A MULTIFACTOR GENERALISATION OF THE

OLIVIER-SMITH MODEL FOR STOCHASTIC MORTALITY

Andrew Cairns

Heriot-Watt University, Edinburgh

PLAN FOR TALK

- Motivating example
- Systematic and non-systematic mortality risk
- Mathematical concepts
 - forward survival probabilities
 - zero-coupon survivor bonds
- Short-rate versus Market models
- The Olivier-Smith model
- An open problem involving copulas

THE ANNUITY GUARANTEE PROBLEM - simplified

- ullet Policyholder will retire at time T
- Lump sum k available for annuity purchase
- ullet Market annuity rate: \$ a(T) per \$ 1 of annuity
- Guaranteed purchase price of \$ g per \$ 1 of annuity
- ullet Value of option at T is thus

$$V(T) = \frac{k}{g} \max\{a(T) - g, 0\}$$

THE ANNUITY GUARANTEE PROBLEM - simplified

ullet Value of option at T is thus

$$V(T) = \frac{k}{g} \max\{a(T) - g, 0\}$$

- ullet What is the price of the option at time t < T?
- Looking forwards from time t:
 - What is the distribution of a(T)?
 - What mortality table is in use at time T?

 Mortality market models tackle this problem.

STOCHASTIC MORTALITY

n lives, probability p of survival, N survivors

Unsystematic mortality risk:

$$\Rightarrow N|p \sim \text{Binomial}(n,p)$$

 \Rightarrow risk is diversifiable, $N/n \longrightarrow p$ as $n \to \infty$

Systematic mortality risk:

 $\Rightarrow p$ is uncertain

 \Rightarrow risk associated with p is not diversifiable

MORTALITY MODEL

Initial age x $\mu(t,x+t)$ DEAD

- ullet $\mu(t,y)=$ transition intensity at t, age y at t
- $S(t, x) = \exp \left[\int_0^t \mu(u, x + u) du \right]$ = survivor index

Filtration: $\mathcal{M}_t \Rightarrow$

history of $\mu(u,y)$ up to time t, for all ages y

 $\mathcal{M}_t
ot \Rightarrow \quad \mathsf{individual\ histories}$

Single individual aged x at time 0:

$$I(t) = \begin{cases} 1 & \text{if alive at } t \\ 0 & \text{otherwise} \end{cases}$$

$$Pr(I(t) = 1 | I(0) = 1, \mathcal{M}_t) = S(t, x)$$

 $Pr(I(t) = 1 | I(0) = 1, \mathcal{M}_0) = E[S(t, x) | \mathcal{M}_0]$

FORWARD SURVIVAL PROBABILITIES

Real-world probabilities, P

For $T_1 > T_0$, and any t

$$p_{P}(t, T_{0}, T_{1}, x) = Pr_{P}(I(T_{1}) = 1 \mid I(T_{0}) = 1, \mathcal{M}_{t})$$

$$= \frac{E_{P}[S(T_{1})|\mathcal{M}_{t}]}{E_{P}[S(T_{0})|\mathcal{M}_{t}]}$$

Pricing measure $Q \sim P$

$$p_{Q}(t, T_{0}, T_{1}, x) = Pr_{Q}(I(T_{1}) = 1 \mid I(T_{0}) = 1, M_{t})$$

BRIEF DIGRESSSION

 $P \rightarrow Q$ covers:

- ullet change in dynamics of $\mu(t,x+t)$
- \bullet change in individual histories given $\mu(t,x+t)$

