LONGEVITY BONDS AND MORTALITY-LINKED SECURITIES

Andrew Cairns Heriot-Watt University, Edinburgh

Nothing is certain in life except death and taxes.

(1789: Franklin)

2005: What we know as the facts:

- Death is still a certainty!
- Life expectancy is increasing.

Future development of life expectancy is uncertain.
"Longevity risk"

The Problem

Pension Plans:

• Before 2000:

 High equity returns masked impact of longevity improvements

- After 2000:
 - Poor equity returns, low interest rates
 - Decades of longevity improvements now a problem

The Problem

Life Insurers:

- Annuity providers:
 - Risk due to unanticipated changes in mortality.
- Equitable Life (and others): GAO's

Guaranteed Annuity Option: becomes valuable if

- interest rates fall
- mortality rates fall

The Problem

Life insurers and pension plans can either:

A: bear the longevity risk; or

B: OTC transfer of longevity risk to alternative agencies; or

C: transfer longevity risk to financial markets.

PLAN FOR TALK

- The problem
- Background:
 - Who?
 - How much money?
 - How much risk?
- Longevity bonds and mortality-linked securities

• Design issues

BACKGROUND

Life insurers and pension funds exposed to many risks

- A: investment risk
- B: interest-rate risk
- C: longevity risk
- D: others

A, B \rightarrow can hedge to reduce risk; C?

Who is exposed to longevity risk?					
UK insurers, annuity liabilities:					
Company	Liabilities (GBP billions)				
	Annuities	Total long term			
Prudential	3.2	100.3			
Legal and General	11.0	33.0			
Norwich Union	11.5	124.7	(Aviva)		

UK	Cemployers: salary/service-linked pension liabilities				
		D.B. Pension	Market Cap		
	Company	Liability	(GBP Billions)		
	Aviva (incl. N.U.)	7.2	14.6		
	British Airways	11.4	3.0		
	Lloyds TSB	13.7	25.6		
	British Aerospace	14.4	8.6		

What is Stochastic mortality?

 \boldsymbol{n} lives, probability \boldsymbol{p} of survival, N survivors

- Unsystematic mortality risk:
 - $\Rightarrow N | p ~ \sim ~ \mathrm{Binomial}(n,p)$
 - \Rightarrow risk is diversifiable, $N/n \longrightarrow p$ as $n \to \infty$
- Systematic mortality risk:
 - $\Rightarrow p$ is uncertain
 - \Rightarrow risk associated with p is not diversifiable

Statistically: how significant is systematic mortality risk?

Risk to annuity provider:

How much systematic risk is there in a portfolio of

annuities to a cohort now age 65?

Risk to individuals and pension plans

Male – Now age 35 – Annuity purchase in 30 years

Mortality accounts for \sim 25% of <u>total</u> risk

HEDGING LONGEVITY RISK

How to reduce risk:

A: balanced portfolio of term assurance and annuity business

B: change design of policies to reduce risk

C: mortality-linked securities

Long-term longevity bonds (EIB/BNP, Nov. 2004)

cashflows linked to survivorship index

- Short-term catastrophe bonds (Swiss Re, Dec. 2003)
- Survivor swaps (some OTC contracts)

swap fixed for floating mortality-linked cashflows

Annuity futures

traded contract; underlying=market annuity rates; many exercise dates

November 2004: EIB/BNP Paribas longevity bond

- Payments linked to survivor index S(t)
- S(t) = proportion of cohort age 65 at time 0 surviving to time t.
- Reference population: England and Wales, males
- Issuer=European Investment Bank
- Structurer and Manager=BNP Paribas

Time, t

- How do we price the EIB/BNP longevity bond?
- How can we price future longevity bonds in a consistent fashion? (i.e. arbitrage-free)

Basic idea

We need:

- A stochastic mortality model
- A method for determining Q

Possible criteria for stochastic mortality models

- Positive mortality rates at all times and all ages
- Model consistent with historical data
- Future dynamics should be biologically reasonable
- Complexity of model appropriate for task in hand
- Model allows fast numerical computation
- Avoid mean reversion

