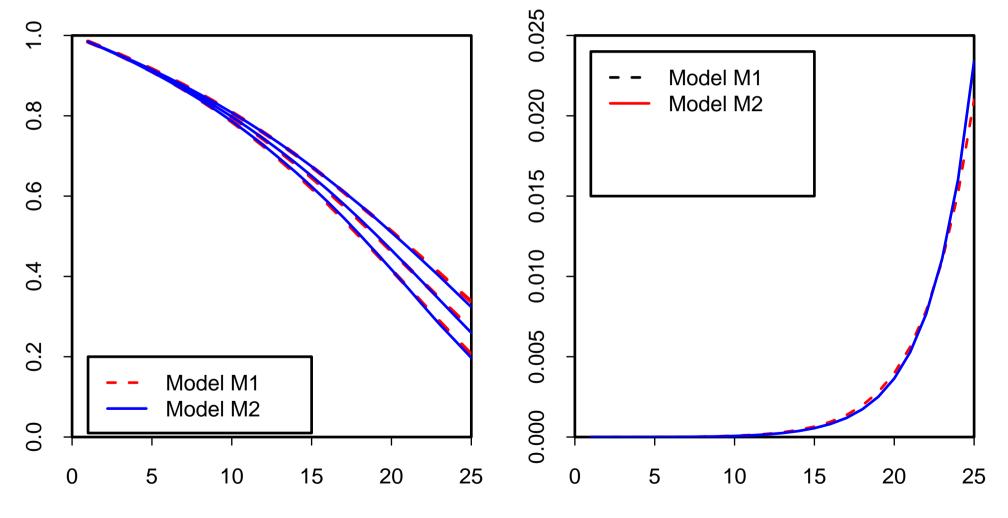


Standardised residuals



Survivor index projections

S(t,x): Mean + 5%, 95% quantiles



4% Annuity Values

	Model 1	Model 2		
		$\gamma^{(4)}_{1944}$	$\gamma^{(4)}_{1944}$	
		= -0.0398	= 0.0402	
x = 60	13.472	13.557	13.350	
x = 65	11.449	11.451		
x = 70	9.325	9.354		
x = 75	7.220	7.240		

Conclusions 1

- Stochastic models important for
 - risk measurement and management
 - valuing life policies with option characteristics
- Two models out of many possibilities
- Significant longevity risk in the medium/long term

Conclusions 2

- Parameter risk is important
- Model risk might be important
- The significance of longevity risk varies from one problem to the next:
 - In absolute terms
 - As a percentage of the total risk

How do you price a longevity bond?

- Hedgers are prepared to pay a premium
- Two approaches:
 - Take *real-world* expected values

use a risk-adjusted discount rate

- Take risk-adjusted expected values

use the risk-free discount rate

Risk-neutral pricing (risk-adjusted expected values)

$$\begin{pmatrix} \kappa_{t+1}^{(1)} \\ \kappa_{t+1}^{(2)} \end{pmatrix} - \begin{pmatrix} \kappa_{t}^{(1)} \\ \kappa_{t}^{(2)} \end{pmatrix}$$

$$= \begin{pmatrix} \mu_{1} \\ \mu_{2} \end{pmatrix} + \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix} \begin{pmatrix} \tilde{Z}_{1}(t+1) + \lambda_{1} \\ \tilde{Z}_{2}(t+1) + \lambda_{2} \end{pmatrix}$$
where $\tilde{Z}_{1}(t+1)$ and $\tilde{Z}_{2}(t+1)$ are i.i.d. $\sim N(0, 1)$
under a risk-neutral pricing measure $Q(\lambda)$

 λ_1 and λ_2 are market prices of risk

How does the market price of risk work?

- Two independent sources of risk $Z_1(t)$, $Z_2(t)$
- Tradeable security has corresp. volatilities σ_1 , σ_2
- Market price of risk is

the additional expected return over the risk free rate

per unit of risk

• Hence

Risk premium
$$= \left(\sigma_1\lambda_1 + \sigma_2\lambda_2\right)$$

Comments

- The market is highly incomplete
- \bullet The switch from P to Q is a modelling assumption
- (Simple) Key assumption:

market prices of risk λ_1 and λ_2 are constant.

As a market develops this assumption becomes a testable hypothesis

\leq One data point: the EIB-BNP longevity bond

• Offer price (ultimately unsuccessful) \Rightarrow average risk premium of 20 basis points

(paid by the buyer of the bond to the seller)

if held to maturity

- What values of $\lambda_1,\,\lambda_2$ are consistent with the 20b.p.'s risk premium?
- One price, two parameters \Rightarrow many solutions

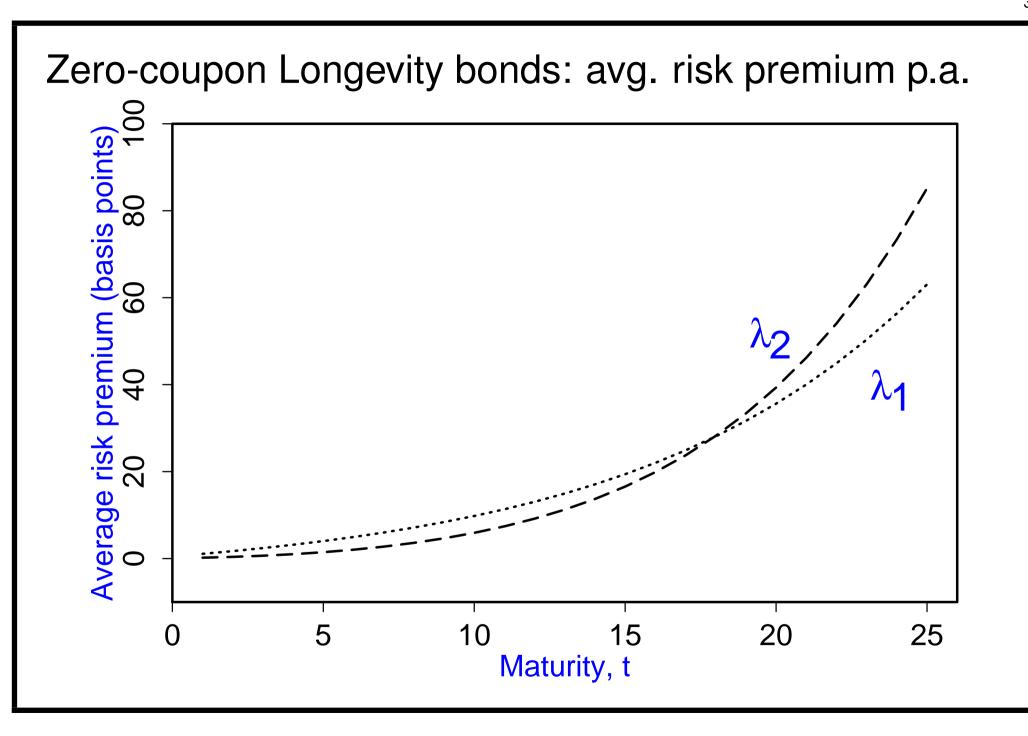
Answer: 20 b.p. spread equates to $\lambda_1 = 0.375, \qquad \lambda_2 = 0$

 $\lambda_1=$ 0, $\lambda_2=$ 0.315

Do these values represent a good deal?

Why do we need to know λ_1 , λ_2 ?

 \Rightarrow info. on how to price new issues in the future.



Longevity Bond Risk Premiums: $\lambda = (0.375, 0)$

Dependency on term and initial age:

		Initial age of cohort, x		
		60	65	70
Bond				
Maturity				
T	30	16.9	24.3	31.5