A TWO-FACTOR MODEL FOR STOCHASTIC MORTALITY WITH PARAMETER UNCERTAINTY

**Andrew Cairns** 

Heriot-Watt University, Edinburgh

Joint work with David Blake & Kevin Dowd

Chicago, 24 April 2006

# Plan

- $\bullet \ Introduction + data$
- A two-factor model for stochastic mortality
- Applications
  - Longevity bonds
  - Survivor caps and caplets
- Conclusions

The facts about mortality:

- Life expectancy is increasing.
- Future development of life expectancy is uncertain.
   "Longevity risk"

Longevity Risk = the risk that future mortality rates are

lower than anticipated

Focus here: Mortality rates above age 60

# England and Wales log mortality rates 1950-2002



**Stochastic Models** 

Limited historical data  $\Rightarrow$ 

- No single model is 'the right one'
- Parameter risk
- Model risk



A TWO-FACTOR 'SHORT-RATE' MODEL

Cohort: Age x at time t = 0

Mortality rates for the year t to t + 1:

$$q(t,x) = \frac{e^{A_1(t) + A_2(t)(x+t)}}{1 + e^{A_1(t) + A_2(t)(x+t)}}$$

(x + t) = age at time t

We model  $A(t) = (A_1(t), A_2(t))'$  as a random-walk with drift

$$A(t) = (A_1(t), A_2(t))'$$

Model: Random walk with drift

$$A(t+1) - A(t) = \mu + CZ(t+1)$$

• V = CC' = variance-covariance matrix

- $\bullet$  Estimate  $\mu$  and V
- $\bullet$  Quantify parameter uncertainty in  $\mu$  and V

# Application: longevity bonds

- Cohort: Age x at time t = 0
- S(t, x) =survivor index at t

proportion surviving from time 0 to time t

$$S(t,x) = (1 - q(0,x)) \times \ldots \times (1 - q(t - 1,x))$$

## 90% Confidence Interval (CI) for Cohort Survivorship



Stochastic Mortality: General Conclusions

- Less than 10 years:
  - Systematic risk not significant
- Over 10 years
  - Systematic risk becomes more and more significant over time
- Over 20 years
  - Model and parameter risk begin to dominate

# **Risk-neutral pricing**

$$\begin{pmatrix} A_1(t+1) \\ A_2(t+1) \end{pmatrix} = \begin{pmatrix} A_1(t) \\ A_2(t) \end{pmatrix} + \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix} \\ + \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix} \begin{pmatrix} \tilde{Z}_1(t+1) + \lambda_1 \\ \tilde{Z}_2(t+1) + \lambda_2 \end{pmatrix}$$
where  $\tilde{Z}_1(t+1)$  and  $\tilde{Z}_2(t+1)$  are i.i.d.  $\sim N(0, 1)$ 
under a risk-neutral pricing measure  $Q(\lambda)$ 

 $\lambda_1$  and  $\lambda_2$  are market prices of risk

## Comments

- The market is highly incomplete
- $\bullet$  The switch from P to Q is a modelling assumption
- (Simple) Key assumption:

market prices of risk  $\lambda_1$  and  $\lambda_2$  are constant.

As a market develops this assumption becomes a testable hypothesis

One data point: the EIB-BNP longevity bond

• Offer price (ultimately unsuccessful)  $\Rightarrow$ 

risk premium of 20 basis points if held to maturity

• What values of  $\lambda_1,\,\lambda_2$  are consistent with the 20b.p.'s risk premium?

• One price, two parameters  $\Rightarrow$  many solutions

Answer: 20 b.p. spread equates to  $\lambda_1 = 0.375, \qquad \lambda_2 = 0$   $\downarrow \qquad \qquad \downarrow$  $\lambda_1 = 0, \qquad \lambda_2 = 0.315$ 

Do these values represent a good deal?

Why do we need to know  $\lambda_1$ ,  $\lambda_2$ ?

 $\Rightarrow$  info. on how to price new issues in the future.



Longevity Bond Risk Premiums:  $\lambda = (0.375, 0)$ 

Dependency on term and initial age:

|          |    | Initial age of cohort, $x$ |      |      |
|----------|----|----------------------------|------|------|
|          |    | 60                         | 65   | 70   |
| Bond     | 20 | 8.9                        | 14.7 | 23.1 |
| Maturity | 25 | 12.7                       | 20.0 | 28.7 |
| T        | 30 | 16.9                       | 24.3 | 31.5 |

# At-the-Money Call Options on S(t)

Payoff: max{S(T) - K, 0} where  $K = E_{Q(\lambda)}[S(T)]$ 



25-year survivor cap: parameter uncertainty adds 33%

## Conclusions

- Stochastic models important for
  - risk measurement  $\longrightarrow$  assessment of risk premium
  - pricing contracts with option characteristics
- One model out of many possibilities
- Significant longevity risk in the medium/long term
- Model and parameter risk is important

#### **Selected References**

Cairns, A.J.G., Blake, D., and Dowd, K. (2006) "A Two-Factor Model for Stochastic Mortality with Parameter Uncertainty," Preprint.

Blake, D., Cairns, A.J.G., and Dowd, K. (2006) "Living with mortality: longevity bonds and other mortality-linked securities," Faculty of Actuaries Sessional Meeting, 16 January, 2006.

Cairns, A.J.G., Blake, D., and Dowd, K. (2005) "Pricing death: Frameworks for the valuation and securitization of mortality risk," Preprint, Heriot-Watt University.

Cairns, A.J.G., Blake, D., Dawson, P., and Dowd, K. (2005) "Pricing the risk on longevity bonds," *Life and Pensions,* October: 41-44.

Lee, R.D., and Carter, L.R. (1992) "Modeling and forecasting U.S. mortality," *Journal of the American Statistical Association*, 87: 659-675.

Andrew Cairns

Heriot-Watt University

E-mail: A.Cairns@ma.hw.ac.uk

Internet: www.ma.hw.ac.uk/~andrewc