Zero-coupon survivor bonds

 $B(t,T,x)= {
m price} \ {
m at} \ t \ {
m for} \ S(T,x) \ {
m payable} \ {
m at} \ T$

for simplicity: assume interest rates are zero

The market is abritrage-free if there exists $Q \sim P$ under which the B(t,T,x) are martingales, for all T,x

$$B(t,T,x) = E_{Q}[S(T,x)|\mathcal{M}_{t}]$$

$$= p_{Q}(t,0,T,x)$$

$$= p_{Q}(1,0,1,x) \times \ldots \times p_{Q}(t,t-1,t,x)$$

$$\times p_{Q}(t,t,t+1,x) \times \ldots \times p_{Q}(t,T-1,T,x)$$

At t+1:

$$\to p_Q(1, 0, 1, x) \times \ldots \times p_Q(t, t - 1, t, x)$$

$$\times p_Q(t + 1, t, t + 1, x)$$

$$\times p_Q(t + 1, t + 1, t + 2, x) \times \ldots \times p_Q(t + 1, T - 1, T, x)$$

TWO TYPES OF MODEL – (Interest-rate terminology:)

- ullet Short-rate models: (state variable X(t))
 - \Rightarrow model for dynamics of $p_Q(t, {\it t}-1, {\it t}, x)$ for all x as a function of X(t)

Forward survival probabilities are output

Market (forward-rate) models:

 \Rightarrow model for dynamics of $p_Q(t, T-1, T, x) \ \forall \ T, x$

Forward survival probabilities are input

SHORT-RATE MODELS: state variable X(t)

ullet Good for pricing zero-coupon survivor bonds and longevity bonds e.g. by simulation up to T

$$B(t,T,x) = p(t,0,t,x) \times$$

$$E_Q[p_Q(t+1,t,t+1,x) \times \dots \times p_Q(T,T-1,T,x) \mid X(t)]$$

 \bullet Very few biologically reasonable models have an analytical form for B(t,T,x) as a function of X(t)

SHORT-RATE MODELS: Markov state variable X(t)

Pricing annuity guarantees is difficult: Recall

$$V(T) = \frac{k}{g} \max \left\{ a(T) - g , 0 \right\}$$

• $a(T) \equiv a(T, X(T)) =$

price at T for annuity of \$1 per annum from time T.

$$a(T, X(T)) = \sum_{u=T}^{\infty} v^{u-T} p_Q(T, T, u, x; X(T))]$$

No analytical form for

$$p_Q(T, T, u; X(T)) \equiv B(T, u, x) / B(T, T, u)$$

 \Rightarrow evaluating V(T) is computationally expensive

 Hence pricing annuity guarantees is difficult using short-rate models

Plus point:

Statistically: very flexible

MARKET MODELS

- NOT good for pricing zero-coupon survivor bonds and longevity bonds prices are *input* at time 0
- Prices are output
 - \Rightarrow for all $u \geq T$, B(T,u,x) is automatically available at T
 - \Rightarrow Calculating a(T) is easy
 - ⇒ Pricing annuity guarantees (more) straightforward

THE OLIVIER & SMITH MODEL

$$p_{Q}(t+1, T-1, T, x) =$$

$$p_{Q}(t, T-1, T, x)^{b(t, T-1, T, x)G(t+1)}$$

- Discrete time
- $G(t+1) \sim \operatorname{Gamma}(\alpha, \alpha)$ under Q
- b(t+1,T-1,T,x) =bias correction factors \Rightarrow

$$E_Q[p_Q(t+1,t,T,x)|\mathcal{M}_t] = p_Q(t,t,T,x)$$

WHY GAMMA?

- $0 < p_Q(t, T 1, T, x) < 1$ $\Rightarrow 0 < p_Q(t + 1, T - 1, T, x) < 1$
- ullet Gamma + martingale property of $p_Q(u,t,T,x)$ for u=t,t+1 implies

$$b(t, T, T+1, x) = -\frac{\alpha p_Q(t, t, T, x)^{-1/\alpha} \left(p_Q(t, T, T+1, x)^{-1/\alpha} - 1 \right)}{\log p_Q(t, T, T+1, x)}$$

(Note $b \approx 1$ if α is large and p close to 1.)

⇒ exact simulation in discrete time possible

STATISTICALLY: IS IT A GOOD MODEL?

