ROBUST HEDGING OF LONGEVITY RISK

Andrew Cairns

Heriot-Watt University,

and The Maxwell Institute, Edinburgh

Frankfurt, 2011

Plan

- Intro + model
- Recalibration risk introduction
- Robustness questions index hedging
- Are some hedging instruments more robust than others?
- Static Delta and Nuga hedging
- Discussion

Focus of this talk

Index-based hedges

- Customised longevity swaps only available to very large pension plans
- Index-based hedges
 - smaller schemes
 - better value for money for large plans ???
 - Quantity of hedging instrument
 Hedge effectiveness

Price

How confident are we in these quantities? ⇒ ROBUSTNESS

Simple example

- Static *value* hedge: $t = 0 \longrightarrow T$
- $a_k(T,x) = \text{population } k \text{ annuity value at } T$
- Liability value $L(T) = a_2(T, 65)$
- Hedging instrument: deferred longevity swap

$$H(T) = a_{\mathbf{k}}(T, x) - \hat{a}_{\mathbf{k}}^{\mathsf{fxd}}(0, T, x)$$

 $\hat{a}_k^{\mathsf{fxd}}(0,T,x) = \mathsf{value} \; \mathsf{at} \; T \; \mathsf{of} \; \mathsf{swap} \; \mathsf{fixed} \; \mathsf{leg}$

- k=2 (CMI) \Rightarrow CUSTOMISED hedge
- k = 1 (E&W) \Rightarrow INDEX hedge

Hedging: basic idea

- ullet L =liability value
- \bullet H =value of hedging instrument
- ullet Objective: minimise $Var(\operatorname{deficit}) = Var(L+hH)$

$$\Rightarrow$$
 hedge ratio, $\,h = -\frac{Cov(L,H)}{Var(H)} = -\rho \frac{S.D.(L)}{S.D.(H)}$

$$\label{eq:hedge effectiveness} \operatorname{Hedge effectiveness} = 1 - \frac{Var(L+hH)}{Var(L)} = \rho^2$$

More general: multiple assets

$$\Rightarrow$$
 minimise $Var(L + h_1H_1 + \ldots + h_nH_n)$

Simple example: APC model (Cairns et al., 2011a)

 $m_k(t,x) = \text{population } k \text{ death rate}$

$$\log m_{k}(t,x) = \beta^{(k)}(x) + \kappa^{(k)}(t) + \gamma^{(k)}(t - x)$$

 $\beta^{(1)}(x), \ \beta^{(2)}(x)$ population 1 and 2 age effects

 $\kappa^{(1)}(t), \; \kappa^{(2)}(t)$ period effects; mean reverting spread

 $\gamma^{(1)}(c), \ \gamma^{(2)}(c)$ cohort effects

Key: $\nu_{\kappa} = \kappa^{(1)}(t), \; \kappa^{(2)}(t) \; \text{long term trend}$

Realism: valuation model \neq simulation model

- ullet (Re-)calibration using data up to $T\Rightarrow {\sf realistic!}$
- \bullet Valuers just observe historical mortality plus one future sample path of mortality from 0 to T
 - ⇒ do not know the "true" simulation/true model
- Using true model ⇒ too optimistic (??)

 c.f. Black-Scholes

Recalibration risk – example (random walk)

- ullet You *will* recalibrate at T
- ullet Recalibration depends on as yet unknown experience from 0 to T
- Recalibration depends on length of lookback window

Hedge Effectiveness: (Cairns et al., 2011b; Longevity 6)

Key conclusions: index-based hedging

- Recalibration ⇒ risk /
- BUT hedge effectiveness also /

WHY?

Additional trend risk is common to both populations.

$$a_k(T, x) \approx f(\beta_{[x]}^{(k)}, \kappa_T^{(k)}, \gamma_{T-x+1}^{(k)}, \nu_{\kappa})$$

Preliminary conclusion

Correlation and hedge effectiveness are not robust relative to the treatment of recalibration risk.

What about the hedge ratio? Price?

Robustness

How robust are estimates of:

- Optimal hedge ratios h_1, \ldots, h_n
- Hedge effectiveness
- ullet Initial hedge instrument prices $\pi(H_1),\ldots,\pi(H_n)$

... relative to ...

Robustness

How robust are key quantities relative to

- Treatment of parameter risk
- Treatment of population basis risk
- Valuation model: recalibration risk (Cairns et al., L6)
- Poisson risk
- Use of latest EW data
- Simulation model + calibration

Modelling Variants

PC: Full parameter certainty (PC);

Valuation Model NOT recalibrated in 2015

PC-R: As full PC

Except: Valuation Model recalibrated in 2015

PU: Full parameter uncertainty with recalibration

PU-Poi: Full PU with recalibration + Poisson risk

Hedging options

- ullet Recall: Liability, $L=a_2(T,65)$ (CMI)
- Hedging instrument (ref England & Wales):

$$-H = a_1(T,x) - a_1^{\mathsf{fxd}}(0,T,x)$$
 OR

-q-Forward maturing at T

$$H = q(T, x) - q^F(0, T, x)$$

Robustness of Hedge Ratios

 $PC \rightarrow PC-R$ <u>not robust</u>; $PC-R \rightarrow PU$ <u>robust</u>

deferred longevity swaps better than maturing q-Forwards

Robustness relative to recalibration window, W

Deferred longevity swaps better than maturing q-Forwards

Robustness relative to recalibration window, ${\cal W}$

Longevity swaps are more robust:

- ullet Liability, L, and longevity swap, H, depend on
 - $\kappa_T^{(1)}$ and u_{κ}
 - BUT in differing proportions \Rightarrow single H not robust
- \bullet Maturing $q\text{-Forward depends on }\kappa_T^{(1)}$ only
 - \Rightarrow even less robust
- Possible market solution:

$$(0,T+U,x)$$
 q-Forward, cash settled at T

Robustness relative to recalibration window, W

T+U q-Forward is cash settled at time T \Rightarrow value depends on $\kappa_t^{(1)}$ and ν_κ

Robustness relative to recalibration window, W

- ullet If we know W, then u_{κ} linear in $\kappa_{T}^{(1)}$
 - ⇒ one hedging instrument sufficient
- ullet If W is not known
 - or, ν_{κ} determined by other methods
 - ⇒ two hedging instruments are required
 - ⇒ Delta and "Nuga" hedging

Delta and Nuga Hedging

Recall: $a_k(T, x) \approx f(\beta_{[x]}^{(k)}, \kappa_T^{(k)}, \gamma_{T-x+1}^{(k)}, \nu_{\kappa})$

Liability: $L = a_2(T, x)$.

Hedge instruments: $H_1 = a_1(T, x_1) \rightarrow h_1$ units

 $H_2 = a_1(T, x_2) \longrightarrow h_2$ units

Delta and Nuga hedging ⇒ require

$$\text{Deltas:} \quad \frac{\partial L}{\partial \kappa^{(2)}} \; = \; - \frac{h_1}{\partial \kappa^{(1)}} \frac{\partial H_1}{\partial \kappa^{(1)}} - \frac{h_2}{\partial \kappa^{(1)}} \frac{\partial H_2}{\partial \kappa^{(1)}}$$

and Nugas:
$$\frac{\partial L}{\partial \nu_{\kappa}} = -h_1 \frac{\partial H_1}{\partial \nu_{\kappa}} - h_2 \frac{\partial H_2}{\partial \nu_{\kappa}}$$

where
$$\alpha = Cov(\kappa_T^{(1)}, \kappa_T^{(2)})/Var(\kappa_T^{(1)})$$
.

Concept:

same idea as Vega hedging in equity derivatives

- hedging against changes in a parameter that is supposed to be constant.

Numerical example: $L=a_2(T,65)$, T=10

 $H_1 = a_1(T, 65)$ $H_2 = a_1(T, 85)$

		/			
Strategy	h_1	h_2	$Var({\sf Deficit})$	Hedge Eff.	
W = 20					
Α	0	0	0.3481	0	
В	-0.8775	0	0.03202	0.9080	(1)
С	-0.8291	0	0.03298	0.9052	(3)
D	-1.3376	0.7199	0.03209	0.9078	(2)
W = 35					
Α	0	0	0.2233	0	
В	-0.8775	0	0.03353	0.8498	(3)
С	-0.8291	0	0.03289	0.8527	(1)
D	-1.3376	0.7199	0.03298	0.8523	(2)

Numerical example: discussion

- Annuity-Annuity hedging

 net Nuga-risk is modest
 - ⇒ Delta-Nuga hedging lessens the *small* gap in hedge effectiveness
- Delta-Nuga hedging will have a greater impact if
 - $-\nu_{\kappa}$ subject to additional risk
 - H_1 is relatively less sensitive to u_{κ}
 - e.g. H_1 is a T-year q-Forward

 H_2 is a (T+U)-year q-Forward settled at T

	$\operatorname{q-F}(T,64)$	$q\text{-}F(\textcolor{red}{T}+\textcolor{red}{T},74)$			
Strategy	h_1	h_2	$Var({\sf Deficit})$	Hedge Eff.	
W = 20					
A	0	0	0.3481	0	
В	500.7	0	0.03435	0.9013	(1)
С	389.0	0	0.04996	0.8565	(3)
D	-279.6	256.4	0.03797	0.8909	(2)
W = 35					
Α	0	0	0.2233	0	
В	500.7	0	0.04953	0.7782	(3)
С	389.0	0	0.03392	0.8481	(1)
D	-279.6	256.4	0.03493	0.8436	(2)

Robustness relative to other factors

Results are robust relative to:

- ullet inclusion of parameter uncertainty in $eta_x^{(k)}$, $\kappa_t^{(k)}$, $\gamma_c^{(k)}$
- pension plan's own small-population Poisson risk
- index population: EW-size Poisson risk, maybe smaller
- CMI data up to 2005 + EW data up to 2005
 versus

CMI data up to 2005 + EW data up to 2008

Conclusions

Robust hedging requires inclusion of

- Recalibration risk (Nuga)
- Careful treatment of recalibration window
- Long-dated hedging instruments to handle Nuga risk

Results appear to be robust relative to

- Poisson risk
- Parameter uncertainty (other than recalibration risk)
- Treatment of latest data

E: A.Cairns@ma.hw.ac.uk

W: www.ma.hw.ac.uk/∼andrewc