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Outline for talk

• A basic Defined Contribution (DC) pension plan

• Model formulation

• Optimal investment strategy up to retirement

• Development of numerical results

– Comparison of optimal strategy with commercial

strategies

Using a toy model: how much room for improvement?
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How do we measure the success of a DC plan?

Informally:

Replacement Ratio =
DC pension

final salary

“Model” Occupational DC plan
• Contributions = fixed % of salary

• Various asset classes

• Compare:

– “commercial” investment strategies

– optimal dynamic asset strategy
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The model

State variables:

Y (t) = Salary or Labour Income

W (t) = Accumulated pension wealth

r(t) = Risk-free interest rate (one-factor model)
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The model: Assets

N + 1 sources of risk: Z0(t), Z1(t), . . . , ZN(t)

Cash account, R0(t):

dR0(t) = r(t)R0(t)dt

dr(t) = µr(r(t))dt +

N∑
j=1

σrj(r(t))dZj(t)
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The model: Assets

Risky assets, R1(t), . . . , RN(t):

dRi(t) = Ri(t)

[(
r(t) +

N∑
j=1

σijξj

)
dt +

N∑
j=1

σijdZj(t)

]

C =
(

σij

)
= volatility matrix (N ×N)

(non-singular)

ξ =
(

ξj

)
= market prices of risk (N × 1)
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The model: Salary and contributions

dY (t) = Y (t)
[

(r(t) + µY (t)) dt

+

N∑
j=1

σY jdZj(t)

+σY 0dZ0(t)
]

µY (t) deterministic

Plan member contributes continuously into DC pension

plan at the rate πY (t) for constant π.



10

The model: Pension wealth, W (t):

p(t) =
(
p1(t), . . . , pN(t)

)

= proportion of wealth in risky assets

dW (t) = W (t)
[

(r(t) + p(t)′Cξ) dt + p(t)′CdZ(t)
]

+ πY (t)dt
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The model: The pension:

Retirement at a fixed date T .

Annuity: At T the cost of $1 for life is

a(r(T )) =

∞∑
u=0

p(65, u)P (T, T + u; r(T ))

p(65, u) = survival probability from 65 to 65 + u

P (T, τ ; r) = price at T for $1 at τ

given r(T ) = r
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Replacement ratio:

RR(T ) =
Pension(T )

Y (T )
=

W (T )/a(r(T ))

Y (T )

Teminal utility

u(w, y, r) =
1

γ
RR(T )γ =

1

γ

(
w/a(r)

y

)γ

(⇒ type of habit formation:

plan member is accustomed to consuming at the rate of

(1− π)Y (T ).)
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Reduction of state space:

Sufficient to model r(t) and X(t) = W (t)/Y (t)

dX(t) = πdt

+X(t)
[(− µY (t) + p(t)′C(ξ − σY ) + σ2

Y 0 + σ′Y σY

)
dt

−σY 0dZ0(t) +
(
p(t)′C − σ′Y

)
dZ(t)

]

σY = (σY 1, . . . , σY n)′

ξ = (ξ1, . . . , ξn)′
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Optimisation: Given strategy p(t)

Expected terminal utility is J(t, x, r; p) =

E

[
γ−1

(
Xp(T )

a
(
r(T )

)
)γ ∣∣∣∣∣ X(t) = x, r(t) = r

]

Xp(t) = path of X(t) given strategy p.

Objective:

Maximise expected terminal utility

over Markov strategies p = {p(t) : 0 ≤ t ≤ T}
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V (t, x, r) = sup
p

J(t, x, r; p)

HJB equation⇒ nonlinear PDE
Vt

+µr(r)Vr

+
`
π − µ̃Y (t)x + σ′Y (ξ − σY )x

´
Vx

+
1

2
σr(r)′σr(r)Vrr

+
1

2
σ2

Y 0x2Vxx

−1

2
(ξ − σY )′(ξ − σY )

V 2
x

Vxx

−(ξ − σY )′σr(r)
VxVxr

Vxx

−1

2
σr(r)′σr(r)

V 2
xr

Vxx
= 0.