- \bullet Same G(t+1) applies to all $p_Q(t+1,T-1,T,x)$ \Rightarrow
 - Single-factor model
 - No flexibility over the volatility term structure (except through the choice of α)

Model ⇒ testable hypothesis

STATISTICALLY IS IT A GOOD MODEL?

- Problem: there is *no market*
 - ⇒ no forward survival probabilities
- Compromise:

Concentrate on observed 1-year survival probabilities

STATISTICALLY IS IT A GOOD MODEL?

Assumption: for age x at time t

$$p_Q(t, t, t+1, x-t) = \theta(x)p_Q(t, t-1, t, x-(t-1))$$

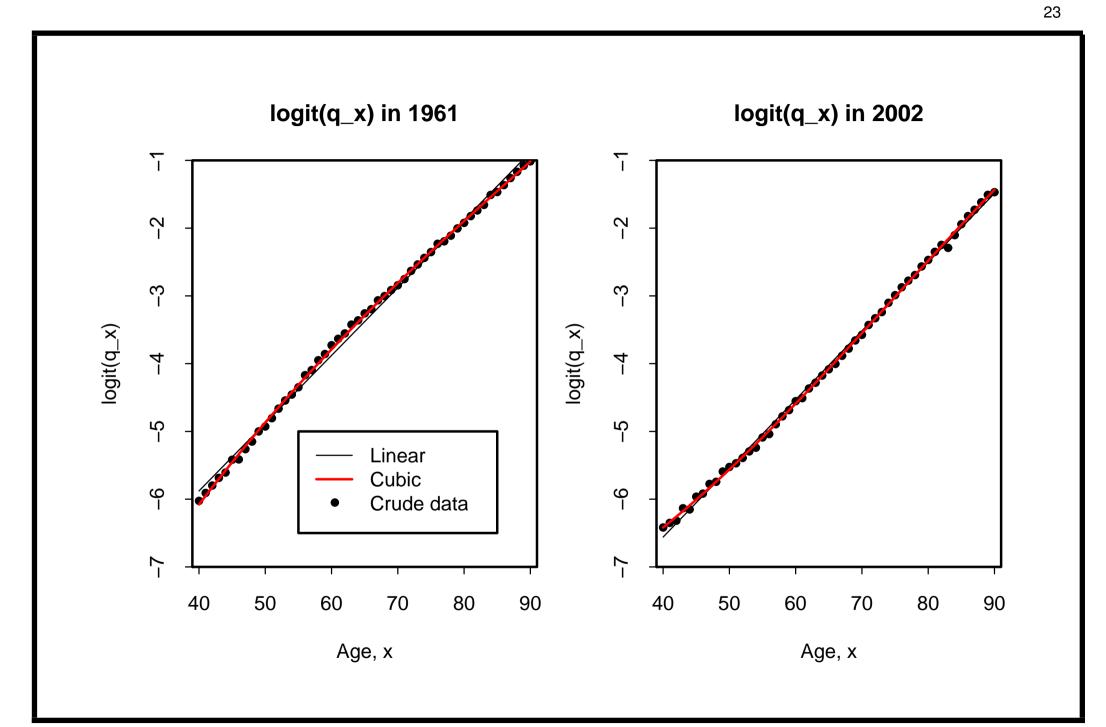
- \bullet $\theta(x) = age x predicted improvement$
- Second approximation:

