Optimal Dynamic Asset Allocation for Defined Contribution Pension Plans

> Andrew Cairns Heriot-Watt University Edinburgh

Joint work with David Blake & Kevin Dowd

Outline for talk

- A basic Defined Contribution (DC) pension plan
- Model formulation
- Optimal investment strategy up to retirement
- Development of numerical results
 - Comparison of optimal strategy with commercial strategies

Using a toy model: how much room for improvement?

A simple occupational DC plan

A simple occupational DC plan

How do we measure the success of a DC plan? Informally:

Replacement Ratio

DC pension final salary

"Model" Occupational DC plan

- Contributions = fixed % of salary
- Various asset classes
- Compare:
 - "commercial" investment strategies
 - optimal dynamic asset strategy

The model

State variables:

$$Y(t) \;=\;$$
 Salary or Labour Income

W(t) = Accumulated pension wealth

$$r(t) = \text{Risk-free interest rate (one-factor model)}$$

The model: Assets

N+1 sources of risk: $Z_0(t), Z_1(t), \ldots, Z_N(t)$

Cash account, $R_0(t)$:

 $dR_0(t) = r(t)R_0(t)dt$

$$dr(t) = \mu_r(r(t))dt + \sum_{j=1}^N \sigma_{rj}(r(t))dZ_j(t)$$

The model: Assets
Risky assets,
$$R_1(t), \ldots, R_N(t)$$
:
 $dR_i(t) = R_i(t) \left[\left(r(t) + \sum_{j=1}^N \sigma_{ij} \xi_j \right) dt + \sum_{j=1}^N \sigma_{ij} dZ_j(t) \right]$
 $C = \left(\sigma_{ij} \right) = \text{volatility matrix } (N \times N)$

(non-singular)

 $\xi = (\xi_j) = \text{market prices of risk} (N \times 1)$

The model: Salary and contributions

$$dY(t) = Y(t) \Big[(r(t) + \mu_Y(t)) dt \\ + \sum_{j=1}^N \sigma_{Yj} dZ_j(t) \\ + \sigma_{Y0} dZ_0(t) \Big]$$

$\mu_Y(t)$ deterministic

Plan member contributes continuously into DC pension plan at the rate $\pi Y(t)$ for constant π .

The model: Pension wealth, W(t):

$$p(t) = (p_1(t), \dots, p_N(t))$$

= proportion of wealth in risky assets

$$dW(t) = W(t) \left[(r(t) + p(t)'C\xi) dt + p(t)'CdZ(t) \right]$$
$$+ \pi Y(t) dt$$

The model: The pension:

Retirement at a fixed date T.

Annuity: At T the cost of \$1 for life is

$$a(r(T)) = \sum_{u=0}^{\infty} p(65, u) P(T, T + u; r(T))$$

p(65, u) = survival probability from 65 to 65 + u $P(T, \tau; \mathbf{r}) =$ price at T for \$1 at τ given $\mathbf{r}(T) = \mathbf{r}$

Replacement ratio:

$$RR(T) = \frac{Pension(T)}{Y(T)} = \frac{W(T)/a(r(T))}{Y(T)}$$

Teminal utility

$$u(w, y, r) = \frac{1}{\gamma} R R(T)^{\gamma} = \frac{1}{\gamma} \left(\frac{w/a(r)}{y} \right)^{\gamma}$$

 $(\Rightarrow$ type of habit formation:

plan member is accustomed to consuming at the rate of $(1-\pi)Y(T)$.)

Reduction of state space:

Sufficient to model r(t) and X(t) = W(t)/Y(t)

$$dX(t) = \pi dt$$

+X(t) $\left[\left(-\mu_Y(t) + p(t)'C(\xi - \sigma_Y) + \sigma_{Y0}^2 + \sigma'_Y\sigma_Y \right) dt - \sigma_{Y0} dZ_0(t) + \left(p(t)'C - \sigma'_Y \right) dZ(t) \right]$
 $\sigma_Y = (\sigma_{Y1}, \dots, \sigma_{Yn})'$
 $\xi = (\xi_1, \dots, \xi_n)'$

Optimisation: Given strategy p(t)

Expected terminal utility is J(t, x, r; p) =

$$E\left[\gamma^{-1}\left(\frac{X_p(T)}{a(r(T))}\right)^{\gamma} \mid X(t) = x, \ r(t) = r\right]$$

 $X_p(t) = path of X(t)$ given strategy p.

