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The facts about mortality:

e Life expectancy is increasing.

e Future development of life expectancy is uncertain.

“Longevity risk

Longevity Risk = the risk that aggregate future mortality

rates are lower than anticipated

Focus here: Mortality rates above age 60




Where is stochastic mortality relevant?

e Risk management in general

e Pension plans: what level of reserves?

e Life insurance contracts with embedded options.

e Pricing and hedging longevity-linked securities.




England and Wales log mortality rates 1950-2002
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Stochastic Models

Different approaches to modelling

o | ee-Carter

e P-Splines

e Parametric, time-series models




Stochastic Models

Limited historical data =

e No single model is ‘the right one’

limited data = Model risk

e Even with the right model

limited data = Parameter risk




Case study: England and Wales males, age 60-95

60 65 70 75 80 85 90 95

Age of cohort at the start of 2002

g, = mortality rate at age y in 2002

Data suggests log ¢, /(1 — g, ) is linear



‘“PARAMETRIC” TIME-SERIES MODELS

q(t, x) Mortality rate for the year ¢ to ¢ + 1 for individuals
aged x at t:

General class of models
N

ogit g(t, ) = Y 3k,

1=1

“Parametric” = ﬁa(f) IS a simple function of x




Estimation

e Data: Deaths D(t,x), Exposures F(t,x)
= Crude death rates m(t,x) = D(t,x)/FE(t, x)

e Underlying m(t,x) = —log|l — q(t, x)|

(by assumption)

e D(t,x) ~ independent Poisson (m(t, r)E(t, x))

o Maximum likelihood = 3", &\" and 4,"

—X




TWO PARAMETRIC TIME-SERIES MODELS

Model 1 (Age-Period model):

logit q(t, x) = /#) +- /<;§2) (x — )

Model 2 (Age-Period-Cohort model):
(2)

logit q(t, x) = H§1)+lit (x — )




Model 1: Case study — England and Wales males
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Age of cohort at the start of 2002
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Model 1

2—factor model: Kappa_1(t)=1 2—factor model: Kappa_2(t)

1960 1970 1980 1990 2000 1960 1970 1980 1990 2000

Year, t Year, t




(1) (2))/

Rt = (/{t y Ry
Model: Random walk with drift

Kt+11 —/{t:/L—|—CZ(t—|—1>

o (1= (pu1, pip)" = drift

o V = C'C'" = variance-covariance matrix
e Estimate ;tand V'

e Quantify parameter uncertainty in ;o and V'




Bayesian approach to parameter uncertainty

o Jeffreys prior p(p, V) o |V |73/2.

e Data: vector D(t) = ky — ky_1fort =1,....,n

e MLE’s: iand V.

e Posterior:
VD ~ Wishart(n — 1,n V1
plV, D ~ MVN(ji,n='V)




Application: cohort survivorship

e Cohort: Age x at time ¢ = (

e S(t,x) = survivor index at ¢

proportion surviving from time 0 to time ¢

S(t,z) = (1 —¢q(0,z)) x (1 —q(l,x+1) x...
LoX(1T—=qt—=1,z+t—1))




90% Confidence Interval (Cl) for Cohort Survivorship
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Var|log S(t, z)| for x = 65
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Cohort Survivorship: General Conclusions

e [ ess than 10 years:

— Systematic risk not significant

e Over 10 years

— Systematic risk becomes more and more significant

over time

e Over 20 years

— Parameter (and model) risk begin to dominate




How do you price a longevity bond?

e Hedgers are prepared to pay a premium

e Two approaches:

— Take real-world expected values

use a risk-adjusted discount rate

— Take risk-adjusted expected values

use the risk-free discount rate




Risk-neutral pricing (risk-adjusted expected values)

N C11 C19 Zl(t -+ 1) + M\
Co1 €22 Zo(t +1) +

where Z;(t + 1) and Zs(t + 1) are i.i.d. ~ N(0, 1)

under a risk-neutral pricing measure ()

A1 and A\, are market prices of risk




How does the market price of risk work?

e Market price of risk is
the additional expected return over the risk free rate

per unit of risk

e Two independent sources of risk Z1(t), Zs(t)
e [radeable security has corresp. volatilities 01, 09

e Hence

Risk premium = (01)\1 + 02)\2)



Comments

e The market is highly incomplete

e The switch from P to () is a modelling assumption

e (Simple) Key assumption:

market prices of risk A; and A\, are constant.

e As a market develops this assumption becomes a

testable hypothesis




< One data point: the EIB-BNP longevity bond

e Offer price (ultimately unsuccessful) =
average risk premium of 20 basis points

(paid by the buyer of the bond to the seller)

If held to maturity

e What values of A1, Ay are consistent with the 20b.p.’s

risk premium?

e One price, two parameters = many solutions



Answer: 20 b.p. spread equates to
0.375, A= 0

l l
0, Ay = 0.315

Do these values represent a good deal?

Why do we need to know A{, \y?

—> Info. on how to price new issues in the future.




Longevity Bond Risk Premiums: A = (0.375, 0)

Dependency on term and initial age:

Initial age of cohort, x
60 65 70
Bond 20 1 8.9 14.7 23.1
Maturity 25| 12.7 20.0 28.7
1 30 16.9 24.3 31.5




The cohort effect: England and Wales
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Mortality improvement relative to calendar year average.




The Cohort Effect

2—factor Model: Standardised Residuals




TWO PARAMETRIC TIME-SERIES MODELS

Model 1 (Age-Period model):

logit q(t, x) = /#) +- /-£§2) (x —

Model 2 (Age-Period-Cohort model):

logit ¢(t, ) = @1) +- /1'?)

+.2,

(e.g. see Renshaw & Haberman (2006))



Model 1 versus Model 2

kappa_1(t) kappa_2(t)

—— Model 1
—— Model 2
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Model 2: extra factors

kappa_3(t) gamma_4(t)

1960 1970 1980 1990 2000 1870 1890 1910 1930




Standardised residuals

Model 1 Model 2
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Survivor index projections

S(t,x): Mean + 5%, 95% quantiles Variance of log S(t,x)
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4% Annuity Values

Model 1 Model 2

4 4
8 59214 Y £9214

= —0.0398 | = 0.0402
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Conclusions

e Stochastic mortality = significant
e Parameter and model risk = significant

e Wider analysis looked at 8 models

— Model comparisons: quantitative (BIC) and

qualitative

— Cohort effect is very significant

— Models with smooth @(f) age effects are more robust