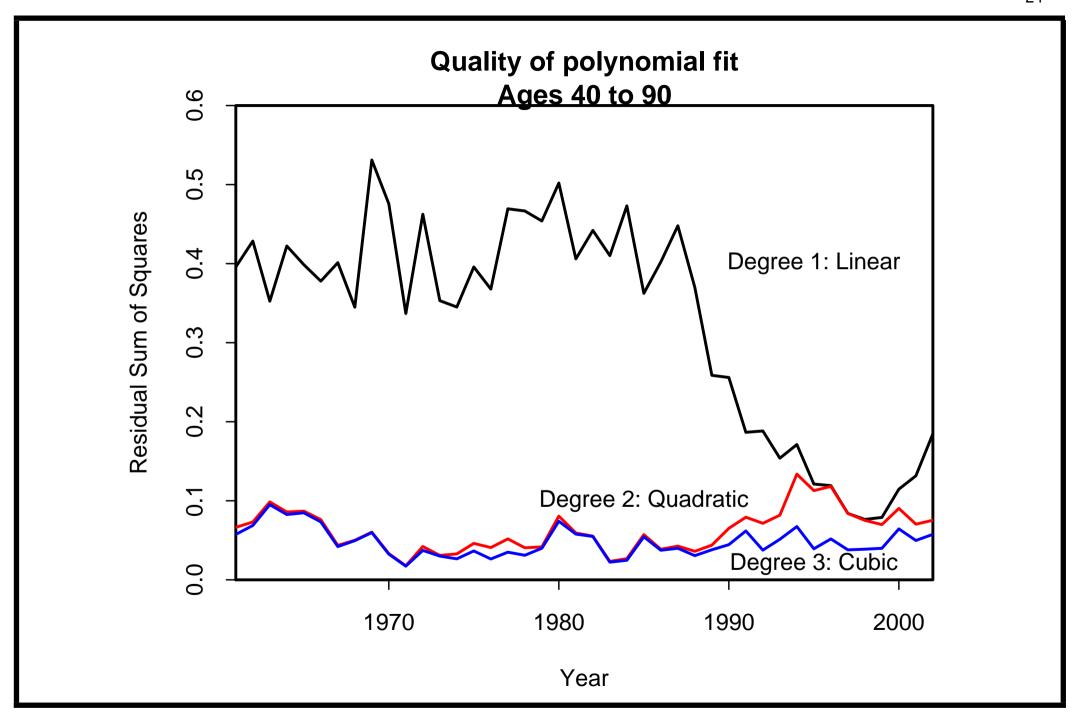
$$p_Q(t+1,t,t+1,x-t) = p_Q(t,t,t+1,x-t)^{1\times G(t+1,x)}$$

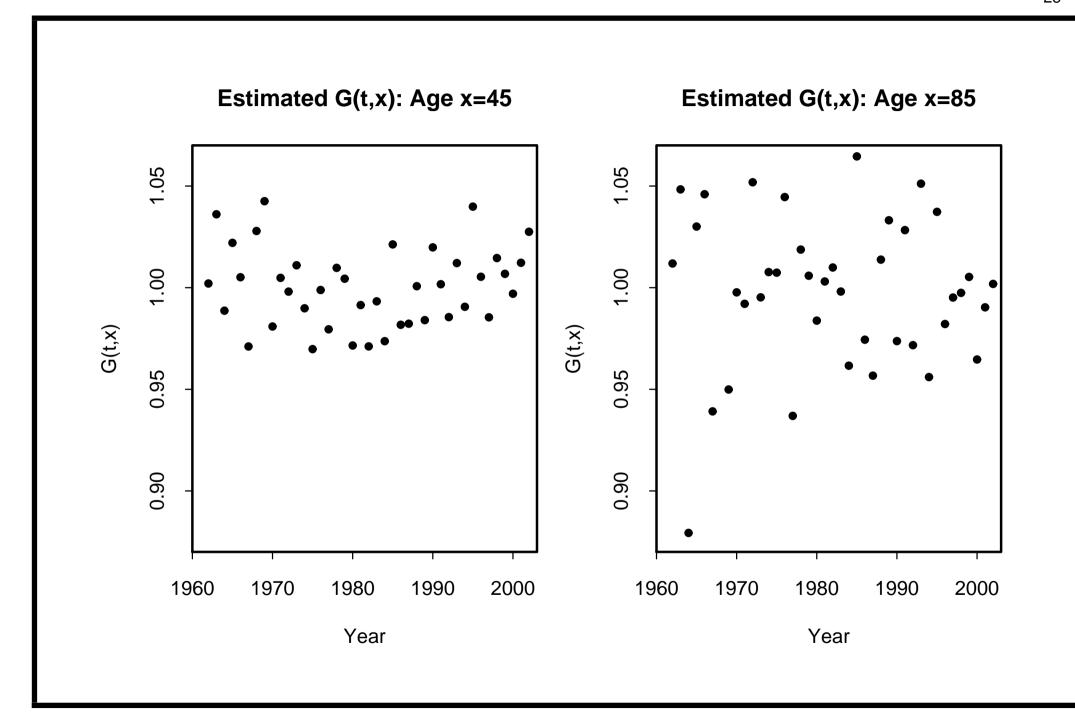
- Data: England and Wales mortality, males, 1961-2002
- Individual calendar years smoothed first
- ullet G(t,x) calculated for each year t and age x
- Results:
 - First factor explains \sim 80% of variability
 - For a single x:

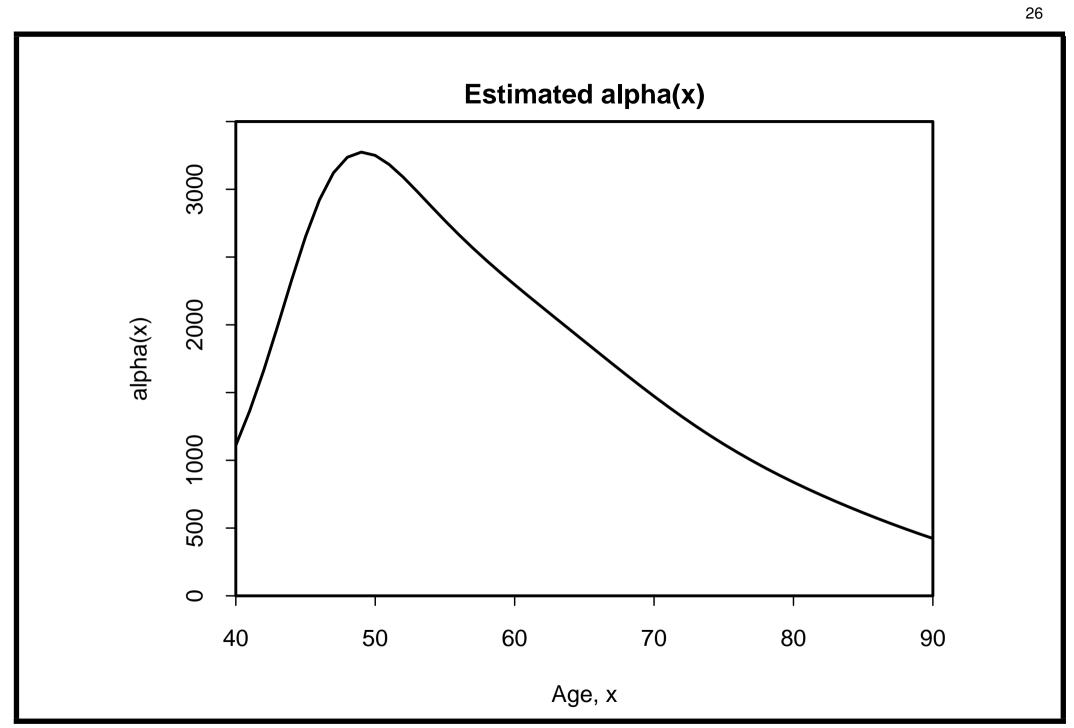
Estimate
$$\alpha(x) = 1/Var[G(t,x)]$$

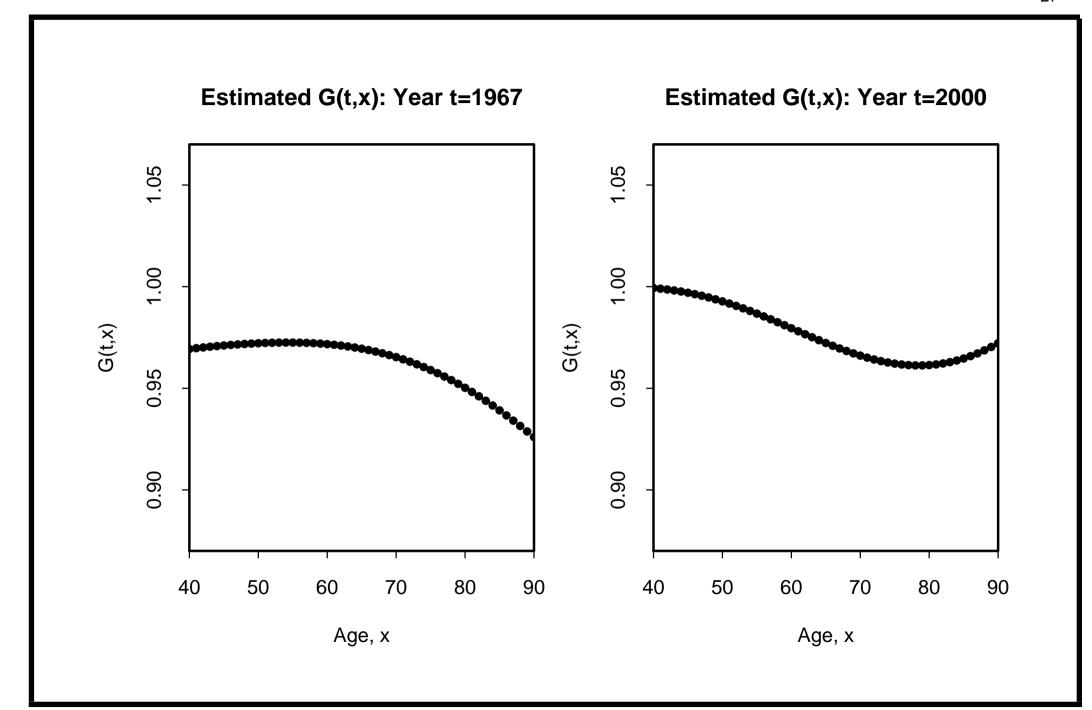
 $-\alpha(x)$ is clearly dependent on x

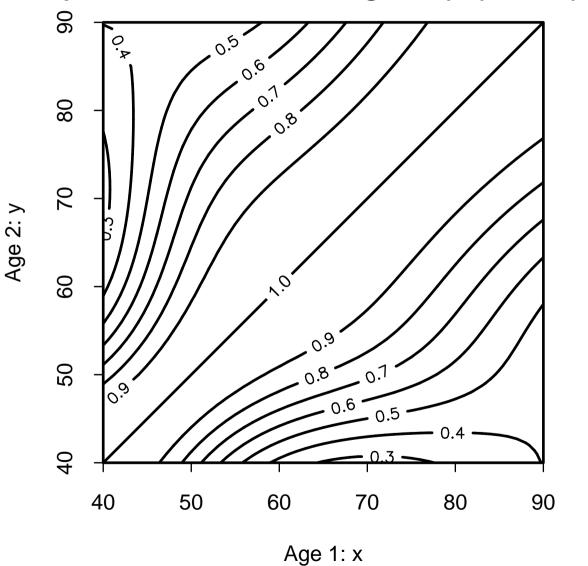












A GENERALISED OLIVIER-SMITH MODEL

Solution: use copulas

Stage 1: one-year-ahead spot survival probabilities

$$p_{Q}(t+1, t, t+1, x) =$$

$$p_{Q}(t, t, t+1, x)^{b(t,t,t+1,x)G(t+1,x)}$$

- ullet $G(t+1,x) \sim \operatorname{Gamma} \left(\alpha(x), \alpha(x) \right)$ under Q
- $cor(G(t+1,x_1), G(t+1,x_2)) = \rho(x_1,x_2)$
- $\{G(t+1,x): x_l \leq x \leq x_u\}$ generated e.g. using the multivariate Gaussian copula