Objective:

Maximise expected terminal utility

over Markov strategies $p = \{p(t) : 0 \le t \le T\}$

$$V(t, x, r) = \sup_{p} J(t, x, r; p)$$
HJB equation \Rightarrow nonlinear PDE
$$V_{t}$$

$$+\mu_{r}(r)V_{r}$$

$$+(\pi - \tilde{\mu}_{Y}(t)x + \sigma'_{Y}(\xi - \sigma_{Y})x)V_{x}$$

$$+\frac{1}{2}\sigma_{r}(r)'\sigma_{r}(r)V_{rr}$$

$$+\frac{1}{2}\sigma_{Y0}^{2}v_{xx}$$

$$-\frac{1}{2}(\xi - \sigma_{Y})'(\xi - \sigma_{Y})\frac{V_{x}^{2}}{V_{xx}}$$

$$-(\xi - \sigma_{Y})'\sigma_{r}(r)\frac{V_{x}V_{xr}}{V_{xx}}$$

$$-\frac{1}{2}\sigma_{r}(r)'\sigma_{r}(r)\frac{V_{x}^{2}r}{V_{xx}} = 0.$$

Problem factors

- Combination of
- Premiums $\pi Y(t) > 0$
- non-hedgeable salary risk
- \Rightarrow no analytical solution
- AIM: to develop a full numerical solution
- Build up and learn from:
- Constant interest case
- Hedgeable salary case

Constant-interest case: r(t) = r

One risky asset

$$dR_0(t) = rR_0(t)dt$$

$$dR_1(t) = R_1(t) \left[\left(r + \xi_1 \sigma_1 \right) dt + \sigma_1 dZ_1(t) \right]$$

$$dY(t) = Y(t) \left[\left(r + \mu_Y \right) dt + \sigma_{Y0} dZ_0(t) + \sigma_{Y1} dZ_1(t) \right]$$

Wealth,
$$W(t)$$
:
 $dW(t) = W(t) [(r + p(t)\xi_1\sigma_1)dt + p(t)\sigma_1dZ_1(t)]$
 $+ \pi Y(t)dt$
 $p(t) =$ proportion of wealth in equities

X(t) = W(t)/Y(t) = sufficient state variable

Terminal utility

$$U(W(T), Y(T)) = \frac{1}{\gamma} \left(\frac{W(T)}{Y(T)}\right)^{\gamma}$$

Equivalent to

$$U(X(T)) = \frac{1}{\gamma} (X(T))^{\gamma}$$
$$V(t, x) = \sup_{p(s, X(s))} \left\{ E \left[U \left(X_p(T) \right) \mid X(t) = x \right] \right\}$$

Problem case: $\pi > 0$ and $\sigma_{Y0} > 0$.

Partial solution: For 0 < t < T and x > 0: $p^*(t, x) = p^*(t, x; V) = \frac{1}{\sigma_1} \left(\sigma_{Y1} - \frac{V_x}{xV_{xx}} (\xi_1 - \sigma_{Y1}) \right)$

Partial solution: For
$$0 < t < T$$
 and $x > 0$:

$$p^*(t, x) = p^*(t, x; V) = \frac{1}{\sigma_1} \left(\sigma_{Y1} - \frac{V_x}{xV_{xx}} (\xi_1 - \sigma_{Y1}) \right)$$

 \Rightarrow HJB-PDE:

$$V_t + (\pi + \delta x)V_x + \frac{\sigma_{Y0}^2 x^2}{2}V_{xx} - \frac{(\xi_1 - \sigma_{Y1})^2}{2}\frac{V_x^2}{V_{xx}} = 0$$

$$\delta = -\mu_Y + \sigma_{Y0}^2 + \sigma_{Y1}\xi_1$$

Boundary condition: $V(T, x) = \gamma^{-1} x^{\gamma}$.

Numerical solution: Explicit Finite Difference Method

Problem (e.g. $\gamma < 0$) as $x \to 0$:

$$\begin{split} V(t,x) &\to \begin{cases} -\infty, & \text{if } t = T \\ l(t), & -\infty < l(t) < 0, \ t < T \\ \frac{\partial V}{\partial t}(t,0) &\to -\infty \quad \text{as } t \to T \end{split}$$

 \Rightarrow numerical solution: unstable near x = 0??

Solution (??):

• Transform V(t,x) to $U(t,x) = \left(\gamma V(t,x)\right)^{1/\gamma}$

$$\Rightarrow U(T, x) = x$$

- \bullet Transform x to $y = \log x$
- \bullet Stability in FD scheme \Rightarrow

$$\sigma_Y^{p^*2} \, \frac{\Delta t}{\Delta y^2} \, < \, 1$$

over the range of x.

$$\Rightarrow$$
 keep to $-\infty < y_0 < y < y_1 < \infty$

Numerical results \Rightarrow for t < T

$$p^*(t,x)\sqrt{x} \to \phi \text{ as } x \to 0$$

Value of ϕ is critical!

• $\phi = \infty \implies X(t)$ might hit 0 or become -ve

** $0 < \phi < \infty \implies X(t)$ might or might not hit zero

** $\phi = 0 \implies X(t)$ never hits 0

Numerical solutions suggest (**): $\phi < \infty$.

Upper bound

Introduce an extra asset, $R_2(t)$, to complete the market.

$$dR_2(t) = R_2(t) \left[(r + \xi_0 \sigma_{Y0}) dt + \sigma_{Y0} dZ_0(t) \right].$$

 $\xi_0 =$ arbitrary market price of risk: to be specified

More choice \Rightarrow increased E[u(W(T), Y(T))]

Upper bound

Complete market

 \Rightarrow analytical upper bound, $V^u(t, x; \xi_0)$, for each ξ_0 .

