STOCHASTIC MORTALITY **Andrew Cairns** Heriot-Watt University, Scotland and The Maxwell Institute, Edinburgh Joint work with David Blake & Kevin Dowd Glasgow Life Convention, 7 November 2006

1

Plan

- Introduction + data
- Approaches to modelling mortality improvements
- A two-factor model for stochastic mortality
- Applications
 - The survivor index
 - Annuity reserves
 - How to price longevity bonds if you must
 - Annuity guarantees
 - Survivor caps and caplets
- Conclusions

The facts about mortality:

- Life expectancy is increasing.
- Future development of life expectancy is uncertain.
 "Longevity risk"

Longevity Risk = the risk that future mortality rates are

lower than anticipated

Focus here: Mortality rates above age 60

STOCHASTIC MORTALITY

 \boldsymbol{n} lives, probability \boldsymbol{p} of survival, N survivors

- Unsystematic mortality risk:
 - $\Rightarrow N | p ~ \sim ~ \mathrm{Binomial}(n,p)$
 - \Rightarrow risk is diversifiable, $N/n \longrightarrow p$ as $n \to \infty$
- Systematic mortality risk:
 - $\Rightarrow p$ is uncertain
 - \Rightarrow risk associated with p is not diversifiable

England and Wales log mortality rates 1950-2002

Stochastic Models

Different approaches to modelling

- Lee-Carter
- P-splines
- Parametric, time-series models
- Market models
- Age-Period-Cohort extensions

Stochastic Models

Limited historical data \Rightarrow

• No single model is 'the right one'

limited data \Rightarrow Model risk

• Even with the right model

limited data \Rightarrow Parameter risk

A TWO-FACTOR PARAMETRIC TIME-SERIES MODEL

Cohort: Age x at time t = 0

Mortality rates for the year t to t + 1:

$$q(t,x) = \frac{e^{A_1(t) + A_2(t)(x+t)}}{1 + e^{A_1(t) + A_2(t)(x+t)}}$$

(x + t) = age at time t

We model $A(t) = (A_1(t), A_2(t))'$ as a random-walk with drift

$$A(t) = (A_1(t), A_2(t))'$$

Model: Random walk with drift

$$A(t+1) - A(t) = \mu + CZ(t+1)$$

• V = CC' =variance-covariance matrix

- \bullet Estimate μ and V
- \bullet Quantify parameter uncertainty in μ and V

Simulated mortality rates: 90% confidence intervals with and without parameter uncertainty Age 60 Age 80 . Э.5 -2.5 -4.5 Log Mortality Log Mortality -3.5 -5.5 4.5 -0.5 1960 1980 2000 2020 2040 1960 1980 2000 2020 2040 Year Year

11

Application 1: cohort survivorship

- Cohort: Age x at time t = 0
- S(t, x) =survivor index at t

proportion surviving from time 0 to time t

$$S(t,x) = (1 - q(0,x)) \times \ldots \times (1 - q(t - 1,x))$$

90% Confidence Interval (CI) for Cohort Survivorship

Cohort Survivorship: General Conclusions

- Less than 10 years:
 - Systematic risk not significant
- Over 10 years
 - Systematic risk becomes more and more significant over time
- Over 20 years
 - Model and parameter risk begin to dominate

Application 2: Reserving for annuities

• Large group of identical annuitants aged 65

 \Rightarrow non-systematic risk negligible

- Level annuity payable annually in arrears
- Interest rate 4% p.a.
- \bullet For each $\pounds 1$ of annuity

How much of a reserve to we need at time 0?

Application 3: Longevity bonds

- Cohort: Age x at time t = 0
- $\bullet \ S(t,x) = {\rm survivor\ index\ at}\ t$
- Longevity bond pays S(t,x) at times $t=1,\ldots,T$

Recap: 90% CI for Cohort Survivorship

How do you price a longevity bond

- Hedgers are prepared to pay a premium
- Two approaches:
 - Take *real-world* expected values

use a risk-adjusted discount rate

- Take risk-adjusted expected values

use the risk-free discount rate

Risk-neutral pricing (risk-adjusted expected values) $\begin{pmatrix} A_1(t+1) \\ A_2(t+1) \end{pmatrix} = \begin{pmatrix} A_1(t) \\ A_2(t) \end{pmatrix} + \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}$ $+\begin{pmatrix}c_{11} & c_{12}\\ c_{21} & c_{22}\end{pmatrix}\begin{pmatrix}\tilde{Z}_1(t+1)+\lambda_1\\ \tilde{Z}_2(t+1)+\lambda_2\end{pmatrix}$ where $Z_1(t+1)$ and $Z_2(t+1)$ are i.i.d. $\sim N(0,1)$ under a risk-neutral pricing measure $Q(\lambda)$

 λ_1 and λ_2 are market prices of risk

How does the market price of risk work?