Stage 2A: all spot survival probabilities

$$p_Q(t+1, T-1, T, x) =$$

$$p_Q(t, T-1, T, x)^{b(t, T-1, T, x)G(t+1, x)}$$

- ullet $G(t+1,x) \sim \operatorname{Gamma} \left(\alpha(x), \alpha(x) \right)$ under Q
- ullet Same G(t+1,x) for each T
- $cor(G(t+1,x_1), G(t+1,x_2)) = \rho(x_1,x_2)$
- $\{G(t+1,x): x_l \leq x \leq x_u\}$ generated e.g. using the multivariate Gaussian copula

Stage 2B: all forward survival probabilities

$$p_Q(t+1, t, T, x) =$$

$$p_Q(t, t, T, x)^{g(t,T,x)G(t+1,T,x)}$$

- $\bullet \ G(t+1,T,x) \sim \mathrm{Gamma} \big(\alpha(\textbf{\textit{T}},\textbf{\textit{x}}), \alpha(\textbf{\textit{T}},\textbf{\textit{x}}) \big) \\ \mathrm{under} Q$
- Different G(t+1,T,x) for each (T,x)
- Specified correlation structure
- $\{G(t+1,T,x): x_l \leq x \leq x_u; \ T>t\}$ generated e.g. using the multivariate Gaussian copula

ONGOING ISSUES

 $\bullet \text{ Problem: all } 0 < p_Q(t+1,t,T,x) < 1$

BUT with small probability

Gaussian copula $\Rightarrow p_Q(t+1,t,T,x)$ not decreasing with T

Some thoughts on how to resolve this: Let

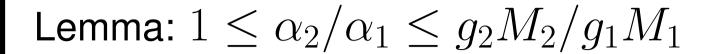
$$p_{Q}(t, t, T, x) = \exp(-M_{1});$$

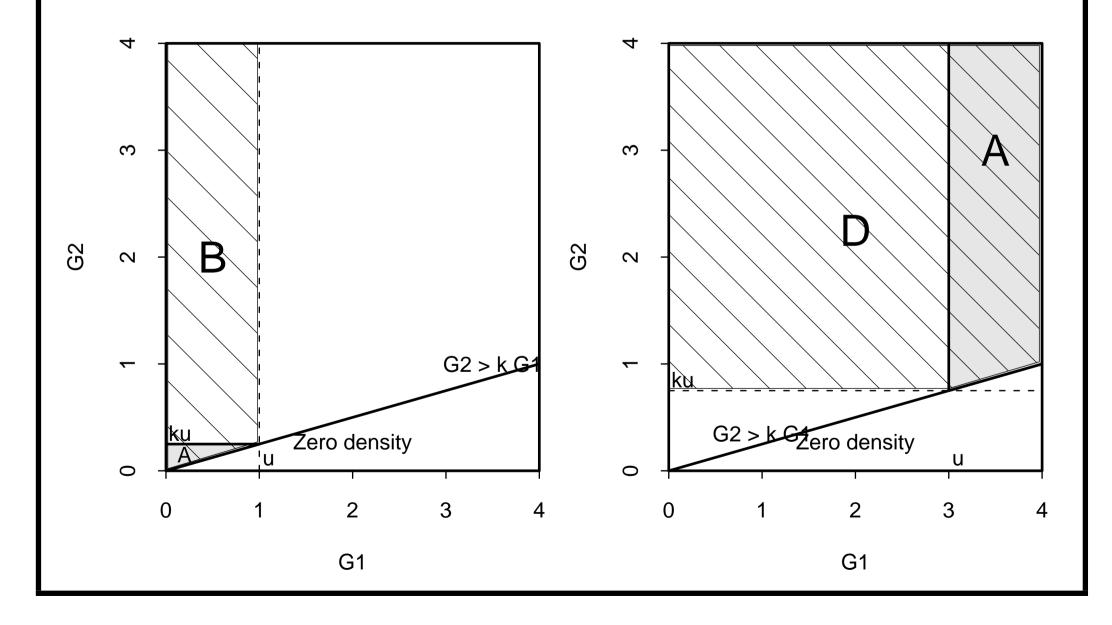
$$p_{Q}(t, t, T + 1, x) = \exp(-M_{2})$$

