HEDGING LONGEVITY RISK: A FORENSIC, MODEL-BASED ANALYSIS AND **DECOMPOSITION OF BASIS RISK Andrew Cairns** Heriot-Watt University, and The Maxwell Institute, Edinburgh Longevity 6, Sydney, 9-10 September 2010

Joint work with: David Blake, Kevin Dowd, Guy Coughlan and Marwa Khalaf-Allah

Aim

- Two populations
 - PENSION PLAN's own population (k=2)

– INDEX population
$$\left(k=1
ight)$$

- $\bullet \; L(T) = {\rm PENSION} \; {\rm PLAN}$ liability value at time T
- Aim: to reduce the risk associated with L(T) using hedge instruments linked to INDEX population + understand the contributors to risk reduction

Plan

• Aim

- Process for estimating hedge effectiveness
 - Simulation model
 - Valuation model
- Case Study: model + data
- Forensic analysis of basis risk and correlation

Longevity risk hedging

- Cashflow hedging versus Value hedging
- INDEX-based hedge (k = 1) versus CUSTOMISED hedge (k = 2)

Key quantities

- T = future liability valuation date
- $a_k(T, x) =$
 - value at ${\cal T}$
 - life annuity of 1 per annum
 - for an individual aged x at T, in population ${\pmb k}$
- $a_k(T, x)$ depends upon:
 - experience up to $T \Rightarrow {\rm time}\; T$ base mortality table
 - mortality projection model at $T \Rightarrow {\rm time}\; T \; {\rm 2-D}$ mortality table
- $a_k(T, x) = \sum_{s=1}^{\infty} (1+r)^{-s} {}_{s} p_x(t)$

Simple example

• T = 10

- Liability value $L(T) = a_2(T, 65)$
- Hedging instrument: deferred annuity swap

$$H(T) = a_k(T, x) - \hat{a}_k^{\mathsf{fxd}}(0, T, x)$$

 $\hat{a}_k^{\mathsf{fxd}}(0,T,x) = \mathsf{value} \text{ at } T \text{ of swap fixed leg}$

- $k = 2 \Rightarrow \text{CUSTOMISED}$ hedge
- $k = 1 \Rightarrow$ INDEX hedge

Steps in constructing and evaluating a hedge (*)

- 1. Objectives
- 2. Hedging instrument
- 3. Method for hedge effectiveness assessment
- 4. Calculate hedge effectiveness
- 5. Forensic analysis and interpretation of results

(*) Coughlan et al. (2010) Longevity hedging: A framework for longevity basis risk analysis and

hedge effectiveness To appear in NAAJ

Steps in constructing and evaluating a he

Step 1: Objectives

Risk to be hedged

Horizon

Amount of risk to be hedged Partial risk reduction

Liability value, L(T)

T = 10

Steps in constructing and evaluating a hedge

Step 2: Hedging instrument				
Choice of instrument	Deferred annuity swap, value at T			
	$H(T) = a_k(T, x) - \hat{a}_k^{fxd}(0, T, x)$			
	(no collateral or margin calls)			
Structure hedge	Static: $L_H(T) = L(T) + h \times H(T)$			
Calibrate hedge ratio	$h^* = -\rho_{LH} \times SD(L(T))/SD(H(T))$			

 h^* minimises $Var(L_H(T))$.

Steps in constructing and evaluating a hedge

Step 3: Method for assessment of hedge effectiveness

Risk metric

Basis for comparison

Retrospective vs. Prosp.

Simulation model

Valuation model

 $Var\left(L_{H}(T)\right)$ $1 - Var\left(L_{H}(T)\right) / Var\left(L(T)\right)$

Prospective

two-population Age-Period-Cohort

 $2\times$ one-population APC models

with consistent projections

Steps in constructing and evaluating a hedge

Step 4: Hedge effectiveness calculation

Simulate future mortality rates up to T

Evaluate assets and liabilities at ${\cal T}$

Evaluate hedge effectiveness

Step 5: Forensic analysis and interpretation of results

Simulation

1	Past mortality rates	Past mortality rates		
	for INDEX population	for PENSION PLAN		
	(up to time " $t=0$ ")	(up to time " $t=0$ ")		
2	Fit two-population model			
3	Simulation of two-population			
	underlying mortality rates for $t = 1, \ldots, T$			
4	INDEX population: Add	PENSION PLAN: Add		
	Poisson risk to death counts	Poisson risk to death counts		
5	Future scenarios for INDEX	Future scenarios for PENSION PLAN		
	mortality experience $t = 1$ T	mortality experience $t=1,\ldots,T$		

Evaluation

Simulation

1A	Past mortality rates	Past mortality rates		
	for INDEX	for PENSION PLAN		
1B	+ Future mortality scenarios	+ Future mortality scenarios		
	for INDEX	for PENSION PLAN		

Valuation model

2	Scenario $+$ Model \Rightarrow calibration for	Scenario + Model \Rightarrow calibration for		
	hedging instrument valuation	portfolio liability valuation		
3	Consistent valuation model mortality projections			
4	For each scenario:	For each scenario:		
	INDEX hedge instrument valuation	PENSION PLAN liability valuation		
5	Calculate hedge effectiveness			

