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The facts about mortality:

• Life expectancy is increasing.

• Future development of life expectancy is uncertain.

“Longevity risk”

Longevity Risk = the risk that future mortality rates are

lower than anticipated

Focus here: Mortality rates above age 60
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STOCHASTIC MORTALITY

n lives, probability p of survival, N survivors

• Unsystematic mortality risk:

⇒N |p ∼ Binomial(n, p)

⇒ risk is diversifiable, N/n −→ p as n →∞
• Systematic mortality risk:

⇒ p is uncertain

⇒ risk associated with p is not diversifiable
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England and Wales log mortality rates 1950-2002
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Stochastic Models

Different approaches to modelling

• Lee-Carter

• P-splines

• Parametric, time-series models

• Market models

• Age-Period-Cohort extensions
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Stochastic Models

Limited historical data⇒

• No single model is ‘the right one’

limited data⇒ Model risk

• Even with the right model

limited data⇒ Parameter risk
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Case study: England and Wales males, age 60-95
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qy = mortality rate at age y in 2002

Data suggests log qy/(1− qy) is linear
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A TWO-FACTOR PARAMETRIC TIME-SERIES MODEL

Cohort: Age x at time t = 0

Mortality rates for the year t to t + 1:

q(t, x) =
eA1(t)+A2(t)(x+t)

1 + eA1(t)+A2(t)(x+t)

(x + t)= age at time t

We model A(t) = (A1(t), A2(t))
′ as a random-walk

with drift
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A(t) = (A1(t), A2(t))
′

Model: Random walk with drift

A(t + 1)− A(t) = µ + CZ(t + 1)

• V = CC ′ = variance-covariance matrix

• Estimate µ and V

• Quantify parameter uncertainty in µ and V
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Simulated mortality rates: 90% confidence intervals

with and without parameter uncertainty

1960 1980 2000 2020 2040

−
6.

5
−

5.
5

−
4.

5
−

3.
5

Year

Lo
g 

M
or

ta
lit

y

Age 60

1960 1980 2000 2020 2040

−
4.

5
−

3.
5

−
2.

5

Year

Lo
g 

M
or

ta
lit

y

Age 80



12

Application 1: cohort survivorship

• Cohort: Age x at time t = 0

• S(t, x) = survivor index at t

proportion surviving from time 0 to time t

S(t, x) = (1− q(0, x))× . . .× (1− q(t− 1, x))
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90% Confidence Interval (CI) for Cohort Survivorship
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Cohort Survivorship: General Conclusions

• Less than 10 years:

– Systematic risk not significant

• Over 10 years

– Systematic risk becomes more and more significant

over time

• Over 20 years

– Model and parameter risk begin to dominate
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Application 2: Reserving for annuities

• Large group of identical annuitants aged 65

⇒ non-systematic risk negligible

• Level annuity payable annually in arrears

• Interest rate 4% p.a.

• For each £1 of annuity

How much of a reserve to we need at time 0?
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10000 simulations

Required reserve (4%)
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Required reserve (4%)
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Required reserve
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Application 3: Longevity bonds

• Cohort: Age x at time t = 0

• S(t, x) = survivor index at t

• Longevity bond pays S(t, x) at times t = 1, . . . , T
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Recap: 90% CI for Cohort Survivorship
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How do you price a longevity bond

• Hedgers are prepared to pay a premium

• Two approaches:

– Take real-world expected values

use a risk-adjusted discount rate

– Take risk-adjusted expected values

use the risk-free discount rate
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Risk-neutral pricing (risk-adjusted expected values)

A1(t + 1)

A2(t + 1)


 =


A1(t)

A2(t)


 +


µ1

µ2




+


c11 c12

c21 c22





 Z̃1(t + 1) + λ1

Z̃2(t + 1) + λ2




where Z̃1(t + 1) and Z̃2(t + 1) are i.i.d. ∼ N(0, 1)

under a risk-neutral pricing measure Q(λ)

λ1 and λ2 are market prices of risk
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How does the market price of risk work?

• Two independent sources of risk Z1(t), Z2(t)

• Tradeable security has corresp. volatilities σ1, σ2

• Market price of risk is

the additional expected return over the risk free rate

per unit of risk

• Hence

Risk premium =
(
σ1λ1 + σ2λ2

)
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Comments

• The market is highly incomplete

• The switch from P to Q is a modelling assumption

• (Simple) Key assumption:

market prices of risk λ1 and λ2 are constant.

• As a market develops this assumption becomes a

testable hypothesis
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One data point: the EIB-BNP longevity bond

• Offer price (ultimately unsuccessful)⇒
average risk premium of 20 basis points

(paid by the buyer of the bond to the seller)

if held to maturity

• What values of λ1, λ2 are consistent with the 20b.p.’s

risk premium?

• One price, two parameters⇒ many solutions



26

Answer: 20 b.p. spread equates to

λ1 = 0.375, λ2 = 0

↓ ↓
λ1 = 0, λ2 = 0.315

Do these values represent a good deal?

Why do we need to know λ1, λ2?

⇒ info. on how to price new issues in the future.
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Zero-coupon Longevity bonds: avg. risk premium p.a.
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Longevity Bond Risk Premiums: λ = (0.375, 0)

Dependency on term and initial age:

Initial age of cohort, x

60 65 70

Bond 20 8.9 14.7 23.1

Maturity 25 12.7 20.0 28.7

T 30 16.9 24.3 31.5
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Application 4: Guaranteed annuity options

• Contract pays lump sum of £1,000 in T = 30 years

• Lump sum to be used to purchase an RPI-linked

annuity

• Guarantee:

Pension = max

{
1000

a65(T )
,

1000

g

}
.
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• Value at T is

max

{
1000

a65(T )
,

1000

g

}
× a65(T )

• Option value is

1000

g
max{a65(T )− g, 0}

• a65(T ) depends on real rates of interest, and on the

mortality table in use at T
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Application 5: At-the-Money Call Options on S(t)

Payoff: max{S(T )−K, 0} where K = EQ(λ)[S(T )]
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Conclusions

• Stochastic models important for

– risk measurement−→ assessment of risk premium

– pricing contracts with option characteristics

• One model out of many possibilities

• Significant longevity risk in the medium/long term

• Model and parameter risk is important
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Conclusions

• The significance of longevity risk varies from one

problem to the next:

– In absolute terms

– As a percentage of the total risk
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