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PLAN FOR TALK

e Motivating example

e Systematic and non-systematic mortality risk

e Mathematical concepts
— forward survival probabilities
— Zero-coupon survivor bonds

e Short-rate versus Market models
e The Olivier-Smith model

e An open problem involving copulas




THE ANNUITY GUARANTEE PROBLEM - simplified

e Policyholder will retire at time I’

e Lump sum £ available for annuity purchase

e Market annuity rate: $ a(1") per $ 1 of annuity

e Guaranteed purchase price of $ g per $ 1 of annuity

e Value of option at /' is thus

Smax{a(T) —q, 0}




THE ANNUITY GUARANTEE PROBLEM - simplified

e Value of option at /' is thus

V(T) = Smax{a(T) —gqg, 0}

e What is the price of the option at time ¢t < 1'?

e Looking forwards from time ¢:
— What is the distribution of a(717)?

— What mortality table is in use at time /'?
Mortality market models tackle this problem.




STOCHASTIC MORTALITY

n lives, probability p of survival, /V survivors

e Unsystematic mortality risk:

= N|p ~ Binomial(n, p)

=> risk is diversifiable, N/n — p asn — o

e Systematic mortality risk:

—> P IS uncertain

—> risk associated with p is not diversifiable




MORTALITY MODEL

Initial age x

e 11(t,y) = transition intensity at ¢, age y at ¢

e S(t,x) —exp{ fo U$+UdU]

— sSurvivor index




Filtration: M; =

history of 14(u, i) up to time ¢, for all ages y

M, % individual histories

Single individual aged x at time O:

1 if alive att

0 otherwise




FORWARD SURVIVAL PROBABILITIES

Real-world probabilities, I

Forly > Ip,andanyt
pp(t, Ty, Ty, x)=Prp(I(T}) = 1 \ [(Ty) =1, M)

S(T1)| M,
S(Th)| M

Pricing measure () ~ P

po(t, Ty, Th,z) = Pro(I(Th) =1|I(Ty) =1, M,)




BRIEF DIGRESSSION

P — () covers:

e change in dynamics of (%, x + t)

e change in individual histories given (¢, x + t)




Zero-coupon survivor bonds

B(t, T, xz) = price at t for S(T', x) payable at T’

for simplicity: assume interest rates are zero

The market is abritrage-free if there exists () ~ P under

which the B(t, T, ) are martingales, for all T, x




EqQ|S(T, )| My]

po(t,0,T, x)

po(1,0,1,2) x ... X po(t,t — 1,1, x)
Xpo(t,t,t+1,2) x ... xpo(t,T —1,T,x)

Att + 1:

— pQ(l,Ojl,l‘) X ... XpQ(t,t—ljt,l‘)
XpQ(t + 1,t,1 + 1,217)
XpQ(t—— 1,7f—|—1,t—|—2,£13) X ... XpQ(t—I—l,T—l,T,ZE)




TWO TYPES OF MODEL - (Interest-rate terminology:)

e Short-rate models: (state variable X (%))

= model for dynamics of po(t,t — 1, ¢, z) for all =

as a function of X (¢)

Forward survival probabilities are output

e Market (forward-rate) models:
= model for dynamics of po(t, T — 1,T,2) VT, x

Forward survival probabilities are input




SHORT-RATE MODELS: state variable X ()

e Good for pricing zero-coupon survivor bonds and

longevity bonds e.g. by simulation up to 1’

B(t,T,z) = p(t,0,t,x) X

FEolpo(t +1,t,t+1,2) x ...
oxXpo(T, T —1,T x) | X(t)]

e Very few biologically reasonable models have an

analytical form for B(t, T, x) as a function of X ()




SHORT-RATE MODELS: Markov state variable X ()

Pricing annuity guarantees is difficult: Recall

V(T) = Smax{a(T) —qg, 0}

e a(T)=a(T,X(T)) =

price at ' for annuity of $1 per annum from time 1".

0.

u="_T




e No analytical form for
po(T,T,u; X(T)) = B(T,u,x)/B(T, T, u)

=> evaluating V' ('T") is computationally expensive

e Hence pricing annuity guarantees is difficult using

short-rate models
Plus point:

e Statistically: very flexible




MARKET MODELS

e NOT good for pricing zero-coupon survivor bonds and

longevity bonds prices are input at time 0

e Prices are output

= forallu > T, B(T, u, x) is automatically

available at I
=> Calculating a (1) is easy

—> Pricing annuity guarantees (more) straightforward




THE OLIVIER & SMITH MODEL

pot+1,T —1,T,x) =
po(t, T — 1,T, z)"tT-LT0GED

® Discrete time
e GG(t+ 1) ~ Gamma(a, ) under ()
e b(t+ 1,T — 1,T, x) = bias correction factors =

Eolpo(t+1,t,T,2)|M;| = po(t,t, T, z)




WHY GAMMA?

o) <po(t, T —1,T x) <1
= 0<pot+1,T—-1,T,z)<1

e Gamma + martingale property of pQ(u, t,1 x) for

w=t,t+ 1implies

apg(t, t, T, x)~Ye (pQ(t,T,T +1,2) Ve — 1)

b(t.T.T + 1 —
(LT, T +1,2) logpo(t,T,T +1,z)

(Note b =~ 1 if v is large and p close to 1.)

