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Aim
e Two populations

— PENSION PLAN's own population (k = 2)
— INDEX population (k = 1)

e (') = PENSION PLAN liability value at time 7T’

e Aim: to reduce the risk associated with L('I") using
hedge instruments linked to INDEX population

+ understand the contributors to risk reduction




Plan
e Aim
e Process for estimating hedge effectiveness

— Simulation model

— Valuation model

e Case Study: model + data

e Forensic analysis of basis risk and correlation




Longevity risk hedging

e Cashflow hedging versus Value hedging

e INDEX-based hedge (k = 1) versus CUSTOMISED
nedge (kK = 2)




Key quantities

e [' = future liability valuation date
¢ ak(Tv CIZ‘) —
—value at [’

— life annuity of 1 per annum
— for an individual aged x at I, in population &

e a; (T, x) depends upon:

— experience up to /' = time I base mortality table
— mortality projection model at /" = time /" 2-D mortality table

o ap(T,x) =3 2 (1+7r)"" spu(l)




Simple example
o’ /' =10
e Liability value (1) = ao(T, 65)

e Hedging instrument: deferred annuity swap

H(T) = (T, z) — a0, T, z)

AfXd(() T, x) = value at T' of swap fixed leg

e k = 2 = CUSTOMISED hedge
e k = 1 = INDEX hedge




Steps in constructing and evaluating a hedge (*)

1. Objectives

2. Hedging instrument

3. Method for hedge effectiveness assessment
4. Calculate hedge effectiveness

5. Forensic analysis and interpretation of results

(*) Coughlan et al. (2010) Longevity hedging: A framework for longevity basis risk analysis and

hedge effectiveness To appear in NAAJ




Steps in constructing and evaluating a hedge

Step 1: Objectives

Risk to be hedged

Horizon

Amount of risk to be hedged

Liability value, L(T")
1T =10

Partial risk reduction




Steps in constructing and evaluating a hedge

Step 2: Hedging instrument

Choice of instrument

Structure hedge

Calibrate hedge ratio

h*

Deferred annuity swap, value at /"

H(T) = a3(T, x) — aX9(0, T, x)

(no collateral or margin calls)

Static: Ly (T) = L(T) + h x H(T)

—pr X SD(L(T))/SD(H(T))

h* minimises Var(Lyg(T)).




Steps in constructing and evaluating a hedge

Step 3: Method for assessment of hedge effectiveness

Risk metric

Basis for comparison
Retrospective vs. Prosp.
Simulation model

Valuation model

Var (Lg(T))
1 —Var(Lyg(T))/Var (L(T))

Prospective
two-population Age-Period-Cohort
2 X one-population APC models

with consistent projections




Steps in constructing and evaluating a hedge

Step 4: Hedge effectiveness calculation

Simulate future mortality rates up to 1

Evaluate assets and liabilities at 1’

Evaluate hedge effectiveness

Step 5: Forensic analysis and interpretation of results




Simulation

1 Past mortality rates Past mortality rates
for INDEX population for PENSION PLAN

(up to time “t = 07) (up to time “t = 07)

Fit two-population model

Simulation of two-population

underlying mortality ratesfort = 1,...,7T

INDEX population: Add PENSION PLAN: Add

Poisson risk to death counts Poisson risk to death counts

Future scenarios for INDEX Future scenarios for PENSION PLAN

mortality experiencet = 1,..., T mortality experiencet = 1,..., T




Evaluation

Simulation

1A

Past mortality rates

for INDEX

Past mortality rates

for PENSION PLAN

+ Future mortality scenarios

for INDEX

+ Future mortality scenarios

for PENSION PLAN

Valuation model

2

Scenario + Model = calibration for

hedging instrument valuation

Scenario + Model = calibration for

portfolio liability valuation

Consistent valuation model mortality projections

For each scenario:

INDEX hedge instrument valuation

For each scenario:

PENSION PLAN liability valuation

Calculate hedge effectiveness




Hedge Effectiveness: basic idea
e [, = liability value

e [1 = value of hedging instrument

e p=cor(L,H)

e h = units of H

e Hedged portfolio value= P(h) = L + h x H
e h' =—px SD(L)/SD(H)

e Optimal Hedge Effectiveness

R*(h*) =1—Var(P(h*))/Var(L) = p*




Hedge Effectiveness

e Hedge Effectiveness
R*(h)=1—Var(P(h))/Var(L) < p?

e Hedge Effectiveness depends on
— Correlation, p = cor (L, H)

— Choice of h versus h*




Coming up

e Forensic analysis of

cor(L, H) = cor (aQ(T, 65), ap(T, a:))

e Hedge effectiveness example




Case Study

e Population 1: England and Wales males
e Population 2: UK CMI assured lives, males

e 1961-2005; ages 50-89

e Here: 2-population model (Cairns et al., 2010)

e Model here: just one example

(simple model: but both period and cohort effects)




Age-Period-Cohort model (APC) (M3-2 pops)

my(t, x) = population k death rate

log my(t, ) = 8 (x) + kM (t) + M (t — )

B (), B (z) population 1 and 2 age effects
kW (t), kP)(t) period effects

7(1)( ), 7(2)(0) cohort effects




A 2-population model (one large, one small)

e Large population 1

— m(l)(t): random walk with drift, 14

- v(c): AR(2) around linear drift (— ARIMA(1,1,0))
® Spreads:

~ Sy(t) = k() — k2 (t): AR(1)

- S3(c) = 7'Y(c) =7 (c): AR()




Why mean reversion in spreads

e Hypothesis (e.g. Li and Lee, 2005):

mq(t, )

For each age x, does not diverge over time

mo(t, )




Bayesian statistical approach

Prior jJudgement

X model likelihood of data (Poisson + ARIMA)

— posterior distribution for parameters




Bayesian output

Bayesian posterior distribution for
® Process parameters (e.g. Y (t) random-walk drift, 1)

e Underlying latent state variables

— age, period and cohort effects

— especially important for small populations

e Full parameter uncertainty




Implementation

e Simulation — Stage 1
— EW, CMI males data for 1961-2005, ages 50-89

— Fit the 2-population model using MCMC

e Simulation — Stage 2

— Full PU simulation of 2-pop model

=> underlying m1(t, x), mo(t, x) for
L= 2006,.... 2015




e Simulation — Stage 3 — future Poisson deaths

— Specify exposures, F1(t, x), Es(t, x) for

t = 2006, . ..

Case 1:  Ei(t,z) = F1(2005,z), Bs(t, ) = E»(2005, z)
Case2: Ei(t,z) =100 x E1(2005,2), FEs(t,z) = 100 x E»(2005, z)

— Simulate independent Poisson death counts
Dy.(t, x) ~ Poisson (mk(t, r)Ey(t, :C)) for
t = 2000, ...,2015




e Valuation Model: Stage 1 — Calibration
Choose calibration window
Each stochastic scenario:

— Full re-calibration of single-pop APC model to 2015
EW data

— Full re-calibration of single-pop APC model to 2015
CMI data

— Calibrate £V () trend: 14,




Treatment of the cohort effect

HISTORICAL DATA

imulated kappa(t
WN gam%lpa((cg

Simulated kappa(t)

Simulalted gammal(c)

2010

2020




e Stage 2 — Valuation
For each stochastic scenario at /' = 2015
— Calculate a1 (7T, x)

— Calculate as(T', x)

“Ideal”: calculate aj (T, x) using expectations under

full 2-pop stochastic model

BUT: impractical (and unrealistic in practice??)




e Stage 2 — Valuation: how to calculate a1 (71, x)

B (), YT — 2 — 1) are known
_|_
k1) (t) projected beyond T' = 2015
Y
mi(T+1,z), mi(T+ 2,24+ 1), m(T + 3,2+ 2),...
_|_
Discount Factors

U
ar (T, x)




e Stage 2 — Valuation: a1 (7, z)

Key assumption

Deterministic approximation to stochastic £ (¢):

AT +5) = k(T 4 5 x 114

Similarly: Calculate as (T, )
k(2 () needs projection beyond T" = 2015
FO(T +5) = k®(T) 4+ s x 1o




e Stage 2 — Valuation

— 141 based on 2015 full recalibration of £ ()
Data from 1y to 1" = 10 (2015)

Random walk model

= 11 = (K(T) = KO(T) /(T = T))

— Important assumption

o = [




e Stage 2 — Annuity price summary

— Deterministic projection approx: Nielsen (2010)

(Solvency Il)
— Other approximations ...

