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Plan

e Genealogy

e New directions in modelling

® Numerical illustrations




Development of New Models

e Many new stochastic mortality models since

Lee-Carter

e Are they fit for purpose?

e Are they robust?




GENEALOGY: 1st GENERATION MODELS
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Improvements + more complexity
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More improvements + even more complexity
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Multiple population modelling
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CBD Model + Cohort Effect

death rate
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Issues on complexity

e Lee-Carter, CBD-1:  simple and robust
BUT underlying assumptions are violated:

A: Deaths, D(x,t) are cond. Poisson (m(w, t)E(x, t))
B: Death counts in neighbouring (x, t) cells are independent

e \ore complexity e.g. CBD-1 — CBD-3 — Plat ...

— Underlying assumptions now okay
— But excessive complexity = less robust forecasts???

e Dowd et al. (2010a,b): out-of-sample backtesting

Models that fit much better in sample

are not obviously better at out-of-sample forecasting




Issues on complexity

e More complex = More random processes

e More random processes =

MUCH more difficult to model multiple populations




A Possible Way Forward

Single-population models

e Paradigm shift away from independent Poisson model

® Focus on small number of key drivers

—> much easier to extend to multi-populations

® Focus on greater robustness of forecasts




Case Study: CBD/Plat Revisited
logm(z,t) = B(z) + k1(t) + Ka(t)(z — T)

D(x,t): Actual vs Expected Deaths
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Red = actual deaths > expected deaths




CBD/Plat Revisited: Key ldea: Possible responses
logm(z,t) = B(x) + ki(t) + kolt)(z — T)
Add:

e Cohort effect, y(t — x)

e Extra age-period effects

e Do something new




Key Idea: CBD/Plat Revisited

Underlying log m(x,t) =

o 3(x) + ki(t) + Kol(t)(z — Z): two key drivers
PLUS
R(x,t) Residuals

e Assume: vector [2(t) — R(t + 1) mean reverting

process

— long term risk depends on two key drivers




Specific Model
logm(x,t) = B(x) + k1(t) + kao(t)(x — T) + R(t, x)

o (k1(t), K2(t)): bivariate random walk

e R(t) = (n, x 1 vector) VAR(2), reverting to 0
R(t)=AR(t—1)+ BR(t —2)+ Z(1)

e Z(x,t)iid. ~ N(0,0%)

o A=A +Aand B=—-A4,A,




VAR matrices A; and A,

a; =AR terms for new members;

c; — cohort persistence;




Further detalils

e Deaths: D(x,t) ~ Poisson (m(x,t)E(x,t))

e Bayesian approach:

posterior density = likelihood X prior
e Upcoming results: mode of posterior density

e Further work: Bayesian parameter uncertainty




England and Wales, Males 1971-2008
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Cohort-type effects

England and Wales, Males 1971-2008
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R(x,t): i.i.d. residuals Z(x,t)

1975 1980 1985 1990 1995 2000 2005

Red = Z(x,t) > 0 e




D(x,t): Actual vs Expected Deaths

1975 1980 1985 1990 1995 2000 2005

Year

Red = actual > expected




Comparison with related models

logm(x,t) = B(x) + k1(t) + k2(t)(x — T)

logm(x,t) = B(x) + Kk1(t) + ka(t((x — ) + y(t — x)

logm(x,t) = B(x) + Kk1(t) + ka(t)(x — T) + R(x,t)

R(t) = AR(t — 1)+ BR(t —2) + Z(t) (A, B as specified earlier)

logm(x,t) = B(x) + k1(t) + ke (t((x — T) + R(x,t)

R(t) = AR(t — 1)+ BR(t — 2) + Z(t) (simplified A, B)
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Conclusions: Model Comparisons

e Long term underlying trends (k(t)) are reasonably

consistent

e Model risk more evident in the mean reverting R(x, t)
Further work

e Bayesian parameter uncertainty

e Multiple populations: focus on underlying ~(t)

— less complexity



Multipopulations

Borrow from multifactor asset models: e.qg.

e Asset ¢ return: R; = «; + B;1F1 + BioFs + €

e [}, I5 are systematic risk factors

® ¢, — idiosyncratic risks




Multipopulations

Mortality — version 1:

e Population, P, specific /{EP) (t) correlated
o R\”)(z,t): assume independent
Mortality — version 2:

e All populations have the same «;()

e R\”)(z,t): assume independent

e Greater role for R(x,t) as country specific effect



Questions

W: http://www.ma.hw.ac.uk/~andrewc

E: A.J.G.Cairns@hw.ac.uk



Other models for R(x, t)

1. R(x,t) = ¢oR(x — 1,t — 1)+ Zp(x, 1)

2. R(x,t) = ¢R(x — 1,t — 1) + diffusion + Zp(x, )

3. Smooth underlying period effects, x1(t), ko(t)
plus annual shocks

e.g. R(1), R(2), ... arei.i.d. vectors, correlated

dCrossS ages