Hedge Effectiveness: basic idea

- L =liability value
- H = value of hedging instrument
- $\rho = cor(L, H)$
- h =units of H
- Hedged portfolio value= $P(h) = L + h \times H$
- $h^* = -\rho \times SD(L)/SD(H)$
- Optimal Hedge Effectiveness $R^2(h^*) = 1 Var(P(h^*))/Var(L) = \rho^2$

Hedge Effectiveness

• Hedge Effectiveness

$$R^2(h) = 1 - Var(P(h))/Var(L) \le \rho^2$$

- Hedge Effectiveness depends on
 - Correlation, $\rho=cor(L,H)$
 - Choice of h versus h^\ast

Coming up

• Forensic analysis of

$$cor(L,H) = cor\left(a_2(T,65), \ a_k(T,x)\right)$$

• Hedge effectiveness example

Case Study

- Population 1: England and Wales males
- Population 2: UK CMI assured lives, males
- 1961–2005; ages 50-89
- Here: 2-population model (Cairns et al., 2010)
- Model here: just one example

(simple model: but both period and cohort effects)

Age-Period-Cohort model (APC) (M3-2 pops) $m_k(t, x) =$ population k death rate

$$\log m_{k}(t,x) = \beta^{(k)}(x) + \kappa^{(k)}(t) + \gamma^{(k)}(t-x)$$

 $\beta^{(1)}(x), \ \beta^{(2)}(x)$ population 1 and 2 age effects $\kappa^{(1)}(t), \ \kappa^{(2)}(t)$ period effects $\gamma^{(1)}(c), \ \gamma^{(2)}(c)$ cohort effects A 2-population model (one large, one small)

- Large population 1
 - $\kappa^{(1)}(t)$: random walk with drift, μ_1
 - $\gamma^{(1)}(c)$: AR(2) around linear drift (\rightarrow ARIMA(1,1,0))
- Spreads:

 $-S_2(t) = \kappa^{(1)}(t) - \kappa^{(2)}(t)$: AR(1) $-S_3(c) = \gamma^{(1)}(c) - \gamma^{(2)}(c)$: AR(2) Why mean reversion in spreads

Hypothesis (e.g. Li and Lee, 2005):

For each age $x,\;\frac{m_1(t,x)}{m_2(t,x)}\;$ does not diverge over time

Bayesian statistical approach

Prior judgement

 \times model likelihood of data (Poisson + ARIMA)

= posterior distribution for parameters

Bayesian output

Bayesian posterior distribution for

- Process parameters (e.g. $\kappa^{(1)}(t)$ random-walk drift, μ_1)
- Underlying latent state variables
 - age, period and cohort effects
 - especially important for small populations
- Full parameter uncertainty

Implementation

- Simulation Stage 1
 - EW, CMI males data for 1961-2005, ages 50-89
 - Fit the 2-population model using MCMC
- Simulation Stage 2
 - Full PU simulation of 2-pop model

 \Rightarrow underlying $m_1(t,x), m_2(t,x)$ for

 $t = 2006, \ldots, 2015$

- Simulation Stage 3 future Poisson deaths
 - Specify exposures, $E_1(t,x), E_2(t,x)$ for

 $t = 2006, \dots$

Case 1:
$$E_1(t,x) = E_1(2005,x), \qquad E_2(t,x) = E_2(2005,x)$$

Case 2: $E_1(t,x) = 100 \times E_1(2005,x), \quad E_2(t,x) = 100 \times E_2(2005,x)$

- Simulate independent Poisson death counts $D_k(t, x) \sim \text{Poisson}\left(m_k(t, x)E_k(t, x)\right)$ for $t = 2006, \dots, 2015$ Valuation Model: Stage 1 – Calibration

Choose calibration window

Each stochastic scenario:

- Full re-calibration of single-pop APC model to 2015
 EW data
- Full re-calibration of single-pop APC model to 2015
 CMI data

– Calibrate $\kappa^{(1)}(t)$ trend: μ_1

Treatment of the cohort effect

Stage 2 – Valuation

For each stochastic scenario at T = 2015

- Calculate $a_1(T, x)$
- Calculate $a_2(T, x)$

"Ideal": calculate $a_k(T, x)$ using expectations under full 2-pop stochastic model

BUT: impractical (and unrealistic in practice??)