$$p_{Q}(t, t, T, x)^{g(t, T, x)G(t+1, T, x)} \equiv e^{-M_{1}g_{1}G_{1}}$$

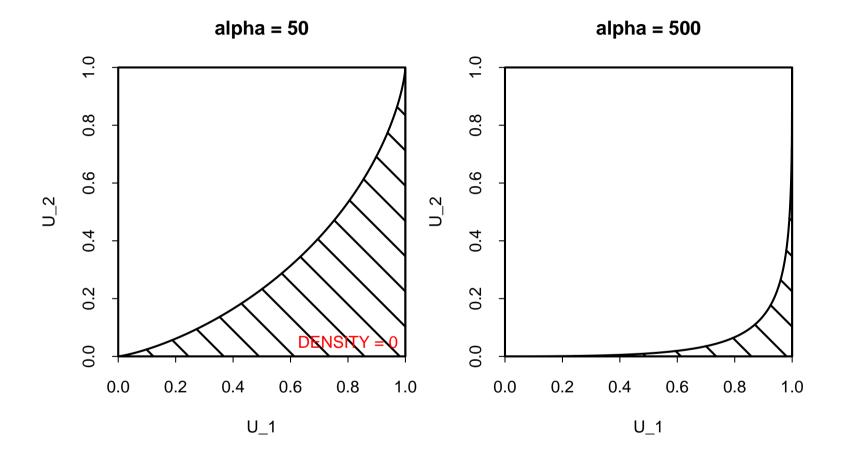
$$p_{Q}(t, t, T + 1, x)^{g(t, T+1, x)G(t+1, T+1, x)} \equiv e^{-M_{2}g_{2}G_{2}}$$

- ullet M_1, M_2, g_1, g_2 known at t
- $M_2 > M_1$
- Require $M_1g_1G_1 < M_2g_2G_2$





$M_1g_1G_1 < M_2g_2G_2 \Rightarrow$ constraints on copula:



e.g.
$$M_1g_1/M_2g_2 = 0.9$$
, $\alpha_1 = \alpha_2$

A step in the right direction...

- ullet U_1 and $U_2 \sim$ i.i.d. U[0,1]
- Define: $\bar{U}_2 = \max\{f(U_1), U_2\}$
- ullet Let $ar{F}(u_2)= ext{c.d.f.}$ of $ar{U}_2$.
- Define $V_1=U_1$ and $V_2=\bar{F}(\bar{U}_2)$. $\Rightarrow V_1$ and V_2 are dependent U[0,1]
- Given V_1 : the minimum value taken by V_2 is $V_1f(V_1)$.
- Define $G_1 = F_1^{-1}(V_1)$ and $G_2 = F_2^{-1}(V_2)$.

ISSUES STILL TO BE RESOLVED

- ullet How to control correlation between V_1 and V_2 ?
- Algorithm results in probability mass on the

$$V_2 = V_1 f(V_1)$$
 boundary.

$$V_2 = V_1 f(V_1) \Rightarrow M_1 g_1 G_1 = M_2 g_2 G_2$$
.

 \Rightarrow mortality rate between T and T+1 will be zero.

CONCLUSIONS

Provided we can find a suitable copula ...

 $(\Rightarrow$ simulation of U(T,x) for all (T,x) easy)

generalised Olivier-Smith model could prove a useful tool for modelling stochastic mortality.