- Two independent sources of risk $Z_1(t)$, $Z_2(t)$
- Tradeable security has corresp. volatilities σ_1 , σ_2
- Market price of risk is

the additional expected return over the risk free rate

per unit of risk

• Hence

Risk premium
$$= \left(\sigma_1\lambda_1 + \sigma_2\lambda_2\right)$$

Comments

- The market is highly incomplete
- \bullet The switch from P to Q is a modelling assumption
- (Simple) Key assumption:

market prices of risk λ_1 and λ_2 are constant.

As a market develops this assumption becomes a testable hypothesis

One data point: the EIB-BNP longevity bond

• Offer price (ultimately unsuccessful) \Rightarrow average risk premium of 20 basis points

(paid by the buyer of the bond to the seller)

if held to maturity

- What values of $\lambda_1,\,\lambda_2$ are consistent with the 20b.p.'s risk premium?
- One price, two parameters \Rightarrow many solutions

Answer: 20 b.p. spread equates to $\lambda_1 = 0.375, \qquad \lambda_2 = 0$ $\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$ $\lambda_1 = 0, \qquad \lambda_2 = 0.315$

Do these values represent a good deal?

Why do we need to know λ_1 , λ_2 ?

 \Rightarrow info. on how to price new issues in the future.

Longevity Bond Risk Premiums: $\lambda = (0.375, 0)$

Dependency on term and initial age:

		Initial age of cohort, x		
		60	65	70
Bond	20	8.9	14.7	23.1
Maturity	25	12.7	20.0	28.7
T	30	16.9	24.3	31.5

Application 4: Guaranteed annuity options

- \bullet Contract pays lump sum of $\pounds {\rm 1,000}$ in T=30 years
- Lump sum to be used to purchase an RPI-linked annuity
- Guarantee:

Pension
$$= \max\left\{\frac{1000}{a_{65}(T)}, \frac{1000}{g}\right\}$$

• Value at T is

$$\max\left\{\frac{1000}{a_{65}(T)}, \frac{1000}{g}\right\} \times a_{65}(T)$$

• Option value is

$$\frac{1000}{g} \max\{a_{65}(T) - g, 0\}$$

• $a_{65}(T)$ depends on real rates of interest, and on the mortality table in use at T

Annuity Guarantee: Payoff = 1000.max(AF-g,0)/g

Application 5: At-the-Money Call Options on S(t)

Payoff: max{S(T) - K, 0} where $K = E_{Q(\lambda)}[S(T)]$

25-year survivor cap: parameter uncertainty adds 33%

Conclusions

- Stochastic models important for
 - risk measurement \longrightarrow assessment of risk premium
 - pricing contracts with option characteristics
- One model out of many possibilities
- Significant longevity risk in the medium/long term
- Model and parameter risk is important

Conclusions

- The significance of longevity risk varies from one problem to the next:
 - In absolute terms
 - As a percentage of the total risk

Selected References

Cairns, A.J.G., Blake, D., and Dowd, K. (2006) "A Two-Factor Model for Stochastic Mortality with Parameter Uncertainty," *Journal of Risk and Insurance* December 2006.

Blake, D., Cairns, A.J.G., and Dowd, K. (2006) "Living with mortality: longevity bonds and other mortality-linked securities," Faculty of Actuaries Sessional Meeting, 16 January, 2006.

Cairns, A.J.G., Blake, D., and Dowd, K. (2006) "Pricing death: Frameworks for the valuation and securitization of mortality risk," *ASTIN Bulletin* Volume 36.1.

Cairns, A.J.G., Blake, D., Dawson, P., and Dowd, K. (2005) "Pricing the risk on longevity bonds," *Life and Pensions,* October: 41-44.

Lee, R.D., and Carter, L.R. (1992) "Modeling and forecasting U.S. mortality," *Journal of the American Statistical Association*, 87: 659-675.

Olivier, P., and Jeffery, T. (2004) "Stochastic mortality models," Presentation to the Society of Actuaries of Ireland.

See http://www.actuaries.ie/

CMI Mortality Committee (2005) "Working paper 15: Projecting future mortality: towards a proposal for a stochastic methodology," .

CMI Mortality Committee (2006) "Working paper 20: Stochastic projection methodologies: Further progress and P-Spline model features, example results and implications,".

Andrew Cairns Heriot-Watt University E-mail: A.Cairns@ma.hw.ac.uk

Internet: www.ma.hw.ac.uk/~andrewc