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The Problem

2007: What we know as the facts:
e Life expectancy is increasing.

e Future development of life expectancy is uncertain.

“Longevity risk

—> Systematic risk for pension plans and annuity

providers




The Problem — UK Defined-Benefit Pension Plans:

e Before 2000:

— High equity returns masked impact of longevity

Improvements

e After 2000:

— Poor equity returns, low interest rates

— Decades of longevity improvements now a problem




Why do we need stochastic mortality models?

Data = future mortality is uncertain

e Good risk management

® Setting risk reserves

e Life insurance contracts with embedded options

e Pricing and hedging mortality-linked securities




Stochastic mortality

e Many models to choose from

e Limited data = model and parameter risk

(*) Cairns et al. (2007) A quantitative comparison of stochastic mortality models.... Online: www.1lifemetrics.com




Measures of mortality

e ¢(t,x) = underlying mortality rate in year ¢ at age x

e m(t, r) = underlying death rate

e Assume ¢(t,x) = 1 — exp|—m(t, z)]

Poisson model:
Actual deaths D(t, x) ~ Poisson (m/(t,z)E(t, x))




Two general families of models

logm(t,x) = Bk, + o+ Bk

OR

ogitg(t, v) = Bkt + .+ Bk,

o @(Ck) — age effect for component &

()

e ;' = period effect for component k

o %@E = cohort effect for component k
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e.g. Lee-Carter (1992) model

)
logm(t,z) = Y+ @2)“?) = Z 5§;i)’f§1)715(2—)x
i=1

e /N = 2 components

o @S}), @,(f) age effects
(2)

® 1, ~ single random period effect
(1)

or, =1

o %@x = t@x = 1 (model has no cohort effect)




Six Models

Lee-Carter (1992) LC
logm(t, z) = ﬁa(}) + @5;2)/{?)
Renshaw-Haberman (2006) RH
logm(t,z) = B + 87k + 00757,

Age-Period-Cohort APC

logm(t,x) = ﬂél) + 1></£§2) + 1><7<3)

I—x




Cairns-Blake-Dowd (2006) CBD-1

logitq(t, ) = /@ﬁ” + (r — 7) §2)

Cairns et al. (2007) CBD-2

logitq(t, x) =
+ (r — ) §2)+ ((z —2)* — o3

Cairns et al. (2007) CBD-3

logitq(t, x) = /{,El) + (x — 5:)/<;§2> + (2, — x)%@x




How to compare stochastic models (*)

e Quantitative criteria

e Qualitative criteria

— parsimony and transparency

— robust relative to age and period range

— biologically reasonable

— forecasts are reasonable




Quantitative Criteria

Bayes Information Criterion (BIC)

e Model k: Zk = model maximum likelihood

e BIC penalises over-parametrised models

QB]Ck — Zk— %nklog]\f

— nj. = number of parameters

— /N = number of observations




Quantitative Criteria — BIC
England & Wales males, 1961-2004, ages 60-89

Model Max log-lik. # parameters BIC (rank)

LC -8912.7 102  -9275.8 (5)
RH -7735.6 203  -8458.1 (3)
-8608.1 144  -9120.6 (4)

-10035.5 88 -10348.8 (6)

-7702.1 -8421.1 (2)

-7823.7 -8396.8 (1)




The BIC doesn't tell us the whole story ...

Qualitative Criteria — Graphical diagnostics

e Poisson model = (t, x) cells are all independent.




Are standardised residuals i.i.d.?

CBD-1 model CBD-2 model
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Mortality Fan Charts + A plausible set of forecasts

Model CBD-1 Fan Chart
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Model risk

Model CBD-1 Fan Chart
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Model risk

Combined CBD-1, CBD-2 Fan Chart
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Model risk

Combined CBD-1, CBD-2, CBD-3 Fan Chart
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Robustness: e.g. Age-Period-Cohort model

APC Model — Age 75 Mortality Rates
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—  1961-2004 data: APC full
—  1961-2004 data: APC limited
- 1981-2004 data: APC
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Not all models are robust: Renshaw-Haberman model

Model R—-H (ARIMA(1,1,0)) projections
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e 1961-2004 data: R—H limited
e 1981-2004 data: R—H
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Robustness Problem

e Likely reason: Likelihood function has multiple maxima

e Consequences:
— Lack of robustness within sample

— Lack of robustness in forecasts
* central trajectory

* prediction intervals

— Some sample periods = implausible forecasts




Concluding remarks

e Range of models to choose from
e Quantitative criteria is only the starting point

e Additional criteria =

— Some models pass

— Some models fail
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