—> exact simulation in discrete time possible



STATISTICALLY: IS IT A GOOD MODEL?

e Same G(t + 1) appliestoallpg(t + 1,7 — 1, T, x)
-

— Single-factor model

— No flexibility over the volatility term structure

(except through the choice of «)

e Model = testable hypothesis




STATISTICALLY IS IT A GOOD MODEL?

e Problem: there is no market

—> no forward survival probabilities

e Compromise:

Concentrate on observed 1-year survival probabilities




STATISTICALLY IS IT A GOOD MODEL?

e Assumption: for age x at time ¢

pot, t,t+1,x—t)=0(x)po(t,t —1,t,z—(t—1))
e (x) = age x predicted improvement

e Second approximation:

po(t + 1,t,t+1,2—t) = po(t,t, t+1, gj_t)le(Hl,x)




e Data: England and Wales mortality, males, 1961-2002
e Individual calendar years smoothed first
e (5(t, x) calculated for each year t and age x

e Results:
— First factor explains ~ 80% of variability

— For a single x:
Estimate a(z) = 1/Var|G(t, x)]

— a(x) is clearly dependent on x




logit(g_x) in 1961 logit(g_x) in 2002

Linear
Cubic
Crude data




Quality of polynomial fit
Ages 40 to 90
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Estimated G(t,x): Age x=45 Estimated G(t,x): Age x=85
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Estimated G(t,x): Year t=1967 Estimated G(t,x): Year t=2000




Contour plot: correlation between mortality
Improvements at different ages: G(t,x) and G(t,y)

o
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A GENERALISED OLIVIER-SMITH MODEL

Solution:

use copulas

Stage 1: one-year-ahead spot survival probabilities

polt+1,t, 1+ 1,2) =

oG(t—l—

1, x) ~ Gamma(a(x), a(z)) under Q

o cor(G(t+1,21), G(t+ 1,29)) = plx1, x2)

o {G(t-

-1,z) - < x < x,} generated e.g. using

the mu

tivariate Gaussian copula



Stage 2A: all spot survival probabilities

polt+ 1,7 —1,T z)=
po(t, T —1,T,z) T LT a)GE+ 1)

e G(t+1,z) ~ Gamma(c(x),a(x)) under Q

e Same G(t + 1, z) foreach T
o cor(G(t+1,21), G(t+ 1,29)) = plx1, x2)

e {G(t+1,2):x; < x < x,} generated e.g. using

the multivariate Gaussian copula




Stage 2B: all forward survival probabilities

pQ(t—I_ 1,t7T7Qj) —
po(t, t, T, x)g(thfo)G(tH,T,g;)

e G(t+1,T,z) ~ Gamma(«(T, ), (T, z))under

e Different G(t + 1,T, x) for each (T, x)
e Specified correlation structure

o {G(t+1,T,x): 2 <x<ux, T >t} generated

e.g. using the multivariate Gaussian copula




ONGOING ISSUES

e Problem: all0 < po(t+ 1,t,T,z) < 1
BUT with small probability

Gaussian copula = po(t + 1, ¢, T, x) not decreasing

with [’




Some thoughts on how to resolve this: Let
po(t,t, T, x) = exp(—M);
pQ(ta t) T -+ 17 ZC) — exp(_MQ)

po(t,t, T, z)ItTOCHHLTL) =

po(t,t, T + 1, z)dT+LaG(H+1T+1a)

o My, M, g1, gs known at ¢
o Vs > M,
e Require M191G1 < MQQQGQ




Lemma: 1 S 042/041 S QQMQ/glMl

< | <

ero density

2

Gl




Myg:G1 < MygyGGo = constraints on copula:

alpha =50 alpha = 500

0.0 0.2 0.4 0.6 0.8 1.0

U 1

e.g. Mlgl/Mzgg — 09, X1 = (9




A step in the right direction...
e Uy and U; ~iid. U0, 1]
e Define: Uy = max{ f(U;), Us}
o Let F'(ug) = c.d.f. of Us.

e Define Vi = U and V5 = F(Uh).
= V1 and V; are dependent U |0, 1]

e Given V/: the minimum value taken by V5 is V1 f(11).
e Define Gy = F 1 (V) and Gy = F5H(Va).




ISSUES STILL TO BE RESOLVED

e How to control correlation between V7 and V57

e Algorithm results in probability mass on the

Vz V1f(V1) boundary.

=V1if(V1) = M1g1G1 = M2g:Go.

—> mortality rate between " and '+ 1 will be zero.




CONCLUSIONS

Provided we can find a suitable copula ...

(= simulation of U(T", x) for all (T', x) easy)

generalised Olivier-Smith model could prove a useful tool

for modelling stochastic mortality.