Then
$$V(t,x) \le V^u(t,x) = \inf_{\xi_0 \in R} V^u(t,x;\xi_0)$$

Χ

Upper bound: Caution

- \bullet Upper bound is close to true V(t,x)
- BUT e.g.

$$p^{u}(t,x) = \frac{1}{\sigma_{1}} \left(\sigma_{Y1} - \frac{V_{x}^{u}}{xV_{xx}^{u}} (\xi_{1} - \sigma_{Y1}) \right)$$

is unsuitable as a good (?) but suboptimal strategy.

Cost of suboptimality

Start from X(t) = 0

Benchmark: $\pi = 10\% + \text{optimal } p^*(t, x)$

Suboptimal strategy: p(t, x) = constant

What contribution rate, π , do we need to pay to get the same expected utility?

What contribution rate, π , do we need to pay to get the same expected utility?

	Contribution rate					
T-t	$p^*(t,x)$	p = 0.375	p = 0.16667			
10	10%	10.06%	10.35%			
20	10%	10.12%	10.71%			

p=0.375 (Accounts for salary/asset correlation) p=0.16667 (No accounting for salary/asset correlation)

Hedgeable salary risk

- stochastic interest (Vasicek)
- many assets
- $\sigma_{Y0} = 0$

$$U\Big(W(T), Y(T), r(T)\Big) = \frac{1}{\gamma} \left(\frac{W(T)/a(r(T))}{Y(T)}\right)^{\gamma}$$

Key features of solution

- Hedgeable salary \Rightarrow can capitalise future premiums
- augmented fund = wealth + p.v. future premiums
- ullet 3-fund theorem \Rightarrow
 - risky mutual fund (fixed % of augmented fund)
 - low-risk cash fund (% of augmented fund \searrow with t)
 - low-risk bonds fund (% of augmented fund \nearrow with t)
- "Low risk" \Rightarrow relative to salary (+ annuity) numeraire

Numerical example: $r(t) \sim Vasicek$ Example 1:

- Relative risk aversion: RRA = 6 ($\gamma = -5$)
- Duration of contract: T = 20 years
- Contribution rate: 10% of salary

Example 1: RRA = 6, T = 20X(t) = Wealth(t) / Salary(t) X(t) \sim 0 $-\pi f(t)$ Ņ 5 10 15 20 0 Time, t **Prospective Replacement Ratio** 30

Example 2: Very high RRA, T = 20

The cost of suboptimality

Optimal strategy versus:

- Salary-hedged static strategy (S)
- Merton-static strategy (M)
- Deterministic lifestyle strategies:
 - initially 100% in equities
 - gradual switch over last 10 years into
 100% bonds (B-10) or 100% cash (C-10)

(C)	RRA = 6, T = 20						
Strategy:	Optimal	St	atic	Determinis	stic lifestyle		
	stochastic	S	М	B-10	C-10		
V(0,0)	-100	-134.58	-205.42	-141.00	-191.47		
Cost	10.00%	10.61%	11.55%	10.71%	11.39%		

Cost:

- Benchmark: 10% cont. rate with optimal strategy
- Other strategies: % contribution rate to match optimal utility

(c)	RRA = 6, T = 20				
Strategy:	Optimal	Optimal Static			stic lifestyle
	stochastic	S M		B-10	C-10
Cost	10.00%	10.61%	11.55%	10.71%	11.39%

(d)	RRA = 6, T = 40				
Strategy:	Optimal Static			Determinis	stic lifestyle
	stochastic	S	М	B-10	C-10
Cost	10.00%	11.52%	12.58%	12.86%	13.67%

(a)	RRA = 1, T = 20				
Strategy:	Optimal	Sta	atic	Determin	istic lifestyle
	stochastic	S M		B-10	C-10
Cost	10.00%	13.79%	13.78%	20.18%	21.39%

(c)	RRA = 6, T = 20				
Strategy:	Optimal Static			Determinis	stic lifestyle
	stochastic	S	М	B-10	C-10
Cost	10.00%	10.61%	11.55%	10.71%	11.39%

(e)	RRA = 12, T = 20				
Strategy:	Optimal	imal Static			stic lifestyle
	stochastic	S	М	B-10	C-10
Cost	10.00%	10.61%	12.08%	11.70%	12.65%

(b)	RRA = 1, T = 40				
Strategy:	Optimal	Sta	atic	Determinis	stic lifestyle
	stochastic	S M		B-10	C-10
Cost	10.00%	17.37%	17.36%	32.21%	34.33%

(d)	RRA = 6, T = 40				
Strategy:	Optimal	Sta	atic	Determinis	stic lifestyle
	stochastic	S	М	B-10	C-10
Cost	10.00%	11.52%	12.58%	12.86%	13.67%

(f)	RRA = 12, T = 40				
Strategy:	Optimal	Sta	atic	Determinis	stic lifestyle
	stochastic	S	М	B-10	C-10
Cost	10.00%	12.38%	13.17%	16.57%	17.82%

Summary

- Numerical methods important to assess the cost of suboptimality.
- Commercial strategies can be costly
- Stochastic interest \Rightarrow important dynamic element in asset strategy
- Next step: to combine results for
 - constant interest, incomplete market
 - stochastic interest, complete market