STOCHASTIC MORTALITY MODELS:

Criteria for Assessing and Comparing Models

ANDREW CAIRNS

Heriot-Watt University, Edinburgh

and The Maxwell Institute, Edinburgh

Joint work with David Blake & Kevin Dowd

and JP Morgan LifeMetrics team

PLAN FOR TALK

- Background remarks
- Two families of models
- Criteria for evaluating different models
 - quantitative
 - qualitative
- Closing remarks

The Problem

2007: What we know as the facts:

- Life expectancy is increasing.
- Future development of life expectancy is uncertain.

"Longevity risk"

⇒ Systematic risk for pension plans and annuity providers

The Problem – UK Defined-Benefit Pension Plans:

- Before 2000:
 - High equity returns masked impact of longevity improvements
- After 2000:
 - Poor equity returns, low interest rates
 - Decades of longevity improvements now a problem

Why do we need stochastic mortality models?

Data ⇒ future mortality is uncertain

- Good risk management
- Setting risk reserves
- Life insurance contracts with embedded options
- Pricing and hedging mortality-linked securities

Stochastic mortality

- Many models to choose from
- Limited data ⇒ model and parameter risk

(*) Cairns et al. (2007) A quantitative comparison of stochastic mortality models.... Online: www.lifemetrics.com

Measures of mortality

- $ullet q(t,x) = ext{underlying mortality rate in year } t ext{ at age } x$
- ullet m(t,x) = underlying death rate
- Assume $q(t,x) = 1 \exp[-m(t,x)]$

Poisson model:

Actual deaths $D(t,x) \sim \text{Poisson}\left(m(t,x)E(t,x)\right)$

Two general families of models

$$\log m(t,x) = \beta_x^{(1)} \kappa_t^{(1)} \gamma_{t-x}^{(1)} + \ldots + \beta_x^{(N)} \kappa_t^{(N)} \gamma_{t-x}^{(N)}$$

OR

$$\text{logit}q(t,x) = \beta_x^{(1)} \kappa_t^{(1)} \gamma_{t-x}^{(1)} + \ldots + \beta_x^{(N)} \kappa_t^{(N)} \gamma_{t-x}^{(N)}$$

- $\beta_x^{(k)}$ = age effect for component k
- ullet $\kappa_t^{(k)} = ext{period effect for component } k$
- $\gamma_{t-x}^{(k)} = \text{cohort effect for component } k$

e.g. Lee-Carter (1992) model

$$\log m(t,x) = \beta_x^{(1)} + \beta_x^{(2)} \kappa_t^{(2)} = \sum_{i=1}^{2} \beta_x^{(i)} \kappa_t^{(i)} \gamma_{t-x}^{(i)}$$

- ullet N=2 components
- $\beta_x^{(1)}$, $\beta_x^{(2)}$ age effects
- ullet $\kappa_t^{(2)}$ single random period effect
- $\bullet \ \kappa_t^{(1)} \equiv 1$
- $\gamma_{t-x}^{(1)} = \gamma_{t-x}^{(2)} \equiv 1$ (model has no cohort effect)

Six Models

Lee-Carter (1992) LC

$$\log m(t, x) = \beta_x^{(1)} + \beta_x^{(2)} \kappa_t^{(2)}$$

Renshaw-Haberman (2006) RH

$$\log m(t,x) = \beta_x^{(1)} + \beta_x^{(2)} \kappa_t^{(2)} + \beta_x^{(3)} \gamma_{t-x}^{(3)}$$

Age-Period-Cohort APC

$$\log m(t, x) = \beta_x^{(1)} + 1 \times \kappa_t^{(2)} + 1 \times \gamma_{t-x}^{(3)}$$

Cairns-Blake-Dowd (2006) CBD-1

$$\operatorname{logit} q(t,x) = \kappa_t^{(1)} + (x - \bar{x})\kappa_t^{(2)}$$

Cairns et al. (2007) CBD-2

$$logitq(t, x) =$$

$$\kappa_t^{(1)} + (x - \bar{x})\kappa_t^{(2)} + ((x - \bar{x})^2 - \sigma_x^2)\kappa_t^{(3)} + \gamma_{t-x}^{(4)}$$

Cairns et al. (2007) CBD-3

$$\text{logit} q(t,x) = \kappa_t^{(1)} + (x - \bar{x})\kappa_t^{(2)} + (x_c - x)\gamma_{t-x}^{(3)}$$

How to compare stochastic models (*)

- Quantitative criteria
- Qualitative criteria
 - parsimony and transparency
 - robust relative to age and period range
 - biologically reasonable
 - forecasts are reasonable

Quantitative Criteria

Bayes Information Criterion (BIC)

- ullet Model k: $\hat{l}_k = \mathrm{model}$ maximum likelihood
- BIC penalises over-parametrised models
- $\bullet \ BIC_k = \hat{l}_k \frac{1}{2}n_k \log N$
 - $-n_k$ = number of parameters
 - -N = number of observations

Quantitative Criteria – BIC

England & Wales males, 1961-2004, ages 60-89

Model	Max log-lik.	# parameters	BIC (rank)
LC	-8912.7	102	-9275.8 (5)
RH	-7735.6	203	-8458.1 (3)
APC	-8608.1	144	-9120.6 (4)
CBD-1	-10035.5	88	-10348.8 (6)
CBD-2	-7702.1	202	-8421.1 (2)
CBD-3	-7823.7	161	-8396.8 (1)

The BIC doesn't tell us the whole story ...

Qualitative Criteria – Graphical diagnostics

ullet Poisson model $\Rightarrow (t,x)$ cells are all independent.

Are standardised residuals i.i.d.?

Mortality Fan Charts + A plausible set of forecasts

Model risk

Model risk

Model risk

Robustness: e.g. Age-Period-Cohort model

APC Model – Age 75 Mortality Rates

Not all models are robust: Renshaw-Haberman model

Model R-H (ARIMA(1,1,0)) projections

Robustness Problem

- Likely reason: Likelihood function has multiple maxima
- Consequences:
 - Lack of robustness within sample
 - Lack of robustness in forecasts
 - * central trajectory
 - * prediction intervals
 - Some sample periods ⇒ implausible forecasts

Concluding remarks

- Range of models to choose from
- Quantitative criteria is only the starting point
- ullet Additional criteria \Rightarrow
 - Some models pass
 - Some models fail

References

- Cairns, A.J.G., Blake, D., Dowd, K., Coughlan, G.D., Epstein, D., Ong, A., and Belevich, I.
 (2007) A quantitative comparison of stochastic mortality models using data from England and Wales and the United States. Preprint.
- Cairns, A.J.G., Blake, D., Dowd, K., Coughlan, G., Epstein, D., and Khallaf-Allah M. (2008) The Plausibility of Mortality Density Forecasts: An Analysis of Six Stochastic Mortality Models.
 Preprint - forthcoming.