New Directions

in the Modelling of Longevity Risk

Andrew Cairns

Heriot-Watt University,

and The Maxwell Institute, Edinburgh

Joint work (in progress!) with:

George Mavros, Torsten Kleinow, George Streftaris

Mexico City, 2 October 2012

Plan

- Genealogy
- New directions in modelling
- Numerical illustrations

Development of New Models

 Many new stochastic mortality models since Lee-Carter

• Are they fit for purpose?

• Are they robust?

GENEALOGY: 1st GENERATION MODELS

Currie/Richards (M4)
2-D P-splines
Eilers/Marx
P-splines

Lee-Carter (M1) 1992

> CBD-1 (M5) 2006

> > Time

Time

Why do we need complexity?

1970

1980

Lee-Carter Model 06 98 08 92 02 99

CBD Model + Cohort Effect

Black \Rightarrow model *over*-estimates m(x, t) death rate

1990

2000

Gray \Rightarrow model *under*-estimates m(x, t) death rate

LC: non-random clusters + errors are too big

Issues on complexity

- Lee-Carter, CBD-1: simple and robust
 BUT underlying assumptions are violated:
 - A: Deaths, D(x,t) are cond. Poisson $\Big(m(x,t)E(x,t)\Big)$
 - B: Death counts in neighbouring (x, t) cells are independent
- More complexity e.g. CBD-1 \rightarrow CBD-3 \rightarrow Plat ...
 - Underlying assumptions now okay
 - But excessive complexity ⇒ less robust forecasts???
- Dowd et al. (2010a,b): out-of-sample backtesting

Models that fit *much better* in sample

are not obviously better at out-of-sample forecasting

Issues on complexity

- More complex ⇒ More random processes
- More random processes ⇒

MUCH more difficult to model multiple populations

A Possible Way Forward

Single-population models

- Paradigm shift away from independent Poisson model
- Focus on small number of key drivers
 - ⇒ much easier to extend to multi-populations
- Focus on greater robustness of forecasts

Case Study: CBD/Plat Revisited

$$\log m(x,t) = \beta(x) + \kappa_1(t) + \kappa_2(t)(x - \bar{x})$$

Red \Rightarrow actual deaths > expected deaths

CBD/Plat Revisited: Key Idea: Possible responses

$$\log m(x,t) = \beta(x) + \kappa_1(t) + \kappa_2(t)(x - \bar{x})$$

Add:

- ullet Cohort effect, $\gamma(t-x)$
- Extra age-period effects
- Do something new

Key Idea: CBD/Plat Revisited

Underlying $\log m(x,t) =$

• $\beta(x) + \kappa_1(t) + \kappa_2(t)(x - \bar{x})$: two key drivers

PLUS

R(x,t) Residuals

- \bullet Assume: vector $R(t) \to R(t+1)$ mean reverting process
 - ⇒ long term risk depends on two key drivers

Specific Model

$$\log m(x,t) = \beta(x) + \kappa_1(t) + \kappa_2(t)(x - \bar{x}) + R(t,x)$$

- $(\kappa_1(t), \kappa_2(t))$: bivariate random walk
- $R(t) = (n_x \times 1 \text{ vector}) \text{ VAR(2)}$, reverting to 0

$$R(t) = AR(t-1) + BR(t-2) + Z(t)$$

- ullet Z(x,t) i.i.d. $\sim N(0,\sigma_Z^2)$
- $\bullet \ A = A_1 + A_2 \text{ and } B = -A_2 A_1$

VAR matrices A_1 and A_2

$$A_{i} = \begin{pmatrix} a_{i} & 0 & 0 & \cdots & & & \\ c_{i} & d_{i} & 0 & 0 & \cdots & & & \\ d_{i}/2 & c_{i} & d_{i}/2 & 0 & 0 & \cdots & & \\ 0 & d_{i}/2 & c_{i} & d_{i}/2 & 0 & 0 & \cdots & & \\ 0 & 0 & d_{i}/2 & c_{i} & d_{i}/2 & 0 & 0 & \cdots & \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \end{pmatrix}$$

 $a_i = AR$ terms for new members;

 $c_i = \text{cohort persistence};$

 $d_i = \text{diffusion coeff.}$

Further details

- ullet Deaths: $D(x,t) \sim \operatorname{Poisson}\left(m(x,t)E(x,t)\right)$
- Bayesian approach:
 posterior density = likelihood × prior
- Upcoming results: mode of posterior density
- Further work: Bayesian parameter uncertainty

Cohort-type effects

England and Wales, Males 1971-2008

Comparison with related models

$$\log m(x,t) = \beta(x) + \kappa_1(t) + \kappa_2(t)(x - \bar{x})$$

$$\log m(x,t) = \beta(x) + \kappa_1(t) + \kappa_2(t((x-\bar{x}) + \gamma(t-x)))$$

$$\log m(x,t) = \beta(x) + \kappa_1(t) + \kappa_2(t)(x - \bar{x}) + R(x,t)$$

$$R(t) = AR(t-1) + BR(t-2) + Z(t)$$
 (A, B as specified earlier)

$$\log m(x,t) = \beta(x) + \kappa_1(t) + \kappa_2(t((x - \bar{x}) + R(x,t)))$$

$$R(t) = AR(t-1) + BR(t-2) + Z(t) \text{ (simplified } A, B)$$

Conclusions: Model Comparisons

- ullet Long term underlying trends $(\kappa(t))$ are reasonably consistent
- ullet Model risk more evident in the mean reverting R(x,t)

Further work

- Bayesian parameter uncertainty
- ullet Multiple populations: focus on underlying $\kappa(t)$
 - ⇒ less complexity

Multipopulations

Borrow from multifactor asset models: e.g.

- Asset i return: $R_i = \alpha_i + \beta_{i1}F_1 + \beta_{i2}F_2 + \epsilon_i$
- F_1 , F_2 are systematic risk factors
- ullet $\epsilon_i = {\sf idiosyncratic risks}$

Multipopulations

Mortality – version 1:

- ullet Population, P, specific $\kappa_i^{(P)}(t)$ correlated
- $R^{(P)}(x,t)$: assume independent

Mortality – version 2:

- ullet All populations have the same $\kappa_i(t)$
- $R^{(P)}(x,t)$: assume independent
- ullet Greater role for R(x,t) as country specific effect

Questions

W: http://www.ma.hw.ac.uk/~andrewc

E: A.J.G.Cairns@hw.ac.uk

Other models for R(x,t)

1.
$$R(x,t) = \phi R(x-1,t-1) + Z_R(x,t)$$

2.
$$R(x,t) = \phi R(x-1,t-1) + \text{diffusion} + Z_R(x,t)$$

3. Smooth underlying period effects, $\kappa_1(t), \kappa_2(t)$ plus annual shocks

e.g. $R(1), R(2), \ldots$ are i.i.d. vectors, correlated across ages