New Directions

in the Modelling of Longevity Risk

Andrew Cairns

Heriot-Watt University,

and The Maxwell Institute, Edinburgh

Joint work (in progress!) with:

George Mavros, Torsten Kleinow, George Streftaris

Life Convention, Brussels, 5 November 2012

Plan

- Motivation
- Genealogy
- New directions in modelling
- Numerical illustrations single population models
- Remarks on multiple populations

Motivation

- Application focus:
 - risk measurement and management of longevity risk
 - multiple populations
 - life insurance diversification benefits
 - basis risk in standardised longevity contracts
- industry requires robust models

Development of New Models

 Many new stochastic mortality models since Lee-Carter

• Are they fit for purpose?

• Are they robust?

GENEALOGY: 1st GENERATION MODELS

Currie/Richards (M4)
2-D P-splines
Eilers/Marx
P-splines

Lee-Carter (M1) 1992

> CBD-1 (M5) 2006

> > Time

Why do we need complexity?

Black \Rightarrow model *over*-estimates m(x, t) death rate

Gray \Rightarrow model *under*-estimates m(x, t) death rate

LC: non-random clusters + errors are too big

Need for complexity: accurate base table for forecasts

EW males 1971–2008: Lee–Carter Fit m(x,2008) (log scale)

Issues on complexity

- More complex ⇒ More random processes
- More random processes ⇒
 MUCH more difficult to model multiple populations
- Excessive complexity ⇒
 potentially less robust forecasts

A Possible Way Forward

Single-population models

- Focus on small number of key drivers
 - ⇒ much easier to extend to multi-populations
- Focus on greater robustness of forecasts

Case Study: CBD/Plat Revisited

$$\log m(x,t) = \beta(x) + \kappa_1(t) + \kappa_2(t)(x - \bar{x})$$

Red \Rightarrow actual deaths > expected deaths

CBD/Plat Revisited: Key Idea: Possible responses

$$\log m(x,t) = \beta(x) + \kappa_1(t) + \kappa_2(t)(x - \bar{x})$$

Add:

- ullet Cohort effect, $\gamma(t-x)$
- Extra age-period effects
- Do something new

Key Idea: CBD/Plat Revisited

Underlying $\log m(x,t) =$

• $\beta(x) + \kappa_1(t) + \kappa_2(t)(x - \bar{x})$: two key drivers

PLUS

R(x,t) Residuals

- \bullet Assume: vector $R(t) \to R(t+1)$ mean reverting process
 - ⇒ long term risk depends on two key drivers

Specific Model

$$\log m(x,t) = \beta(x) + \kappa_1(t) + \kappa_2(t)(x - \bar{x}) + R(x,t)$$

- $(\kappa_1(t), \kappa_2(t))$: bivariate random walk
- $R(t) = (n_x \times 1 \text{ vector}) \text{ VAR(2)}$, reverting to 0

$$R(t) = AR(t-1) + BR(t-2) + Z(t)$$

- ullet $Z(x,t)\sim \mathrm{i.i.d.}N(0,\sigma_Z^2)$
- $\bullet \ A = A_1 + A_2 \text{ and } B = -A_2 A_1$

VAR matrices A_1 and A_2

$$A_{i} = \begin{pmatrix} a_{i} & 0 & 0 & \cdots & & & \\ c_{i} & d_{i} & 0 & 0 & \cdots & & & \\ d_{i}/2 & c_{i} & d_{i}/2 & 0 & 0 & \cdots & & \\ 0 & d_{i}/2 & c_{i} & d_{i}/2 & 0 & 0 & \cdots & & \\ 0 & 0 & d_{i}/2 & c_{i} & d_{i}/2 & 0 & 0 & \cdots & \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \end{pmatrix}$$

 $a_i = AR$ terms for new members;

 $c_i = \text{cohort persistence};$

 $d_i = \text{diffusion coeff.}$

Further details

- ullet Deaths: $D(x,t) \sim {\sf Poisson}\left(m(x,t)E(x,t)\right)$
- Bayesian approach:
 posterior density = likelihood × prior
- Upcoming results: mode of posterior density
- Further work: Bayesian parameter uncertainty

Cohort-type effects

Comparison with related models

$$\log m(x,t) = \beta(x) + \kappa_1(t) + \kappa_2(t)(x - \bar{x})$$

$$\log m(x,t) = \beta(x) + \kappa_1(t) + \kappa_2(t)(x - \bar{x}) + \gamma(t - x)$$

$$\log m(x,t) = \beta(x) + \kappa_1(t) + \kappa_2(t)(x - \bar{x}) + R(x,t)$$

$$R(t) = AR(t-1) + BR(t-2) + Z(t)$$
 (A, B as specified earlier)

$$\log m(x,t) = \beta(x) + \kappa_1(t) + \kappa_2(t)(x - \bar{x}) + R(x,t)$$

$$R(t) = AR(t-1) + BR(t-2) + Z(t) \text{ (simplified } A, B)$$

Red, Blue, Gray: similar trends but also differences

Base Table Accuracy

Contribution of ${\cal R}(x,t)$ to improvement rates

Contribution of R(x,t) to Median Improvement rates (%)

Median total improvement rates

Median total improvement rates: Adjusted $\kappa(t)$

Multiple populations: some thoughts

- Aim for a parsimonious structure
- Items to deal with:
 - Population, P, specific $\kappa_i^{(P)}(t)$
 - Population, P, specific $R^{(P)}(x,t)$

Multiple populations: possible structures

Mortality – version 1:

- ullet Population, P, specific $\kappa_i^{(P)}(t)$ correlated
- $R^{(P)}(x,t)$: assume independent

Mortality – version 2:

- ullet All populations have the same $\kappa_i(t)$
- $R^{(P)}(x,t)$: assume independent
- Greater role for $R^{(P)}(x,t)$ as country specific effect

Conclusions

- New model
 - focus on a small number of core period effects
 - adds alternative R(x,t) to popular cohort effects, $\gamma(t-x)$
- ullet Model risk more evident in the mean reverting R(x,t)
- ullet But general framework should prove to be more robust: long term underlying trends $(\kappa(t))$ are reasonably consistent

Further work

- Bayesian parameter uncertainty
- ullet Multiple populations: focus on underlying $\kappa(t)$
 - ⇒ less complexity

Questions

W: www.ma.hw.ac.uk/~andrewc

E: A.J.G.Cairns@hw.ac.uk