16

Problem factors

Combination of
• Premiums πY (t) > 0

• non-hedgeable salary risk

⇒ no analytical solution

AIM: to develop a full numerical solution

Build up and learn from:
• Constant interest case

• Hedgeable salary case
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Constant-interest case: r(t) = r

One risky asset

dR0(t) = rR0(t)dt

dR1(t) = R1(t)
[(

r + ξ1σ1

)
dt + σ1dZ1(t)

]

dY (t) = Y (t)
[(

r + µY

)
dt + σY 0dZ0(t)

+σY 1dZ1(t)
]
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Wealth, W (t):

dW (t) = W (t) [(r + p(t)ξ1σ1)dt + p(t)σ1dZ1(t)]

+ πY (t)dt

p(t) = proportion of wealth in equities

X(t) = W (t)/Y (t) = sufficient state variable
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Terminal utility

U(W (T ), Y (T )) =
1

γ

(
W (T )

Y (T )

)γ

Equivalent to

U(X(T )) =
1

γ
(X(T ))γ

V (t, x) = sup
p(s,X(s))

{
E

[
U

(
Xp(T )

) ∣∣∣ X(t) = x
] }

Problem case: π > 0 and σY 0 > 0.
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Partial solution: For 0 < t < T and x > 0:

p∗(t, x) = p∗(t, x; V ) =
1

σ1

(
σY 1 − Vx

xVxx
(ξ1 − σY 1)

)
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Partial solution: For 0 < t < T and x > 0:

p∗(t, x) = p∗(t, x; V ) =
1

σ1

(
σY 1 − Vx

xVxx
(ξ1 − σY 1)

)

⇒HJB-PDE:

Vt +
(
π + δx

)
Vx +

σ2
Y 0x

2

2
Vxx − (ξ1 − σY 1)

2

2

V 2
x

Vxx
= 0

δ = −µY + σ2
Y 0 + σY 1ξ1

Boundary condition: V (T, x) = γ−1xγ.
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Numerical solution: Explicit Finite Difference Method

Problem (e.g. γ < 0) as x → 0:

V (t, x) →



−∞, if t = T

l(t), −∞ < l(t) < 0, t < T

∂V

∂t
(t, 0) → −∞ as t → T

⇒ numerical solution: unstable near x = 0 ??
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Solution (??):

• Transform V (t, x) to U(t, x) =
(
γV (t, x)

)1/γ

⇒ U(T, x) = x

• Transform x to y = log x

• Stability in FD scheme⇒

σp∗
Y

2 ∆t

∆y2
< 1

over the range of x.

⇒ keep to−∞ < y0 < y < y1 < ∞
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Numerical results⇒ for t < T

p∗(t, x)
√

x → φ as x → 0

Value of φ is critical!

• φ = ∞ ⇒ X(t) might hit 0 or become−ve

** 0 < φ < ∞ ⇒ X(t) might or might not hit zero

** φ = 0 ⇒ X(t) never hits 0

Numerical solutions suggest (**): φ < ∞.
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Upper bound

Introduce an extra asset, R2(t), to complete the market.

dR2(t) = R2(t)
[
(r + ξ0σY 0) dt + σY 0dZ0(t)

]
.

ξ0 = arbitrary market price of risk: to be specified

More choice⇒ increased E[u(W (T ), Y (T ))]
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Upper bound

Complete market

⇒ analytical upper bound, V u(t, x; ξ0), for each ξ0.

Then V (t, x) ≤ V u(t, x) = inf
ξ0∈R

V u(t, x; ξ0)
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Construction of the upper bound: γ = −5, T − t = 10

−5 0 5 10

−
1.

5
−

1.
0

−
0.

5
0.

0

x

V
al

ue
 fu

nc
tio

n 
* 

1,
00

0,
00

0

xi_0 = −0.25
xi_0 = −0.111
xi_0 = −0.176
xi_0 = 1
xi_0 −> oo



30

−0.4 0.0 0.2 0.4 0.6 0.8 1.0

−
1.

5
−

1.
3

−
1.

1

x

V
al

ue
 fu

nc
tio

n 
* 

1,
00

0,
00

0

xi_0 = −0.25
xi_0 = −0.111
xi_0 = −0.176
xi_0 −> oo



31

0 5 10 15 20

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

Upper bound
True V(10,x)
Lower bound

x

V
al

ue
 fu

nc
tio

n 
* 

1,
00

0,
00

0

True V (t, x) versus upper and lower bounds.

All three = O(xγ) as x →∞.



