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The facts about mortality:

• Life expectancy is increasing.

• Future development of life expectancy is uncertain.

“Longevity risk”

Longevity Risk = the risk that aggregate future mortality

rates are lower than anticipated

Focus here: Mortality rates above age 60
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Where is stochastic mortality relevant?

• Risk management in general

• Pension plans: what level of reserves?

• Life insurance contracts with embedded options.

• Pricing and hedging longevity-linked securities.
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England and Wales log mortality rates 1950-2002
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Stochastic Models

Different approaches to modelling

• Lee-Carter

• P-splines

• Parametric, time-series models

• Market models

• Age-Period-Cohort extensions
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Stochastic Models

Limited historical data⇒

• No single model is ‘the right one’

limited data⇒ Model risk

• Even with the right model

limited data⇒ Parameter risk
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Case study: England and Wales males, age 60-95
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Data suggests log qy/(1− qy) is linear
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“PARAMETRIC” TIME-SERIES MODELS

q(t, x) Mortality rate for the year t to t + 1 for individuals

aged x at t:

General class of models

logit q(t, x) =

N∑
i=1

β(i)
x κ

(i)
t γ

(i)
t−x

“Parametric”⇒ β
(i)
x is a simple function of x
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Estimation

• Data: Deaths D(t, x), Exposures E(t, x)

⇒ Crude death rates m̂(t, x) = D(t, x)/E(t, x)

• Underlying m(t, x) = − log[1− q(t, x)]

(by assumption)

• D(t, x) ∼ independent Poisson
(
m(t, x)E(t, x)

)

• Maximum likelihood⇒ β̂
(i)
x , κ̂

(i)
t and γ̂

(i)
t−x
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Excursion: Data issues

• D(t, x) Deaths reasonably accurate

• E(t, x) Exposures are estimates

– even in census years

– US data⇒ generally very unreliable!

– E+W data⇒ better, except 1886 cohort

– impact on Poisson assumption needs further study
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TWO PARAMETRIC TIME-SERIES MODELS

Model 1 (Age-Period model):

logit q(t, x) = κ
(1)
t + κ

(2)
t (x− x̄)

Model 2 (Age-Period-Cohort model):

logit q(t, x) = κ
(1)
t + κ

(2)
t (x− x̄)

+κ
(3)
t [(x− x̄)2 − σ2

x]

+γ
(4)
t−x
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Model 1: Case study – England and Wales males
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Model 1
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κt = (κ
(1)
t , κ

(2)
t )′

Model: Random walk with drift

κt+1 − κt = µ + CZ(t + 1)

• µ = (µ1, µ2)
′ = drift

• V = CC ′ = variance-covariance matrix

• Estimate µ and V

• Quantify parameter uncertainty in µ and V
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WHY 2 FACTORS? (i.e. κ
(1)
t and κ

(2)
t )

Data suggest changes in underlying mortality rates are

not perfectly correlated across ages.

1 factor (e.g. most Lee-Carter-based models)

⇒ changes over time in the q(t, x) are perfectly

correlated.
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Bayesian approach to parameter uncertainty

• Jeffreys prior p(µ, V ) ∝ |V |−3/2.

• Data: vector D(t) = κt − κt−1 for t = 1, . . . , n

• MLE’s: µ̂ and V̂ .

• Posterior:

V −1|D ∼ Wishart(n− 1, n−1V̂ −1)

µ|V, D ∼ MV N(µ̂, n−1V )
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Application: cohort survivorship

• Cohort: Age x at time t = 0

• S(t, x) = survivor index at t

proportion surviving from time 0 to time t

S(t, x) = (1− q(0, x))× (1− q(1, x + 1)× . . .

. . .× (1− q(t− 1, x + t− 1))
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90% Confidence Interval (CI) for Cohort Survivorship
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V ar[log S(t, x)] for x = 65
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Cohort Survivorship: General Conclusions

• Less than 10 years:

– Systematic risk not significant

• Over 10 years

– Systematic risk becomes more and more significant

over time

• Over 20 years

– Model and parameter risk begin to dominate
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The cohort effect: England and Wales
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The Cohort Effect
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TWO PARAMETRIC TIME-SERIES MODELS

Model 1 (Age-Period model):

logit q(t, x) = κ
(1)
t + κ

(2)
t (x− x̄)

Model 2 (Age-Period-Cohort model):

logit q(t, x) = κ
(1)
t + κ

(2)
t (x− x̄)

+κ
(3)
t [(x− x̄)2 − σ2

x]

+γ
(4)
t−x

(e.g. see Renshaw & Haberman (2006))
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Model 1 versus Model 2
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Model 2: extra factors
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Standardised residuals
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Survivor index projections
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4% Annuity Values

Model 1 Model 2

γ
(4)
1944 γ

(4)
1944

= −0.0398 = 0.0402

x = 60 13.472 13.557 13.350

x = 65 11.449 11.451

x = 70 9.325 9.354

x = 75 7.220 7.240
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Conclusions 1

• Stochastic models important for

– risk measurement and management

– valuing life policies with option characteristics

• Two models out of many possibilities

• Significant longevity risk in the medium/long term
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Conclusions 2

• Parameter risk is important

• Model risk might be important

• The significance of longevity risk varies from one

problem to the next:

– In absolute terms

– As a percentage of the total risk
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.
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How do you price a longevity bond?

• Hedgers are prepared to pay a premium

• Two approaches:

– Take real-world expected values

use a risk-adjusted discount rate

– Take risk-adjusted expected values

use the risk-free discount rate
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Risk-neutral pricing (risk-adjusted expected values)

κ

(1)
t+1

κ
(2)
t+1


−


κ

(1)
t

κ
(2)
t




=


µ1

µ2


 +


c11 c12

c21 c22





 Z̃1(t + 1) + λ1

Z̃2(t + 1) + λ2




where Z̃1(t + 1) and Z̃2(t + 1) are i.i.d. ∼ N(0, 1)

under a risk-neutral pricing measure Q(λ)

λ1 and λ2 are market prices of risk
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How does the market price of risk work?

• Two independent sources of risk Z1(t), Z2(t)

• Tradeable security has corresp. volatilities σ1, σ2

• Market price of risk is

the additional expected return over the risk free rate

per unit of risk

• Hence

Risk premium =
(
σ1λ1 + σ2λ2

)
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Comments

• The market is highly incomplete

• The switch from P to Q is a modelling assumption

• (Simple) Key assumption:

market prices of risk λ1 and λ2 are constant.

• As a market develops this assumption becomes a

testable hypothesis
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≤ One data point: the EIB-BNP longevity bond

• Offer price (ultimately unsuccessful)⇒
average risk premium of 20 basis points

(paid by the buyer of the bond to the seller)

if held to maturity

• What values of λ1, λ2 are consistent with the 20b.p.’s

risk premium?

• One price, two parameters⇒ many solutions
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Answer: 20 b.p. spread equates to

λ1 = 0.375, λ2 = 0

↓ ↓
λ1 = 0, λ2 = 0.315

Do these values represent a good deal?

Why do we need to know λ1, λ2?

⇒ info. on how to price new issues in the future.
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Zero-coupon Longevity bonds: avg. risk premium p.a.
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Longevity Bond Risk Premiums: λ = (0.375, 0)

Dependency on term and initial age:

Initial age of cohort, x

60 65 70

Bond 20 8.9 14.7 23.1

Maturity 25 12.7 20.0 28.7

T 30 16.9 24.3 31.5