Mortality-linked securities: Issues

- Buyers and sellers
- Reference population
- Liquidity
- Basis risk
- Credit risk

Traded securities

• Examples:

Swiss-Re mortality bond; EIB/BNP longevity bond

- Liquidity is essential
- Low credit risk is essential for hedgers

Traded securities: investors

- Hedgers: life offices, pension funds
- Counterparties:
 - Speculators: e.g. hedge funds

low correlation with financial markets

- Government: could issue longevity bonds to help reduce pension fund longevity risk
- Private issuers naturally short on longevity risk: pharamaceutical companies; long-term care homes

Traded securities: liquidity

- Reference population:
 - Reliable, public source
 - Low moral hazard
- Attractive contract design
 - Useful for hedging
 - Pure insurance risk
 - Transparent
 - Easy to assess the risks and potential returns

 $\mathsf{Basis}\;\mathsf{Risk}\Rightarrow$

mismatch between reference population and own risk

Examples:

- different population characteristics
- different age profile
- males/females

Single, reliable reference population

- \Rightarrow high basis risk for many hedgers
- \Rightarrow security not worth holding
- \Rightarrow low demand
- \Rightarrow low liquidity

Several reference populations

 \Rightarrow low basis risk for hedgers

BUT too many reference populations

- \Rightarrow poor transparancy or reliability
- \Rightarrow low liquidity

Tradeoff required to get the right balance

How to achieve low basis risk and liquidity?

e.g. Swiss Re mortality bond, December 2003

- 3-year Catastrophe bond
- Transparent reference populations
- Reference index tailored to Swiss Re portfolio of risk
- Low moral hazard
- Low basis risk for Swiss Re
- generous risk premium!

Conclusions

- Life insurers and pension plans are exposed to significant systematic longevity risk
- Options:
 - bear the risk internally
 - transfer the risk to the financial markets
- Life Insurance and Pensions liabilities are huge (\$ Trillions)
- Potential huge demand for mortality-linked securities

Conclusions

• Challenge for the future:

to develop a substantial, liquid market in

mortality-linked securities

 \Rightarrow need to design products that are attractive for both buyers and sellers

http://www.ma.hw.ac.uk/~andrewc

OTC contracts

- e.g. Mortality Swap:
 - e.g. life office pays fixed rate, receives floating to hedge longevity risk
- Tailored to mortality risk of hedger (\Rightarrow no basis risk)
- \bullet OTC \Rightarrow could be expensive for life office
- No need for liquidity
- counterparty credit risk

Swiss Re Mortality Bond

- Catastrophe bond
- 3-years duration to 1 January 2007
- Hedges exposure to catastrophic mortality events
 - severe outbreak of influenza
 - major terrorist attack (WMD)
 - natural disaster
- Principal = \$400M
- Quarterly coupon: 3-M USD LIBOR + 135bp

• Mortality index weighted by: Country; Age; Sex

34

- Index tailored to Swiss Re exposure
- Principal at risk if mortality index > 130% of base
- \bullet Principal exhausted if mortality index >150% of base

Analogy between mortality and interest rates

1: Deterministic interest and mortality (no improvements)

Analogy between mortality and interest rates

2: Stochastic interest and mortality

x = age at time 0

 $E_?$: Choice of measure depends on application.

Alternative form of securitization

Special Purpose Vehicle

- invests in AAA bonds
- like a CDO:

"senior debt" = longevity bond (LB)

"equity" = inverse longevity bond (ILB)

• fixed cashflow to SPV: C at $t=1,2,\ldots,25$

C split between LB and ILB holders

Conclusions

- Life insurers and pension plans are exposed to significant systematic longevity risk
- Options:
 - bear the risk internally
 - transfer the risk to the financial markets
- Life Insurance and Pensions liabilities are huge (\$ Trillions)
- Potential huge demand for mortality-linked securities

Conclusions

• Challenge for the future:

to develop a substantial, liquid market in

mortality-linked securities

 \Rightarrow need to design products that are attractive for both buyers and sellers

http://www.ma.hw.ac.uk/~andrewc