• Stage 2 – Valuation: how to calculate $a_1(T, x)$ $\beta^{(1)}(y), \gamma^{(1)}(T-x-1)$ are known $\kappa^{(1)}(t)$ projected beyond T = 2015 \downarrow $m_1(T+1, x), m_1(T+2, x+1), m_1(T+3, x+2), \ldots$ **Discount Factors** $a_1(T, x)$

• Stage 2 – Valuation: $a_1(T, x)$

Key assumption

Deterministic approximation to stochastic $\kappa^{(1)}(t)$: $\hat{\kappa}^{(1)}(T+s) = \kappa^{(1)}(T) + s \times \mu_1$

Similarly: Calculate $a_2(T, x)$ $\kappa^{(2)}(t)$ needs projection beyond T = 2015 $\hat{\kappa}^{(2)}(T+s) = \kappa^{(2)}(T) + s \times \mu_2$

- Stage 2 Valuation
 - μ_1 based on 2015 full recalibration of $\kappa^{(1)}(t)$

Data from T_0 to T = 10 (2015)

Random walk model

$$\Rightarrow \mu_1 = \left(\kappa^{(1)}(T) - \kappa^{(1)}(T_0)\right) / (T - T_0)$$

Important assumption

 $\mu_2 = \mu_1$

- Stage 2 Annuity price summary
 - Deterministic projection approx: Nielsen (2010)
 - (Solvency II)
 - Other approximations ...
 - -r = risk-free interest rate (fixed)

$$-a_1(T,x) = f\left(r,\beta^{(1)}(x),\kappa^{(1)}(T),\gamma^{(1)}(T-x-1),\mu_1\right)$$
$$-a_2(T,x) = f\left(r,\beta^{(2)}(x),\kappa^{(2)}(T),\gamma^{(2)}(T-x-1),\mu_1\right)$$

Variants

- Full parameter uncertainty (PU)
- Full parameter certainty (PC):
 - PC age, period and cohort effects (up to 2005)
 - μ_1 fixed in 2005
- Partial PC:
 - PC age, period and cohort effects (up to 2005)
 - μ_1 recalibrated in 2015 using latest $\kappa^{(1)}(t)$
- With and without Poisson Risk

Role of parameter uncertainty

- $L = L_{Base} + L_{PU}$
- $H = H_{Base} + H_{PU}$
- Base case: process risk only \Rightarrow correlation ρ_{Base}
- Additional parameter uncertainty $\Rightarrow \rho_{Base} \longrightarrow \rho_{PU}$
- Correlation can go up or down

Value hedging

- \bullet Cash value of a hedging instrument at time T \$versus\$
- Cash value of liability: $a_2(T, 65)$ (CMI)
- e.g.
 - $a_2(T, 65)$ versus $a_2(T, x)$ (CUSTOMISED hedge)
 - $a_2(T, 65)$ versus $a_1(T, x)$ (INDEX hedge)

Value hedging

Recap: $a_k(T, x)$ depends on:

- State variables up to time ${\cal T}$
 - ($\kappa^{(k)}(t)$ and $\gamma^{(k)}(c)$)
- Estimate of $\kappa_t^{(1)}$ drift, μ_1 , beyond T
 - PC case: μ_1 known at time 0
 - PU case: μ_1 not known until time T

CUSTOMISED hedge; full parameter certainty (PC) Hedging $a_2(T, 65)$ using $a_2(T, x)$: Correlation plot

$a_2(T, 65)$ vs $a_2(T, \mathbf{x})$: Impact of Recalibration Risk

 $a_2(T, 65)$ vs $a_2(T, \mathbf{x})$: Impact of full PU

INDEX hedge; full parameter certainty (PC) $a_2(T, 65)$ vs $a_1(T, x)$: PC + Population basis risk

$a_2(T, 65)$ vs $a_1(T, \mathbf{x})$: Impact of recalibration risk

Recalibration risk: simplified example

• Risks:
$$X_1=\mu+Z_1$$
, $X_2=\mu+Z_2$

• Z_1, Z_2 are uncorrelated

•
$$\mu$$
 known $\Rightarrow cor(X_1, X_2) = 0$

• μ unknown $\Rightarrow cor(X_1, X_2) > 0$

$a_2(T, 65)$ vs $a_1(T, x)$: Impact of full PU + Poisson

Impact of (a) Calibration window, (b) Term of annuity

Hedge Effectiveness Example

•
$$L(10) = a_2(10, 65);$$

 $H(10) = a_1(10, 65) - \hat{a}_1^{\mathsf{fxd}}(0, 10, 65)$

- Risk metric 1: variance of liability
- Risk metric 2: 95% Value-at-Risk in excess of median

•
$$h^* = -0.846$$

Risk metric	Unhedged		Hedged	Hedge	Effectiveness
Variance:	0.4039	\searrow	0.0409	0.90	$= \rho^2$
95% VaR:	1.0072		0.3235	0.68	$\approx 1 - \sqrt{1 - \rho^2}$

Value hedging: basis risk

- Population basis risk (total basis risk UP)
- Latent state variable estimation uncertainty (UP or DOWN)
- Recalibration risk (μ_1) (DOWN)
- Recalibration window (UP or DOWN)
- Duration of annuity (UP or DOWN)
- 2006-2015 Poisson deaths risk (UP)
- Sub-optimal choice of hedging instrument (UP)
- Sub-optimal # units of hedging instrument (UP)
- Additional hedging instruments (DOWN)

Further comments + work

- Robustness of optimal hedge ratios
 - Impact of sub-optimal allocation
 - Sensitivity to PC/PU etc.
- Vega hedging;

Use of more than one hedging instrument

- Use of more recent EW data
- Models with more complex correlation structure

Questions

E: A.Cairns@ma.hw.ac.uk

W: www.ma.hw.ac.uk/ \sim andrewc