32

Upper bound: Caution

• Upper bound is close to true V (t, x)

• BUT e.g.

pu(t, x) =
1

σ1

(
σY 1 − V u

x

xV u
xx

(ξ1 − σY 1)

)

is unsuitable as a good (?) but suboptimal strategy.
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Cost of suboptimality

Start from X(t) = 0

Benchmark: π = 10% + optimal p∗(t, x)

Suboptimal strategy: p(t, x) = constant

What contribution rate, π, do we need to pay to get the

same expected utility?
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What contribution rate, π, do we need to pay to get the

same expected utility?

Contribution rate

T − t p∗(t, x) p = 0.375 p = 0.16667

10 10% 10.06% 10.35%

20 10% 10.12% 10.71%

p = 0.375 (Accounts for salary/asset correlation)

p = 0.16667 (No accounting for salary/asset correlation)
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Hedgeable salary risk

• stochastic interest (Vasicek)

• many assets

• σY 0 = 0

U
(
W (T ), Y (T ), r(T )

)
=

1

γ

(
W (T )/a(r(T ))

Y (T )

)γ
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Key features of solution

• Hedgeable salary⇒ can capitalise future premiums

• augmented fund = wealth + p.v. future premiums

• 3-fund theorem⇒
– risky mutual fund (fixed % of augmented fund)

– low-risk cash fund (% of augmented fund↘ with t)

– low-risk bonds fund (% of augmented fund↗ with t)

• “Low risk”⇒ relative to salary (+ annuity) numeraire
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Numerical example: r(t) ∼ Vasicek

Example 1:

• Relative risk aversion: RRA = 6 (γ = −5)

• Duration of contract: T = 20 years

• Contribution rate: 10% of salary
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Example 1: RRA = 6, T = 20
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Example 1: RRA = 6, T = 20
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Example 2: Very high RRA, T = 20
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The cost of suboptimality

Optimal strategy versus:

• Salary-hedged static strategy (S)

• Merton-static strategy (M)

• Deterministic lifestyle strategies:

– initially 100% in equities

– gradual switch over last 10 years into

100% bonds (B-10) or 100% cash (C-10)
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(c) RRA = 6, T = 20

Strategy: Optimal Static Deterministic lifestyle

stochastic S M B-10 C-10

V (0, 0) -100 -134.58 -205.42 -141.00 -191.47

Cost 10.00% 10.61% 11.55% 10.71% 11.39%

Cost:

• Benchmark: 10% cont. rate with optimal strategy

• Other strategies: % contribution rate to match optimal utility
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(c) RRA = 6, T = 20

Strategy: Optimal Static Deterministic lifestyle

stochastic S M B-10 C-10

Cost 10.00% 10.61% 11.55% 10.71% 11.39%

(d) RRA = 6, T = 40

Strategy: Optimal Static Deterministic lifestyle

stochastic S M B-10 C-10

Cost 10.00% 11.52% 12.58% 12.86% 13.67%
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(a) RRA = 1, T = 20

Strategy: Optimal Static Deterministic lifestyle

stochastic S M B-10 C-10

Cost 10.00% 13.79% 13.78% 20.18% 21.39%

(c) RRA = 6, T = 20

Strategy: Optimal Static Deterministic lifestyle

stochastic S M B-10 C-10

Cost 10.00% 10.61% 11.55% 10.71% 11.39%

(e) RRA = 12, T = 20

Strategy: Optimal Static Deterministic lifestyle

stochastic S M B-10 C-10

Cost 10.00% 10.61% 12.08% 11.70% 12.65%
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(b) RRA = 1, T = 40

Strategy: Optimal Static Deterministic lifestyle

stochastic S M B-10 C-10

Cost 10.00% 17.37% 17.36% 32.21% 34.33%

(d) RRA = 6, T = 40

Strategy: Optimal Static Deterministic lifestyle

stochastic S M B-10 C-10

Cost 10.00% 11.52% 12.58% 12.86% 13.67%

(f) RRA = 12, T = 40

Strategy: Optimal Static Deterministic lifestyle

stochastic S M B-10 C-10

Cost 10.00% 12.38% 13.17% 16.57% 17.82%
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Summary

• Numerical methods important to assess the cost of

suboptimality.

• Commercial strategies can be costly

• Stochastic interest⇒ important dynamic element in

asset strategy

• Next step: to combine results for

– constant interest, incomplete market

– stochastic interest, complete market