— 1 = risk-free interest rate (fixed)

— ay(T, ) = f(r, BV (@), k(1) DT 2= 1), )

— as(T, ) = f (7, 8 (@), kD (1), 4T — 2 = 1), u)




Variants

e Full parameter uncertainty (PU)

e Full parameter certainty (PC):
— PC age, period and cohort effects (up to 2005)
— 11 fixed in 2005

e Partial PC:

— PC age, period and cohort effects (up to 2005)

— 11 recalibrated in 2015 using latest &1 (¢)

e With and without Poisson Risk




Role of parameter uncertainty

o [ = LBase =+ LPU

o [ = HBase =+ HPU
e Base case: process risk only = correlation ppse
e Additional parameter uncertainty = ppqse — PPU

e Correlation can go up or down




Value hedging

e Cash value of a hedging instrument at time 1°

versus
e Cash value of liability: as (7", 65) (CMI)

®e.g.

— ao(T',65) versus as(1T',x)  (CUSTOMISED hedge)

—a9(T',65) versus a; (T, )  (INDEX hedge)




Value hedging

Recap: a; (T, x) depends on:

e State variables up to time /'

(k") (t) and 7 (c))

e Estimate of /{El) drift, 1, beyond 1’

— PC case: 11 known at time 0

— PU case: 141 not known until time 1’




CUSTOMISED hedge; full parameter certainty (PC)
Hedging as(7’, 65) using as (T, z): Correlation plot
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as(T,65) vs as(T, x): Impact of Recalibration Risk
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as(T,65) vs as(T, x): Impact of full PU
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INDEX hedge; full parameter certainty (PC)
as(T,65) vs a1(T, x): PC + Population basis risk
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as(T,65) vs a1(T, x): Impact of recalibration risk
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Recalibration risk: simplified example
o Risks: X1 =u+ 241, Xo=pu-+ 2

® /|, Z9 are uncorrelated

e /1 known = cor (X1, Xo) =0

® /1, unknown = cor (X, X2) > 0




as(T,65) vs a1(T, x): Impact of full PU + Poisson
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Impact of (a) Calibration window, (b) Term of annuity
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Hedge Effectiveness Example

e L(10) = as(10,65);
H(10) = a1(10, 65) — aX9(0, 10, 65)
e Risk metric 1: variance of liability

® Risk metric 2: 95% Value-at-Risk in excess of median
o h = —(0.846

Risk metric | Unhedged Hedged | Hedge Effectiveness
Variance: 0.4039 , 0.0409 | 0.90 = p?
95% VaR: 1.0072 N\, 0.3235 | 0.68 =~1-1-p2




CDF of L(10) Histogram of L(10)
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Value hedging: basis risk

e Population basis risk (total basis risk UP)

e Latent state variable estimation uncertainty (UP or
e Recalibration risk (tt1) ( )

e Recalibration window (UP or

e Duration of annuity (UP or )

e 2006-2015 Poisson deaths risk (UP)

e Sub-optimal choice of hedging instrument (UP)

e Sub-optimal # units of hedging instrument (UP)

e Additional hedging instruments ( )




Further comments + work

e Robustness of optimal hedge ratios

— Impact of sub-optimal allocation
— Sensitivity to PC/PU etc.

e Vega hedging;
Use of more than one hedging instrument

e Use of more recent EW data

e Models with more complex correlation structure




Questions

E: A.Cairns@ma.hw.ac.uk

W: www.ma.hw.ac.uk/~andrewc




